各高校自主招生数学试题
中科大自主招生试题数学
![中科大自主招生试题数学](https://img.taocdn.com/s3/m/3ea2083603768e9951e79b89680203d8ce2f6aa5.png)
中科大自主招生试题数学中科大自主招生数学试题通常会涵盖广泛的数学知识点,旨在考察学生的数学思维能力、创新能力以及解决实际问题的能力。
以下是一道典型的中科大自主招生数学试题,将会对题目进行详细的解析。
题目:设函数f(x)在区间[a, b]上连续,存在唯一的最大值点x0,最大值为M,即f(x0) = M,且f'(x0) = 0。
若对于任意的x∈[a, b],f(x)满足下列不等式:f(x) ≤ f(a) + 3(x-a)^2 - 5(x-a)^31.证明函数f(x)在区间[a, b]上是减函数。
2.求f(x)在区间[a, b]上的最大值。
解析:1.首先,我们证明函数f(x)在区间[a, b]上是减函数。
根据题目中的条件,可以得到f'(x0) = 0,即函数在最大值点处的导数为零。
由于导数的定义,导数为零意味着函数在该点处的变化率为零,也就是说函数在该点处是取得极值的可能性最大的地方。
由于函数在最大值点处是取得极值,使得函数在最大值点两侧的变化率相反。
根据函数的凹凸性质,我们可以得出在最大值点左侧的函数是递增的,在最大值点右侧的函数是递减的。
而对于任意的x∈[a, b],我们都满足条件f(x) ≤ f(a) + 3(x-a)^2 - 5(x-a)^3。
可以发现右侧的式子是一个关于(x-a)的二次减三次函数,也就是说它是一个开口向下的函数图像,这意味着对于任意的x∈[a, b],都有f(x)的值要小于该函数值,因此函数f(x)在区间[a, b]上是减函数。
2.接下来,我们来求解f(x)在区间[a, b]上的最大值。
根据题目中的条件,我们已经知道函数f(x)的最大值点为x0,最大值为M。
通过导数的定义,我们知道x0是f(x)的临界点,即f'(x0) = 0。
由于函数在最大值点处的导数为零,因此可以推断出函数在最大值点左侧是递增的,在最大值点右侧是递减的。
所以我们只需要找到函数f(x)在区间[a, b]上的临界点即可求得最大值。
高校自招数学试题及答案
![高校自招数学试题及答案](https://img.taocdn.com/s3/m/18100dfdf424ccbff121dd36a32d7375a417c632.png)
高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。
A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。
A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。
B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。
设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。
A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。
答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。
高校中考自主招生数学考试题(多套)
![高校中考自主招生数学考试题(多套)](https://img.taocdn.com/s3/m/eae7842ea5e9856a561260e7.png)
一、单项选择(共12小题,每小题5分,满分60分)每小题只有一个选项符合题意。
1.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论①0<++c b a ②0<+-c b a ③02<+a b ④0>abc 其中正确的个数是A .1个B .2个C .3个D .4个2.如图,O 是线段BC 的中点,A 、D 、C 到O 点的距离相等。
若30=∠ABC ,则ADC ∠的度数是 A .30°B .60°C .120°D .150°3.如图,△ACB 内接于⊙O ,D 为弧BC 的中点,ED 切⊙O 于D 的延长线相交于E ,若AC =2,AB =6,ED +EB =6,那么A .2B .4C .6D .84.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)用小丽掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P ),(y x 。
那么它们各掷一次所确定的点P 落在已知抛物线x x y 42+-=上的概率为A .118 B .112C .19D .165.不等式组4831531x x -≥--<- 的所有整数解的和是A .—1B .0C .1D .26.如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是A .1a +B .21a+ C .221a a ++ D .1a +7.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a =1,则这个正方形的面积为A B babaⅣⅢⅠⅣⅢⅠⅡE DCC .2D .(218.对于两个数,200820092009M =⨯,200920082008N =⨯。
则A .N M =B .N M >C .N M <D .无法确定 9.如图,已知B A ∠=∠,1AA ,1PP ,1BB 均垂直于11B A ,171=AA ,161=PP ,201=BB ,1211=B A ,则AP+PB 等于A .12B .13C .14D .15 10.若实数c b a ,,满足9222=++c b a,代数式222)()()(a c c b b a -+-+-的最大值是A .27B .18C .15D .1211.成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面。
重点高中自主招生数学试题
![重点高中自主招生数学试题](https://img.taocdn.com/s3/m/0ad86eb605a1b0717fd5360cba1aa81144318f2c.png)
重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。
2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。
3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。
三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。
将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。
大学自招数学试题及答案
![大学自招数学试题及答案](https://img.taocdn.com/s3/m/5b38fc1ea36925c52cc58bd63186bceb19e8edbb.png)
大学自招数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. 1B. 3C. -1D. 52. 以下哪个选项是不等式x^2 - 5x + 6 < 0的解集?A. (1, 6)B. (2, 3)C. (-∞, 2) ∪ (3, +∞)D. (2, 3)3. 已知向量a = (3, -1),向量b = (2, 2),则向量a与向量b的点积为:A. 4B. 2C. -2D. 04. 若复数z满足z^2 = 1 + i,则z的值是:A. 1B. -1C. iD. -i二、填空题(每题5分,共20分)5. 计算极限lim(x→0) (sin(x)/x) 的值为 _______。
6. 已知等比数列{a_n}的首项a_1 = 2,公比q = 3,求第5项a_5的值为 _______。
7. 计算定积分∫(0 to π) sin(x) dx 的值为 _______。
8. 若矩阵A = [[1, 2], [3, 4]],则矩阵A的行列式det(A)的值为_______。
三、解答题(每题15分,共40分)9. 证明:若x > 0,y > 0,则x + y ≥ 2√(xy)。
证明:由基本不等式可知,对于任意正数x和y,有x/y + y/x ≥ 2。
将不等式两边同时乘以xy,得到x^2 + y^2 ≥ 2xy。
由于x和y都是正数,所以x + y ≥ 2√(xy)。
10. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]解:将第一个方程乘以2,得到2x + 2y = 10。
将第二个方程加到第一个方程上,得到3x = 11,所以x = 11/3。
将x的值代入第一个方程,得到y = 5 - 11/3 = 4/3。
因此,方程组的解为x = 11/3,y =4/3。
四、综合题(20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f(x)的单调区间,并证明。
省级重点高中自主招生数学真题8套(含答案)
![省级重点高中自主招生数学真题8套(含答案)](https://img.taocdn.com/s3/m/e0edea96b8f67c1cfad6b880.png)
省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。
以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。
)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。
2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。
3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。
2024年高中自主招生素质检测数学试题及参考答案
![2024年高中自主招生素质检测数学试题及参考答案](https://img.taocdn.com/s3/m/e4678a4c905f804d2b160b4e767f5acfa0c7835b.png)
学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。
历年名牌大学自主招生数学考试试题及答案
![历年名牌大学自主招生数学考试试题及答案](https://img.taocdn.com/s3/m/a8e6168ad1d233d4b14e852458fb770bf78a3b24.png)
上海交通大学2007年冬令营选拔测试数学试题一、填空题(每小题5分,共50分)1.设函数满足,则.2.设均为实数,且,则.3.设且,则方程的解的个数为.4.设扇形的周长为6,则其面积的最大值为.5..6.设不等式与的解集分别为M和N.若,则k的最小值为.7.设函数,则.8.设,且函数的最大值为,则.9.6名考生坐在两侧各有通道的同一排座位上应考,考生答完试卷的先后次序不定,且每人答完后立即交卷离开座位,则其中一人交卷时为到达通道而打扰其余尚在考试的考生的概率为.10.已知函数,对于,定义,若,则.二、计算与证明题(每小题10分,共50分)11.工件内圆弧半径测量问题.为测量一工件的内圆弧半径,工人用三个半径均为的圆柱形量棒放在如图与工件圆弧相切的位置上,通过深度卡尺测出卡尺水平面到中间量棒顶侧面的垂直深度,试写出用表示的函数关系式,并计算当时,的值.12.设函数,试讨论的性态(有界性、奇偶性、单调性和周期性),求其极值,并作出其在内的图像.13.已知线段长度为,两端均在抛物线上,试求的中点到轴的最短距离和此时点的坐标.参考答案:1. 2。
3。
2 4. 5. 6。
27. 8。
9. 10.11.,12.;偶函数;;;周期为 13。
;14。
略;反证法 15. 2;3;2008年交大冬令营数学试题参考答案2008。
1.1 一.填空题1.若,,则.22.函数的最大值为__________.3.等差数列中,,则前项和取最大值时,的值为__________.20 4.复数,若存在负数使得,则.5.若,则.6.数列的通项公式为,则这个数列的前99项之和.7.……中的系数为.39212258.数列中,,,,,,,,,,此数列的通项公式为.9.甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的80%,乙厂生产的占20%;甲厂商品的合格率为95%,乙厂商品的合格率为90%.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为.10.若曲线与错误!未定义书签。
自主招生考试数学卷(答案) (6)
![自主招生考试数学卷(答案) (6)](https://img.taocdn.com/s3/m/82d7a0180a4c2e3f5727a5e9856a561252d321a7.png)
A、第一象限 B、第二象限
C、第三象限 D、第四象限
24、函数 y 4sin x 3cos x 的最小值为 (
)
A .0
B .-3
C .-5
D . 13
25、已知角 的终边上有一点 P- 3, 4,则 cos (
A、0
3
B、 5
C、0.1
二、填空题:(共 30 分.)
) D、0.2
1.双曲线
D、 y sin x cos x
sin
21、若
5 13
,且
为第四象限角,则 tan
的值等于(
)
12
A、 5
12
B、 5
5
C、 12
5
D、 12
22、下列命题中正确的是(
)
A、第一象限角必是锐角
B、终边相同的角相等
C、相等的角终边必相同
D、不相等的角其终边必不相同
23、-870°角的终边所在的象限是( )
7、【答案】 C
【考点】复数的基本概念,复数代数形式的混合运算 【解析】【解答】解:z z + i = 2 − i 2 + 2i = 4 + 4i − 2i − 2i2 = 6 + 2i
故答案为:C
【分析】根据复数的运算,结合共轭复数的定义求解即可.
8、【答案】 B
【考点】旋转体(圆柱、圆锥、圆台)
自考本科数学卷
(满分 150 分,考试时间 120 分钟)
一、选择题:(本题共 25 小题,共 50 分)
1.对 2×2 数表定义平方运算如下:( )
a
c
b d
2
a
c
b d
a c
重点高中自主招生考试数学试卷精选全文
![重点高中自主招生考试数学试卷精选全文](https://img.taocdn.com/s3/m/49fba7a5fbb069dc5022aaea998fcc22bcd143a4.png)
可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。
2025年重点高中自主招生考试数学模拟试卷试题(含答案)
![2025年重点高中自主招生考试数学模拟试卷试题(含答案)](https://img.taocdn.com/s3/m/94f9596a42323968011ca300a6c30c225901f03a.png)
2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。
大学自主招生数学试题
![大学自主招生数学试题](https://img.taocdn.com/s3/m/2523eba90875f46527d3240c844769eae009a3ad.png)
大学自主招生数学试题[正文]自主招生是大学录取新生的一种形式,相比于普通高考,它更注重考生的综合素质和创新能力的培养。
其中,数学试题作为考核学生逻辑思维和问题解决能力的重要部分,扮演着重要的角色。
下面是一套典型的大学自主招生数学试题,希望能够帮助考生更好地了解和应对这一部分的考试内容。
1. 选择题(1) 若函数 f(x) = (a + x)(b + x)(c + x) 在区间 [-3, 2] 上的最小值为 -12,那么 a, b, c 的取值范围是:A. a > 2, b < -3, c < -3B. a < -3, b > 2, c > 2C. a < -3, b < -3, c > 2D. a > 2, b > 2, c < -3(2) 已知函数 f(x) 在区间 [0, 4] 上单调增加,且 f(1) = 3,f(3) = 7,那么在区间 (0, 4) 上存在:A. x0 ∈ (1, 3),使得 f(x0) = 5B. x0 ∈ (1, 3),使得 f(x0) > 5C. x0 ∈ (1, 3),使得 f(x0) < 5D. x0 ∈ (1, 3),使得 f(x0) = 62. 解答题(1) 证明:对任意实数 x,都有√(x^2 + 1) ≥ 1 + |x|(2) 已知函数 f(x) 在区间 [a, b] 上连续,且在 (a, b) 内可导,若 f(a) = f(b) = 0,证明:存在 c ∈ (a, b),使得 f'(c) = 03. 简答题(1) 什么是群论?群论是研究代数结构的分支学科,主要研究集合上的一种二元运算,通过定义这种运算的一些基本公理,研究群的性质和结构。
(2) 请解释下列术语的意义:基变换、特征值、特征向量- 基变换:对于线性代数中的矩阵,基变换是指将其表示在不同基下的转换过程,通过找到转换矩阵,将一个向量从一个基表示转换为另一个基表示。
2023年江苏省南京大学自主招生综合评价数学试题及答案解析
![2023年江苏省南京大学自主招生综合评价数学试题及答案解析](https://img.taocdn.com/s3/m/e6571771ce84b9d528ea81c758f5f61fb73628d8.png)
2023年江苏省南京大学自主招生综合评价数学试题及答案解析6月10日考试时长:2小时1.从n ,2,1中随机抽取一个数X ,再从X ,2,1中随机抽取一个数Y ,求Y 的数学期望.2.在ABC ∆中,7=AB ,9=BC ,8=CA ,内切圆圆I 与AB CA BC ,,分别切于F E D ,,,过D 作EF DP ⊥于P ,求PI .3.求不定方程2023!3=-y x 的全部正整数解.4.已知素数p ,正整数b a ,,满足p b a <<<1的a 进制展开式为∑==1k i iiaa p ,p 的b 进制展开式为∑==2k i iibb p ,记()∑==1k i iixa x f ,()∑==2k i iixb x g ,证明:存在正整数bc >,使得()/|()g c f c .5.已知正整数n ,n n p 232+=,12+=n m ,证明:()1!11-∏-=km k qm .答案解析1.解析:利用条件期望公式,()()[]43412121n n X E XY E E Y E +=++=⎪⎭⎫ ⎝⎛+==.2.解析:由熟知几何结论知:CEP BFP ∆∆∽,∴54==CE BF PE PF ∵72872987cos 222=⨯⨯-+=A ,∴710372923322=⨯⨯-+=EF .由海伦公式5122798289729872987=-+⨯-+⨯-+⨯++=∆ABC S .∴在EFI ∆中用斯特瓦尔特定理知:63115792059594522=⨯-=⋅⨯-=⋅-=EF PF PE r PI .4.解析:∵()()()a g b g p a f >==,故()()x g x f -的最高项系数为正.故在c 充分大时()()c g c f >.如果对任意b c >,使得()c g 整除()c f ,在有理数意义下做带余除法,()()()()x r x g x q x f +=这里()x q ,()x r 都是有理系数多项式,()()x g x r deg deg <,通分后设()()()()x tr x g x tq x tf +=,这里+∈N t ,()x tq ,()x tr 都是整系数多项式.∵对任意b c >,使得()c g 整除()c f .于是()c g 整除()c tr ,但()()x g x r deg deg <,故在c 充分大时,()()c tr x g >,因此()x r 是零多项式,即()()x f x g .∴()()p a f a g =,但是()x g 不是常数,否则p b =0矛盾.∴()()p b g a g =<<0,故()1=a g ,∴()1=x g ,这与()1>=p b g 矛盾.于是存在b c >,使得()c g 不能整除()c f .注:∵()()()a g b g p a f >==,故()()x g x f -的最高项系数为正,故在c 充分大时,()()c g c f >,故()c f 不能整除()c g .5.解析:先证:q 与!m 互质对任意素数m p ≤,若q p ,即()p nnmod 3222-≡,∴5≥p ,∴()()p nmod 13221-≡⋅-,∴()()p nmod 13221≡⋅-∴132-⋅模p 的阶为12+n ,从而121-+p n (∵()p p mod 121≡-)但121+≤≤-n m p 矛盾,故q 与!m 互质.再证对任意正整数x ,只要x 与!m 互质就有()1!11-∏-=km k xm ……(*)事实上,对任意素数m p ≤,!m 中p 幂次为∑+∞=⎥⎦⎤⎢⎣⎡1#i i p m ,即为[]∑+∞=12,1#i j p m 的倍数中,, 故需证(*),只需证明对任意素数,*,N j m p ∈∀≤且m p j≤.有[]的倍数中,,jp m 2,1#[]的倍数中jm p x x x 1,,1,1#21---≤ 上式左边⎥⎦⎤⎢⎣⎡=j p m ,而对右边由欧拉定理()()jp p x j mod 1≡ϕ故右边()()⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-≥--11111j j j p m p p m p m ϕ(∵p mp m ≥--11)故(*)成立,原命题获证.。
全国各重点大学自主招生数学试题及答案分类汇总
![全国各重点大学自主招生数学试题及答案分类汇总](https://img.taocdn.com/s3/m/9194be9f83d049649b66589a.png)
全国各重点大学自主招生数学试题及答案分类汇总一.集合与命题 (2)二.不等式 (9)三.函数 (20)四.数列 (27)五.矩阵、行列式、排列组合,二项式定理,概率统计 (31)六.排列组合,二项式定理,概率统计(续)复数 (35)七.复数 (39)八.三角 (42)近年来自主招生数学试卷解读第一讲集合与命题第一部分近年来自主招生数学试卷解读一、各学校考试题型分析:交大:题型:填空题10题,每题5分;解答题5道,每题10分;考试时间:90分钟,满分100分;试题难度:略高于高考,比竞赛一试稍简单;考试知识点分布:基本涵盖高中数学教材高考所有内容,如:集合、函数、不等式、数列(包括极限)、三角、复数、排列组合、向量、二项式定理、解析几何和立体几何复旦:题型:试题类型全部为选择题(四选一);全考试时间:总的考试时间为3小时(共200道选择题,总分1000分,其中数学部分30题左右,,每题5分);试题难度:基本相当于高考;考试知识点分布:除高考常规内容之外,还附加了一些内容,如:行列式、矩阵等;考试重点:侧重于函数和方程问题、不等式、数列及排列组合等同济:题型:填空题8题左右,分数大约40分,解答题约5题,每题大约12分;考试时间:90分钟,满分100分;试题难度:基本上相当于高考;考试知识点分布:常规高考内容二、试题特点分析:1. 突出对思维能力和解题技巧的考查。
关键步骤提示:2. 注重数学知识和其它科目的整合,考查学生应用知识解决问题的能力。
关键步骤提示:()()()4243222342(2)(2)(1)(2)(1)f a x x a x x xx x x a x x x =--++-=+-+++-111(,),(,),(,)nnni i i ii i i i i i id u w a d v w b d u v a b a b a b ======-+≥-∑∑∑由绝对值不等式性质,三、 应试和准备策略1.注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。
高校自招数学试题及答案
![高校自招数学试题及答案](https://img.taocdn.com/s3/m/3677842468eae009581b6bd97f1922791688be8f.png)
高校自招数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像经过点(1, 2)和(2,3),则下列哪个选项是正确的?A. a + b + c = 2B. 4a + 2b + c = 3C. a + 2b + c = 3D. 4a + b + c = 5答案:C2. 已知数列{an}是等差数列,且a1 + a2 + a3 = 12,a2 + a3 + a4 = 18,则a1 + a5的值是多少?A. 18B. 20C. 24D. 26答案:B3. 若复数z满足|z - 1| = |z + i|,则z对应的点在复平面上位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B4. 已知函数f(x) = ln(x) + 1/x,若f(x)在区间(0, +∞)上单调递增,则实数k的取值范围是?A. k > 0B. k ≥ 1C. k ≤ -1D. k ≤ 0答案:B二、填空题(每题5分,共20分)5. 若一个圆的直径为10,则该圆的面积为_______。
答案:25π6. 已知向量a = (3, -1),b = (2, 4),则向量a与向量b的数量积为_______。
答案:57. 若函数f(x) = x^3 - 3x^2 + 2在区间[1, 2]上单调递增,则实数k的取值范围是_______。
答案:k ≤ -18. 已知等比数列{an}的前三项分别为1,2,4,则该数列的通项公式为an = _______。
答案:2^(n-1)三、解答题(每题15分,共40分)9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调区间,并说明理由。
答案:函数f(x)的单调递增区间为[2, +∞),单调递减区间为(-∞, 2)。
理由是f(x)的导数为f'(x) = 2x - 4,令f'(x) > 0得x > 2,令f'(x) < 0得x < 2。
自主招生考试数学试卷及参考答案
![自主招生考试数学试卷及参考答案](https://img.taocdn.com/s3/m/af73cd1ef705cc1754270986.png)
自主招生考试数学试卷及参考答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22第2自主招生考试 数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。
2.全卷由试题卷和答题卷两部分组成。
试题的答案必须做在答题卷的相应位置上。
做在试题卷上无效。
3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。
4.答题过程不准使用计算器。
祝你成功!一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则 A S S S 123<< B S S S 213<< C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是33第5A π-1B π-2C 121-πD 221-π4.由325x y a x y a x y a m-=+⎧⎪+=⎪⎨>⎪⎪>⎩得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是 A 0 B 1 C 2 D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =ax 2+(a -b )x —b 的图象如图所示,44那么化简222||a ab b b -+-的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S 正方形ABCD = ▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:(1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张第10题 第7题第8题5511.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答: ▲ . (2)作DE ∥AB 的目的是: ▲ .(3) 判断四边形ABED 为平行四边形的依据是: ▲ . (4)判断四边形ABCD 是等腰梯形的依据是 ▲ .(5)若题设中没有AD ≠BC ,那么四边形ABCD 一定是等腰梯形吗为什么 答 ▲ .自主招生考试第11题第12题66数学标准答案一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8. 256 9. 57610.(1) 13 (2) 3n+1 (3) 15250 11. a b12.(1)没有错误 (2)为了证明AD ∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义 (5) 不一定,因为当AD =BC 时,四边形ABCD 是矩形 三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。
(word版)清华大学自主招生暨领军计划数学试题(精校word版,带解析)历年自主招
![(word版)清华大学自主招生暨领军计划数学试题(精校word版,带解析)历年自主招](https://img.taocdn.com/s3/m/61f8a32049649b6649d74768.png)
2021年清华大学自主招生暨领军方案试题1.函数f(x)(x2a)e x有最小值,那么函数g(x)x22xa的零点个数为〔〕A.0B.1C.2D.取决于a的值【答案】C【解析】注意f/(x)e x g(x),答案C.2.ABC的三个内角A,B,C所对的边为a,b,c.以下条件中,能使得ABC的形状唯一确定的有〔〕A.a1,b2,c ZB.A1500,asinA csinC2asinCbsinB C.cosAsinBcosC cos(B C)cosBsinC0,C600 D.a3,b1,A600【答案】AD.3.函数f(x) x21,g(x) lnx,以下说法中正确的有〔〕A.f(x),g(x)在点(1,0)处有公切线B.存在f(x)的某条切线与g(x)的某条切线平行C.f(x),g(x)有且只有一个交点D.f(x),g(x)有且只有两个交点开心快乐每一天【答案】BD【解析】注意到y x1为函数g(x)在(1,0)处的切线,如图,因此答案BD .4.过抛物线y 2 4x 的焦点F 作直线交抛物线于 A,B 两点,M 为线段AB 的中点.以下说法中正确的有〔〕A .以线段AB 为直径的圆与直线x3一定相离2B .|AB|的最小值为 4C .|AB|的最小值为 2D .以线段BM 为直径的圆与 y 轴一定相切【答案】AB【解析】对于选项A ,点M 到准线x1的距离为1(|AF||BF|)1|AB|,于是以线段AB 为直径3 2212, 1的圆与直线x1一定相切,进而与直线x 一定相离;对于选项B ,C ,设A(4a 2,4a),那么B( ),124aa于是 |AB|4a22,最小值为 4AB 中点到准线的距离的 2 倍去得到最小值;4a.也可将|AB|转化为2对于选项D ,显然BD 中点的横坐标与1|BM|不一定相等,因此命题错误.22 25.F 1,F 2是椭圆C:x2y21(ab0)的左、右焦点,P 是椭圆C 上一点.以下说法中正确的有ab〔〕A .a 2b 时,满足 F 1PF 2900的点P 有两个B .a2b 时,满足 F 1PF 2900的点P 有四个C . PF 1F 2的周长小于4aa 2 D . PF 1F 2的面积小于等于2开心快乐每一天【答案】ABCD.【解析】对于选项A,B,椭圆中使得F1PF2最大的点P位于短轴的两个端点;对于选项C,F1PF2的周长为2a2c4a;选项D,F1PF2的面积为1|PF1|1|PF1||PF2|21a2.|PF2|sin F1PF222226.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测:甲:两名获奖者在乙、丙、丁中;乙:我没有获奖,丙获奖了;丙:甲、丁中有且只有一个获奖;丁:乙说得对.四个人中有且只有两个人的猜测是正确的,那么两个获奖者是〔〕A.甲B.乙C.丙D.丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD.7.AB为圆O的一条弦〔非直径〕,OC AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有〔〕A.O,M,B,P四点共圆B.A,M,B,N四点共圆C.A,O,P,N四点共圆D.以上三个说法均不对【答案】AC【解析】对于选项A,OBM OAM OPM即得;对于选项B,假设命题成立,那么MN为直径,必然有MAN为直角,不符合题意;对于选项C,MBN MOP MAN即得.答案:AC.8.sinA sinB sinC cosA cosB cosC是ABC为锐角三角形的〔〕A.充分非必要条件B.必要非充分条件C.充分必要条件D.既不充分也不必要条件开心快乐每一天【答案】B【解析】必要性:由于sinB sinCsinB sin(2B)sinB cosB1,类似地,有sinC sinA1,sinB sinA1,于是sinA sinB sinC cosA cosBcosC.不充分性:当A,B C4时,不等式成立,但ABC不是锐角三角形.29.x,y,z为正整数,且x y z,那么方程1111的解的组数为〔〕x y z2A.8B.10C.11D.12【答案】B【解析】由于11113,故3x6.2x y z x假设x3,那么(y6)(z6)36,可得(y,z)(7,42),(8,24),(9,18),(10,15),(12,12);假设x4,那么(y4)(z4)16,可得(y,z)(5,20),(6,12),(8,8);假设x5,那么3112,y20,y5,6,进而解得(x,y,z)(5,5,10);10y z y3假设x6,那么(y3)(z3)9,可得(y,z)(6,6)).答案:B.10.集合A{a1,a2, ,a n},任取1 i j k n,a i a j A,a j a k A,a k a i A这三个式子中至少有一个成立,那么n的最大值为〔〕A.6B.7C.8D.9【答案】B11.10,610,1210,那么以下各式中成立的有〔〕A.tan tan tan tan tan tan3开心快乐每一天B .tan tantan tantan tan3C .tantan tan3tan tan tanD .tantantan3tan tan tan【答案】BD【解析】令xtan ,ytan,ztan,那么yx z y x z3,所以1 xy 1 yz 1 zxyz3(1 xy),z y 3(1 yz),xz 3(1zx),以上三式相加,即有xyyzzx3.类似地,有113(11),11 3(11),11 3(11),以上三式相加,即有xyxy yzyzzxzx1 11xy z3.答案BD .xyyz zx xyz12.实数a,b,c 满足a bc1,那么4a 14b14c 1的最大值也最小值乘积属于区间〔〕A .(11,12)B .(12,13)C .(13,14)D .(14,15)【答案】B【解析】设函数f(x)4x1,那么其导函数f /(x)2 ,作出f(x)的图象,函数f(x)的图象在x 14x13处的切线y221(x1) 21,以及函数f(x)的图象过点(1,0)和(3,7)的割线73342y4x1 ,如图,于是可得 4x 14x12 21(x 1)21 ,左侧等号当 x1 或77777 3 34x3时取得; 右侧等号当x1时取得.因此原式的最大值为21,当ab c1时取得;最小值为233开心快乐每一天7,当ab 1,c3时取得,从而原式的最大值与最小值的乘积为73(144,169).答案B.4213.x,y,z R,x y z1,x2y2z21,那么以下结论正确的有〔〕A.xyz的最大值为0B.xyz的最大值为4 27C.z的最大值为2D.z的最小值为1 33【答案】ABD14.数列{a n}满足a11,a22,a n26a n1a n(n N*),对任意正整数n,以下说法中正确的有〔〕A.a n21a n2a n为定值B.a n1(mod9)或a n2(mod9)C.4a n1a n7为完全平方数D.8a n1a n7为完全平方数【答案】ACD【解析】因为a n22a n3an1a n22(6a n2an1)an1a n226an2an1a n21a n2(a n26a n1)a n21a n21a n2a n,选项A正确;由于a311,故a n21a n2a n a n21(6a n1a n)a n a n216a n1a n a n27,又对任意正整数恒成立,所以4a n1a n7(a n1a n)2,8a n1a n7(a n1a n)2,应选项C、D正确.计算前几个数可判断选项B错误.说明:假设数列{a n }满足an2pa n1a n,那么a2a a为定值.n1n2n15.假设复数z满足z 11,那么z可以取到的值有〔〕z开心快乐每一天1B.1C.51D.51A.222 2【答案】CD【解析】因为|z|1z11,故51|z|51,等号分别当z51i和z51i时|z|z2222取得.答案CD.16.从正2021边形的顶点中任取假设干个,顺次相连构成多边形,假设正多边形的个数为〔〕A.6552B.4536C.3528D.2021【答案】C【解析】从2021的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2021个顶点中选出k个构成正多边形,这样的正多边形有2021个,因此所求的正多边形的个数就是2021的所有约数之和减去2021 k和1008.考虑到202125327,因此所求正多边形的个数为(12481632)(139)(17)202110083528.答案C.x2y21(a b0)与直线l1:y1xl2:y1x,过椭圆上一点P作l1,l2的平行线,17.椭圆b22a22a分别交l1,l2于M,N两点.假设|MN|为定值,那么〔〕bA.2B.3C.2D.5【答案】C【解析】设点P(x0,y0),可得M(1x0y0,1x01y0),N(1x0y0,1x01y0),成心242242|MN|1x024y02为定值,所以a2416,a2,答案:C.4b21b4说明:〔1〕假设将两条直线的方程改为y kxa1M,N,使得|MN|,那么;〔2〕两条相交直线上各取一点b k为定值,那么线段MN中点Q的轨迹为圆或椭圆.18.关于x,y的不定方程x21652y的正整数解的组数为〔〕A.0B.1C.2D.3开心快乐每一天【答案】B 19.因为实数的乘法满足交换律与结合律,所以假设干个实数相乘的时候,可以有不同的次序.例如,三个实数a,b,c 相乘的时候,可以有 (ab)c,(ba)c,c(ab),b(ca),等等不同的次序.记n 个实数相乘时不同的次序有I n 种,那么〔 〕A .I 22B .I 312C .I 496D .I 5120【答案】B【解析】根据卡特兰数的定义,可得n1n1n1I nC n1AnnC2n2n!(n1)!C 2n1.答案:AB .关于卡特兰数的相关知识见?卡特兰数——计数映射方法的伟大胜利? .20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军 .4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是 ,乙击败丁的概率是.那么甲刻冠军的概率是 .【答案】【解析】根据概率的乘法公式,所示概率为 0.3(0.5 0.3 0.5 0.8) .21.在正三棱锥PABC 中,ABC 的边长为1.设点P 到平面ABC 的距离为x ,异面直线AB,CP 的距离为y .那么limy .x【答案】32开心快乐每一天【解析】当x时,CP趋于与平面ABC垂直,所求极限为ABC中AB边上的高,为3.222.如图,正方体ABCDA1B1C1D1的棱长为1,中心为O,BF 1BC,A1E1A1A,那么四面体OEBF 24的体积为.1【答案】96【解析】如图,V OEBF V OEBF 1V GEBF1V EGBF11V EBCCB1.2221611962sin2n x)dx23.(x)2n1(1.【答案】02)2n1(1sin2n x)dx x2n1(1sin2n x)dx0.【解析】根据题意,有(x24.实数x,y满足(x2y2)34x2y2,那么x2y2的最大值为.【答案】1【解析】根据题意,有(x2y2)34x2y2(x2y2)2,于是x2y21,等号当x2y21时取得,2因此所求最大值为1.25.x,y,z均为非负实数,满足(x1)2(t1)2(z3)227,那么xy z的最大值与最小值分别224为.【答案】223 2开心快乐每一天【解析】由柯西不等式可知,当且仅当(x,y,z) (1,1,0)时,xy z 取到最大值3.根据题意,有22x 2 y 2 z 2 x2y3z 13 ,于是 13 (x yz)23(x y z)y,解得x y z223 .于是4 42x y z 的最小值当(x,yz)(0,0,22 3)时取得,为22 3.2226.假设O 为ABC 内一点,满足S AOB :S BOC :S COA4:3:2,设AOABAC ,那么.【答案】23【解析】根据奔驰定理,有2 4 29 9 .327.复数zco s 2isin 2 ,那么z 3z 2 z 2 2 .3 3 z【答案】132i2【解析】根据题意,有z 3z 212z5 isin5 1 3 i .z 2 z2zcos32 2328.z 为非零复数,z ,40的实部与虚部均为不小于1的正数,那么在复平面中,z 所对应的向量OP 的10 z端点P 运动所形成的图形的面积为.【答案】200 100 3300340z2,于是x1,y1,【解析】设zxyi(x,yR),由于4010 1040y如图,弓形面积为z|z|40x 1,1,x 2y 22 y 2x开心快乐每一天(word 版)清华大学自主招生暨领军方案数学试题(精校word 版,带解析)历年自主招11 / 11111202(sin ) 100 100,四边形ABCD 的面积为21(10310)101003100.26 632于是所示求面积为2(100100)(1003100)2001003300.3329.假设tan4x3,那么sin4x sin2xsinxsinx .3cos8xcos4x cos4xcos2xcos2xcosxcosx【答案】3【解析】根据题意,有sin4x sin2xsinx sinxcos8xcos4xcos4xcos2xcos2xcosx cosx(tan8x tan4x) (tan4x tan2x) (tan2xtanx)tanxtan8x 3.30.将16个数:4个1,4个2,4个3,4个4填入一个 4 4的数表中,要求每行、每列都恰好有两个偶数,共有种填法.【答案】44100031.设A 是集合{1,2,3, ,14}的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列, 那么A中元素个数的最大值为 .【答案】8【解析】一方面,设A {a 1,a 2,,a k },其中kN *,1k 14.不妨假设a 1a 2a k.假设k 9,由题意,a 3 a 1 3,a 5 a 37,且a 5a 3 a 3 a 1,故a 5a 17.同理a 9a 57.又因为a 9 a 5 a 5 a 1,所以a 9a 1 15,矛盾!故k8.另一方面,取 A {1,2,4,5,10,11,13,14},满足题意.综上所述, A 中元素个数的最大值为8.开心快乐每一天。
北大自主招生数学试题
![北大自主招生数学试题](https://img.taocdn.com/s3/m/6cae94093d1ec5da50e2524de518964bce84d255.png)
北大自主招生数学试题一、下列哪个数列不是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 8, 16, ...C. 10, 8, 6, 4, ...D. -1, 0, 1, 2, ...(答案:B)二、若复数z满足(1+i)z=2i,则z等于?A. 1-iB. 1+iC. -1+i(答案)D. -1-i三、设函数f(x) = x3 - 3x2 + 2,则f(x)的极小值点为?A. x = 0B. x = 1C. x = 2(答案)D. x = 3四、在三角形ABC中,若sinA:sinB = 3:4:5,则cosC的值为?A. 1/5B. -1/5(答案)C. 3/5D. 4/5五、已知向量a = (1, 2),b = (2, 1),则向量a与b的夹角θ的余弦值为?A. √5/5B. 2√5/5(答案)C. 1/√5D. -1/√5六、设集合A = {x | x2 - 5x + 6 = 0},B = {x | x2 - ax + a - 2 = 0},若B是A的子集,则a的取值范围是?A. a = 2或a = 3或a = 5B. a = 3或a = 5(答案)C. a = 2或a = 5D. a = 2或a = 3七、已知圆C的方程为x2 + y2 - 2x - 5 = 0,直线l的方程为2x - y - 1 = 0,则圆心C到直线l的距离为?A. √5B. 2√5/5C. √5/5(答案)D. 3√5/5八、若实数x, y满足约束条件x + y ≤ 2, x - y ≤ 1, x ≥ 0,则z = 2x + y的最大值为?A. 2B. 3C. 4D. 5(答案)九、设函数f(x) = ex - e(-x),则不等式f(x + 2) < f(1 - x)的解集为?A. (-∞, 3/2)B. (-3/2, +∞)(答案)C. (-∞, -1/2)D. (1/2, +∞)十、已知矩阵A = [1 2; 3 4],向量β = [5; 6],若向量α满足Aα = β,则α为?A. [-1; 2]B. [2; -1](答案)C. [1; 1]D. [-2; 1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主招生试题特点:试题难度高于高考,有的达到竞赛难度,试题灵活,毫无规律可寻,但各个学校有自己命题风格。
一般说来,各高校对后续性的知识点:如,函数、不等式、排列组合等内容相对占比例稍高。
应试策略:1、注重基础:一般说来,自主招生中,基础题目分数比例大约占60-70% 2、适当拓展知识面,自主招生中,有不少内容是超出教材范围3、对考生自己所考的院校历届真题争取尽量弄到手,并进行分析。
方程的根的问题:1. 已知函数2()f x ax bx c =++(0)a ≠,且()f x x =没有实数根.那么(())f f x x =是否有实数根?并证明你的结论.(08交大)2. 设432()(1)(32)4f x a x x a x a =++-+-,试证明对任意实数a : (1)方程()0f x =总有相同实根; (2)存在0x ,恒有0()0f x ≠.(07交大)3.(06交大)设3229,29270k x kx k x k ≥++++=解方程4. (053=的实数根.5.(05交大)320x ax bx c +++=的三根分别为a ,b ,c ,并且a ,b ,c 是不全为零的有理数,求a ,b ,c 的值.6. 解方程:.求方程2x x =+++n 重根)的解.(09交大)凸函数问题1. (2009复旦)如果一个函数f(x)在其定义区间内对任意x ,y 都满足 ()()()22x y f x f y f ++≤,则称这个函数时下凸函数,下列函数(1)()f x 2x = (2)()f x =3x(3)()f x =2log x (0x >)(4),0,()2,0,x x f x x x <⎧=⎨≥⎩ 中是下凸函数的有-------------------。
A .(1)(2) B. (2)(3) C.(3)(4) D.(1)(4)2. (06复旦)设x 1,x 2∈(0,2π),且x 1≠x 2,下列不等式中成立的是: (1)12(tanx 1+tanx 2)>tan 122x x +; (2) 12(tanx 1+tanx 2)<tan 122x x +;(3)12(sinx 1+sinx 2)>sin 122x x +; (4) 12(sinx 1+sinx 2)<sin 122x x +A . (1),(3)B .(1),(4)C .(2),(3)D .(2),(4)3.(09,清华),1,y x 0,y 0,x +∈=+>>N n 证明:122221x -≥+n n n y柯西不等式时等号成立。
时,规定,当且仅当为任意实数,则,,,及,,,设)00())(()(22112222122221222112121=====++++++≤+++i i nn n n n n n n b a b a b a b a b b b a a a b a b a b a b b b a a a1.(03交大)已知,x y R +∈,x +2y =1,则22x y+的最小值是______________. 2. 已知2x+3y+4z=10,求x 2+y 2+z 2的最小值。
3.P 为△ABC 内一点,它到三边BC 、CA 、AB 的距离分别为123,,d d d ,S 为△ABC 的面积,求证:2123()2a b c a b c d d d S++++≥.(09南大) 4. 给定正整数n 和正常数a ,对于满足不等式a a a n ≤++2121的所有等差数列a 1,a 2,a 3,…,和式∑++=121n n i ia 的最大值=_______.(07复旦)A.)1(210+n a; B.n a 210; C.)1(25+n a; D.n a25. 5. (07复旦)当a 和b 取遍所有实数时,则函数22)sin 2()cos 35(),(b a b a b a f -+-+=所能达到的最小值为_____________. A.1; B.2; C.3; D.4.基础题1. 求()xe f x x=的单调区间及极值.(2007年清华)2.设正三角形1T 边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内切圆面积之和.求1limnkn k A→∞=∑.(2007年清华)3. 圆内接四边形ABCD 中,AB =1,BC =2,CD =3,DA =4,求ABCD 的外接圆半径.(北大2009)4. 已知一公差为正整数无穷项等差数列,其中有3项:13,25,41.求证:2009为数列中一项.(2009,北大) 5. 求最小正整数n ,使得1()2n I =为纯虚数,并求出I .(06,清华)6. 已知b a 、为非负数,1b a ,b a M 44=++=,求M 的最值.(06,清华)7. 已知θαθcos sin sin 、、为等差数列,θβθcos sin sin 、、为等比数列,求β-α2cos 212cos 的值.(06,清华) 8. 比较25log 24与26log 25的大小并说明理由.(04复旦)9. 求证:边长为1的正五边形对角线长为215+(08北大). 10. 四面体ABCD 中,AB=CD,AC=BD,AD=BC 。
(1)求证:这个四面体的四个面都是锐角三角形。
(2)设底面为BCD ,设另外三个面与面BCD 所形成的二面角为α,β,γ。
求证:cosα+cosβ+cosγ=1。
11.(09清华)(1),1,y x 0,y 0,x +∈=+>>N n 证明:122221x -≥+n n n y(2)已知x ,y ,z>0,a ,b ,c 是x ,y ,z 的一个排列。
求证:3a b cx y z++≥。
12. 求所有3项的公差为8的自然数数列,满足各项均为素数。
13. 求所有满足tan tan tan [tan ][tan ][tan ]A B C A B C ++≤++的非直角三角形(这里[]x 表示不超过x 的最大整数)(2009年南京大学自主招生试题)14. 求由正整数组成的集合S ,使S 中的元素之和等于元素之积(06,清华)。
15.1515-+的整数部分为A ,小数部分为B 。
(1)求A,B ; (2)求222AB A B ++; (3)求22lim()n n B B B →∞+++。
(09,清华)16.(09复旦).定义全集X 的子集A⊂X 的特征函数为1,,()0,,AX x A x x A fC ∈⎧=⎨∈⎩这里,XA C 表示A 在X 中的补集。
那么,对A ,B⊂X ,下列命题中不准确的是_______________.A .A ⊂B ⇔()Ax f ≤()Bx f ,∀x ∈XB .()1()X AAx x C ff=-,∀x ∈Xc. ()A Bx f⋂=()Ax f()Bx f,∀x ∈XD.()A Bx f⋃=()Ax f+()Bx f,∀x ∈X17.(09复旦).半径为R 的球内部装4个有相同半径r 的小球,则小球半径r 的最大可能值是_______________。
ARB.RC.R DR中等题18. 给出一个整系数多项式1110()nn n n f x a x a xa x a --=++++,使()0f x =2009清华)19..通信工程中常用n 元数组123(,,,)n a a a a ……表示信息,其中0i a =或1,i n N ∈、.设123(,,)n u a a a a =……,123(,,)n v b b b b =……,(,)d u v 表示u 和v 中相对应的元素不同的个数.(1)(0,0,0,0,0)u =问存在多少个5元数组v 使得(,)1d u v =; (2)(1,1,1,1,1)u =问存在多少个5元数组v 使得(,)3d u v =;(3)令0(0,0,00)n w =个……,123(,,)n u a a a a =……,123(,,)n v b b b b =……,求证:(,)(,)(,)d u w d v w d u v +≥.(08交大)20.证明:若f (f (x ))有唯一不动点,f (x )也有唯一不动点(09交大)21. 已知(1,1)A --,△ABC 是正三角形,且B 、C 在双曲线1(0)xy x =>一支上.(1)求证B 、C 关于直线y x =对称;(2)求△ABC 的周长.(07,清华)22. 是否存在实数x ,使3cot ,3tan ++x x 均为有理数?(09,北大)23.对于集合2R M ⊆,称M 为开集,当且仅当0P M ∀∈,0r ∃>,使得20{}P R PP r M ∈<⊆.判断集合{(,)4250}x y x y +->与{(,)0,0}x y x y ≥>是否 为开集,并证明你的结论.(2007年清华)。
{}*111223*124.{},,,(,)(1).(2),1,.(3)(2),.n n m n mi i a a b b b a a b N a a b b a b a a m n N a b b a =∉=<=<<<∃∈+=∑首项为公差为首项为公比为且求的值若使求的值在的条件下求25.定义在R 上的函数()244+=x x x f ,⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=n n f n f n f S n 121 n =2,3,…(1) 求n S ; (2) 是否存在常数M >0,2≥∀n ,有231111n M S S S ++++≤.(05复旦) 26.已知线段AB 长度为3,两端均在抛物线2x y =上,试求AB 的中点M 到y 轴的最短距离和此时M 点的坐标.(07交大)27.有限条抛物线及其内部能否覆盖整个平面?并证明。
(抛物线内部指焦点所在的一侧)(09清华)28. 数列{}n a 满足2121n na a +=-,1N a =且11N a -≠,其中{}2,3,4,N ∈①求证:11a ≤;② 求证:()12cos2N k a k Z π-=∈。
29.(03交大)求证:342231a a a a +++为最简分式.30.(04复旦)若存在M ,使任意D t ∈(D 为函数)(x f 的定义域),都有M x f ≤)(,则称函数)(x f 有界.问函数x x x f 1sin 1)(=在)21,0(∈x 上是否有界?31.对于集合2R M ⊆,称M 为开集,当且仅当0P M ∀∈,0r ∃>,使得20{}P R PP r M∈<⊆. 判断集合{(,)4250}x y x y +->与{(,)0,0}x y x y ≥>是否为开集,并证明你的结论.(2007年清华)。