统计学贾俊平重要公式
统计学复习概念重点贾俊平
1. 描述统计:研究数据收集处理汇总图表描述概括与分析等统计方法。
2. 推断统计:研究如何利用样本数据来推断总体特征的统计方法。
3. 分类数据:只能归于某一类别的非数字型数据。
4. 顺序数据:只能归于某一有序类别的非数字型数据。
5. 数值型数据:按数字尺度测量的观察值。
6. 观测数据:通过调查或观测而收集到的数据。
7. 实验数据:在实验中控制实验对象而收集到的数据。
8. 截面数据:在相同或近似相同的时间点上收集的数据。
9. 时间序列数据:在不同时间上收集到的数据,这类数据按时间顺序收集到的。
10. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,根据样本调查结果来推断总体特征的数据收集方法。
11. 普查:为特定目的而专门组织的全面调查。
12. 总体:包含所研究的全部个体(数据)的集合。
13. 样本:从总体中抽取的一部分元素的集合。
14. 样本容量:也称样本量,是构成样本的元素数目。
15. 参数:用来描述总体特征的概括性数字度量。
16. 统计量:用来描述样本特征的概括性数字度量。
17. 变量:说明现象某种特征的概念。
18. 分类变量:说明事物类别的一个名称。
19. 顺序变量:说明事物有序类别的一个名称。
20. 数值型变量:说明事物数字特征的一个名称。
21. 离散型变量:只能取可数值的变量。
23. 调查数据:通过调查方法获得的数据24. 实验数据:通过实验方法获得的数据25. 概率抽样:随机抽样,遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。
26. 非概率抽样:不随机,根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
27. 简单随机抽样:从包括总体的N个单位的抽样框中随机,一个个抽取n个单位作为样本,每单位等概论。
28. 抽样框:用于抽选样本的总体单位信息,是概率抽样中所不可缺29. 分层抽样:将抽样单位按某种特征或某种规则划分为不同的层,然后从不同层中独立、随机地抽取样本。
人大版_贾俊平_第五版_统计学_第5章_概率与概率分布
P ( ) = 1; P ( ) = 0
可加性
若A与B互斥,则P ( A∪B ) = P ( A ) + P ( B ) 推广到多个两两互斥事件A1,A2,…,An,有 P
( A1∪A2 ∪… ∪An) = P ( A1 ) + P (A2 ) + …+ P (An )
5.2.2 概率的加法法则 法则一
• 必然事件:每次试验一定出现的事件,用表示
例如:掷一枚骰子出现的点数小于7
• 不可能事件:每次试验一定不出现的事件,用表示
例如:掷一枚骰子出现的点数大于6
样本空间
1. 基本事件 • 一个不可能再分的随机事件 • 例如:掷一枚骰子出现的点数 2. 样本空间 • 一个试验中所有基本事件的集合,用表示 • 例如:在掷枚骰子的试验中,{1,2,3,4,5,6} • 在投掷硬币的试验中,{正面,反面}
连续型随机变量 1. 随机变量 X 取无限个值 2. 所有可能取值不可以逐个列举出来,而是 取数轴上某一区间内的任意点
试验 随机变量 可能的取值
X0 使用寿命(小时) 抽查一批电子元件 半年后工程完成的百分比 0 X 100 新建一座住宅楼 X0 测量一个产品的长度 测量误差(cm)
4800 1500 P( A B) P( A) P( B) 0.504 12500 12500
法则二 对任意两个随机事件 A 和 B ,它们和的 概率为两个事件分别概率的和减去两个事件 交的概率,即
P ( A∪ B ) = P ( A ) + P ( B ) - P ( A∩B )
事件的关系和运算(事件的包含) 若事件 A发生必然导致事件 B 发生,则称 事件 B 包含事件 A ,或事件 A 包含于事件 B ,记 作或 A B或 B A
统计学(贾俊平版)重点
统计学(贾俊平版)重点第一章统计:收集、处理、分析、解释数据并从数据中得出结论的科学。
数据1. 分类数据对事物进行分类的结果数据,表现为类别,用文字来表述.例如,人口按性别分为男、女两类2. 顺序数据对事物类别顺序的测度,数据表现为类别,用文字来表述例如,产品分为一等品、二等品、三等品、次品等3. 数值型数据对事物的精确测度,结果表现为具体的数值.例如:身高为175cm ,168cm,183cm总体–所研究的全部元素的集合,其中的每一个元素称为个体–分为有限总体和无限总体.有限总体的范围能够明确确定,且元素的数目是有限的.无限总体所包括的元素是无限的,不可数的样本–从总体中抽取的一部分元素的集合–构成样本的元素数目称为样本容量参数:描述总体特征。
有总体均值( )、标准差(σ)总体比例(π)统计量:描述样本特征。
样本标准差(s),样本比例(p)变量:说明现象某种特征,分类,顺序,数值型:离散型,连续型。
经验,理论变量描述统计研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计是研究如何利用样本数据进行推断总体特征第二章间接数据(查询的)与直接数据:调查(通常是对社会现象而言的)普查信息全面完整。
再一个是实验。
概率抽样:也称随机抽样。
按一定的概率以随机原则抽取样本,抽取样本时使每个单位都有一定的机会被抽中–每个单位被抽中的概率是已知的,或是可以计算出来的–当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样:从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的分层抽样:优点:保证样本的结构与总体的结构比较相近将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本,从而提高估计的精度–组织实施调查方便–既可以对总体参数进行估计,也可以对各层的目标量进行估计整群抽样:将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查优点:抽样时只需群的抽样框,可简化工作量–调查的地点相对集中,节省调查费用,方便调查的实施–缺点是统计的精度较差系统抽样:将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其它样本单位–先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位操作简便,可提高估计的精度多阶段抽样:先抽取群,但并不是调查群内的所有单位,而是再进行一步抽样,从选中的群中抽取出若干个单位进行调查–群是初级抽样单位,第二阶段抽取的是最终抽样单位。
统计学-贾俊平-考研-知识点总结
统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计.(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据.(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的.(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的.(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
三、比较总体、样本、参数、统计量和变量:(1)总体是包含所研究的全部个体的集合。
通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。
统计学原理贾俊平期末考试重点
统计学期末(单选、10个填空、5个判断、三个计算、一道论述)第一章导论1、统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
分析数据:分为描述统计方法和推断统计方法两种方法。
描述统计:研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计:是研究如何利用样本数据来推断总体特征的统计方法。
推断统计内容包含参数估计和假设检验2、统计数据的类型:(1)按照采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据与数值型数据。
注意:分类数据和顺序数据都是表现事物的品质特征,通常是用文字来表述的,其结果均表现为类别,因此可以通称为定性数据或品质数据(qualitative data)。
数值型数据说明的是现象的数量特征,通常用数值来表现,因此可以统称为定量数据或数量数据(quantitative data)。
(2)按照统计数据的收集方法,可以将统计数据分为观测数据和实验数据。
(3)按照被描述的现象与时间的关系,可以将统计数据分为截面数据、时间序列数据(和面板数据 panal data)。
3、抽样独立性问题:总体区分为有限总体和无限总体,目的是为了判别在抽样中每次抽取是否独立(类似抽小球是否放回的问题)。
在统计推断中,通常是针对无限总体的,因而通常把总体看做随机变量(random variable)。
统计上的总体通常是一组观测数据,而不是一群人或者一些物品的简单集合。
4、统计指标按其所反映的数量特点和作用不同,分为数量指标、质量指标。
样本(sample)是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。
抽样的目的是根据样本提供的信息推断总体的特征。
5、总体参数(parameter)是用来描述总体特征的概括性数字度量,是研究者想要了解的某种特征值。
样本统计量(statistic)是用来描述样本特征的概括性数字度量,是根据样本数量计算出来的一个量。
统计学(第三版课后习题答案) 贾俊平版
区分指标与标志,总量指标分类、分配数列、上限不在内原则、各种平均数之间的关系、平均发展指标!计算可能考的公式有:计划完成情况相对指标、结构(比例/比较/强度/动态)相对指标、各种平均数算法、众数、中位数、四分位数、平均差、标准差、标准差系数、偏态和峰度、发展速度和增长速度、总指数(很重要)、平均指标指数、重要经济指数的编制(上证指数、工业产品产量总指数、农副产品收购价格指数)统计学(第三版课后习题答案) 贾俊平版2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
统计学(贾俊平)第五版课后习题答案(完整版)
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第六版)贾俊平 公式整理
E ( X ) x1 p1 x 2 p 2 x n p n xi pi
2 D( X ) [ xi E ( X )]2 pi
PX x C p x q n x E ( X ) np E ( X ) npq
x n i 1
P( X )
n n
( z 2 ) 2 2 E2 ( z 2 ) 2 (1 ) E2
假设检验
名称 总体均值检验的统计量(正态总体, 已知) z 总体均值检验的统计量( 未知,大样本) 公式
x 0
z
/ n x 0
s/ n x 0 p 0
总体均值检验的统计量(正态总体, 未知, t 小样本) s/ n 总体比例检验的统计量
z
0 (1 0 )
n (n 1) s 2
总体方差检验的统计量 两个总体均值之差检验的统计量( 1 , 2 已 知)
2 2
2
z
02
12
n1
2 2
( x1 x2 ) ( 1 2 ) n2
两个总体均值之差检验的统计量( 1 , 2 未 知但相等,小样本)
x e
x!
E ( X ) xf ( x)d ( x) D ( X ) [ x E ( X ) ]2 f ( x ) d ( x ) 2
2 ( x )2 1 f ( x) e 2 2 1
标准正态分布的概率密度函数
1 x2 ( x) e 2
n 个两两互斥事件 A1 , A2 ,… An 之和
的概率 事件 A 与其逆事件 A 之和的概率 两个任意事件之和的概率 概率的乘法公式 两个独立事件之积的概率
《统计学》课后答案(第二版_贾俊平版)
第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称。
22. 离散型变量:只能取可数值的变量。
23. 连续型变量:可以在一个或多个区间中取任何值的变量。
第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。
本章首先介绍数据的预处理方法,然后介绍不同类型数据的整理与图示方法,最后介绍图表的合理使用问题。
本章各节的主要内容和学习二、主要术语24. 频数:落在某一特定类别(或组)中的数据个数。
统计学课件(贾俊平)第四版 ppt
(二)现实经济生活中,依同样资料计算的拉氏指数一般大于帕氏 指数。 P 1 ri i Vi Vi 因为,可证明 p q q p L
ri
i pq
q p
质量指标个体指数与数量指标个体指数的相关系数 两种个体指数的标准差系数
Vi , Vi
由于在现实经济生活中,质量指标与数量指标(例如价格与 销售量)的变化之间通常存在着负相关关系,即下面三种情况之 一:1.质量指标的水平绝对上升,而数量指标的水平绝对下降, 或相反,数量指标的水平绝对上升,而质量指标的水平绝对下降; 2.质量指标和数量指标的水平都上升,但在其中一个的上升速率 加快的同时,另一个的上升速率则在减缓;3.质量指标和数量指 标的水平都下降,但在其中一个的下降速率加快的同时,另一个 的下降速率则在减缓。 商学院 2018/10/5 17
全部商品的价格指数
360 20 130 2000 p1 300 18 100 2500 p0 2600 95000 23000 612 q1 2400 84000 24000 510 q0
全部商品的销售量指数
复杂现象总体:不能直接加总或不能直接综合对比的现象。 总指数:反映复杂现象总体综合变动状况的指数。 商学院
拓广:用于空间上的比较(空间指数)和反映计划完成情况(计 划完成指数)。
2018/10/5
例:空间比价指数
商学院
4
商品 大米 猪肉 服装 冰箱
单位 百公斤 公斤 件 台
商品价格(元) 基期 报告期
销售量 基期 报告期
p0
300 18 100 2500
p1
360 20 130 2000
统计学 贾俊平 考研 知识点总结
统计学重点笔记第一章导论一、比拟描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
〔1〕描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
〔2〕推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取局部个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
〔3〕两者的关系:描述统计是根底,推断统计是主体二、比拟分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
〔1〕分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
〔2〕顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
〔3〕数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
三、比拟总体、样本、参数、统计量和变量:〔1〕总体是包含所研究的全部个体的集合。
通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。
统计学第四版(贾俊平)重要公式
统计学第四版(贾俊平) 重要公式()()1S (2) 1 .4Q .3NX .2X .12222D --=-=-====∑∑∑∑n X NXQ Q IQR nX iiL U μμσμ样本方差:)总体方差:(方差:四分位差:总体平均数:样本平均数:()1S 分组数据样本方差.12X 分组数据样本平均数.11X 加权平均数.1022--===∑∑∑∑∑n X X F F X F W X W i i ii i ii inp p n p p N n N p p E P nn N n N X E PPX X )1()1(1,)(:.311 ,)(:X .30-=⎪⎪⎭⎫⎝⎛---===⎪⎭⎫⎝⎛--==σσσσσσμ无限总体时有限总体时的数学期望和标准差比例无限总体时有限总体时的数学期望和标准差2222222:.34,,)4(,,,)3(,:)2(,:)1(.33:.32∆=±±±±-σμσσμμαααααZ n nS t X n Z X nS Z X n Z X X 时所需的样本容量估计方差未知小样本总体正态方差已知小样本总体正态大样本且方差未知大样本且方差已知总体均值的区间估计时的抽样误差估计np p p p Z n df nS X t nS X Z n X Z p p Z n p np p Z p P )1(:.391,/:.38/:,/::.37)1(.36)1(.350002222--=-=-=-=-=∆-⋅=-±总体比率检验统计量统计量小样本总体均值的检验方差未知方差已知统计量大样本总体均值的检验本容量的区间估计时所需的样的区间估计总体比率μμσμαα()()()222121212121212102221,)(::,.41,:.40n n X X E X X X X Z Z Z Z n X X σσσμμμμσααβα+=-=-----=-的期望值与标准差估计量两个总体均值之差的点独立样本时即为双侧检验的公式代替用所需样本容量总体均值的单侧检验中()()()()()()()()()()21212121212122121222212121222122121222121212121,)3()11(, ,,)2(:,),30,()1(:.42X X X X X X X X X XS t X Xn n n n X X S Z X X n S n S S Z X Xn n ------±-+=+=-=±-+=±-≥ααασσσσσσσσσσσσ正态小样本的标准差时未知大样本的点估计量为已知大样本间估计两个总体均值之差的区()()()()()2221112221112221112121212121221212221212121)1()1(:)1()1()1()1(:.44)3(,11X )2(,X Z )1(.43212121n p p n p p S n p p n p p n p p n p p p p p p E p p p p nS d t n n S X t n n X p p p p p p d dp-+-=-+-=-+-=-=----=⎪⎪⎭⎫ ⎝⎛+---=+---=---的点估计量的期望值与标准差量两个比率之差的点估计相关样本小样本大样本设检验统计量两个总体均值之差的假σσμμμσσμμ()()()()()()⎪⎪⎭⎫⎝⎛+-==++=---=±-≥------212121221121212212222111111)1(:::.46,5)1(,),1(,:.4521212121n n p p S p p n n p n p n p p p p p Z S Z p p p n p n p n p n p p p p pp p p的点估计量时总体比率合并估计验统计量两个总体比率之差的检时大样本间估计两个总体比率之差的区σσα()()()22212222)2/1(2222/2:计量两个总体方差的检验统.491:计量一个总体方差的检验统.4811:计一个总体方差的区间估.47S S F S n S n S n=-=-≤≤--σχχσχαα()()()()xb y b nx xny x y x b y y xb b y xy E x y i iiii i i 102212101010,:min ::::.57-=--=-+=+=++=∑∑∑∑∑∑和截距估计的回归方程的斜率最小二乘法程估计的简单线性回归方简单线性回归方程简单线性回归模型ββεββ()()()()()()()()()2:2:)(::)(::::222112222222222222-==-======-⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡-=-=-=-=-=+=∑∑∑∑∑∑∑∑∑∑∑∑n SSEMSE S n SSE MSE S r b b r SSTSSR r R n XX n Y X Y X n X X b y y SSR n y y y y SST y y SSE SSESSR SST xy ii i i i i iiiiiii i 估计量的标准误差的估计量均方误差的符号判定系数的符号样本相关系数决定系数判定系数回归平方和总平方和误差平方和平方和分解σ()()()ib ia i i pp p p S bt t MSE MSRF F p n SSEMSE p SSR MSR p n n R R SSTSSR R SSE SSR SST SSE SSR SST y y x x x y E x x x y ==--==---⋅--==+=-+⋅⋅⋅+++=++⋅⋅⋅+++=∑::1::1111:::,,min ::::.5822222211022110检验统计量检验统计量误差均方回归均方修正的多元决定系数多元决定系数之间的关系最小二乘法估计的多元回归方程多元回归方程多元线性回归模型 ββββεββββ。
《统计学基础》(第7版)第8章 ——指数
产品
名称
计量
单位
加权平均价格指数通常是用报告期的销售
甲
额p1q1为权数,对个体价格指数p1/p0加权
加权平均价格指数
算3种产品的价格指数
平均计算出来的,其计算公式为
σ 1 1
=
1
σ
1 Τ0 1 1
销售额(万元)
个体价格指数
个体销售量指
数
基期
(p0q0)
=
886800
671700
886800
865680
=
= 132.02%
= 102.44%
865680
671700
= 128.88%
三者之间的数量关系为
132.02%=102.44%×128.88%
即报告期与基期相比,该粮油零售市场3种商品的
销售额提高了32.02%,其中由于零售价格的变动使
销售额提高了2.44%,由于销售量的变动使销售额提
2023/4/3
统计学基础(第7版)—贾俊平
1-9
第8章
指数
8.2 加权指数
价值指数与指数体系
【例8-5】 根据表8-1中的有关数据,利用指数体系
分析价格和销售量变动对销售额的影响
σ 1 1
解:销售额指数= σ
σ
价格指数= σ 11
0 1
0 0
=
σ 0 1
销售量指数= σ
0 0
格变动趋势和程度的相对数,是对城市居民消费价
格指数和农村居民消费价格指数进行综合汇总计算
的结果
通过这一指数,可以观察消费价格的变动水平及对
消费者货币支出的影响,研究实际收入和实际消费
贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)(第14章 指 数)【圣才出品】
5 / 31
圣才电子书
十万种考研考证电子书、题库视频学习平台
Ixf
x1 x0
x1 f1 x0 f0
f1 f0
(2)组水平变动指数
Ix
x1 xn
x1 f1 x0 f1
f1 f1
(3)结构变动指数
I f
xn x0
x0 f1 x0 f0
f1 f0
总平均水平指数=组水平变动指数×结构变动指数,即
圣才电子书 十万种考研考证电子书、题库视频学习平台
1.加权综合指数
(1)拉氏指数(将同度量因素固定在基期)
拉氏物价指数 I p
q0 p1 100 q0 p0
拉氏物量指数 Iq
q1 p0 100 q0 p0
(2)帕氏指数(将同度量因素固定在报告期)
帕氏物价指数 I p
H p
q1 p1
p0 p1
q1 p1
q1 p1 (与帕氏质量指标指数相同) q1 p0
Hq
q1 p1
q0 q1
q1 p1
q1 p1 (与帕氏数量指标指数相同) q0 p1
【注意】如果计算时依据的是全面资料,可采用加权综合指数;而计算价格指数时,通
常采取选样方法。
【真题精选】
1.数量指标指数 q1 p0 变形为加权算术平均数指数时的权数是( q0 p0
说明 个体指数和总指数的区 别:考查范围不同,计算
方法也不同
数量指标和质量指标的 划分具有相对性
加权指数可以分为综合 形式和平均形式
加权综合指数:采用综合 形式编制的加权指数
加权平均指数:采用平均 形式编制的加权指数
【注意】本考点常考数量指标指数和质量指标指数的区分和计算。
贾俊平-统计学-总结
第一章导论概念:统计学:收集、处理、分析、解释数据井从数据中得出结论的科学。
统计的分类:描述统计:研究的是数据收集,处理,汇总,图表描述,文字概括与分析等统计方法。
推断统计:是研究如何利用样木数据进行推断总体特征。
数据:1.分类数据:对事物进行分类的结果数据,表现为类别,用文字来表述。
例如,人口按性别分为男、女两类2.顺序数据对事物类别顺序的测度,数据表现为类别,用文字来表述例如,产品分为一等品、二等品、三等品、次品等3.数值型数据对事物的精确测度,结果表现为具体的数值。
例如:身高为175cm,190cm,200cm 参数:描述总体特征。
有总体均值(μ)、标准差()总体比例(T)统计量:描述样本特征,样本标准差(s),样木比例(p)第二章 数据的搜集1. 数据来源包括直接来源(一手数据)和间接来源(二手数据)2. 抽样方式包括概率抽样与非概率抽样3. 概率抽样:也称随机抽样。
按一定的概率以随机原则抽取样本,抽取样本时使每个单位都有一定的机会被抽中。
4.5.抽样误差:是由抽样的随机性引起的样本结果与总体真值之间的误差。
抽样误差并不是针对某个样本的检测结果与总体真是结果的差异而言,抽样误差描述的是所有样本可能的结果与总体真值之间的平均差异。
统计数据的分类按计量层次分类的数据顺序的数据数值型数据 按时间状况截 面 的 数 据时序的数据按收集方法 观察的数据 实验的数据6.抽样误差的大小与样本量的大小和总体的变异程度有关。
第三章数据的图表展示计算机实训内容,要求:1.数据筛选,自动筛选2.高级筛选,3.数据排序4.分类汇总-利用数据透视表5.对比条形图6.环形图7.累计频数图8.散点图9.雷达图等等频数分布图两种方法:工具-数据分析-直方图数值型和顺序数据数据-数据透视表数据透视表第四章数据的概括性度量集中趋势:算数平均数:几何平均数:指n个观察值连乘积的n次方根,计算平均发展速度时复利下的平均年利率,最常用的一种计算公式为,几何平均数≤算术平均数。
贾俊平《统计学》第14章 指数
基期和报告期
基期就是昨天发生的数据信息,报告期 就是今天发生的数据信息。 比如现在是2005,2005我收入100元, 比如现在是2005,2005我收入100元, 这个2005就是报告期了。如果说2005年我 这个2005就是报告期了。如果说2005年我 的收入比2004年增加了一倍,跟2004年进 的收入比2004年增加了一倍,跟2004年进 行比较,那么2004就是基期了。 行比较,那么2004就是基期了。
消费价格指数与零售价格指数区别
1、含义不同 零售价格指数是从卖方角度观察商品零 售价格变动情况, 售价格变动情况, 说明价格变动对卖者的影响 消费价格指数则是从买方角度观察居民 生活消费品零售价格和服务项目收费变动情 况, 说明价格变动对居民(购买者)生活的影响 说明价格变动对居民(购买者)
消费价格指数与零售价格指数区别
一组项目在不同时间上对比 有定基指数和环比指数之分
4. 区域性指数(regional index number) number)
一组项目在不同空间上对比
环比和同比
环比就是现在的统计周期和上一个统 计周期比较。例如2008年 月份与2008年 计周期比较。例如2008年7月份与2008年6 月份相比较称其为环比。 同比是与历史同时期比较,例如2005 同比是与历史同时期比较,例如2005 年7月份与2004年7月份相比。 月份与2004年
反映数量变动水平 如产品产量指数、 如产品产量指数、商品销售量指数等
2. 质量指数(qualitative index number) 质量指数(qualitative number)
反映事物内含数量的变动水平 如价格指数、 如价格指数、产品成本指数等
指数的分类
(个体指数与综合指数) 个体指数与综合指数)
统计学教材(贾俊平版)课后习题详细答案
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差未知 :Z = X − μ S/ n
38.小 样 本 总 体 均 值 的 检 验 统 计 量 : t = X − μ , df = n − 1
S/ n
39.总 体 比 率 检 验 统 计 量 : Z =
p) − p0
p0 (1 − p0 )
n
40.总 体 均 值 的 单 侧 检 验 中 所 需 样 本 容 量 :
32.估计μ时的抽样误差: X − μ
E(X ) = μ,
33.总体均值的区间估计
有限总体时σ = X
N −n⎛ σ ⎞ N −1 ⎜⎝ n ⎟⎠
无限总体时σ = σ 31.比例P)的数学X 期望n和标准差 : E( p)) = p,
(1)大样本且方差已知: X ± Zα 2
σ, n
(2)大样本且方差未知: X ± Zα 2
X
)2
=
n
∑ i=1
X
2 i
−
∑ ⎛ n
⎜⎝ i = 1 X n
⎞2 i ⎟⎠
,
L XY
=
( n
∑ Xi− i=1
X
) (Y i − Y ) =
n
∑ i=1
X iY i −
∑ ⎛ n
⎜⎝ i = 1
∑ ⎞ ⎛ n
⎞
X i ⎟⎠ ⎜⎝ i = 1 Y i ⎟⎠ ,
n
L YY=Βιβλιοθήκη ( ) n∑2
Yi − Y
=
i=1
n
∑ Y i2 − i=1
∑ ⎛ n
⎞2
⎜⎝ i = 1 Y i ⎟⎠
,
n
n
n
∑ Xi
∑ Yi
X = i=1
, Y = i=1
n
n
∑∑ 1 0 .加 权 平 均 数 X =
W iX i Wi
1 1 .分 组 数 据 样 本 平 均 数
∑∑ X =
Fi X i Fi
( ) ∑ 1 2 .分 组 数 据 样 本 方 差 S 2 =
统计学重要公式
1. 样 本 平 均 数 :X = ∑ X n
2. 总 体 平 均 数 :μ = ∑ X N 3. 四 分 位 差 :Q D = IQ R = QU − Q L 4.方 差 :
∑ (1) 总 体 方 差 : σ 2 = ( X i − μ )2 N
∑ (2) 样 本 方 差 :S 2 = ( X i − μ )2 n −1
18.独 立 事 件 P(A ∩ B) = P ( A) P ( B )
n
∑ 19.全 概 率 公 式 P(B) = P ( Ai ) ⋅ P(B|A i ) i =1
∑ 20.贝 叶 斯 公 式
P(A i|B)
=
P ( Ai ) ⋅ P(B|A i ) P(B)
=
P ( Ai ) ⋅ P(B|A i )
35.总 体 比 率 P的 区 间 估 计 p) ± Zα 2
p) (1 − p) ) n
36. p的 区 间 估 计 时 所 需 的 样 本 容 量 n
=
Z
2 α
2
⋅ p) (1 − Δ2
p) )
37.大 样 本 总 体 均 值 的 检 验 统 计 量 :
方差已知 :Z = X − μ , σ/ n
25.泊松分布p( x) = μ xe−μ = λ xe−λ
x!
x!
27.超几何分布p( x)
=
C
x r
⋅
C
n−x N −r
C
n N
,0
≤
x
≤
r
28.正态概率密度函数f ( x) =
1
− ( x−μ )2
e 2σ 2
2π σ
29.标准正态分布变换Z = x − μ σ
30. X的数学期望和标准差 :
n
P( Aj ) ⋅ P(B|A j)
j=1
21.离散型随机变量的数学期望E ( X ) = μ = ∑ xp( x)
22.离散型随机变量的方差Var( X ) = σ 2 = ∑ ( x − μ )2 p(x)
23.二项分布的概率函数p( x) = Cnx p xqn−x , x = 0,1, 2,..., n, q = 1 − p 24.二项分布的数学期望和方差E ( X ) = μ = np,Var( X ) = σ 2 = np(1 − p)
2
Fi X i − X
n −1
1 3 .排 列 组 合 公 式
P nm
=
n! = m!
n (n − 1 )(n − 2 )⋅ ⋅ ⋅ (n − m
+ 1 ),
n ! = 1 × 2 × ⋅⋅⋅× n,
C
m n
=
P
m n
=
m!
m
n!
! (n −
m
)! ,
C
m n
=
C n−m n
14.事 件 补 的 概 率 P ( A) = 1 − P ( A)
5.标 准 差 :
(1) 总 体 标 准 差 : σ = σ 2
(2) 样 本 标 准 差 :S = S2
6.变 异 系 数
总体:CV
=
⎛ ⎜⎝
σ μ
⎞ ⎟⎠
×10
0%
=
⎛ 标准差 ⎜⎝ 平 均 数
⎞ ⎟⎠
×
100%
样本: CV
=
⎛ ⎜⎝
S X
⎞ ⎟⎠
×
100%
7 .标 准 分 数 ( Z 分 数 )
( ) n =
Zα −
(μ0
Zβ 2σ
− μ1 )2
2
, 用 Zα
2代 替 Zα即 为 双 侧 检 验 的 公 式
41.独 立 样 本 时 , 两 个 总 体 均 值 之 差 的 点 估 计 量 : X 1 − X 2
X1
−
X
的期望值与标准差
2
:
E ( X 1 − X 2 ) = μ1 − μ2 ,
σ ( ) X 1 − X 2 =
σ
2 1
+
σ
2 2
n1 n2
42.两个总体均值之差的区间估计 :
(1)大样本(n1,
n2
≥
30),σ1,σ
已知
2
( ) X1 − X 2 ± Zα σ ( ) 2 X1−X2
S, n
(3)总体正态,小样本,方差已知X ± Zα 2
σ, n
有限总体时σ P) =
N −n⎛ N −1 ⎜⎜⎝
p(1− p) ⎞ n ⎟⎟⎠
(4)总体正态,小样本,方差未知X ± tα 2
S n
无限总体时σ ) = p(1− p)
P
n
34.估计μ时所需的样本容量 : n = Zα2 2σ 2 Δ2
Zi =
Xi− X S
,或 Z i =
Xi− μ σ
( ) ( ) ∑ 8 . 样 本 协 方 差 C o v ( X , Y ) = S X Y =
Xi− X
Yi − Y
n −1
9 .皮 尔 逊 相 关 系 数
rXY =
S XY S X SY
=
L XY
,
L XX L YY
L XX
( n
=∑
Xi−
i=1
15.加 法 公 式 P(A ∪ B) = P(A) + P(B)-P(A ∩ B)
16.条 件 概 率 P(A|B) = P(A ∩ B) , P(B|A) = P(A ∩ B)
P(B)
P( A)
17.乘 法 公 式 P(A ∩ B) = P ( B ) ⋅ P(A|B) = P ( A) ⋅ P(B|A)