高数课件10洛必达法则-课件·PPT
高等数学课件同济版第二节洛必达法则
汇报人:
目录
洛必达法则的起源和历史
洛必达法则是由法国数学家洛必达提出的 洛必达法则是微积分中的一个重要法则,用于解决极限问题 洛必达法则在17世纪末被提出,并在18世纪初被广泛应用
洛必达法则在微积分的发展中起到了重要作用,对现代数学和科学产生了深远影响
洛必达法则在高等数学中的地位和作用
洛必达法则是微积 分中的一个重要定 理,用于解决极限 问题
洛必达法则在高等 数学中广泛应用于 求极限、求导数、 求积分等问题
洛必达法则是解决 复杂极限问题的有 效工具,可以提高 求解效率
洛必达法则在高等 数学中具有重要的 理论价值和实际应 用价值
洛必达法则的定义和定理
单击此处添加标题
洛必达法则:一种用于求极限的方法,由法国数学家洛必达提出
单击此处添加标题
法则的逆形式
洛必达法则的变种:包括洛必 达法则的推广形式和洛必达法 则的逆形式
洛必达法则的变种和推广形式: 包括洛必达法则的推广形式和 洛必达法则的逆形式
总结洛必达法则的重要性和应用价值
洛必达法则是微积分中的重要定理, 对于解决极限问题具有重要意义。
洛必达法则可以帮助我们更好地理 解和掌握微积分的基本概念和方法。
添加标题
添加标题
添加标题
添加标题
洛必达法则在工程、物理、经济等 领域有着广泛的应用价值。
洛必达法则在解决实际问题时,可 以提高计算效率和准确性。
分析洛必达法则在高等数学中的地位和发展趋势
洛必达法则是微积 分中的重要定理, 广泛应用于求极限、 导数、积分等领域
洛必达法则在高等数 学中的地位:是解决 复杂数学问题的重要 工具,也是理解微积 分概念的重要途径
添加 标题
高数第三章第二节洛必达法则31页PPT
0
例8. 求 limxnlnx(n0).
x 0
解: 原式
lim
x0
ln x xn
1
lim
x0
n
x
xn1
lim ( xn) 0 x0 n
0型
机动 目录 上页 下页 返回 结束
0
00
通分
0
取倒数
取对数
0
转化
转化
转化
1
0
例9. 求 lim (sexctaxn).
原式
lim
x
nxn1
ex
xlimn(n21e)xxn2
xl imnne!x 0
机动 目录 上页 下页 返回 结束
例6. 求xl im exnx (n0,0).
(2) n 不为正整数的情形.
存在正整数 k , 使当 x > 1 时,
xk x n xk1
机动 目录 上页 下页 返回 结束
习题解答 P139 1题(7)、(6)
2 用洛必达法则求下列极限 :
lntan7x (1) lim
x0 lntan2x
(2) lx iamxxmnaam(a0)
解 (1)式 x l i0m 7tsae2 77 x n cx2tsae2 22 x n cx
0型 0
解 原式 lx i0m taxxn3xlxim0se3c2xx21 xlimlx0i tm 0a32nxs22ex2c6xxtanxse213xc lxi m01t axtnxa2n x13 .
1 3
说明:
1) 例3 , 例4 表明 x 时 ,
ln x,
洛必达课件
x0
x0
利用 例5
e0 1
例8. 求
lim
x0
tan x x x2 sin x
.
0型 0
解: 注意到 ~
原式
lim
x0
tan x x3
x
lim
x0
sec2 x 3x2
1
lim
x0
tan2 x 3x2
sec2 x 1 tan2 x
1 3
例9. 求 lim n ( n n 1).
n
解: 原式
1
cos
x
~
1 2
x2
3. 求
解: 令 t 1 , 则 x
原式 lim
t0
1 2t 2 t2
1t 1
lim
(1
2
t
)
1 2
(1
t
)
1 2
t0
2t
lim
(1
2t
)
3 21 2ຫໍສະໝຸດ (1 t)
3 2
1
t0
2
4
5. 求下列极限 :
1) lim [x2 ln(1 1) x];
x
x
2)
lim
x0
1 x100
ex
lim
x
n(n 1)xn2
2 e x
lim
x
n!
n e x
0
例4.
求 lim
x
xn ex
(n 0 , 0).
(2) n 不为正整数的情形.
存在正整数 k , 使当 x > 1 时,
从而 由(1)
xk xn xk 1
xk ex
xn ex
新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件
注意:lim6x 2 为已定式,不能再用洛必达法则。
x1 6 x
例5.若f(x0 )
2
,求lim h0
f(x0
2h) 5h
f(x0
h)
解析:l i m h0
f(
x0
2 h ) 5h
f
( x0
h)
lim 2f(x0
h0
2
h ) 5
f( x0
h)
3 5
f( x0
2a
g(3) 9a 1 0
①若g(1) a 1 0 a 1 时,
g(t)
则 g(t) 在 [1,3]必有唯一零点t0
所以 y(t) 在[1, t0 ] 减,[t0 ,3]增
1 t0 3
又y(1) 0 ,所以 y(t0 ) 0不适合。
②若g(1) a 1 0 a 1时,
若 x (0,),则
ax 1 0 ax 1 x f (x)
a
1 1 ex
1 x
xex ex 1 x(ex 1)
h(x)恒成立。
下面求 h(x),x (0,) 的最小值或最小极限值。
用导数法判断单调性难以解决,所以猜测最小
极限值点在0或 位置,由洛必达法则:
g(x) xe x 2e x x 2 0(x 0)
因为 g(x) xex ex 1 ,g (x) xe x 0
所以 g(x) 在(0,) 增
g(x) g(0) 0 所以 g(x) 在(0,)增
g(x) g(0) 0 h(x) 1
第一部分微分中值定理洛必达法则教学-PPT精选
通常称为未定式,分别记为 0 和 。
0
下面介绍利用导数求未定式极限的一个简单而 有效的方法——罗必达法则。
1、 0 型未定式:
0
定理:若函数 f(x)和g(x) 满足下列条件:
(1 ) lim f(x ) 0 ,lig m (x ) 0 ;
[0, x]上满足拉格朗日定理的条件,因此有
f ( x ) f ( 0 ) f () x ( 0 ) ( 0 , x )
即 ln(1x) x
1
由于 0x , 所以
x x x
1x 1
即
x ln1(x)x
1x
二、罗必达法则
如果当 x x0(或 x )时,两个函数f(x)和g(x) 的极限都为零或都趋于无穷大,极限
第一节 微分中值定理 洛必达法则
一、微分学中值定理 二、罗必达法则
一、微分学中值定理
1、罗尔定理 定理1 (罗尔定理)如果函数 y f(x)满足下
列条件: (1)在闭区间[a,b]上连续;
(2)在开区间(a,b)内可导; (3)f(a)=f(b)。
则在开区间(a,b)内至少存在一点 ,使得
f()0
lim2x3
xlnx
1
x
例9 求 lim lnsin3x
x0 ln sin x
解
limlns
in3x lims
1 .3c in3x
o3sx
x0 lnsinx x0
1 .coxs
sinx
3lim co3xs.lim six n x 0 coxsx 0si3 nx
x x 0
洛必达法则课件
洛必达法则课件洛必达法则(Lombardi's Law)是一种管理和领导原则,以美国著名橄榄球教练文森特·洛必达(Vince Lombardi)的名字命名。
这个法则强调了团队合作、自我超越和不懈努力的重要性。
在这篇文章中,我们将探讨洛必达法则的核心概念,并讨论如何应用这些原则来提高个人和团队的绩效。
洛必达法则的第一个核心概念是团队合作。
洛必达认为,团队合作是成功的关键。
他强调了每个团队成员的重要性,无论他们的角色大小。
在洛必达的眼中,每个人都是团队的一部分,都需要发挥自己的作用,为团队的成功做出贡献。
他曾经说过:“团队的力量在于每个人的个人贡献,但团队的成功在于每个人的合作。
”为了实现团队合作,洛必达提倡建立一个积极的团队文化。
他强调了团队成员之间的互相尊重和支持。
他鼓励团队成员之间建立紧密的联系,共同努力实现共同的目标。
他相信,只有当团队成员之间建立了牢固的信任和合作关系,团队才能取得最好的成果。
洛必达法则的第二个核心概念是自我超越。
洛必达认为,每个人都应该不断追求卓越,超越自己的极限。
他鼓励团队成员不断挑战自己,不断提高自己的能力和表现。
他相信,只有当每个人都努力追求卓越,团队才能取得卓越的成果。
为了实现自我超越,洛必达提倡建立一个积极的学习环境。
他强调了持续学习和发展的重要性。
他鼓励团队成员不断学习新知识和技能,不断提高自己的能力。
他相信,只有通过不断学习和发展,每个人才能不断超越自己的极限,实现个人和团队的成长。
洛必达法则的第三个核心概念是不懈努力。
洛必达认为,成功不是偶然的,而是通过不懈努力和坚持不懈实现的。
他强调了毅力和决心的重要性。
他鼓励团队成员在面对挑战和困难时保持积极的态度,坚持不懈地努力。
他相信,只有通过不懈努力和坚持不懈,每个人才能克服困难,实现个人和团队的成功。
为了实现不懈努力,洛必达提倡建立一个积极的工作环境。
他强调了激励和奖励的重要性。
他鼓励团队成员在工作中感受到成就和满足感,激发他们的动力和热情。
经典洛必达法则-PPT课件
f ( ) 对任 k , 意 存 的 在 ( a 实 点 b ), 使 数 k . f ( ) f () 分析 要 证 ( ) kf ( ) 0 . k, 即证 f f ()
k k e f ( ) e kf ( ) 0
cos x 0 .( ) 例 求 lim 0 x 2 x 2 sin x (cosx) 解 原式 lim lim sin 1. 1 x 2 x 2 ) 2 (x 2
cos x 1 x 0 例求 lim .( ) 3 x 0 0 x 1 s in x 21 x 解 原式 lim . 2 x 0 3 x
例
3 x 3 x 2 求 lim . 3 2 x 1x x x 1
0 ( ) 0
解:
正解:
×
注意: 不是未定式不能用L’Hospital法则 !
2、 型未定式解法:
定理3:设
(1) 定理 3 对其他极限过程也是成 立的。
f ( x ) ( 2 ) 当 lim 不存在也不为 时,应改用他 F ( x )
f( x x ) sin x 0
F ( x ) f ( x ) sin x
验证 F ( x ) 在 [0,] 上满足Rolle定理条件.
3.
f ( ) 对任 k , 意 存 的 在 ( a 实 点 b ), 使 数 k . f ( ) f () 分析 要 证 ( ) kf ( ) 0 . k, 即证 f f ()
f ( x ) f ( x ) ( 或 f ( x ) f ( x )), 0 0 ( x ) 0 . 那么 f 0
同济大学《高等数学》(第四版)32节洛必达法则省名师优质课赛课获奖课件市赛课一等奖课件
cos bx
lim
1.
x0 cos ax
上页 下页 返回
例5 求 lim tan x . x tan 3 x
2
()
解
原式
lim
x
sec2 3 sec2
x 3x
1 3
lim
x
cos2 3 x cos2 x
2
2
1 lim 6cos 3x sin 3x lim sin 6x
3 x 2cos x sin x 2
x
(
ln sin x 2x)2
;
2
ln(1 1 )
2、 lim
x;
x arctan x
3、lim x cot 2x ; x0
4、lim( x1
2 x2
1
x
1
); 1
5、 lim x sin x ; x0
6、 lim ( 1 )tan x ; x x0
7、 lim ( 2 arctan x)x . x
5、1;
三、连续.
上页 下页 返回
x sin 2 x 2
lim 6cos6x 3. x 2cos 2 x
2
上页 下页 返回
注意:洛必达法则是求未定式旳一种有效措施, 但与其他求极限措施结合使用,效果更加好.
例6
求
lim
x0
tan x x2 tan
x x
.
解
原式
lim
x0
tan x x3
x
lim
x0
sec2 3
x x2
1
lim
x0
tan 2 3x2
x
lim
x0
x2 3x2
高数课件10洛必达法则
01 洛 必 达 法 则 的 定 义 02 洛 必 达 法 则 的 应 用 03 洛 必 达 法 则 的 注 意 事 项
添加 标题
洛必达法则是微积分中的一种重要法则,用 于解决极限问题
添加 标题
洛必达法则分为上下两个部分,分别用于解 决不同类型的极限问题
添加 标题
洛必达法则的上部分用于解决0/0型极限问 题,即当分子和分母都趋于0时,可以通过 洛必达法则转化为其他形式进行求解
洛必达法则可以将复杂不定积 分转化为简单不定积分
洛必达法则可以解决一些无法 直接求解的不定积分问题
洛必达法则在求解不定积分时, 需要注意函数的连续性和可导 性
洛必达法则是解决定积分问题的重要工具 洛必达法则可以将定积分转化为无穷小量 洛必达法则可以简化定积分的计算过程 洛必达法则在求解定积分中的应用广泛,如求解极限、求导数等
ቤተ መጻሕፍቲ ባይዱ极限时,必须先求导数 函数在所求极限处必须连续
求导数后,必须满足洛必达 法则的条件
洛必达法则只能用于求极限, 不能用于求导数
洛必达法则只能用于求可导 函数的极限,不能用于求不 可导函数的极限
洛必达法则只能用于求极限, 不能用于求导数
洛必达法则只能用于求极限, 不能用于求极限值
洛必达法则只能用于求极限, 不能用于求极限值
添加标题
洛必达法则的定义:如果函数f(x)和g(x)在区间[a, b]上可导,且g'(x)≠0,那么f(x)/g(x)在区间[a, b] 上可导,且其导数为f'(x)/g'(x) f(x)g'(x)/g'(x)^2
添加标题
其次,假设f(x)和g(x)在区间[a, b]上可导,且 g'(x)≠0,那么f(x)/g(x)在区间[a, b]上可导,且其导 数为f'(x)/g'(x) - f(x)g'(x)/g'(x)^2
经典洛必达法则ppt
例5. 求
解: 原式
例6. 求 解: (1) n 为正整数的情形. 原式
例7. 求 (2) n 不为正整数的情形.
存在正整数 k , 使当 x > 1 时,
从而 由(1)
用夹逼准则
e x sin x 1 0 .( ) 例 求 lim 2 x 0 (arcsin 0 x)
解 arcsin x ~ x ( x 0) e x sin x 1 0 原 式 lim ( ) 2 x 0 0 x e x cos x 0 lim ( ) x 0 0 2x x e si n x 1 . lim x0 2 2
特别地 当 F ( x ) x ,
F (b) F (a ) b a , F ( x ) 1,
f (b) f (a ) f ( ). ba
f ( b ) f ( a ) f ( ) F ( b ) F ( a ) F ( )
柯西中值定理 若函数 f ( x )及F ( x )满足: (1) 在闭区间 [a, b]上连续 ; (2) 在开区间 (a, b)内可导 , 且F ( x ) 0, 则在开区间 (a, b)内至少存在一点 ,使得 f (b) f (a ) f ( ) F (b) F (a ) F ( ) 柯西定理的下述证法对吗 ?
0 1、 型未定式解法: 0
定理1:设
定义 这种在一定条件下通过分子分母分别求导再 求极限来确定未定式的值的方法称为洛必达法则 .
证明:注意,x = a 有可能是 f (x) 和 F(x) 的间断点 故 x = a 只可能是可去间断点
则有
注意:
(2)使用法则时一定要注意验证法则的条件。
(3) 定理1中
洛必达法则课件
0 0
)
lim lim
e cos x 2x e sin x
x
x 0
(
)
.
x 0
2
12
洛必达法则
例 求 lim
x
tan x tan 3 x
2
.
(
)
解
原式 lim
x
sin x cos 3 x cos x sin 3 x
cos 3 x cos x
0 0
2
lim
)
有:
lim
e n次
x ln x .
n!
x
e
n
x
0
14
洛必达法则
用法则求极限有两方面的局限性
其一, 当导数比的极限不存在时,不能断定函数 比的极限不存在, 这时不能使用洛必达法则. 例
求 lim x cos x x
x
x
解
原式 lim
x a ( x )
lim
f ( x) F ( x)
lim
称为
tan x x
0 0
(
或
0 0 )
型未定式.
lim ln sin ax ln sin bx
x 0
如,
(
)
x 0
未定 意味着关于它的极限不能确定出一般的
结论, 而并不是在确定的情况下关于它的极限 不能确定. 在第一章中看到, 两个无穷小之商或两个 无穷大之商, 其极限都不能直接利用极限运算 法则来求.
9
洛必达法则
1 f f ( x ) z lim lim A x F ( x ) z 0 1 F z
高等数学《洛必达法则》课件
2. 若 lim f ( x) , lim g( x) ,
x x0
x x0
则称 lim f ( x) 为 型未定式 . xx0 g( x)
例如, lim tan x , x tan3 x
2
3. 若 lim f ( x) 0, lim g( x) ,
x x0
x x0
例如, lim x ln x, x0
1 lim ( x0 x
1
e
x
), 1
则称 lim[ f ( x)]g( x) 为 1 型未定式.
x x0
1
6. 若 lim f ( x) 0, lim g( x) 例0,如, lim(cos x)x ,
x x0
x x0
x0
则称 lim[ f ( x)]g( x) 为 00 型未定式.
x x0
7. 若 lim f ( x) , lim g( x) 例0, 如, lim xsin x ,
x , x 该法则仍然成立.
(2) 若 lim f ( x)仍为0型未定式 ,且 f ( x) ,
xx0 g( x)
0
g( x)满足定理中f ( x), g( x)所满足的条件,则可
继续使用洛必达法则 , 即
f (x)
f ( x)
f ( x)
lim
lim
lim
.
xx0 g( x) xx0 g( x) xx0 g( x)
0
例9 求 lim xm ln x. (m>0) ( 0 ) x0+
解
原式
lim
x0
ln x xm
lim
x0
x1 m xm1
xm
lim x0
洛必达法则(课堂PPT)
xa
使 f(x)F ,(x)在 xa点连 . 续
任取点x, axa(不妨 xa)设 .
f(x),F(x)满足
1)在[a,x]上连续 ; 2 )在 (a ,x )内,且 可 F (x ) 导 0 .
(2)f(x)F , (x)在a点 的邻域 (点 内 a处 可 除 )导 , 外
lim f (x) 称为0 或
xa F( x)
( x)
0
如, lim tan x ( 0 )
x0 x 0
型未定式.
lns lim
inax(
)
x0 lns inbx
未定 意味着关于它的极限不能确定出一般的
结论, 而并不是在确定的情况下关于它的极限 不能确定.
在第一章中看到, 两个无穷小之商或两个 无穷大之商, 其极限都不能直接利用极限运算
x
1 x2
co
s1 x
1
10
洛必达法则
用洛必达法则应注意的事项
(1)只有 0或的未定 ,才式 可能用 ,只要法 是 则
0
0 或 , 则可一直用下去; 0 (2) 在用法则之前,式子是否能先化简; (3) 每用完一次法则,要将式子整理化简; (4) 为简化运算经常将法则与等价无穷小及极限 的其它性质结合使用.
则 limf(x) limf(x)A(或). xaF(x) xaF(x)
4
洛必达法则
(1)limf(x)0, limF(x)0;
证 (仅对0型给出证)明 xa
xa
若 f(0x),F(x)在a点 连,续 则由条件(1),
必有 f(a)F(a)0.
若f(x),F(x)在点 a不连,由 续l于 imf(x)0, x a
高等数学-洛必达法则
解 先通分,再用洛必达法则,得
1
3
− 3
→1 − 1
−1
2 + − 2
=
→1 3 − 1
0
0
2 + 1
=
= 1.
2
→1 3
注 本题还可采用先通分再约分的方法计算.
17
03 其它类型的未定式
3. “00 ”“∞0 ”“1∞ ”型未定式
这3种未定式可看作是幂指函数[()] () 求极限.先将幂
例5 求 + 2 .
→0
解 这是“0 ⋅
∞
∞ ”型未定式,先将其转化为“ ”型未定式,
∞
再使用洛必达法则.
1
2
+ 2 = +
= + = −
= 0.
2
+
1
→0
→0
→0
→0 2
−
3
2
15
03 其它类型的未定式
2. “∞ − ∞”型未定式
本节内容
01
0
“ ”型未定式
0
02
∞
“ ”型未定式
∞
03 其它类型的未定式
8
02
∞
“ ”型未定式
∞
定理3.5(洛必达法则II) 设函数()和函数()满足条件
(1) () = ∞, () = ∞;
→0
→0
(2)函数() ,() 在0 的某去心邻域内可导,且′ () ≠ 0;
效果.
(4)使用洛必达法则求未定式极限是常用的方法,
但该方法不一定是最佳的方法,甚至在某些特殊