机电产品可靠性设计方法总结
机电工程设计优化总结
机电工程设计优化总结一、引言机电工程设计是一个复杂且关键的过程,涉及到众多学科和技术的融合。
设计优化的目的是提高系统的性能、降低成本、增强可靠性和易用性。
本总结旨在回顾机电工程设计优化的过程,并探讨成功的关键因素。
二、设计优化过程需求分析:在项目初期,明确项目的目标和需求,包括功能需求、性能需求、成本预算等。
通过与客户和相关利益方的沟通,确保对需求有准确的理解。
概念设计:基于需求分析,进行初步的概念设计。
这一阶段注重创意和可行性的探索,通过草图、模型等方式呈现设计思路。
详细设计:在概念设计的基础上,进行详细的工程设计。
包括机械结构设计、电气系统设计、控制系统设计等。
这一阶段需要充分考虑制造、装配、维修等实际因素。
设计评估:对详细设计方案进行评估,包括性能评估、成本评估、风险评估等。
通过模拟分析、样机测试等手段验证设计的可行性和可靠性。
设计优化:根据评估结果,对设计方案进行优化。
优化可能涉及结构改进、材料选择、工艺优化等方面。
目标是提高性能、降低成本、增强可靠性。
设计确认:最终确认优化后的设计方案,准备进入制造阶段。
这一阶段需要与客户和相关利益方再次沟通,确保设计满足所有需求。
三、设计优化的关键因素跨学科协作:机电工程设计涉及机械、电气、控制等多个学科。
优化设计的关键在于跨学科团队的紧密协作,确保各方面因素得到综合考虑。
创新思维:设计优化需要不断挑战传统思维,寻求创新的设计方案。
通过引入新技术、新材料、新工艺等,实现设计的突破。
仿真分析:利用仿真分析工具对设计方案进行模拟和验证,可以在早期发现潜在问题,避免后期改动带来的成本和时间浪费。
成本控制:在满足性能需求的前提下,有效控制成本是设计优化的重要目标。
通过合理选材、优化工艺、提高生产效率等方式降低成本。
用户反馈:及时收集用户反馈,了解产品在实际使用中的表现和问题。
这些信息对于后续产品改进和优化具有重要价值。
四、结论机电工程设计优化是一个持续的过程,需要不断地探索和创新。
电子产品可靠性设计与试验技术及经典案例分析
电子产品可靠性设计与试验技术及经典案例分析课程背景――为什么我们的产品设计好了,到了用户(现场)却返修率很高?――如何为客户提供有力的可靠性指标证据?MTBF的真正含义是什么?――MTBF与可靠度、失效率、Downtime 的关系如何?提高可靠真的降低返修率?――为何功率管在没超额定功率时仍然烧毁?――塑封集成电路为何有防潮要求?――如何开展热设计?――如何开展降额设计?――如何开展电路可靠性设计,例如继电器用在电路中,是否有潜在通路?CMOS电路真的省电吗?――如何开展加速寿命试验?――如何权衡试验应力?对于企业领导和研发工程师而言,诸如此类的问题可谓太多,尽快明白可靠性的指标和基本原理,使设计人员掌握一些可靠性设计技能,是我们迫切需要研究和解决的重大课题。
目前很多企业工程师在这方面缺乏实践经验,很多相关知识都是网络和书籍上面了解,但是,一方面在解决实际问题时光靠这些零散的理论是不足的,另一方面,这些“知识”也有可能对可靠性的实质理解造成误解,为帮助企业以及研发人员解决在实际产品设计过程中遇到的问题与困惑,我们举办此次《电子产品可靠性设计与试验技术及经典案例分析》高级训练班,培训通过大量的实际产品可靠性案例讲解,使得学员可以在较短时间内掌握解决可靠性技术问题的技能并掌握可靠性设计的基本思路!同时对企业缩短产品研发周期、降低产品研发与物料成本具有重要意义!======================================================================================课程特色---系统性:课程着重系统地讲述产品可靠性设计和试验的原理,产品可靠性设计的主要方法,产品常见的故障模式及其预防方法,课程以大量的案例来阐述产品可靠性设计的思路与方法,以及可靠性工作重点、工作方法、解决问题的技巧。
---针对性:主要针对电子产品可靠性设计和测试项目,及各种典型产品出现的不同问题时候的解决思路与方法。
现代设计方法(第四章 可靠性设计)
简述可靠性设计传统设计方法的区别。
答:传统设计是将设计变量视为确定性单值变量,并通过确定性函数进行运算。
而可靠性设计则将设计变量视为随机变量,并运用随机方法对设计变量进行描述和运算。
1.可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。
可靠度:产品在规定的条件下和规定的时间内,完成规定功能的概率。
是对产品可靠性的概率度量。
可靠度是对产品可靠性的概率度量。
2)可靠性工程领域主要包括以下三方面的内容:1.可靠性设计。
它包括了设计方案的分析、对比与评价,必要时也包括可靠性试验、生产制造中的质量控制设计及使用维修规程的设计等。
2.可靠性分析。
它主要是指失效分析,也包括必要的可靠性试验和故障分析。
这方面的工作为可靠性设计提供依据,也为重大事故提供科学的责任分析报告。
3.可靠性数学。
这是数理统计方法在开展可靠性工作中发展起来的一个数学分支。
可靠性设计具有以下特点:1.传统设计方法是将安全系数作为衡量安全与否的指标,但安全系数的大小并没有同可靠度直接挂钩,这就有很大盲目性。
可靠性设计与之不同,它强调在设计阶段就把可靠度直接引进到零件中去,即由设计直接决定固有的可靠度。
2.传统设计是把设计变量视为确定性的单值变量并通过确定性的函数进行运算,而可靠性设计则把设计变量视为随机变量并运用随机方法对设计变量进行描述和运算。
3.在可靠性设计中,由于应力S和强度R都是随机变量,所以判断一个零件是否安全可靠,就以强度R大于应力S的概率大小来表示,这就是可靠度指标。
4.传统设计与可靠性设计都是以零件的安全或失效作为研究内容,因此,两者间又有着密切的联系。
可靠性设计是传统设计的延伸与发展。
在某种意义上,也可以认为可靠性设计只是在传统设计的方法上把设计变量视为随机变量,并通过随机变量运算法则进行运算而已。
平均寿命(无故障工作时间):指一批产品从投入运行到发生失效(或故障)的平均工作时间。
对不可修复的产品而言,T是指从开始使用到发生失效的平均时间,用MTTF表示;对可修复的产品而言,是指产品相邻两次故障间工作时间的平均值,用MTBF表示;平均寿命的几何意义是:可靠度曲线与时间轴所夹的面积。
《机电产品可靠性设计》教案
《机电产品可靠性设计》教案一、教学目标1. 了解可靠性工程的基本概念和重要性。
2. 掌握可靠性设计的基本原理和方法。
3. 学习可靠性试验和评估的基本方法。
4. 能够应用可靠性设计原理和方法解决实际问题。
二、教学内容1. 可靠性工程概述可靠性的定义和特性可靠性工程的基本概念可靠性在工程中的重要性2. 可靠性设计原理可靠性模型和可靠性框图可靠性分配和可靠性预计故障树分析(FTA)和故障模式及影响分析(FMEA)3. 可靠性设计方法冗余设计容错设计维修性设计诊断系统设计4. 可靠性试验和评估可靠性试验的类型和目的可靠性增长试验可靠性评估方法5. 可靠性应用案例分析实际案例分析可靠性设计在特定工程中的应用三、教学方法1. 讲授:讲解可靠性工程的基本概念、原理和方法。
2. 案例分析:分析实际案例,加深对可靠性设计应用的理解。
3. 小组讨论:分组讨论可靠性设计的方法和应用,促进学生之间的交流。
4. 练习题:布置练习题,巩固所学知识,提高解题能力。
四、教学资源1. 教材:《机电产品可靠性设计》相关教材。
2. 课件:PowerPoint 课件,用于辅助讲解和展示案例。
3. 练习题:提供相关的练习题和案例分析题。
五、教学评估1. 平时成绩:考察学生的出勤、课堂表现和作业完成情况。
2. 练习题:评估学生对可靠性设计方法和应用的理解程度。
3. 案例分析报告:评估学生对可靠性设计应用的分析和解决问题的能力。
4. 期末考试:全面测试学生对可靠性工程知识的掌握程度。
六、教学安排1. 课时:共计32课时,每课时45分钟。
2. 教学计划:课时1-2:可靠性工程概述课时3-4:可靠性设计原理课时5-6:可靠性设计方法课时7-8:可靠性试验和评估课时9-10:可靠性应用案例分析七、教学要点1. 重点:可靠性工程的基本概念、可靠性设计原理和方法、可靠性试验和评估的基本方法。
2. 难点:可靠性模型的建立、故障树分析(FTA)和故障模式及影响分析(FMEA)的应用、可靠性设计方法在实际工程中的应用。
机械电气设备的可靠性设计与安全技术
机械电气设备的可靠性设计与安全技术摘要:随着现代技术的发展,机械设备的种类越来越多,逐渐更新,功能,成为现代生产中不可缺少的工具。
机电设备不仅体现了效率和便捷特点,而且还存在许多安全隐患,这成为安全生产中不容忽视的重要因素。
这不仅关系到企业的可持续发展,对人们的生命和财产安全至关重要。
关键词:机械;电气设备;靠性设计;安全技术近年来,社会经济的可持续发展为机械工程的发展开辟了新的机遇,机械设备是许多行业的重要生产要素。
为了推动工业的发展,必须优先使用高效,高质量和功能齐全的机械设备。
由于机械设备的重要作用,对机械设计提出了新的要求,使许多设计任务能够实现设备的自动化功能。
在计算机辅助设计模式下,机械设计的自动化程度大大提高,克服了手工设计的不足。
在计算机辅助设计过程中应用良好的安全管理技术可提高机械设备可靠性一、机械电气设备的特点1.管理的复杂性。
在施工现场,负责人员必须安全地管理机械设备,减少危险事故的发生,确保施工安全。
机器管理的主要特点是其复杂性和专业性。
施工技术的机械结构复杂,涉及多个工作阶段,具有一定的技术难度。
同时,施工环境相对复杂,给现场安全管理带来了一定的难度。
2.较强专业性。
安全管理侧重于安全技术的应用和系统的安全运行,项目施工中各种施工机械和工作条件的使用需要专业安全管理人员的参与。
然而,大多数操作人员在施工过程中缺乏专业性,一些工作人员缺乏专业培训,对机械设备的安全意识不足,给项目建设带来了相当大的安全隐患。
二、机械电气工程中常见的故障问题1.开关问题。
机械和电气设备的质量电气开关的质量作用重要,如果开关产品质量差,可能会导致日常使用和维护过程的中断,直接影响开关和电气设备的有效运行和管理,可能导致故障和维护过程的顺利进行。
一般来说,电子开关开关故障的主要原因是外力造成的变形和断裂。
此外,在日常使用中出现故障的电子开关可能会导致故障,从而显着影响相关设备的价值。
目前,机电设备开关电流异常的主要原因是开关触点的长期老化增加了开关电流的异常因素,导致机电设备的开关故障次数增加。
机械可靠性设计-基础
6 可靠性设计6.1概述可靠性是衡量产品质量的一个重要指标。
可靠性设计是一种很重要的现代设计方法。
目前,这一设计方法已在现代机、电产品设计中得到愈来愈广泛的应用,它对提高产品的设计水平和质量,降低成本,保证产品的可信性、安全性起着极其重要的作用。
长期以来,一切讲究产品信誉的厂家,为了争取顾客都在追求其产品具有好的可靠性。
因为只有那些可靠性好的产品,才能长期发挥其使用性能而受到用户的欢迎。
不仅如此,有些产品如汽车、轮船iiE机,如果其关键零部件不可靠,不仅会给用户带来不便,耽误时间、推迟日程,造成经济损失,甚至还可能直接危及使用者的生命安全。
美国“挑战者”号航天飞机、前苏联切尔诺贝利核电站等发生的大的可靠性事故所引起的严重后果,都足以说明产品的可靠性差会引起一系列严重问题,甚至会危及国家的荣誉和安全。
1957年苏联第一颗人造卫星升天,1969年美国阿波罗Ⅱ号宇宙飞船载人登月等可靠性技术成功的典范,不仅为其国家带来荣耀,而且说明了高科技的发展要以可靠性技术为基础,科学技术的发展又要求高的可靠性。
早期,人们对“可靠性”这一概念的理解仅仅从定性方面,而没有数值量度。
但为了更好地表达可靠性的准确台义,不能只从定性方面来评价它,而应有定量的尺度来衡量它。
6.1.1可靠性科学的发展可靠性设计是可靠性学科的一个重要分支,而对可靠性学科的系统研究则始于1952年。
二战期间雷达系统已发展很快,而通讯设备、航空设备、水声设备中的电子元件却屡出故障,因此美国开始研究电子元件和系统的可靠性问题。
为此,美国国防部研究与发展局于1952年成立了“电子设备可靠性顾问团咨询组”( Advisory Group on Reliability of Electronic Equipment,AGREE),其下设9个任务小组,对电子产品的设计、试制、生产、试验、储存、运输、使用等各个方面的可靠性问题,作了全面的调查研究,并于1957年提出了“电子设备可靠性报告”,即AGREE报告。
第四章 机械可靠性设计原理与可靠度计算讲解
机械可靠性设计实质:
(1) 就在于揭示载荷(应力)及零部件的分布规律 (2) 合理地建立应力与强度之间的力学模型,严格 控制失效概率,以满足可靠性设计要求。
4.2.1 应力强度干涉理论
应力S及强度δ本身是某些变量的函数,即
s f s1 , s2, , sn
表4-1 蒙特卡洛 模拟法可 靠度计算 的流程
4.3 机械零件的可靠度计算
4.3.1 应力强度都为正态分布时的可靠度计算
应力S和强度δ均呈正态分布时,其概率密度函数:
2 1 1 S S f (S ) exp (∞ < S < ∞) 2 S S 2
机械可靠性设计与安全系数法:
1) 相同点
都是关于作用在研究对象上的破坏作用与抵抗这种破坏 作用的能力之间的关系。 破坏作用:统称为“应力”。 抵抗破坏作用的能力:统称为“强度
“应力”表示为
S f s1, s2, , sn
其中,
表示影响失效的各种因素。 s1 , s2, , sn
如力的大 小、作用位置、应力的大小和位置、环境因
第4章 机械可靠性设计理论与 可靠度计算
安全系数法与可靠性设计方法 应力强度干涉理论及可靠度 机械零件的可靠度计算及设计
4.1安全系数法与可靠性设计方法
4.1.1 安全系数设计法
在机械结构的传统设计中,主要从满足产品使用要求 和保证机械性能要求出发进行产品设计。在满足这两方面 要求的同时,必须利用工程设计经验,使产品尽可能可靠, 这种设计不能回答所设计产品的可靠程度或发生故障概率 是多少。 安全系数法的基本思想:机械结构在承受外在负荷后,计 算得到的应力小于该结构材料的许用应力,即
机电一体化系统的现代设计方法
机电一体化系统的现代设计方法摘要:机电一体化系统的现代设计方法主要有可靠性设计、优化设计、反求设计、绿色设计、虚拟设计等。
本论文主要介绍了可靠性设计方法和优化设计方法。
可靠性设计包括了很广的内容,可以说在满足产品功能,成本等要求的前提下一切使产品可靠运行的设计都称之为可靠性设计。
优化设计是指将优化技术应用于设计过程,最终获得比较合理的设计参数,优化设计的方法目前已比较成熟,各种计算机程序能解决不同特点的工程问题。
关键词:机电一体化;现代设计方法;可靠性设计;优化设计。
一、引言随着社会的发展和科学技术的进步,使人们对设计的要求发展到了一个新的阶段,具体表现为设计对象由单机走向系统、设计要求由单目标走向多目标、设计所涉及的领域由单一领域走向多个领域、承担设计的工作人员从单人走向小组甚至大的群体、产品设计由自由发展走向有计划的开展。
与人们对设计的要求相比现阶段的设计确实是落后的,主要表现为:对客观设计的研究不够,尚未很好的掌握设计中的客观规律;当前设计的优劣主要取决于设计者的经验;设计生产率较低;设计进度与质量不能很好控制;实际手段与设计方法有待改进;尚未形成能被大家接受,能有效指导设计实践的系统设计理论。
面对这种形势,唯一的解决方法就是设计必须科学化。
这就意味着要科学的阐述客观设计过程及本质,分析与设计有关的领域及其地位,在此基础上科学的安排设计进程,使用科学的方法和手段进行设计工作,同时也要求设计人员不仅有丰富的专业知识,而且要掌握先进的设计理论、设计方法及设计手段,科学地进行设计工作,这样才能及时得到符合要求的产品。
二、机电一体化系统的现代设计方法概述机电一体化系统的现代设计方法是以设计产品为目标的一个总的知识群体的总称。
它运用了系统工程,实行人、机、环境系统一体化设计,使设计思想、设计进程、设计组织更合理化、现代化,大力采用许多动态分析方法,使问题分析动态化,实际进程、设计方案和数据的选择更为优化,计算、绘图等计算机化。
机电产品可靠性设计与评估研究
机电产品可靠性设计与评估研究一、引言机电产品作为现代工业的基础设施之一,为工业生产和生活服务提供了必要的支持。
其中,可靠性是机电产品最重要的性能指标之一,它能够保证设备的长期稳定运行,为生产和生活带来更大的效益。
因此,机电产品的可靠性设计与评估是工业生产的重要环节。
二、机电产品可靠性设计1. 可靠性概念可靠性是指设备在规定的时间内,保持规定的性能水平的概率。
机电产品的可靠性通常包括工作可靠性和运行可靠性两个方面。
工作可靠性是指设备作为单个元件的可靠性,通常以故障率来表示。
运行可靠性是指设备作为整体系统的可靠性,它可通过故障链、故障树等方法来分析评估。
2. 可靠性设计原则(1)采用可靠性优良的零部件和材料。
(2)结构和工艺设计具有可靠性。
(3)不断优化设备的结构和设计。
(4)采用可靠性高的维修方法。
(5)在研发过程中加强质量控制。
3. 可靠性设计方法(1)故障模式与影响分析(FMEA)通过对设备的各个部件分析可能出现的故障模式及其影响,以便在设计时考虑故障的防范与控制。
(2)故障树分析(FTA)通过故障树分析的方法,得出设备故障产生的根本原因,以便在设计、制造和运行过程中预防或控制故障的发生。
(3)可靠性增长设计通过对产品加固、优化部件等方式,提高产品的可靠性。
三、机电产品可靠性评估1. 可靠性评估概念可靠性评估是指对机电产品进行可靠性分析,确定其可靠性水平,识别问题和改进策略,从而提高机电产品的可靠性水平。
2. 可靠性评估方法(1)故障检测频度分析(FMECA)通过对设备故障模式分析,分析故障模式的频度和可修复性,以便确定故障的优先级和修复策略。
(2)可靠性增长测试对机电产品进行可靠性增长测试,以检测产品的可靠性水平是否达到要求。
(3)可靠性质量控制对机电产品的质量进行控制,以保障产品的可靠性水平。
(4)故障分析通过对机电产品故障原因分析,确定机电产品存在的问题和改进策略,提高产品可靠性水平。
四、结论机电产品的可靠性设计与评估是现代工业中必不可少的过程,它能够通过优化设计和评估方法,提高机电产品的可靠性水平,从而提高生产效益和服务生活。
可靠性设计
可靠性设计可靠性设计的概述:可靠性设计(reliability design):为了满足产品的可靠性要求而进行的设计;对系统和结构进行可靠性分析和预测,采用简化系统和结构、余度设计和可维修设计等措施以提高系统和结构可靠度的设计。
可靠性问题是一种综合性的系统工程。
机电产品(零件、部件、设备或系统)的可靠性也和其他产品的可靠性一样,是与其设计、制造、运输、储存、使用、维修等各个环节紧密相关的。
设计只是其中的一个环节,但却是保证产品可靠性最重要的环节,它为产品的可靠性水平奠定了先天性的基础。
因为机械产品的可靠性取决于其零部件的结构形式与尺寸、选用的材料及热处理制造工艺、检验标准、润滑条件、维修方便性以及各种安全保护措施等,而这些都是在设计阶段决定的。
可靠性问题的研究是因处理电子产品不可靠问题于第二次世界大战期间发展起来的。
可靠性设计用在机械方面的研究始于20世纪60年代,首先应用于军事和航天等工业部门,随后逐渐扩展到民用工业。
随着现代科学技术的发展和对产品质量要求的日益提高,可靠性逐步成为科学和工程中一个非常重要的概念。
机械结构的可靠性及其设计直接决定了机械结构的可靠度,因此,对机械可靠性设计的研究具有十分重要的意义。
所谓可靠性,则是指产品在规定的时间内和给定的条件下,完成规定功能的能力。
它不但直接反映产品各组成部件的质量,而且还影响到整个产品质量性能的优劣。
可靠性分为固有可靠性、使用可靠性和环境适应性。
可靠性的度量指标一般有可靠度、无故障率、失效率3种。
对于一个复杂的产品来说,为了提高整体系统的性能,都是采用提高组成产品的每个零部件的制造精度来达到;这样就使得产品的造价昂贵,有时甚至难以实现(例如对于由几万甚至几十万个零部件组成的很复杂的产品)。
事实上可靠性设计所要解决的问题就是如何从设计中入手来解决产品的可靠性,以改善对各个零部件可靠度(表示可靠性的概率)的要求。
可靠度的分配是可靠性设计的核心。
其分配原则为①按重要程度分配可靠度。
产品可靠性设计与分析
性
性
靠
预
预
性
测
测
预 测
可靠性分配
按
按
相
单
等
对
元 复
分
失
杂
配
效
度
法
率
和 重
分
要
配
度
14
系统可靠性设计(System reliability design)
定义:通过预测、分配、分析、改进等一系列可靠性
计算和可靠性工程活动,把定量的可靠性目标值设计到 技术文件和图纸中去,形成系统的固有可靠性。
可靠性预测
可靠性指标体系
Characteristic quantity of reliability
4
可靠性指标体系(Characteristic quantity of reliability)
可 靠 度
失 效 率
平 均 寿 命
可靠性定义
可靠性评价指标
规
规
规
定
定
定
条
时
功
件
间
能
维 修 度
有 效 度
可 靠 寿 命
R(100) =
84 100
=
0.84
工作400h后尚有72个轴承可以继续工作,故
R(400) =
72 100
=
0.72
产品出厂时,其时间 t = 0,失效数量 n(0) = 0,故 R(0) = 1
,随着使用时间(包括运输、贮存及使用等)的增加,失效数不断增加,因
而可靠度相应逐渐减小。所有的产品,不论其寿命有多长,在使用过程
32
∑ Rs = Rsi = 0.95376 i =1
《机电产品可靠性设计》教案
教师教案(2012—2013学年第2学期)课程名称:机电产品可靠性设计授课学时:32授课班级:2010级任课教师:朱顺鹏教师职称:讲师教师所在学院:机械电子工程学院电子科技大学教务处第一章可靠性设计概论4学时一、教学内容及要求教学内容共4学时可靠性基本概念2学时(1)可靠性的内涵(2)可靠性工程发展现状(3)可靠性特征量可靠性数学基础2学时(1)数理统计基本概念(2)可靠性常用概率分布(3)随机变量均值与方差的近似计算教学要求(1)了解可靠性学科发展历程(2)掌握可靠性学科研究的内容(3)了解我国可靠性研究的发展现状(4)了解可靠性设计工作的重要意义及面临的主要挑战(5)掌握可靠性的定义(6)掌握可靠度、不可靠度、失效率的定义(7)掌握常用的概率分布(正态分布、指数分布、威布尔分布、对数正态分布)在可靠性设计工作中的应用(8)掌握随机变量均值与方差的近似计算方法二、教学重点、难点教学重点可靠性的定义可靠性特征量定义及相互关系常用概率分布的统计特征量教学难点失效率的定义威布尔分布的相关概念及应用三、教学设计列举航空航天产品(如卫星天线、卫星指向机构、太阳翼展开机构)、民用产品(如汽车)、制造装备(如数控机床)的实例,突出开展可靠性工作的重要意义。
随机变量及数理统计的知识系学生在先修课程中所学内容的复习,可以简要介绍,并要求学生查阅以前的书籍。
正态分布是学生熟知的内容,在教学过程中着重讲解其实际应用;指数分布、对数正态分布和威布尔分布是学生先修课程中没有学习过的,应详细讲解。
威布尔分布是难点内容,应重点介绍其发展历史,统计特征,以及威布尔分布在机械可靠性中的特殊作用,列举工程实例。
随机变量函数的均值与方差计算是后续机械产品可靠性设计需要用到的基本方法,讲解三种常用的方法原理即可,公式可以查表。
四、作业通过课程网站发布。
五、参考资料1. 盛骤, 谢式千, 潘承毅. 概率论与数理统计(第四版), 高等教育出版社,20102. 刘惟信. 机械可靠性设计. 北京:清华大学出版社, 2000六、教学后记第二章系统可靠性设计8学时一、教学内容及要求教学内容共8学时系统可靠性框图2学时串联系统;并联系统;混联系统;表决系统;旁联系统可靠性分配2学时可靠性分配的目的和原则可靠性分配方法(等分配法、再分配法、比例分配法、AGREE法)可靠性预计1学时可靠性预计的目的可靠性预计的方法(应力分析法、元器件计数法、相似产品法、上下限法)故障模式、影响及危害性分析FMECA 1学时FMECA的定义及分类FMECA的一般过程风险优先数和危害性矩阵故障树分析FTA 2学时故障树的各种符号故障树建树步骤常用故障树分析方法介绍教学要求(1)了解系统可靠性设计的任务;(2)掌握系统可靠性建模方法;(3)了解可靠性分配与预计的目的;(4)掌握可靠性分配与预计的常用方法。
机电一体化的可靠性、安全性设计
机电一体化的可靠性、安全性设计一、可靠性设计1.可靠性的基本概念要发挥机电一体化系统应有的作用,首先应使它可靠地工作,可靠性包括以下几个基本概念:(1)可靠性:是指产品(或系统)在规定条件下和规定时间内,完成规定功能的能力。
(2)规定条件:是指使用时的工作条件、环境条件和存储时的存储条件等,“规定条件”不同,产品的可靠性也不同。
(3)规定时间:其长短的不同,产品的可靠性也不同。
(4)完成规定功能:能够连续地保持产品(或系统)的工作能力,使各项技术指标符合规定值,否则就称为失效(故障)。
(5)失效(故障):是一种破坏产品(或系统)工作能力的事件,失效(故障)越频繁可靠性就越低。
2.可靠性的含义(1)产品(或系统)的无故障性是指产品在某一时期内(或某一段工作时间内),连续不断地保持其工作能力的性能。
(2)产品(或系统)和耐久性产品的耐久性是指产品在整个使用期限内和规定的维修条件下,保持其工作能力的性能。
一般来说,如果不采取维修和预防措施消除故障、恢复其丧失了的工作能力,产品是不能长时期工作的。
3.保证产品(或系统)可靠性的方法保证产品具有必要的可靠性是一个综合性问题,不能单纯依靠某一特定的方法。
保证产品可靠性的方法主要有两种:(1)提高产品的设计和制造质量这是提高可靠性的最根本的方法,包括加大设计的安全系数,提高设计裕度;采取自动控制措施等。
(2)采用冗余技术冗余技术又称储备技术。
它是利用系统的并联模型来提高系统可靠性的一种手段。
冗余有工作冗余和后备冗余两类,包括①工作冗余:有两个或两个以上单元并行工作,平均负担工作应力,所有单元都失效时,系统才失效。
②后备冗余:一个单元工作,另一个单元待机备用。
须设置失效检测与转换装置,检测到失效就启动转换装置,用后备单元代替失效单元。
机械系统很少采用冗余技术,而常采用裕度法来提高可靠性。
(3)采用诊断技术诊断的任务:一是出现故障时,迅速确定故障的种类和位置;二是在故障尚未发生时,确定产品中有关元器件距离极限状态的程度。
试析机电一体化产品的可靠性设计
试析机电一体化产品的可靠性设计1 概述随着我国市场化经济的发展和技术水平的不断提高,机电一体化产品在我国各个行业、各个领域的应用范围越来越广泛,机电一体化的产品结构越来越复杂,其使用条件和应用的环境也更加严格,由此产生的产品可靠性问题必然增多。
可靠性是衡量产品质量的一项重要指标,早在20世纪50年代,国外就兴起了对技术可靠性的广泛研究。
可靠性是产品或系统的重要指标属性,要提高系统的使用寿命、应用的稳定、计算的准确,降低长期使用的损耗费用,产品质量的时间起到关键作用。
可靠性分析,目前已经成为产品安全性预测、质量保障及维修计划制定等工作不可或缺的手段。
尤其是在现代生活中,不论是复杂的飞机,还是日常生活中简单的计算机等,都是应用大量复杂的机电一体化产品与系统的典型代表,与此同时,可靠性工程应用其中,并取得了成功。
2 可靠性机电一体化产品的可靠性是利用时间作为标准对产品质量指标进行描述,机电产品在规定的条件和时间内完成规定功能的能力。
它包含五个要素,分别是:对象、规定的工作时间、规定的工作条件、正常运行的功能以及概率。
机电一体化产品的可靠性研究对象既包括系统,也包括各种单元、组件、零部件等。
“规定的工作条件”一般包括:环境条件、动力条件、负载条件以及使用和维护条件。
“规定的工作时间”一般指产品的全寿命周期。
正常运行的功能是指机电一体化产品完成任务的各参量。
而概率是可靠性的数值表征。
可靠性指标是产品可靠性的量化标尺,是进行可靠性分析的依据。
可靠度、失效率、平均寿命、平均维修时间等函数都是机电一体化产品常用的可靠性指标。
在不同的工作条件下,对于不同的机电系统,应采用不同的可靠性指标来进行可靠性设计。
3 可靠性设计机电产品的可靠性是设计出来、生产出来的。
可靠性设计是一种预先考虑产品或系统可靠性的设计方法,运用可靠性设计可以实现在完成预定功能的前提下,使性能、重量、成本、寿命等各方面相互平衡,设计出可靠性高的产品的目的。
机电一体化系统的可靠性设计
机电一体化系统的可靠性设计一、机电一体化系统的牢靠性描述(一)牢靠性定义:产品在规定的条件下和规定的时间内完成规定功能的力量。
它包括:产品、规定的条件、规定的时间、规定的功能。
(二)牢靠性指标1.故障分布函数和故障密度函数在[0,t)的时间间隔内,产生的故障的概率用函数F(t)表示f(t)故障密度函数2.牢靠度R(t)牢靠度实质是产品到时刻t时无故障概率3.平均寿命:牢靠度函数的平均值(数学期望值)4.失效率λ(t):指产品在t时刻没有发生故障而在t之后的dt时间内发生故障的条件概率密度函数通过试验的方法可获得失效率曲线5.有效度(可利用率):平均有效度A:反映了设备供应正确使用的力量有效度(三)牢靠性猜测元件的牢靠性猜测:试验统计法、阅历法系统的牢靠性猜测取决于元件的牢靠性和元件的组合方式两个因素最基本的组合方式为串联和并联(四)牢靠性指标的安排1.等同安排法2.按比例安排法3.按重要性安排法4.最优化安排法二、机电一体化系统常见故障类型(一)硬件规律故障1.永久性故障:固定故障、桥接故障2.间发性故障3.边缘性故障(二)常见软件故障1.系统软件故障2.应用软件故障(三)常见干扰故障依据干扰的现象和信号特征的不同有不同的分类方法1.按干扰性质分自然干扰、人为干扰、固有干扰2.按干扰耦合模式分:静电干扰、磁场耦合干扰、漏电耦合干扰、共阻抗干扰、电磁辐射干扰三、机电一体化系统的干扰抑制与防护各种干扰是机电一体化系统和装置消失瞬时故障的主要缘由。
抑制电磁干扰是电磁兼容性设计的核心。
电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手。
常用的抑制方法:屏蔽干扰源隔离:光电隔离、变压器隔离、继电器隔离滤波常用反射滤波器和损耗滤波器接地:单点接地、沟通接地点与直流接地点分开原则、将规律地浮空并使机柜良好接地、数字地和模拟地分开、印刷电路板地线的支配合理布置电源:沟通电源输入实行综合措施、合理的直流电源方案软件抗干扰措施:软件陷阱、WTD技术四、机电一体化系统的故障诊断与容错技术(一)机电一体化系统的自诊断1.通路敏化法2.D算法3.状态表分析法4.功能故障诊断法(二)机电一体化系统的容错技术1.时间冗余2.硬件冗余。
机电一体化产品的可靠性设计分析
工 作条件下 ,对 于不 同的机 电系统 ,应采 用不 同的可靠性
指 标来进行可靠性设计 。
1 2
2 0 1 4 年第1 期
( 总 第 2 8 0 期 )
中阊高 新技术 / 止 \ 业 l
, :H } ¨^ H l 0 “ 1f ¨ c N T£ I ,E
机电一体化产品的可靠性设计分析
王 晓燕
( 滦 南中兴 电力服 务有 限公 司 ,河北 唐 山 0 6 3 5 0 0)
摘要:机 电一体化产品由于其复杂性和重要性,其可靠性问题越来越受到关注。可靠性设计作为一种现代化 的设计手段 ,将其应用在机 电一体化产品的设 计中,能够保证机 电系统获得较 高的可靠度 。文章首先介绍
件。 “ 规定 的工作时 间”一般指产 品的全寿命 周期 。正常
是可靠性数 学模型反 映的 内容 。产 品系 统彼此组合起来 的
形式和各组 成单元本 身的可靠性是产 品系统的可靠性 的两 个 决定 性 因素 ,也 就是 在逻 辑 图中各 个单 元 之 间的连 接
方式 。 完成可 靠性数学 建模 ,把机 电系统的可靠性特 征量表
前 已经成 为产品安全性预 测、质量保 障及维修计划 制定等 工作不可 或缺的手段 。尤其是在现代 生活 中,不 论是复杂 的飞机 ,还是 日常生 活中简单 的计 算机等 ,都 是应用大量
复杂 的机 电一体化产 品与系统 的典型代表 ,与此同时 ,可
靠性工程应用其 中,并取得 了成功 。
成规 定功能 的能力。它包含五 个要素 ,分 别是 :对象 、规
水平 、元器件 的失效 率等为依据 ,预计产 品实 际可能达到
的可 靠度 。可靠性预 计包括可靠性 分析和可靠性 预测两个
机电一体化设备的故障维修特点和可靠性分析
机电一体化设备的故障维修特点和可靠性分析随着科技的不断发展和进步,机电一体化设备被越来越广泛地运用到各个领域中。
一方面,机电一体化设备的生产效率和生产能力得到了显著提升,另一方面,机电一体化设备却也面临着更加复杂和困难的故障维修问题。
因此,本文将从机电一体化设备的故障维修特点和可靠性分析两方面谈一下这个话题。
1、复杂性机电一体化设备集机械、电子、液压等多种技术于一身,其内部系统极为复杂,由许多的独立部件和组件组成,整体结构和局部结构相互协作。
因此,一旦机电一体化设备出现故障,迅速发现其具体原因并进行修复往往比较困难。
2、耐久性机电一体化设备中的各种部件和组件不断运转、转动和摩擦,工作负荷较大,因此很容易磨损和损坏。
如果一旦发生故障,对其进行必要的维修和更换零件成本和难度都较高。
机电一体化设备维护比较繁琐,许多部件都需要定期进行检查和保养。
如果保养不好,对后期的设备运作也会造成很大影响。
4、专业性由于机电一体化设备有比较高的复杂性和技术性,因此需要具备专业知识、技能和经验的维修人员进行操作和处理。
1、设计可靠性机电一体化设备的设计可靠性是指设备在设计阶段能否满足客户的产品质量和生产效率等方面的需求。
设计可靠性的好坏关系到其后期使用的稳定性和安全性。
2、制造可靠性机电一体化设备的制造可靠性是指其在制造过程中所出现的技术问题、基础设施和管理等方面的问题,这些问题往往会影响到其质量和性能。
3、使用可靠性机电一体化设备的使用可靠性是指其能够在用户环境下以稳定和可靠的方式运行。
此可靠性与计算机系统相关,重点考虑系统应用环境、软硬件系统的可靠性与性能测试等。
4、维护可靠性机电一体化设备的维护可靠性是指所采用的维修方法和手段能否稳定、可靠地维护并修复设备的各种故障问题。
维护可靠性是保障设备稳定运行的重要一环。
综上所述,机电一体化设备的故障维修特点和可靠性分析需要我们不断进行总结、提高和完善。
我们应该在机电一体化设备的设计、制造、使用和维护方面加强管理,以确保设备的长期稳定运行。
机电设计年度工作总结
机电设计年度工作总结随着科技的不断发展,机电设计领域也在不断创新和进步。
作为机电设计专业的从业者,我们在过去的一年里取得了许多成就,并且在各项工作中取得了显著的进展。
现在,让我们来回顾一下过去一年的工作成果,总结一下我们所取得的成就和经验。
首先,我们在机电设计领域取得了一系列重要的技术突破。
在过去的一年里,我们不断优化和改进了现有的机电产品设计,提高了产品的性能和可靠性。
同时,我们也研发了一些新的机电产品,为客户提供了更多样化的选择。
这些技术突破为公司的发展打下了坚实的基础,为客户提供了更好的产品和服务。
其次,我们在团队合作和项目管理方面取得了显著的进展。
在过去的一年里,我们不断加强团队之间的沟通和协作,提高了团队的凝聚力和执行力。
同时,我们也改进了项目管理的流程和方法,提高了项目的执行效率和质量。
这些进展为公司的发展提供了强大的支持,为客户提供了更好的服务和支持。
最后,我们在客户服务和市场拓展方面也取得了一定的成绩。
在过去的一年里,我们不断改进客户服务的流程和方法,提高了客户满意度和忠诚度。
同时,我们也开拓了新的市场和客户群体,为公司的发展打开了新的空间。
这些成绩为公司的未来发展奠定了坚实的基础,为客户提供了更好的产品和服务。
总的来说,过去一年是机电设计领域取得了许多成绩的一年。
我们在技术突破、团队合作、项目管理、客户服务和市场拓展方面都取得了显著的进展,为公司的发展打下了坚实的基础。
在未来的工作中,我们将继续努力,不断创新和进步,为客户提供更好的产品和服务,为公司的发展做出更大的贡献。
相信在不久的将来,我们的成绩将会更加辉煌!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机电产品可靠性设计方法总结随着社会物质文明的高速发展,机电产品越来越广泛地应用于社会的各个领域。
自动化、小型化的普及发展,使很多机电产品结构愈加复杂,使用条件和应用环境也越来越严酷,由此产生的产品可靠性问题必然增多。
本文针对机电产品,从可靠性的设计方法角度归纳总结现代技术常用的可靠性设计方法。
一、原材料、元器件、电路和工艺的选择与使用。
原材料、元器件是机电产品可靠性的基础之一,很多机电产品的失效是由于材料或元器件的性能和质量问题造成的,而电路及制作工艺的选择是对产品的可靠性起决定性作用。
如果要提高产品可靠性,应充分估计现有的技术水平,尽量采用成熟的、定型的、标准的原材料、元器件、电路和工艺来完成设计,另外电子元器件还应适当考虑降温降额设计。
二、耐环境设计。
任何机电产品都是在一定的环境下工作的,而潮湿、盐雾和霉菌会降低材料的绝缘强度,引起漏电,导致故障。
因此,必须采取防止或减少环境条件对机电产品可靠性影响的各种方法,以保证机电产品工作中的性能。
耐环境设计是指产品在三防(防潮湿、防盐雾和霉菌)设计、耐热设计、耐振设计、耐湿设计、耐腐蚀及防微生物等。
对产品进行耐环境设计,首先应对恶劣环境进行分析调查,再对各类应力进行分析估算。
如果部分元件或单元难以承受这些环境应力的影响而产生故障,我们可以通过采取环境防护设计措施,减少这些环境应力对产品的影响,提高产品的使用寿命和可靠性。
三、人一机工程设计。
所有机电产品的研制、生产和使用都是由人来完成的,人为故障必然会占据相当的比例。
某生产厂曾对其进行售后维护的变频电源出现的800例故障进行统计分类,其中环境系统故障336例,占42%,操作系统故障238例,占29.7%,仪器系统故障226例,占28.3%。
由此可见,随着机电产品精度的提高和智能化程度提高,人为因素对系统的影响越来越大,这些人为因素包括人员缺乏系统i/II练、环境条件不好、技术资料不全面、管理不到位等。
人为因素的影响会因时、因地、甚至产品类别的不同而不同。
人一机工程设计,要求根据人的能力容限,如生理限制、病理限制、体力限制、心理限制等,科学地确定产品的具体设计、操作方法、操作环境使产品达到安全易用、便于维护的目的,防止人员操作差错,包括操作错误、装配错误、设计错误、维修错误、安装错误、使用错误等,提高产品的可靠性和操作成功的可靠度。
所以,在产品的可靠性设计时,要充分考虑人对系统可靠性的影响,使人与产品有机的结合成一个协调的整体。
四、冗余设计。
冗余设计是指在产品设计时,用一套以上的设备(器件、线路、能源等)来完成规定的任务。
对于机电产品,必要时应考虑冗余设计。
比如说,某个产品在工作的时候不能停止供电,否则会产生设备故障,那么在设计时就会有蓄电池电路设计,作为备用电源供电系统,这就是冗余设计。
再举个大家都熟悉的产品电热水壶,它通常都采双自复位热断路器设计,这就是为了提高产品的可靠性而提供的双重保护功能,即使一个器件失效,另一个还可以继续发挥作用。
但是,冗余设计虽然可以提高产品实现任务的可靠性,但是却增加了系统的复杂性、体积、重量,使系统的基本可靠性降低了,因此应根据产品的研制目标及限制条件进行综合权衡。
五、1概率设计。
概率设计法是应用概率统计理论进行机械零件及构件设计的方法。
它将载荷、材料性能与强度及零部件尺寸,都视为属于某种概率分布的统计量.以通用的广义应力强度干涉模型作为基本运算公式,广泛沿用机械零件传统的设计计算模型,求出给定可靠度下的零件的尺寸或给定尺寸下零件的可靠度及相应寿命.概率法设计的核心是将设计变量视为随机变量.应用应力强度干涉模型.保证所设计的零件具有指定的可靠性指标。
六、稳健性设计。
稳健性设计是使产品的性能对在制造期间的变异或使用,环境的变异不敏感,并使产品在其寿命周期内,不管其参数、结构发生漂移或老化(在一定范围内),都能持续满意地工作的一种设计方法。
这是日本田口玄一提出的一种统计分析设计方法,其主要观点是产品的质量可用对用户造成的损失来衡量。
此损失一般正比于产品功能特性与其目标值之间的偏差.偏差越大。
给用户造成的损失越大.即质量越差.因此,改进质量的途径就是不断减少偏差.对待偏差问题,传统的做法是通过产品检测剔除超差部分,或是加严对材料、工艺的控制以缩小偏差.这些方法很不经济,有时技术上也难以实现.稳健性设计方法是选择可控的设计参数的最佳组合。
使产品的功能、性能对偏差的起因不敏感,提高产品自身的抗干扰(引起偏差的内、外条件)能力。
它是一套寻求低成本、高性能稳定性的产品的优化设计方法.它不是一种单一的具体方法,而是为达到共同的目标而形成的许多方法的集合,是一个系统工程.指导思想是以用户需求为牵引,采用三次设计(系统设计、参数设计、容差设计)、全面质量管理(TOM)、质量功能展开(QFD)、FMECA等方法精心优化设计方案,把问题解决在设计阶段,以最小的代价获得高性能稳定性,即高可靠性、高质量的产品,健壮的产品.稳健性好的产品,可靠性必然高.七、降额设计和安全裕度设计。
降额设计是使零部件使用应力低于其额定应力的一种设计方法。
降额设计可通过降低零件承受的应力或提高零件强度的办法来实现。
工程经验证明,大多数机械零件在低于额定承载应力条件下工作时,其故障率较低,可靠性较高.为找到最佳降额值,需做大量的试验研究.当机械零部件的载荷应力以及承受这些应力的具体零部件的强度在某一范围内呈不确定分布时,可以采用提高平均强度(如通过加大安全系数实现)、降低平均应力,减少应力变化(如通过对使用条件的限制实现)和减少强度变化(如合理选择工艺方法,严格控制整个加工过程,或通过检验或试验剔除不合格的零件等)等方法来提高可靠性。
对于涉及安全的重要零部件.还可以采用极限设计方法,以保证其在最恶劣最严酷的极限状态下也不会发生故障。
八、预防故障设计。
预防故障设计主要是根据以往的工程经验和各种信息,采取各种有效的方法,预防产品的故障发生,或控制故障发生的概率在规定的范围内.机械产品在长期的发展过程中,积累了大量的设计、制造和使用经验,因此机械产品的设计主要采用传统技术和以经验为主的设计规范、设计准则,并应用可靠性分析技术来保证产品的可靠性,这是保证产品可靠性的最直接的经验方法.主要技术有可靠性设计准则和可靠性设计检查表,如要提高机械产品的可靠性。
首先应从零部件的严格选择和控制做起,利用过去经验和合理的实验结果,优先选用标准件和通用件;选用经过使用分析验证的可靠的零部件;严格按标准的选择及对外购件的控制;在选材和关键性的子系统及零部件的可靠性上,要力求MTTF足够长。
最好能预测出MTl下的下限;考虑维修性,在设计中充分考虑装备系统的检修、调整、更换等作业方便易行:充分运用故障分析的成果,采用成熟的经验或经分析试验验证后的方案。
九、简化设计。
对于机械产品.根据可靠性模型分析。
大部分属于串联系统,因此提高整机可靠性的最基本原则是在满足预定功能的情况下,设计应力求简单.从选用可靠的零部件、减少零部件数目和简化结构做起,零部件的数量应尽可能减少,越简单越可靠是可靠性设计的一个基本原则,是减少故障提高可靠性的最有效方法。
因此。
要尽量采用结构简单、具有成熟使用经验或标准化的零件和技术,尽量减少不必要的和可有可无的零件,减少零部件故障的可能性,保证整机系统可靠性目标的实现。
但不能因为减少零件而使其它零件执行超常功能或在高应力的条件下工作。
否则。
简化设计将达不到提高可靠性的目的。
十、余度设计。
余度设计是对完成规定功能设置重复的结构、备件等,以各局部发生失效时,整机或系统仍不致于发生丧失规定功能的设计。
当某部分可靠性要求很高,但目前的技术水平很难满足,比如采用降额设计、简化设计等可靠性设计方法,还不能达到可靠性要求,或者提高零部件可靠性的改进费用比重复配置还高时,余度技术可能成为唯一或较好的一种设计方法。
因此这种方法是将可靠性水平不高的零部件设计组成较高可靠性的整机系统,一般用于电子产品中,但是随着机械系统复杂化以及使用可靠性要求的提高.在成本、重量和可靠性的权衡下。
也可采用此方法,例如采用双发动机配置的机械系统。
但是,余度设计往往使整机的体积、重量、费用均相应增加.余度设计提高了机械系统的任务可靠度,但基本可靠性却相应降低了.因此采用余度设计时要慎重.十一、安全设计。
主要方法有异常报警、安全装置设计、故障监测装置等.异常报警设计法就是在设计系统时,把一套感应报警装置融合到系统中,当装各系统出现异常情况时能够自动报警,报警可采用声音、光电、振动等方式。
安全装置设计就是把关键性的子系统和部件置入具有一定保护功能的设备中,把关系到整套系统功能发挥的子系统和部件保护起来,以增强其抗破坏能力。
故障监测装置就是一套能够对装备系统整体效能和完好性进行监测的装置。
十二、损伤容限设计。
损伤容限设计是在断裂力学和破损——安全设计原理的基础上,提出的一种新的疲劳设计方法.常规疲劳设计方法和局部应力应变法都是以材料的完整性为前提的.但是,实际零构件在加工制造过程中,由于种种原因,往往存在这样那样的缺陷或裂纹。
损伤容限设计即是在机械结构中。
一部分结构发生裂纹或损伤时.能使这种损伤限制在一定范围内。
直到下一个检测或维修周期前,整个结构不会发生致命破坏或影响整机功能的正常发挥的设计。
这种方法在航空、船舶及压力容器等涉及安全性的重要结构中经常使用。
十三、可靠性优化设计。
一个产品或零件经过可靠性设计后,并不能保证它的工作性能或参数就一定达到了最佳状态.所以,要使产品和零件既保证具有~定的可靠性,又保证具有最佳工作性能或参数以及良好的经济性,应将可靠性设计与最优化设计有机地结合起来,形成可靠性优化设计。
产品可靠性是产品的一重要指标。
提高产品的可靠性是产品设计人员的重中之重。
以上是从参考文献中总结和摘录的常用方法。
仅供参考。
参考文献:1、机械产品可靠性设计方法综述崔玉莲2、机电产品寿命与可靠性综合验证试验技术研究龚庆祥, 王自力3、机电产品可靠性及寿命数据分析杨晶陈德运4、机械可靠性维修性优化设计方法及其在工程机械中的应用王玉玲5、机电系统可靠性工作与分析技术概述及应用秦明巫世晶孙旋。