海水 海洋大气腐蚀特点及防腐

合集下载

海洋环境中金属的腐蚀与防护

海洋环境中金属的腐蚀与防护
海洋环境中金属的腐蚀与防护
海洋环境中金属的腐蚀与防护
钢铁在海洋环境中的腐蚀-远远高于在陆地环境
海洋气候变化大,空气中富含盐雾 飞溅区不断受到海浪冲击和干湿交替 海水中盐分,氧气,温度,海生物对钢铁的重腐蚀
海洋环境中金属的腐蚀与防护
海水中的腐蚀
海水是具有多种盐类的天然电解质溶液, 其中还含有海生物、悬浮泥沙、溶解的气体 和腐烂的有机物等。
海洋环境中金属的腐蚀与防护
防护方式:
• 阴极保护
A. 牺牲阳极保护 - 船用牺牲阳极有两大种类:锌合金 和铝合金
B. 外加电流保护 - 外加电流保护是以直流电源通过辅 助阳极对船体施加保护电流,使船体成为阴极并获 得极化、免受腐蚀的一种保护技术。
海洋环境中金属的腐蚀与防护
金属的电极电位: 铜 +0.34
海洋环境中金属的腐蚀与防护
植物性海生物
动物性海生物
海洋环境中金属的腐蚀与防护
飞溅区(水线部位)的腐蚀
飞溅区(水线部位)由于受海水的周期浸泡,经常处于干湿交替的 状态。大大增加了腐蚀介质的侵蚀性,加速了钢板表面的供氧和 腐蚀的速度(钢作牺牲阳极)。同时由于腐蚀产生的二价铁,在潮湿的 空气中剧烈氧化变成三价铁,其还原过程又加速了钢板的腐蚀(钢作 为还原剂)。
海洋环境中金属的腐蚀与防护
低碳钢和低合金钢在海水中的腐蚀速度
试验条件 腐蚀深度(mm/a)
全浸区
A3 0.096
16Mn 0.086
16MnCu 0.090
飞溅区
0.391
0.391
0.337
大气区
0.057
海洋环境中金属的腐蚀与防护
钢质船舶在海洋中 的腐蚀是不可避免 的,但是其腐蚀速 度则是可以控制的 。如果能将其腐蚀 速度控制在原来的 十分之一,那么它 的寿命将是原来的 十倍。

海洋腐蚀环境的速度

海洋腐蚀环境的速度
朝向太阳的一面相比,背向太阳面的金属材料尽管避开太阳光直射,但温度较低,湿润程度更高使腐蚀更为严重。 综上所述,如要使用的铜带能达到在海洋气候下保证一定的耐腐蚀性,我建议: 直接使用涂锡铜带来生产海洋船舶上的配套设备,现在国内已有好多厂家在使用涂锡铜带生厂船用换热器,比如:基伊埃,澳森,迪峰,上京奥太华,上海元和等机械设备制造商。 锡是一种银白色的金属,质地柔软,有高度的延展性,容易被抛光刷亮,加热融化。它是无毒金属,在食品工业中被广泛利用。此外,可焊性好,在空气中几乎不变色,在硫酸、硝酸、盐酸的稀溶液中几乎不溶解,因此铜引线、焊片、与火药和橡胶接触的零件常采用镀锡?。按电解液的酸碱度来分,镀锡可分为酸性镀锡和紫铜箔碱性镀锡。酸性镀锡的阴极电流效率高,接近100%,沉积速度快,整平性好,外观漂亮耐久,有很好的防腐装饰作用。紫铜箔碱性镀锡的镀层与基体金属的结合力好,对镀前的清洗工作要求不高,镀液的分散能力极强且不需要添加有机添加剂。因此,在电力电容器行业中,常用紫铜碱性镀锡的方法来对紫铜箔进行电镀。紫铜箔镀锡后冲压成引线片插入在芯子的薄膜中,镀锡的一个作用是防止裸露的铜催化的老化;另一个作用是提高铜的可焊性。
水中的溶解度主要取决于海水的盐度和温度,随海水盐度增加或温度升高,氧的溶解度降低。含氧量增加有利于钝化膜的形成和修补,使钝化膜的稳定性提高,点蚀和缝隙腐浊的倾向减小。 3 ﹑CO2、碳酸盐的影响 海水中的CO2主要以碳酸盐和碳酸氢盐的形式存在,并以碳酸氢盐为主。CO2气体在海水中的溶解度随温度、盐度的升高而降低,随大气中CO2气体分压的升高而升高。海水中的碳酸盐对金属腐蚀过程有重要影响,碳酸盐通过pH值的增大,在金属表面沉积形成不溶的保护层,从而对腐蚀过程起抑制作用。 4﹑温度的影响 海的洋环境中温度随着时间、空间上的差异会在一个比较大的范围变化。表层海水温度还随季节而呈周期性变化。温度对海水腐蚀的影响是复杂的。温度升高,会加速金属的腐蚀。正常海水含氧量下,温度是影响腐蚀的主要因素。这是因为含氧量足够高时,控制阴极反应速度的是氧的扩散速度,而不是含氧量。在海洋环境中对金属钝化,温度升高,钝化膜稳定性下降,点蚀、应力腐蚀和缝隙腐蚀的敏感性增加。 5﹑光照条件 铜在光照下会促进铜金属表面的光敏腐蚀反应及真菌类生物的生物活性,这就为湿气和尘埃在金属表面贮存并腐蚀提供更大的可能性。海洋环境中的材料背阳面比朝阳面腐蚀更快。这是因为与

海洋环境腐蚀特点及激光熔覆技术在海洋防腐中的应用

海洋环境腐蚀特点及激光熔覆技术在海洋防腐中的应用

海洋环境腐蚀特点及激光熔覆技术在海洋防腐中的应用摘要:详细分析了海洋中各个区域的腐蚀特点。

介绍了激光熔覆技术在海洋设备构件防腐中的应用以及此技术在应用上出现的问题。

关键字:海洋腐蚀;金属构件;激光熔覆引言海洋中蕴藏着丰富的自然资源,海洋的开发不仅具有重要的经济意义,更能体现一个国家的科技水平与科研能力。

现今,随着海洋开发力度的增加,海底石油输送管道、深海钻井平台、海上跨海大桥等海上产业设施数量逐年上升[1]。

海洋环境恶劣的腐蚀特点,必然会对海上金属构件产生极其严重的腐蚀。

据统计,2016年世界上因腐蚀产生的经济损失占全球国民生产总值的3.4%,海洋构筑物的腐蚀占到其中的三分之一[2]。

因此,对海洋环境腐蚀特点充分认识以及选择合适的方法对海上金属构件进行防护具有特别的经济意义。

1.海洋环境腐蚀特点海水中含有大量的盐类,导电性良好,构成一种天然良好的电解质溶液,因而处于其环境中的金属构筑物会遭受特别严重的腐蚀。

若根据处于海洋环境中的特点不同分类,可将海洋腐蚀环境分为几个区域:大气区、飞溅区、潮差区、全浸区以及海泥区[3]。

1.1大气区海洋大气区指位于海平面以上的大气区域,这个区域中含有较高的盐分。

湿润的大气环境会在金属表面形成薄薄的一层含盐水膜,加速金属构件的腐蚀。

此区域的腐蚀性受大气中含盐量、温度、光照等条件影响[4]。

1.2飞溅区海洋飞溅区指处于海平面以上,受风浪飞溅影响的区域[5],氧气含量高、受海浪击打且干湿交替[6]。

与其他区域相比较腐蚀情况最为严重,一方面金属表面干湿交替,富含大量氧气,发生氧去极化反应;另一方面,海浪的击打会对金属表面的防护层造成破坏,使得防护措施失效,发生腐蚀[7]。

1.3潮差区海水潮差区指因海水潮汐作用而发生干湿交替变化的区域,与飞溅区类似,此区域氧气含量大,干湿交替[8]。

由于潮差周期大,高度变化大,钢结构在涨潮时受海浪海水共同作用,落潮时,露出海面部分又会有残存海水液膜,随露出时间延长而逐渐减薄,在减薄乃至干燥过程中形成盐沉积以及过饱和海水液膜,腐蚀规律较为复杂[9]。

金属海水腐蚀

金属海水腐蚀
2. 海水腐蚀
• 定义
海水腐蚀指金属在海洋环境中遭受腐蚀而 失效破坏的现象
海洋占地球表面积的71%,海水是自然界 中量最大,而且具有很强腐蚀性的天然电解 质
各种海上运输工具、海上采油平台、海 岸设施、军用设施,都可能遭受海水腐蚀
我国沿海工厂常使用海水做为冷却水, 海水泵的铸铁叶轮仅能使用3个月
•海水的组成和性质
➢ 流速
铁、铜等金属存在一个临界流速,超过它, 腐蚀明显加快
但对海水中能钝化的金属,一定的流速能促 进钛、镍合金和高铬不锈钢的钝化和耐蚀性
海水流速很高时,出现了冲刷腐蚀
➢ 生物因素
生物因素对腐蚀影响很复杂。但多数增加了 腐蚀
船舶和海洋设施的保护
(1)材料
低合金海水用钢与碳钢的比较
环境
海洋大气区 飞溅区 潮汐区 全浸区 海泥区
(5)海水中易出现点腐蚀&缝隙腐蚀,在高 速流水中,易产生冲击腐蚀和空蚀
•影响海水腐蚀的因素
➢ 盐度
当盐的浓度超过一定值,氧的溶解度降低,腐蚀速 率下降
➢ pH值
海水一般处于中性,对腐蚀影响不大。在深海中, pH值略有下降,不利于生成保护性碳酸盐
➢ 碳酸盐饱和度
在海水的pH值下,碳酸盐一般达到饱和,易于沉积; 当施加阴极保护时,更易于碳酸盐沉积析出。河口处的 稀释海水,碳酸盐并非饱和,不宜析出形成保护层,腐 蚀增加
➢ 氧含量
氧含量增加,促进腐蚀。波浪和绿色植物的 光合作用提高氧的含量;海洋动物的呼吸作用 及生物分解需要消耗氧,氧含量降低。污染海 水中氧含量可大大下降
➢ 温度
海水温度每升高10℃,腐蚀速率提高约一倍; 但随温度升高,氧含量降低。一般讲,铁、铜 和它们的合金在炎热的环境和季节里,海水的 腐蚀速率要更快些

海洋平台腐蚀特点及防腐分析

海洋平台腐蚀特点及防腐分析

海洋平台腐蚀特点及防腐分析海洋平台防腐措施可以有效延长使用寿命,为海上安全运行提供有力保障。

通过分析海洋平台腐蚀特点及相应的防腐措施,旨在为防腐技术在平台防腐工程中的应用提供参考。

标签:海洋;平台;防腐1 海洋平台腐蚀特点海洋平台处于严酷的工作环境中,长期面临腐蚀危害。

海洋平台的主要结构材料为钢铁,海洋大气中水分含量较大,氯化钠微粒会在钢铁表面形成有强腐蚀性的水膜。

空气中的某些强腐蚀性介质如二氧化硫,溶于钢铁表面的水膜中,加大了水膜的腐蚀性。

海洋平台的飞溅区是一个特殊的腐蚀环境,在这一区域,平台表面会受到海水的周期冲击润湿[1]。

这种干湿变换的情况,加重了该区域的腐蚀状况。

海洋平台的水下部分,焊缝部位容易出现电化学腐蚀。

2 涂层防腐涂层防腐措施是海洋平台防腐技术中比较常见的方式之一,主要通过隔断平台钢结构与腐蚀介质实现防腐工作。

涂层的防腐蚀作用可归纳为以下几点:第一,性能优良的涂料可抑制水、氧、二氧化碳等物质透过涂层接触钢结构,并可以抑制微生物活动,减少微生物的附着污损。

第二,由于钢结构在海水中会出现电化学腐蚀,而涂层可通过抑制阳极金属离子在腐蚀介质中的溶解和阴极的放电现象,起到保护作用。

为了实现较好的涂装效果,在喷涂之前,应该对平台表面进行洁净度检查,并将表面残留物及杂质清除。

可以采用喷砂除锈,不方便喷砂的区域,可进行刮刀手动除锈,然后用压缩空气吹扫,并需要涂抹防护底漆。

如对旧涂层进行修缮涂装,则要根据旧涂层的状态,确定表面处理的方法。

轻度缺陷用刮刀和砂纸等打磨处理即可,中等缺陷要采用动力工具打磨光滑,而情况严重的区域,则要采用喷砂处理方式。

高性能涂料对表面光滑度的要求,要高于普通的油性涂料。

防锈漆的附着性能及渗水性能是关键参数,所含成分应避免电化学腐蚀,并且干燥后弹性良好,保证不开裂,不剥落。

采用上述处理,可以保证涂装的质量,减少平台表面腐蚀性。

海洋平台的使用时限及其特殊的作业环境,会对涂装的整理质量要求产生影响。

海水腐蚀及其防护方法

海水腐蚀及其防护方法

海水腐化及其防护办法摘要:海水是含盐浓度很高的自然电解质,是自然腐化剂中腐化性最强的介质之一.我们太多的装备因为海水的腐化性而被破坏,包含军工机械.海上钻台.淡化装备.海水管道.船埠运输机械以及海边娱乐举措措施等,所以海水防腐不容疏忽.本文介绍了海水腐化的原因和特色,对海水腐化的影响身分和防护办法进行了剖析和评论辩论.症结词:原因,特色,影响身分,防护海水腐化是指材料(主如果金属构件)在海洋情形中产生的腐化.海水水质的重要特色:海水中含有多种盐类,表层海水含盐量一般在 3.2%~3.75%之间,随水深的增长,海水含盐量约有增长;海水中的盐重要为氯化物,占总盐量的88.7%;海水呈微碱性,pH值接近8.当当代界生齿剧增.资本缺乏.情形恶化,海洋失去极其丰硕的资本可供人类开辟并将有力的推进世界经济的可中断成长.金属腐化因为其隐藏性.迟缓性.自觉性.自催化性经常被人们疏忽,查找最佳有效的防腐化和掌握腐化办法,已成为当代材料范畴最重要的课题之一.本文对海水腐化的原因.特色.影响身分和防护办法进行了介绍和研讨.(一)电化学腐化海水是庞杂的电解质溶液,并溶有必定量的氧,电化学腐化道理对海水腐化是实用的,并且大多半金属材料在海水中都属于去极化腐化,即氧是海水腐化的去极化剂.海水腐化速度重要为阴极氧的去极化所掌握,在这种情形下腐化速度由氧到达金属概况的扩漫步调所掌握.一种金属浸在海水中,因为金属及合金概况成分不平均性,相散布不平均性,概况应力应变的不平均性,以及其他微不雅不平均性,导致金属与海水界面上电极电位散布的微不雅不平均性.金属概况就会形成很多个腐化微电池,就会消失阴极区和阳极区.例如碳钢在海水中电池腐化反响:电极电位较低的区域—阳极区(如铁素体相):Fe→Fe2++2e电极电位较高的区域—阴极区(如渗碳体相):½O2+H2O+2e→2OH 此外,在海水中当统一金属材料概况温度不合.氧含量不合或受应力不合还会产生宏电池腐化.焊接材料与基材之间物理化学性质差别时也会产生宏电池腐化.当两种不合金属材料浸在海水中并互相接触的情形下就会产生另一种宏电池腐化—电偶腐化.故海水腐化是典范的电化学腐化.(二)微生物腐化海洋中生计着多种动植物和微生物,它们的性命运动会转变金属海水界面的状况和介质性质,对腐化产生不成疏忽的影响.海生物的附着会引起附着层表里的氧浓度差电池腐化.某些海生物的发展会破坏金属概况的涂料等呵护层.防腐涂料在波浪和水流的感化下,可能引起涂层的剥落.在附着生物逝世后粘附的金属概况上,锈层以下以及海泥里,都是缺氧情形,会促进厌氧的硫酸盐还原菌的滋生,引起轻微的微生物腐化,使钢铁的腐化加快.海水是典范的电解质溶液,其腐化有如下特色:(1)因为海水的电导率很大,海水腐化的电阻性阻滞很小,所以海水腐化中金属概况形成的微电池和宏不雅电池都有较大的活性.海水中不合金属接触时很轻易产生电偶腐化,即使两种金属相距数十米,只要消失电位差并实现电衔接,就可产生电偶腐化.(2)因海水中氯离子含量很高,是以大多半金属,如铁.钢.铸铁.锌.镉等,在海水中时不克不及树立钝态的.海水腐化进程中,阳极的极化率很小,因而腐化速度相当高.(3)海水中易消失小孔腐化,孔深也较深.(4)中性海水消融氧较多,除镁及其合金外,绝大多半海洋构造材料在海水中腐化都是由氧的去极化掌握的阴极进程.一切有利于供氧的前提,如波浪.飞溅.增长流速,都邑促进氧的阴极去极化反响,促进钢的腐化.影响海水腐化的身分一般有海水含盐量,温度,溶氧量,pH值,流速与波浪,海生物等.(一)含盐量海水的盐度摇动直接影响到海水的比电导率,比电导率又是影响金属腐化速度的一个重要身分,同时因海水中含有大量的氯离子,破坏金属的钝化,所以许多金属在海水中遭到轻微腐化.盐类以Cl为主,一方面:盐浓度的增长使得海水导电性增长,促进了阳极反响,使海水腐化性很强;另一方面:盐浓度增大使消融氧浓度降低,超出必定值时金属腐化速度降低.(二)温度海水表层温度可由0℃增长到35℃,随海水深度增长,水温降低,表层海水温度还随季候而周期性变更,海底温度变更很小.温度对海水腐化的影响是庞杂的.从动力学方面斟酌,温度升高,会加快金属的腐化.另一方面,海水温度升高,海水中氧的消融度降低,同时促进呵护性碳酸盐的生成,这又会减缓钢在海水中的腐化.但在正常海水含氧量下,温度是影响腐化的重要身分.这是因为含氧量足够高时,掌握阴极反响速度的是氧的集中速度,而不是含氧量.对于在海水中钝化的金属,温度升高,钝化膜稳固性降低,点蚀.应力腐化和裂缝腐化的迟钝性增长.(三)溶氧量海水腐化是以阴极氧去极化掌握为主的腐化进程.海水中的含氧量是影响海水腐化性的重要身分.在恒温海水中,随消融氧浓度的增长,氧集中到金属概况的含量及阴极区极化速度也增长,从而导致腐化速度增长.对于能形成钝化膜的金属,含氧量恰当增长有利于钝化膜的形成和修补,使钝化膜的稳固性进步,有助于防止腐化的进一步进行.海水的溶氧量随季候温度的变更而变更.(四)pH值海水pH在7.28.6之间,为弱碱性,对腐化影响不大.海水中除了氧和氮之外,还溶有二氧化碳,海洋生物的新陈代谢感化以及动植物逝世亡分化的碳酸盐,都与pH有关.pH升高有利于克制海水腐化,并易产生钙镁沉淀物附着在材料概况,对材料的阴极呵护有利,但也可能加剧局部腐化.(五)流速[1]流速增长,金属腐化速度增长.海水对金属概况有冲蚀感化,当流速超出某一临界流速时,金属概况的腐化产品膜被冲刷掉落,金属概况同时受到磨损,这种腐化与磨损结合感化,使钢的腐化速度急剧增长.对于在海水中能钝化的金属,如不锈钢.铝合金.钛合金等,海水流速增长会促进其钝化,可进步耐蚀性.(六)微生物海生物对腐化的影响很庞杂,因为它附着的种类和程度不合,对材料的腐化程度就不合.大型海生物的附着发展增长了船的进步阻力,降低航速,增长船的振动和燃料消费,降低船的货运量.污损生物的滋生也会引起船舶或海上建筑防腐化呵护层的破坏,加快金属构件的腐化.当概况被完全笼罩时,可使腐化速度降低,而当概况局部被笼罩时,往往会使局部腐化加剧.海水腐化的防护办法重要有电化学呵护.形成呵护层.改良金属的本质.改良腐化情形等[2].(一)电化学呵护办法电化学呵护办法有外加电流呵护法和就义阳极呵护法.外加电流法是将被呵护的金属与另一附加电极作为电解池的南北极,被呵护金属为阴极,如许就使被呵护金属免受腐化.就义阳极呵护法是将生动金属或其合金连在被呵护的金属上,形成一个原电池,这时生动金属作为电池的阳极而被腐化, 基体金属作为电池的阴极而受到呵护.(二)形成呵护层在概况喷/衬.镀.涂上一层耐蚀性较好的金属或非金属物资以及将被呵护概况进行磷化.氧化处理,使被呵护概况与介质机械隔离而降低.一般采取电镀,也有效熔融金属浸镀或喷镀,或者直接从溶液中置换金属进行化学镀等.应用笼罩层防止金属腐化时,对笼罩层的根本请求:①构造慎密,完全无孔,不透介质②与根本金属有优越的结合力③高硬度.高耐磨.散布平均(三)改良金属的本质和腐化情形经由过程合金处理和锻造淬火可以转变金属的成分,有效地进步了其耐磨耐腐化机能,从而减小了海水腐化.经由过程应用缓蚀剂.削减腐化介质的浓度,除去介质中的氧,掌握情形温度.湿度等转变腐化情形的办法能有效的减慢金属在海水中的腐化速度.(四)微生物腐化的防护[3](1)微生物克制剂:微生物克制剂有两类,即杀菌剂和抑菌剂.(2)除去代谢物资:从一个体系中除去一种重要的代谢物资,可以掌握细菌的运动.(3)防止缺氧前提:氧可以克制硫酸盐还原菌的运动,停止水系的强烈曝气可以防止水箱等体系的厌氧细菌腐化,水涝泥土的排水可以减轻埋设管道的腐化.(4)还可以经由过程掌握PH,应用呵护性涂料,阴极呵护等措施削弱微生物对金属的腐化.海洋腐化的防护,可以进步材料的防腐化机能,从而延伸海上各类装备的应用寿命.实行有效的防护海洋腐化的办法可以大大削减因为腐化而带来的经济损掉.我信任经由过程不竭的研讨与尽力,我们必定可以取得海洋腐化防护的伟大冲破.参考文献:[1]雒娅楠.海洋情形中金属材料现场电化学检测及冲刷腐化研讨[D].天津学报.[2]陈克忠.《金属概况防腐化工艺》.化学工业出版社[3]邢晓夏,刘均洪. 生物腐化的研讨进展[J].化学工业与工程技巧,,(2).。

海水腐蚀原理及海洋防腐对策分析

海水腐蚀原理及海洋防腐对策分析

海水腐蚀原理及海洋防腐对策分析海水是一种含有多种盐类的电解质溶液,含盐总量约30%,其中的氯化物含量占总盐量的88%,, pH值为8左右,并溶有一定量的氧气。

除了电位很负的镁及其合金外,大部分金属材料在海水中都是氧去极化腐蚀。

其主要特点是海水中氯离子含量很大。

因此大多数金属在海水中阳极极化阻滞很小,腐蚀速率相当高;海浪、飞溅、流速等这些利于供氧的环境条件,都会促进氧的阴极去极化反应,促进金属的腐蚀海水电导率很大,所以不仅腐蚀微电池活性大,宏电池的活性也很大。

海水中不同金属相接触时,很容易发生电偶腐蚀。

即使两种金属相距数十米,只要存在电位差,并实现电联结,就可能发生电偶腐蚀。

海水中溶有大量以氯化钠为主的盐类。

海水的含盐量以盐度来表示。

盐度是指1000g海水中溶解的固体盐类物质的总质量(g)。

含盐量影响到水的电导率和含氧量。

因此对腐蚀有很大影响。

海水中所含盐分几乎都处于电离状态,这使得海水成为一种导电性很强的电解质溶液。

另外,海水中存在着大量的氯离子,对金属的钝化起着破坏作用,也促进了海水中金属的腐蚀。

对于在海水中的不锈钢和其它合金点蚀是常见的现象。

由于氧去极化腐蚀是海水腐蚀的主要形式,因此,海水中溶解氧的含量是影响海水腐蚀的主要因素。

随着盐度的增加和温度升高,溶解氧含量会降低。

因此在某一含氧量时会存着一个腐蚀速率的最大值。

在海水表层,大气中有足够的氧溶人海水中,海水中的腐蚀与含氧量成正比关系。

但是当海水中的含氧量达到一定值,可以满足扩散过程所需要时,含氧量的变化对腐蚀不足以产生明显的作用。

海水温度升高,氧的扩散速率加快,海水电导率增大,这加速了阴极和阳极的反应,即腐蚀的加速。

海水温度随着纬度、季节和深度的不同而变化。

海水的波浪和流速改变了供氧条件,使氧到达金属表面的速率加快。

金属表面腐蚀产物所形成的保护膜被冲掉,金属基体也受到了机械性损伤。

在腐蚀和机械力的相互作用下,金属腐蚀急剧增加。

海洋中生存着多种动植物和微生物,它们的生命活动会改变金属-海水界面的状态和介质性质,对腐蚀产生不可忽视的影响。

提高金属的耐大气耐海水腐蚀方法1351668--刘雷

提高金属的耐大气耐海水腐蚀方法1351668--刘雷

一、金属在大气中的腐蚀金属材料或构筑物在大气条件下发生化学或电化学反应引起材料的破损称为大气腐蚀。

1.1 大气腐蚀的分类主要参与大气腐蚀过程的是氧和水气,其次是二氧化碳。

根据金属表面的潮湿程度的不同,把大气腐蚀分为三类:1)干大气腐蚀特点:在金属表面不存在液膜层;在金属表面形成不可见的保护性氧化膜(1-10nm)和某些金属失泽现象。

2)潮大气腐蚀特点:金属在相对湿度小于100%的大气中,表面存在肉眼看不见的薄的液膜层(10nm-1um)。

3)湿大气腐蚀特点:金属在相对湿度大于100%,如水分以雨、雾、水等形式直接溅落在金属表面于上,表面存在肉眼可见的水膜(1um-1mm)。

1.2腐蚀原因与机理下图是水膜厚度与腐蚀速度的关系曲线。

在薄的液膜条件下,大气腐蚀的阳极过程受到较大阻滞,因为氧更容易到达金属表面,生成氧化膜或氧的吸附膜,使阳极处于钝态。

阳极钝化及金属离子化过程困难是造成阳极极化的主要原因。

当液膜增厚,相当于湿的大气腐蚀时,氧到达金属表面有一个扩散过程,因此腐蚀过程受氧扩散过程控制。

影响大气腐蚀的几个主要因素:湿度、大气成分等。

*湿度:是决定大气腐蚀类型和速度的一个重要因素。

每种金属都存在一个腐蚀速度开始急剧增加的湿度范围,人们把大气腐蚀速度开始剧增时的大气相对湿度值称为临界湿度。

对于铁、钢、铜、锌,临界湿度约在70-80%之间。

*大气成分:大气的成分很复杂,尤其S02、H2S、NaCl。

2、防止大气腐蚀的方法:*提高金属材料的耐蚀性,在碳钢中加入Cu、Cr、Ni及稀土元素可提高其耐大气腐蚀。

*采用有机和无机涂层及金属镀层。

*采用气相缓蚀剂。

*降低大气湿度。

(主要用于仓储金属制品的保护)*另外,合理设计构件,防止缝隙中存水,去除金属表面上的灰尘等都有利于防蚀。

尤其要开展环境保护,减少大气污染,这不仅有利于人民健康,而且对延长金属材料在大气中的使用寿命也是相当重要的。

二、金属在海水中的腐蚀2.1、影响海水腐蚀的重要因素盐类海水中溶解氧海洋生物和腐烂的有机物海水的温度、流速PH值2.2防止腐蚀的措施1)研制和应用耐海水腐蚀的材料。

(完整版)海水腐蚀情况讲解

(完整版)海水腐蚀情况讲解

海水腐蚀情况海水腐蚀的原因浸入海水中的金属,表面会出现稳定的电极电势。

由于金属有晶界存在,物理性质不均一;实际的金属材料总含有些杂质,化学性质也不均一;加上海水中溶解氧的浓度和海水的温度等,可能分布不均匀,因此金属表面上各部位的电势不同,形成了局部的腐蚀电池或微电池。

其中电势较高的部位为阴极,较低的为阳极。

电势较高的金属,例如铁,腐蚀时阳极进行铁的氧化;电势较低的金属,例如镁,被海水腐蚀时,镁作为阳极而被溶解,阴极处释放出氢。

当电势不同的两种金属在海水中接触时,也形成腐蚀电池,发生接触腐蚀。

例如锌和铁在海水中接触时,因锌的电势较低,腐蚀加快;铁的电势较高,腐蚀变慢,甚至停止。

海洋环境对腐蚀的影响盐度海水含盐量较高,水中的含盐量直接影响水的电导率和含氧量,随着水中含盐量的增加,水的电导率增加但含氧量却降低。

海水中的盐度并不和NaCl 的行为相一致,这是因为其中所含的钙离子和镁离子,能够在金属表面析出碳酸钙和氢氧化镁的沉淀,对金属有一定的保护作用。

河口区海水的盐度低,钙和镁的含量较小,金属的腐蚀性增加。

海水中的氯离子能破坏金属表面的氧化膜,并能与金属离子形成络合物,后者在水解时产生氢离子,使海水的酸度增大,使金属的局部腐蚀加强。

电导率海水中不仅含盐量高,而且其中的盐类几乎全部处于电离状态,这使得海水成为一种导电性良好的电解质。

这就决定了海水腐蚀过程中,不仅微观电池腐蚀的活性大,同时宏观电池的活性也大。

研究表明:随着电导率的增大,微观电池腐蚀和宏观电池腐蚀都将加速。

溶解氧海水溶解氧的含量越多,金属在海水中的电极电位越高,金属的腐蚀速度越快。

但对于铝和不锈钢一类金属,当其被氧化时,表面形成一薄层氧化膜,保护金属不再被腐蚀,即保持了钝态。

此外,在没有溶解氧的海水中,铜和铁几乎不受腐蚀。

(常压下氧在海水中的溶解度如下)(表一)酸碱度一般来说,海水的pH升高,有利于抑制海水对钢铁的腐蚀。

但是海水pH远没有含氧量对付腐蚀的影响大,尽管表层海水pH比深层海水高,但由于表层海水中的植物光合作用,含氧量远比深处海水高,所以表层海水的腐蚀性远比深层海水要强,这与实际的实验结论是一致的。

海水腐蚀

海水腐蚀

(一)1.腐蚀带来的危害:(1)造成巨大的经济损失。

我国2006的腐蚀损失保守估计高达5000亿元,远远超过自然灾害和各类事故所造成的损失总和。

(2)危害生命财产安全。

(3)阻碍新技术发展。

2.腐蚀的特性:具有普遍性、隐蔽性、渐进性和突发性的特点。

3.海洋环境可分为海洋大气带、飞溅带、潮差区、海水全浸区、海泥区。

4.腐蚀:金属材料与周围环境相互作用,在界面处发生化学、电化学或生化反应而引起破坏的现象5.防腐蚀技术:改善金属的本质、形成保护层、改善腐蚀环境、电化学保护。

改善金属的本质:合金处理、锻造淬火。

形成保护层:非金属保护层(油漆、塑料、搪瓷、矿物性油脂等涂覆在金属表面上形成保护层)和金属保护层(镀层金属)、磷化处理、氧化处理、钝化处理。

改善腐蚀环境:使用缓蚀剂、减少腐蚀介质的浓度,除去介质中的氧,控制环境温度、湿度等。

电化学保护:牺牲阳极保护法、外加电流法。

6.为什么海水环境与普通水环境相比更能够加重金属的腐蚀:化学因素、物理因素、生物因素其影响常常是相互关联的。

化学因素:pH(弱碱性,化学成分腐蚀高)、溶解氧(溶解氧高,加快腐蚀)、盐度(是电解质溶液,能使金属加快电化学速度)、复杂有机物(与金属发生络合或螯合反应);物理因素:温度(布朗运动加快腐蚀速度)、水动力(水动力使溶解氧高)、水文和泥沙(力的作用);生物因素:附着生物、污损生物、细菌的代谢产物;大型生物的冲撞作用。

(二)1.小孔腐蚀和缝隙腐蚀的异同点:区别:孔蚀的初始阶段是金属钝态的破坏取源于自己开掘的蚀孔内,而缝隙腐蚀这发生在金属表面既存的缝隙中;形态上孔蚀的蚀坑窄而深,缝隙腐蚀的蚀坑广而浅。

相同点:都属于局部腐蚀;均形成闭塞腐蚀电池效应。

2.全面腐蚀均匀分布在整个或大部分金属的表面上,宏观上难以区分电池的阴阳极。

通常伴有保护膜的产生。

分布均匀,危害小。

3.造成金属表面化学性不均匀的原因:①化学成份不均匀:一般金属都含有一定的杂质或其它化学成份。

海洋环境中的防腐蚀技术

海洋环境中的防腐蚀技术

海洋环境中的防腐蚀技术日本近年开发的海洋防腐蚀技术处于世界领先水平。

其开发的聚乙烯或聚氨酯有机涂层的重防腐蚀包覆钢材,由于其高品质稳定性和耐久性,已在海洋结构物中得到实际应用。

作为海洋结构物的另一种防腐蚀技术,确认包覆高耐腐蚀性不锈钢和钛钢具有良好的耐久性。

未来应重点关注防腐蚀技术和防腐蚀钢材的研发进展。

1 概述日本是被海洋包围的国家,其国土海岸线护岸总长达数千公里。

这些设施基本都是由混凝土结构件或钢结构件构筑。

与世界其他国家相比,日本基础设施采用钢结构的比例大,特别是系船护岸的一半都是钢结构物。

与混凝土结构物相比,钢结构物具有施工期短的优点。

日本近海有许多软弱地基,适合采用钢结构物,如日本关西机场等海上机场和以东京湾横断道路为代表的海上桥梁、利用海洋资源建造的钻塔和站台等各种海洋钢结构物。

日本海洋防腐蚀技术从上世纪60 年代开始得到长足发展。

1960-1970 年,开发引进了电化学防腐和焦油环氧树脂涂料等的涂装防腐。

腐蚀量设计(预先估计腐蚀量,加厚构件板厚的方法)方法占主流。

引入并使用耐海水钢技术也是在这一时期,但还是难以防止涨落带正下方的集中腐蚀,也不能获得预想的效果。

因此,现在几乎所有的海洋钢结构物都不再使用耐海水钢。

从1999 年开始,港湾钢结构物不再采用腐蚀量设计方法。

在石蜡涂层法、水泥灰桨涂层法、聚乙烯和聚氨酯镶衬法和涂装中,开发了水中固化形环氧树脂涂料和重防腐涂装系涂料,完成了现在防腐蚀方法的雏形。

在实际海洋环境中可以证实这些防腐蚀方法用于基础设施的效果。

从上世纪80 年代开始,日本启动了“采用防腐蚀等措施提高海洋结构物耐久性的技术开发”及“钢管桩防腐蚀技术”的研究,目前仍在继续相关暴露试验。

当初用于暴露试验的防腐方法,在实际海域的验证已超过20 年。

上世纪90 年代以后,根据设备大型化和长寿化的建设需要,开始采用包覆具有更长耐久性的耐腐蚀性金属的防腐技术。

例如,代表性的工程有日本东京湾横断道路采用的包覆钛的防腐蚀技术,羽田机场扩建工程采用的包覆耐海水性不锈钢技术。

最新海洋平台的腐蚀及

最新海洋平台的腐蚀及
❖ 海洋大气区 :海洋大气区海盐粒子使腐蚀加 快 ,干燥表面与含盐的湿膜交替变换形成物 理、学和电化学作用影响金属腐蚀。
❖ 飞溅区 :在海洋环境中腐蚀最严重的部位是 在平均海潮以上的飞溅区。由于经常成潮 湿表面 ,表面供氧充足 ,无海生物污损。长 时间润湿表面与短时间干燥表面的交替作 用和浪花冲刷 ,造成物理与电化学为主的腐 蚀破坏 ,且破坏最大。
❖ 锌加保护是一种优质便捷的钢结构防腐保护 方法 ,锌加保护对基体材料拥有阴极保护和屏 蔽保护双重作用。锌加保护技术具有优异的 防腐性能在于锌加镀锌涂层干膜中含锌量达 96 % ,产品中锌粉纯度高达99. 995 %以上。 锌加保护还具备独特的重融性 ,新的锌加涂层 与原有的锌加镀层可完全融合 ,便于维修补涂。 锌加保护与传统有机涂料相比 ,具有很强的阴 极保护作用并且可以作为良好的底层 ,其耐腐 蚀能力高于常规的富锌底漆 5~6倍 ,防腐保护 年限可达到 25~30年。
❖ 海洋平台热喷涂防腐技术
❖ 热喷涂技术在海洋平台钢铁构件的应用已有很久 的历史了。热喷涂锌、及其合金涂层在国外海洋 平台钢铁构件上都有成功应用实例, 实例表明 : 热喷涂锌铝及其合金涂层已成为一种成熟的防腐 技术 ,经过适当封闭的热喷锌铝涂层在常温和高 温下对处于飞溅区的钢结构均表现出优良的防腐 蚀性能.热喷涂铝涂层在海洋平台中最大应用工程 是 1984年建造的 Hot to n张力腿平台。该平台 设计寿命 50年。其使用 8年后 ,在飞溅区没有发 现腐蚀现象和褐色渗漏效应。厚度测量表明 ,平 台安装后涂层厚度没有减少 ,说明了海洋平台喷 涂锌铝金属覆盖层的防腐蚀效果 同时经试验表明 ,200μm厚的热喷锌铝涂层对 钢结构在飞溅区的防护寿命可以确保超过 30年。 对于海洋平台使用的高强度钢制件来说 ,喷涂 铝及铝合金涂层不仅可提供一种铝屏蔽层 ,而 且一旦涂层受到破坏 ,还可以作为牺牲阳极保 护所出现的漏涂区。在涂层上可涂覆封闭涂料 , 以封闭铝及铝合金涂层的孔隙 ,从而改进涂层 性能 ,延长其总的使用寿命。我国的热喷涂防 腐技术起步较晚 ,目前用在海洋平台防腐还处 于试验阶段 ,有待进一步发展和推广应用。

海洋平台的腐蚀现状和防护措施

海洋平台的腐蚀现状和防护措施

海洋平台的腐蚀现状和防护措施摘要:海洋平台是海上采油的重要设施,其造价昂贵,日常维护困难。

在海洋平台的设计和建造中,腐蚀是必须考虑的重要因素之一。

为了保证海洋平台使用的安全性和可靠性,了解海洋环境腐蚀的特点和采用有效的防护措施是十分必要的。

本文主要就是针对海洋平台的腐蚀现状和防护措施来进行分析。

关键词:海洋平台;腐蚀现状;防护措施引言当前,海洋石油勘探开发已进入到一个新的时代,世界各国对海洋油气资源勘探开发的力度不断加大。

近年来我国虽然在海工产品建造及技术研究方面做了大量工作,并取得了可喜的成绩,但就海洋平台装备科研实力和技术水平而言,我们仍处于一个比较落后的位置。

因此,我们必须加快海洋平台科研步伐,奋力追赶世界先进技术水平,为我国早日迈入世界一流海洋工程装备建造国家而奋斗。

1、海洋平台的腐蚀特点1.1、平台腐蚀分区勘探钻井平台和石油生产平台,两者所受腐蚀环境基本相同。

如导管架式石油生产平台,为固定式,其结构从上到下可分为井架、甲板及甲板组件、甲板腿、导管架、钢桩等5个部分,见图1。

将平台结构各部分所处腐蚀环境分为5个区:海洋大气区、海水飞溅区、潮差区、全浸区和海泥区。

所处腐蚀环境不同,腐蚀程度和保护方法有差异。

(1)甲板腿以上构件主要在海洋大气中工作,长期遭受风吹、雨淋、日晒、海水盐雾的作用。

直接在海洋大气中的腐蚀要比滨海陆地海洋大气腐蚀强烈得多。

尤其是甲板下部,因长期处于潮湿状态,氧气供应充分,是该区腐蚀最严重的部位.(2)甲板腿下部和导管架上部在海水飞溅区和海水干湿交替的潮差区工作。

在高潮线以上的飞溅区,由于结构表面长期遭受飞溅海水的不断冲击,表面始终被海水周期性润湿,氧气供应充分,盐分不断浓缩,缺少完全可靠的保护方法,有时还受狂风巨浪和浮冰的冲击。

(3)导管架中下部长年浸泡在海水里,海水中的腐蚀因素主要是海水温度、含氧量、含盐量、pH值、电阻率、流动速度。

随着地理位置、季节、深度等不同,有些因素会发生变化。

海水、海洋大气腐蚀特点及防腐

海水、海洋大气腐蚀特点及防腐

海水、海洋大气中的金属腐蚀1、海水水质的主要特点含盐量高,盐度一般在35g/L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。

pH变化小,海水表层pH在8.1~8.3范围内,而在深层pH则为7.8左右。

2、海水腐蚀的特点海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,Cl-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。

不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。

海水的电阻率很小,因此异种金属接触能造成的显著的电偶腐蚀。

其作用强烈,作用范围大。

3、海水腐蚀的影响因素3.1盐类及浓度盐度是指100克海水中溶解的固体盐类物质的总克数。

一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。

但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。

盐类以Cl-为主,一方面:盐浓度的增加使得海水导电性增加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。

3.2 pH值海水pH在7.2-8.6之间,为弱碱性,对腐蚀影响不大。

3.3碳酸盐饱和度在海水pH条件下,碳酸盐达到饱和,易沉积在金属表面形成保护层。

若未饱和,则不会形成保护层,使腐蚀速度增加。

3.4含氧量海水腐蚀是以阴极氧去极化控制为主的腐蚀过程。

海水中的含氧量是影响海水腐蚀性的重要因素。

铝的腐蚀性能及海洋大气环境中铝的腐蚀特性

铝的腐蚀性能及海洋大气环境中铝的腐蚀特性

铝的腐蚀性能及海洋大气环境中铝的腐蚀特性1、铝的耐氧腐蚀性能铝是一种活泼金属,极容易和空气中的氧气起化应生成氧化铝。

氧化铝在铝制器皿表面结一层灰色致密的极薄的(约十万分之一厘米厚)薄膜,这层薄膜十分坚固,它能使里力的金属和外界完全隔开。

从而保护内部的铝不再受空气中氧气的侵蚀。

2、铝的酸碱腐蚀铝和氧化铝薄膜都能和许多酸性或碱性物质起化学反应,一旦氧化铝薄膜被碱性溶液或酸性溶液溶解掉,则内部铝就要和碱性或酸性溶液起反应而渐渐被侵蚀掉。

3、铝的腐蚀形式(1)点腐蚀:点腐蚀又称为孔腐蚀,是在金属上产生针尖状、点状、孔状的一种为局部的腐蚀形态。

点腐蚀是阳极反应的一种独特形式,是一种自催化过程,即点腐蚀孔内的腐蚀过程造成的条件,如有腐蚀介质(CL-、F-等)、促进反应的物质(CU2+、ZN2+等),既促进又足以维持腐蚀的继续进行。

(2)均匀腐蚀:铝在磷酸与氢氧化钠等溶液中,其上的氧化膜溶解,发生均匀腐蚀,溶解速度也是均匀的。

溶液温度升高,溶液浓度增大,促进铝的腐蚀。

(3)缝隙腐蚀:缝隙腐蚀是一种局部腐蚀。

金属部件在电解溶液中,由于金属与金属或金属与非金属之间形成缝隙,其宽度足以使介质浸入而又使介质处于一种停滞状态,使得缝隙内部腐蚀加剧的现象称为缝隙腐蚀。

缝隙腐蚀特别容易发生在机械组件接合的地方,例如金属垫圈或是铆接处和铝门窗与灰浆填隙处。

它是属于一种电池效应,但是缝隙一般需在特定程度大小的范围内才会发生,例如:有足够的宽度可使溶液进入,足够窄得使溶液可以停滞等,所以在应用或工程上必须要小心,避免发生足以产生缝隙腐蚀的环境。

缝隙腐蚀的机构很类似穿孔腐蚀的情况,首先是均匀腐蚀,然后因氧浓淡电池会引起阳极反应(缺氧区)和阴极反应(富氧区),由于间隙内氧无法补充,因此阳极反应会继续在同一个位置进行,因此产生严重的腐蚀结果。

(4)晶间腐蚀:是在金属界处发生局部腐蚀的现象。

就电化学的观点来看,由于材料的晶粒为阴极,而晶界一般为阳极,因此在均匀腐蚀的情况下,晶界处的腐蚀性仍稍大于晶粒处,如果在特殊情况下,材料的晶界抗蚀元素又相对减少,晶间腐蚀的现象就会发生。

海洋耐蚀材料性能汇总

海洋耐蚀材料性能汇总

海洋耐蚀材料性能汇总海洋材料的腐蚀问题涉及生物学、电化学、材料学等多门学科,是一项非常复杂的研究工作。

海洋腐蚀的电化学过程、海洋防腐蚀材料的应用及研究进展想必是大家最想了解的问题。

由于海洋环境苛刻、海水对材料腐蚀严重、海洋生物加剧腐蚀进行、深海环境下水压过强、海洋设备尺寸巨大等多方面因素影响,海洋产业因此受到极大限制,海洋新材料的研发和应用是目前须解决的首要问题。

海水腐蚀的特点1、海水中的氯离子等卤素离子能阻碍和破坏金属的钝化,海水腐蚀的阳极过程较易进行。

2、海水腐蚀的阴极去极化剂是氧,阴极过程是腐蚀反应的控制性环节。

一切有利于供氧的条件,如海浪、飞溅、增加流速,都会促进氧的阴极去极化反应,加速金属的腐蚀。

3.海水腐蚀的电阻延迟很小,异种金属的接触会引起显著的腐蚀效应。

影响腐蚀的海水环境因素1、温度的影响从动力学方面考虑,海水温度升高,会加速阴极和阳极过程的反应速度。

但海水温度变化会使其他环境因素随之变化。

海水温度升高,氧的扩散速度加快,这将促进腐蚀过程进行。

另一方面,海水温度升高,海水中氧的溶解度降低,同时促进保护性钙质水垢生成,这又会减缓金属在海水中的腐蚀。

2、溶解氧的影响溶解氧对铁腐蚀的影响更大。

氧气是金属电化学腐蚀中阴极反应的去极化剂。

对于碳钢、低合金钢等在海水中不钝化的金属,海水含氧量的增加会加速阴极去极化过程,增加金属的腐蚀速率;对于那些依靠表面钝化膜来提高耐蚀性的金属,如铝和不锈钢,氧含量的增加有利于钝化膜的形成和修复,提高了钝化膜的稳定性,降低了点蚀和缝隙腐蚀的倾向。

3、盐度的影响水中含盐量直接影响到水的电导率和含氧量,因此必然对腐蚀产生影响。

随着水中含盐量增加,水的电导率增加而含氧量降低,所以在某一含盐量时将存在一个腐蚀速度的最大值。

海水的含盐量刚好为腐蚀速度最大时所对应的含盐量。

4、pH的影响一般说来,海水的 pH 值升高,有利于抑制海水对钢的腐蚀。

在施加阴极保护时,阴极表面处海水 pH 值升高,很容易形成碳酸钙水垢这种沉积层,这对阴极保护是有利的。

海洋材料的防腐蚀性能研究

海洋材料的防腐蚀性能研究

海洋材料的防腐蚀性能研究引言近年来,随着全球经济的发展,海洋资源的开发逐渐成为各国的关注点。

然而,海洋环境对材料腐蚀性的挑战也日益凸显。

海水中的氯离子、海盐等元素对金属材料具有强烈的腐蚀能力。

为了保证海洋结构物的安全性和可持续发展,对海洋材料的防腐蚀性能进行深入研究势在必行。

海洋腐蚀机理分析海洋环境的防腐蚀研究需要从腐蚀机理入手。

海洋腐蚀主要包括湿润腐蚀、海洋大气腐蚀和海水腐蚀。

湿润腐蚀是指材料在海洋中受到海水和空气的同时作用,形成的腐蚀层使金属失去持久性。

海洋大气腐蚀是指海水中的湿度和气体溶解度等因素对材料表面造成的腐蚀。

海水腐蚀主要是由于海水中的氯离子和其他高浓度的物质对金属的侵蚀作用。

海洋环境因素对防腐蚀性能的影响海洋中的氯离子是金属腐蚀的主要因素之一。

高浓度的氯离子在金属表面形成氯化物和碱性腐蚀产物,对金属造成严重的侵蚀。

此外,海洋还存在腐蚀性大气、紫外线、高温、盐分等因素,这些因素的综合作用使得海洋环境对材料的防腐蚀性能提出了更高的要求。

海洋材料的防腐蚀技术1. 电化学防腐蚀技术电化学防腐蚀技术包括阳极保护和阴极保护两种方式。

阳极保护是通过附加直流电源来提供保护电流,形成保护层以减缓金属的腐蚀速度。

阴极保护是通过直流电源或外加电位来提供保护电流,将材料作为阴极,促使金属表面发生还原反应,从而减少腐蚀。

2. 涂层技术涂层技术是目前应用广泛的防腐蚀方法之一。

常见的海洋防腐蚀涂层包括有机涂层、无机涂层和复合涂层。

有机涂层主要是指有机树脂作为基料,添加防腐蚀颜料和填料制成的薄膜涂层。

无机涂层主要采用无机盐基料制成的薄膜涂层,具有较好的耐腐蚀性能和热稳定性。

复合涂层则是有机涂层与无机涂层的结合,综合了两者的优点。

3. 新型防腐蚀材料新型防腐蚀材料是防腐蚀研究的热点。

纳米材料被广泛应用于防腐蚀领域,利用纳米颗粒的高比表面积和量子效应来增强材料的防腐蚀性能。

聚合物材料也是新型防腐蚀材料中的重要成员,通过改变聚合物结构和添加防腐蚀剂来提升材料的抗腐蚀性能。

海洋环境腐蚀规律及控制技术

海洋环境腐蚀规律及控制技术

海洋环境腐蚀规律及控制技术日期:2005-3-28作者:侯保荣中国工程院院士、中科院海洋所研究员阅读:156一、海洋环境腐蚀研究的意义随着人口增加,资源匮乏和环境恶化,人们越来越深刻地认识到,浩瀚的海洋是人类生命源泉、资源宝库和环境调节器。

自人类有文明史以来,从“兴渔盐之利”、“行舟楫之便”的传统海洋产业的开发,到今天海上运输、深海采矿、港口码头、油气开发、海洋生物技术等新兴海洋产业的兴起,人类对海洋的开发利用逐步走向深入,海洋开发的规模不断扩大,但是海洋环境又是一个腐蚀性很强的灾害环境,各种材料在海洋环境中极易发生劣化破坏,腐蚀损失包括直接损失和间接损失两大类,它是一种悄悄在进行的破坏,世界各国每年因腐蚀造成的直接经济损失约占其国民生产总值的2%- 4%,其破坏力之大令人震惊!其中海洋腐蚀的损失约占总腐蚀的1/3。

美国早在1949年就曾经做过全国腐蚀调查,2001年调查结果表明,1998年美国每年因腐蚀带来的直接经济损失达2 760亿美元,占国民生产总值的3.1 %,其他国家像英国、日本、德国、印度、原苏联、法国等也都做过类似的调查。

2003年我国国内生产总值突破11万亿元人民币大关,以此推算,去年我国腐蚀损失约为4000亿元人民币,其灾害性事故隐患也是严峻的。

尽管如此,如果我们的防护工作做得好,其中25% ~ 4 0%的损失可以得到有效避免。

二、海洋环境因素与海洋腐蚀规律海洋腐蚀环境研究主要是从环境角度来考察海洋环境对材料的的腐蚀能力问题。

海水不仅是盐度在32‰~37‰,pH值在8~8.2之间的天然强电解质溶液,更是一个含有悬浮泥沙、溶解的气体、生物以及腐败的有机物的复杂体系。

影响海水腐蚀的有化学因素、物理因素和生物因素等三类,而且其影响常常是相互关联的,不但对不同的金属影响不一样,就是在同一海域对同一金属的影响也因金属在海水环境中的部位不同而异。

海洋腐蚀环境一般分为海洋大气区、浪花飞溅区、潮差区、海水全浸区和海泥区五个腐蚀区带。

海水的腐蚀与防护

海水的腐蚀与防护

1.腐蚀带来的危害:(1)造成巨大的经济损失。

(2)危害生命财产安全。

(3)阻碍新技术发展。

2.腐蚀的特性:具有普遍性、隐蔽性、渐进性和突发性的特点。

3.海洋环境可分为海洋大气带、飞溅带、潮差区、海水全浸区、海泥区。

4.腐蚀:金属材料与周围环境相互作用,在界面处发生化学、电化学或生化反应而引起破坏的现象5.防腐蚀技术:改善金属的本质、形成保护层、改善腐蚀环境、电化学保护。

改善金属的本质:合金处理、锻造淬火。

形成保护层:非金属保护层(油漆、塑料、搪瓷、矿物性油脂等涂覆在金属表面上形成保护层)和金属保护层(镀层金属)、磷化处理、氧化处理、钝化处理。

改善腐蚀环境:使用缓蚀剂、减少腐蚀介质的浓度,除去介质中的氧,控制环境温度、湿度等。

电化学保护:牺牲阳极保护法、外加电流法。

6.为什么海水环境与普通水环境相比更能够加重金属的腐蚀:化学因素、物理因素、生物因素其影响常常是相互关联的。

化学因素:pH(弱碱性,化学成分腐蚀高)、溶解氧(溶解氧高,加快腐蚀)、盐度(是电解质溶液,能使金属加快腐蚀速率)、复杂有机物(与金属发生络合或螯合反应);物理因素:温度(布朗运动加快腐蚀速度)、水动力(水动力使溶解氧提高)、水文和泥沙(力的作用);生物因素:附着生物、污损生物、细菌的代谢产物;大型生物的冲撞作用。

(二)1.小孔腐蚀和缝隙腐蚀的异同点:区别:孔蚀的初始阶段是金属钝态的破坏取源于自己开掘的蚀孔内,而缝隙腐蚀这发生在金属表面既存的缝隙中;形态上孔蚀的蚀坑窄而深,缝隙腐蚀的蚀坑广而浅。

相同点:都属于局部腐蚀;均形成闭塞腐蚀电池效应。

2.全面腐蚀均匀分布在整个或大部分金属的表面上,宏观上难以区分电池的阴阳极。

通常伴有保护膜的产生。

分布均匀,危害小。

3.造成金属表面化学性不均匀的原因:①化学成份不均匀:一般金属都含有一定的杂质或其它化学成份。

②组织的不均匀:金属或合金中,金属晶粒与晶界电位往往不相同。

③物理状态的不相同:金属在机械加工中会造成金属各部分形变及内应力不均匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海水、海洋大气中的金属腐蚀1、海水水质的主要特点含盐量高,盐度一般在35g/L左右;腐蚀性大;海水中动、植物多;海水中各种离子组成比例比较稳。

pH变化小,海水表层pH在8.1~8.3范围内,而在深层pH则为7.8左右。

2、海水腐蚀的特点海水腐蚀为电化学腐蚀;海水腐蚀的阳极极化阻滞对大多数金属(铁、钢、铸铁、锌等)都很小,因而腐蚀速度相当大;海水氯离子含量很高,Cl-破坏钝化膜,因此大多数金属在海水中不能建立钝态,在海水中由于钝化的局部破坏,很容易发生空隙和缝隙腐蚀等局部腐蚀。

不锈钢在海水中也遭到严重腐蚀;多数金属阴极过程为氧去极化作用,少数负电性很强金属(Mg)及合金腐蚀时发生阴极氢去极化作用;海水电导率很大,海水腐蚀电阻性阻滞很小,所以海水腐蚀中不仅腐蚀微电池的活性大,腐蚀宏电池的活性也很大。

海水的电阻率很小,因此异种金属接触能造成的显着的电偶腐蚀。

其作用强烈,作用范围大。

3、海水腐蚀的影响因素3.1盐类及浓度盐度是指100克海水中溶解的固体盐类物质的总克数。

一般在相通的海洋中总盐度和各种盐的相对比例并无明显改变,在公海的表层海水中,其盐度范围为3.20%~3.75%,这对一般金属的腐蚀无明显的差异。

但海水的盐度波动却直接影响到海水的比电导率,比电导率又是影响金属腐蚀速度的一个重要因素,同时因海水中含有大量的氯离子,破坏金属的钝化,所以很多金属在海水中遭到严重腐蚀。

盐类以Cl-为主,一方面:盐浓度的增加使得海水导电性增加,使海水腐蚀性很强;另一方面:盐浓度增大使溶解氧浓度下降,超过一定值时金属腐蚀速度下降。

3.2 pH值海水pH在7.2-8.6之间,为弱碱性,对腐蚀影响不大。

3.3碳酸盐饱和度在海水pH条件下,碳酸盐达到饱和,易沉积在金属表面形成保护层。

若未饱和,则不会形成保护层,使腐蚀速度增加。

3.4含氧量海水腐蚀是以阴极氧去极化控制为主的腐蚀过程。

海水中的含氧量是影响海水腐蚀性的重要因素。

氧在海水中的溶解度主要取决于海水的盐度和温度,随海水盐度增加或温度升高,氧的溶解度降低。

如果完全除去海水中的氧,金属是不会腐蚀的。

对碳钢、低合金钢和铸铁等,含氧量增加,则阴极过程加速,使金属腐蚀速度增加。

但对依靠表面钝化膜提高耐蚀性的金属,如铝和不锈钢等,含氧量增加有利于钝化膜的形成和修补,使钝化膜的稳定性提高,点蚀和缝隙腐浊的倾向减小。

含氧量增加,金属腐蚀速度增加;对于能形成钝化膜的金属,含氧量适当增加,有助于防止腐蚀的进一步进行。

3.5温度一方面:温度升高,腐蚀速度加快。

另一方面:温度升高,氧在海水中溶解度下降,引起腐蚀速度减小海水的温度随着时间、空间上的差异会在一个比较大的范围变化。

从两极到赤道,表层海水温度可由0℃增加到35℃,海底水温可接近0℃,表层海水温度还随季节而呈周期性变化。

温度对海水腐蚀的影响是复杂的。

从动力学方面考虑,温度升高,会加速金属的腐蚀。

另一方面,海水温度升高,海水中氧的溶解度降低,同时促进保护性碳酸盐的生成,这又会减缓钢在海水中的腐蚀。

但在正常海水含氧量下,温度是影响腐蚀的主要因素。

这是因为含氧量足够高时(实测值为5?mL/L以上),控制阴极反应速度的是氧的扩散速度,而不是含氧量。

对于在海水中钝化的金属,温度升高,钝化膜稳定性下降,点蚀、应力腐蚀和缝隙腐蚀的敏感性增加。

3.6流速流速增加,金属腐蚀速度增加。

海水腐蚀是借助氧去极化而进行的阴极控制过程,并且主要受氧的扩散速度的控制,海水流速和波浪由于改变了供氧条件,必然对腐蚀产生重要影响。

另一方面,海水对金属表面有冲蚀作用,当流速超过某一临界流速wc时,金属表面的腐蚀产物膜被冲刷掉,金属表面同时受到磨损,这种腐蚀与磨损联合作用,使钢的腐蚀速度急剧增加。

对于在海水中能钝化的金属,如不锈钢、铝合金、钛合金等,海水流速增加会促进其钝化,可提高耐蚀性。

3.7海生物的影响海生物在大多数情况下是加大腐蚀的,尤其是局部腐蚀。

海水中叶绿素植物可使海使周围海水酸性加大,海生物死亡、腐烂可产生酸性水中含氧量增加,海生物放出的CO2物质和HS,这些都可使腐蚀加速。

此外,有些海生物会破坏金属表面的油漆或镀层,有2些微生物本身对金属就有腐蚀作用。

4、海洋大气腐蚀大气腐蚀基本上属于电化学性腐蚀范围。

它是一种液膜下的电化学腐蚀,和浸在电解质溶液内的腐蚀有所不同。

由于金属表面上存在着一层饱和了氧的电解液薄膜,使大气腐蚀以优先的氧去极化过程进行腐蚀。

另一方面在薄层电解液下很容易造成阳极钝化的适当条件,固体腐蚀产物也常以层状沉积在金属表面,因而带来一定的保护性。

例如,钢中含有千分之几的铜,由于生成一层致密的、保护性较强的锈膜,使钢的耐蚀性得到明显改善。

海洋大气是指在海平面以上由于海水的蒸发,形成含有大量盐分的大气环境。

此种大气中盐雾含量较高,对金属有很强的腐蚀作用。

与浸于海水中的钢铁腐蚀不同 ,海洋大气腐蚀同其它环境中的大气腐蚀一样是由于潮湿的气体在物体表面形成一个薄水膜而引起的。

这种腐蚀大多发生在海上的船只、海上平台以及沿岸码头设施上。

普通碳钢在海洋大气中的腐蚀比沙漠大气中大50倍~100倍。

除了在强风暴的天气中,在距离海岸近的大气中的金属材料,特别是在距海岸200m以内的大气区域中,强烈的受到海洋大气的影响,离海岸24m处钢的腐蚀比240m处大12倍,海洋大气中金属材料腐蚀速率明显变化发.生在距海岸线 15 km到 25 km之间。

因此,海洋大气的影响范围一般界定为20km左右。

海洋大气中相对湿度较大,同时由于海水飞沫中含有氯化钠粒子,所以对于海洋钢结构来说,空气的相对湿度都高于它的临界值。

因此,海洋大气中的钢铁表面很容易形成有腐蚀性的水膜。

薄水膜对钢铁的作用而发生大气腐蚀的过程,符合电解质中电化学腐蚀的规律。

这个过程的特点是氧特别容易到达钢铁表面,钢铁腐蚀速度受到氧极化过程控制。

空气中所含杂质对大气腐蚀影响很大,海洋大气中富含大量的海盐粒子,这些盐粒子杂质溶于钢铁表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱和的空气能使钢的腐蚀速度增加8倍。

5、海洋大气腐蚀的影响因素5.1 大气相对湿度海洋大气中相对湿度较大,空气的相对湿度都高于它的临界值。

因此海洋大气中的钢铁表而有腐蚀性水膜。

表面水膜的厚度对钢铁的海洋大气腐蚀有重要影响,它直接影响到钢铁腐蚀速率和腐蚀机理。

同一般的大气腐蚀相比,由于海洋大气环境具有高的湿度,钢铁表面通常存在较厚的水膜,随着水膜厚度的增加,腐蚀速度变大。

对于海洋大气环境的不同湿度,所形成的水膜也具有不同的厚度,因而在不同海域的海洋大气腐蚀形式也不完全相同。

对于日晒和风吹,钢铁表而的水膜厚度也会发生改变,从而改变钢铁表面大气腐蚀的过程。

腐蚀性水膜对钢铁发生作用的海洋大气腐蚀的过程,符合电解质中电化学腐蚀的规律。

这个过程是氧特别容易到达钢铁表而,钢铁腐蚀速度受到氧极化过程控制。

此外,海洋环境中的雨、雾、露中的水分通过不同的方式影响相对湿度,进而影响钢铁的大气腐蚀过程。

试验结果表明钢在相对湿度大于70%时腐蚀严重。

5.2大气含盐量海洋大气中因富含大量的海盐粒子,形成含有大量盐分气体的环境,这是与其它气体环境的重要区别。

这些盐粒子杂质溶于钢铁表面的水膜中,使这层水膜变为腐蚀性很强的电解质,加速了腐蚀的进行,与干净大气的冷凝水膜比,被海雾周期饱和的空气能使钢的腐蚀速度增加8倍。

海洋大气区海盐的沉积随风浪条件、距离海面的高度和在空气中暴露时间的长短等因素有关。

随着海岸线向内陆的扩展,大气中盐雾含量逐渐降低,海洋大气腐蚀现象会相对减弱直至过渡到一般的大气腐蚀环境。

5.3干湿交替的影响暴露于海洋大气环境下的金属材料表面常常处于干湿交替变化的状态中,干湿交替导致金属表面盐浓度较高从而影响金属材料的腐蚀速率干湿交替变化的频率受到多种因素的影响。

空气中的相对湿度通过影响金属表面的水膜厚度来影响干湿交替的频率。

日照时间如果过长导致金属表面水膜的消失,降低表面的润湿时间,腐蚀总量减小。

另外降雨、风速对金属表面液膜的干湿交替频率也有一定的影响。

在海洋大气区金属表面常会有真菌和霉菌沉积,这样由于它保持了表面的水分而影响干湿交替的频率从而增强了环境的腐蚀性。

5.4光照条件光照条件是影响材料海洋大气腐蚀的重要因素。

光照会促进铜及铁金属表面的光敏腐蚀反应及真菌类生物的生物活性,这就为湿气和尘埃在金属表面贮存并腐蚀提供更大的可能性。

在热带地区金属受到日光的强烈照射,同时珊瑚粉尘和海盐混合在一起使金属的腐蚀极为严重。

另外,海洋大气中的材料背阳面比朝阳面腐蚀更快。

这是因为与朝向太阳的一面相比,背向太阳面的金属材料尽管避开太阳光直射、温度较低,但其表面尘埃和空气中的海盐及污染物未被及时冲洗掉,湿润程度更高使腐蚀更为严重。

5.5大气温度不同海域由于温度及其它环境因素的差异,海洋大气的腐蚀性差异较大。

海洋大气腐蚀环境的温度及其变化通过影响金属表而的水蒸汽的凝聚、水膜中各种腐蚀气体和盐类的溶解度、水膜的电阻以及腐蚀电池中的阴、阳极过程的腐蚀速度来影响金属材料的海洋大气腐蚀。

在一般的大气环境中由于相对湿度低于金属临界相对湿度,在温度升高的情况下由于环境干燥,金属的腐蚀仍然很轻微。

但是在海洋大气腐蚀环境中由于空气湿度大,常常高于金属的临界相对湿度,温度的影响十分明显,温度升高使海洋大气腐蚀明显加剧。

对于一般的化学反应,温度每升高10℃,反应速度提高到2倍。

所以同一地区的季竹变化会影响腐蚀速度。

温度越高,腐蚀性越强一般热带海洋大气的腐蚀性最强温带海洋大气次之温度较低的南北极最弱。

6、下面着重说一下湿度和温度的影响大气腐蚀速度与水膜厚度如图所示Ⅰ区—干大气腐蚀Ⅱ区—潮大气腐蚀Ⅲ区—湿大气腐蚀Ⅳ—金属零件表面水膜厚超过1mm,相当于金属全浸在水中的腐蚀,随水膜厚度进一步增加,金属的腐蚀速度不再变化。

区域I:在大气湿度特别低的情况下,金属表面只有几个分子层厚的附着水膜,没有形成连续的电解液,腐蚀速度很小,相当于干大气腐蚀。

区域Ⅱ:随着大气湿度的增加,金属表面液膜层厚度也逐渐增加,形成连续电解液膜层,(几十或几百个水分子层厚),但膜薄氧易于扩散进入界面,发生电化学腐蚀。

此区腐蚀速度急剧增加,相当于潮的大气腐蚀。

区域Ⅲ:水膜厚可达几十至几百微米,为湿的大气腐蚀区。

随着液膜的增厚,氧的扩散阻力加大,因而腐蚀速度也相应降低。

区域Ⅳ:当金属表面水膜变得更厚,如大于1mm时,已相当于全浸在电解液中的腐蚀情况,腐蚀速度已基本不变。

一般环境的大气腐蚀大多是在Ⅱ、Ⅲ区进行的。

但应当指出的是,随着气候条件和相应的金属表面状态的变化,各种腐蚀形式可以相互转换。

对于某些金属来说,大气腐蚀强烈地受到温度和大气中水分含量的影响,湿度的波动和大气尘埃中的吸湿性杂质容易引起水分冷凝,在含有不同数量污染物的大气中,金属都有一个临界相对湿度,超过此值,腐蚀速度会突然增加。

相关文档
最新文档