贪心算法练习题

合集下载

第4章贪心算法习题(免费阅读)

第4章贪心算法习题(免费阅读)
6
算法实现题4-5 程序存储问题
数据输入:
第一行是2 个正整数,分别表示文件个数n和磁带的长 度L。接下来的1 行中,有n个正整数,表示程序存放在磁 带上的长度。
结果输出: 最多可以存储的程序数。
输入示例
6 50
2 3 13 8 80 20 输出示例
5
i 012345
x 2 3 13 8 80 20 7
3
算法实现题4-5 程序存储问题
问题描述: 设有n 个程序{1,2,…, n }要存放在长度为L的磁带上。
程序i存放在磁带上的长度是 li,1 ≤ i ≤ n。 程序存储问题要求确定这n 个程序在磁带上的一个
存储方案,使得能够在磁带上存储尽可能多的程序。 编程任务:
对于给定的n个程序存放在磁带上的长度,编程计 算磁带上最多可以存储的程序数。
532.00
10
算法实现题4-6 最优服务次序问题
double greedy( vector<int> x) {
int i,n=x.size(); sort(x.begin(),x.end()); for(i=1;i<n;++i)
x[i] += x[i-1]; double t=0; for(i=0;i<n;++i) t+=x[i]; t /= n;
算法实现题4-5 程序存储问题
int greedy( vector<int> x, int m){
int i=0, sum=0, n=x.size();
sort(x.begin(),x.end());
while(i
if(sum <= m) i++;

4+四+贪心算法+习题参考答案

4+四+贪心算法+习题参考答案

第四章作业 部分参考答案1. 设有n 个顾客同时等待一项服务。

顾客i 需要的服务时间为n i t i ≤≤1,。

应该如何安排n 个顾客的服务次序才能使总的等待时间达到最小?总的等待时间是各顾客等待服务的时间的总和。

试给出你的做法的理由(证明)。

策略:对 1i t i n ≤≤进行排序,,21n i i i t t t ≤≤≤ 然后按照递增顺序依次服务12,,...,ni i i 即可。

解析:设得到服务的顾客的顺序为12,,...,n j j j ,则总等待时间为,2)2()1(1221--+++-+-=n n j j j j t t t n t n T 则在总等待时间T 中1j t 的权重最大,jnt 的权重最小。

故让所需时间少的顾客先得到服务可以减少总等待时间。

证明:设,21n i i i t t t ≤≤≤ ,下证明当按照不减顺序依次服务时,为最优策略。

记按照n i i i 21次序服务时,等待时间为T ,下证明任意互换两者的次序,T都不减。

即假设互换j i ,)(j i <两位顾客的次序,互换后等待总时间为T ~,则有.~T T ≥由于,2)2()1(1221--+++-+-=n n i i i i t t t n t n T,2)()()2()1(1221--+++-++-++-+-=n n j i i i i i i i t t t j n t i n t n t n T ,2)()()2()1(~1221--+++-++-++-+-=n n i j i i i i i i t t t j n t i n t n t n T则有.0))((~≥--=-i j i i t t i j T T同理可证其它次序,都可以由n i i i 21经过有限次两两调换顺序后得到,而每次交换,总时间不减,从而n i i i 21为最优策略。

2. 字符h a ~出现的频率分布恰好是前8个Fibonacci 数,它们的Huffman 编码是什么?将结果推广到n 个字符的频率分布恰好是前n 个Fibonacci 数的情形。

第4章-贪心算法-习题

第4章-贪心算法-习题
26
算法实现题4-15 套汇问题
while(1){
cin >> n;
if(n == 0) break;
//输入结束
for(i=0; i < n; ++i) cin >> name[i];
数据输入
第1行有2个正整数n和k,表示汽车加满油后可行驶nkm, 且旅途有k个加油站。接下来的一行中,有k+1个整数,表示 第k个加油站与第k-1个加油站之间的距离。第0个加油站表 示出发地,汽车已加满油。第k+1个加油站表示目的地。
结果输出
计算出的最少加油次数。如果无法到达目的地,则输 出”No Solution”。
3
算法实现题4-5 程序存储问题
问题描述: 设有n 个程序{1,2,…, n }要存放在长度为L的磁带上。
程序i存放在磁带上的长度是 li,1 ≤ i ≤ n。 程序存储问题要求确定这n 个程序在磁带上的一个
存储方案,使得能够在磁带上存储尽可能多的程序。 编程任务:
对于给定的n个程序存放在磁带上的长度,编程计 算磁带上最多可以存储的程序数。
定义:
vector<int> x; 读取数据:
int n; scanf(“%d”, &n); int temp; for (int i=0; i<n; i++){
scanf(“%d”, &temp); x.push_back(temp); }
return t;
}
i 01234567 8 9
x 1 12 33 55 56 99 99 234 812 1000
输入示例 77
输出示例 4
1 2 3 4 5 1 6 6 加油站数

贪心算法练习题

贪心算法练习题

贪心算法1.喷水装置(一)描述现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以它为中心的半径为实数Ri(0<Ri<15)的圆被湿润,这有充足的喷水装置i(1<i<600)个,并且一定能把草坪全部湿润,你要做的是:选择尽量少的喷水装置,把整个草坪的全部湿润。

输入第一行m表示有m组测试数据每一组测试数据的第一行有一个整数数n,n表示共有n个喷水装置,随后的一行,有n个实数ri,ri表示该喷水装置能覆盖的圆的半径。

输出输出所用装置的个数样例输入252 3.2 4 4.5 6101 2 3 1 2 1.2 3 1.1 1 2样例输出25根据日常生活知道,选择半径越大的装置,所用的数目越少。

因此,可以先对半径排序,然后选择半径大的。

另外,当装置刚好喷到矩形的顶点时,数目最少。

此时只要装置的有效喷水距离的和不小于20时,输出此时的装置数目即可。

2.喷水装置(二)时间限制:3000 ms | 内存限制:65535 KB难度:4描述有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。

请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。

输入对于每一组输入,输出最多能够安排的活动数量。

每组的输出占一行样例输入221 1010 1131 1010 1111 20样例输出12提示注意:如果上一个活动在T时间结束,下一个活动最早应该在T+1时间开始。

解题思路:这是一个贪心法中选择不相交区间的问题。

先对活动结束时间从小到大排序,排序的同时活动的起始时间也要跟着变化。

而且,结束时间最小的活动一定会安排,不然这段时间就白白浪费了。

后一个活动的起始时间如果比前一个活动的结束时间大,即两个活动没有相交时间,就把这个活动也安排上。

c++贪心算法经典例题

c++贪心算法经典例题

c++贪心算法经典例题
经典的贪心算法例题有很多,以下是其中几个常见的例题:
1. 分糖果问题:
有一群小朋友,每个人都有一个评分。

现在需要给他们分糖果,要求评分高的小朋友比他旁边评分低的小朋友拥有更多的糖果。

求至少需要准备多少糖果。

2. 区间覆盖问题:
给定一个区间集合,每个区间表示一个工作时间段。

现在需要选择尽可能少的区间,覆盖整个时间范围。

求最少需要选择多少个区间。

3. 最佳买卖股票时机:
给定一个股票的价格列表,可以任意次数买入和卖出股票。

但是同一时间只能持有一支股票,求能够获得的最大利润。

4. 最大会议安排:
给定一系列的会议,每个会议有开始时间和结束时间。

要求安排尽可能多的会议,使得它们不会发生时间上的冲突。

5. 跳跃游戏:
给定一个非负整数数组,每个元素表示在该位置上能够跳跃的最大长度。

初始位置在第一个元素,判断能否跳到最后一个元素。

以上仅是一些常见的例题,贪心算法广泛应用于各种问题中。

在解决实际问题时,需要根据具体情况设计贪心策略,找到合适的贪心策略才能得到正确的解答。

贪心算法_精品文档

贪心算法_精品文档

贪心算法第八章贪心算法一、选择题1用贪心法设计算法的关键是(D)。

A.将问题分解为多个子问题来分别处理B.选好贪心准则C.获取各阶段间的递推关系式D.满足最优性原理2考虑背包问题:n=6,M=10,P(1:6)=(15,59,21,30,60,5),W(1:6)=(1,5,2,3,6,1)。

该问题的最大效益值为(B)。

若把它看着是0、1背包问题,则最大效益值为(C)。

A.101B.110C.115D.120 8。

3#includeintmain(){freopen(\intmoney,1,2,3,4,5,p,d,n,q,h,temp;canf(\temp=money;p=money、1;if(p>0)money-=p1;d=money、2;if(d>0)money-=d2;n=money、3;if(n>0)money-=n3;q=money、4;if(q>0)money-=q4;h=money、5;if(temp==(p1+d2+n3+q)){printf(\printf(\printf(\printf(\printf(\}eleprintf(\return0;}8。

4uingSytem;uingSytem。

Collection。

Generic;uingSytem。

Linq;uingSytem。

Tet;uingSytem。

Threading。

Tak;namepace动态规划解决硬币问题{claProgram{publicclaCoinChange{publictaticvoidmakeChange(int[]value,intvalueKind,intmoney,i nt[]coinUed){coinUed[0]=0;for(intcent=1;cent<=money;cent++){intminCoin=cent;for(intkind=0;kind<valueKind;kind++){}}}}}8。

c语言贪心算法题目

c语言贪心算法题目

c语言贪心算法题目
问题描述:
给定一个非负整数数组nums,你的任务是通过在数组中选择一些数,使得这些数的和最大,并且所选的数不能相邻。

请编写一个C程序,实现该任务。

函数原型:
int maxSum(int* nums, int numsSize);
输入参数:
- nums: 非负整数数组nums
- numsSize:数组nums的大小
输出:
返回所选数的最大和
示例:
输入:[1,2,3,1]
输出:4
解释:选择索引为0和2的元素,即nums[0]=1和nums[2]=3,它们的和为4,满足选取数的和最大且不相邻的要求。

提示:
1. 贪心算法是一种优化问题的解决方法,它每次都选择当前最优的解,希望通过局部最优解的选择来达到全局最优解。

2. 对于本题,可以使用动态规划的思想来解决。

通过定义一个dp数组,dp[i]表示选择索引为0到i之间的元素,所选数的最大和。

则对于元素nums[i],有两种选择:选或不选。

- 如果选择nums[i],则dp[i] = nums[i] + dp[i-2]
- 如果不选择nums[i],则dp[i] = dp[i-1]
- 因此,对于每个i,我们选择使得dp[i]最大的方案,直到求得dp[numsSize-1],即所选数的最大和。

3. 初始化dp数组时,dp[0]=nums[0],dp[1]=max(nums[0], nums[1]),从第三个元素开始遍历数组即可。

贪心算法题库

贪心算法题库

贪心算法是一种在每一步选择中都采取当前情况下的局部最优选择,并希望导致结果是全局最优解的算法。

下面是一些贪心算法的题目和解答:1. 旅行商问题(Travelling Salesman Problem):问题描述:给定一个城市列表和一个距离列表,要求找出一条路径,使得路径上的所有城市都经过,且总距离最短。

贪心算法解法:首先对城市按照距离进行排序,然后从最近的两个城市开始,每次都选择距离当前位置最近的两个城市,直到遍历完所有城市。

由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的路径总距离是最短的。

2. 背包问题(Knapsack Problem):问题描述:给定一组物品,每个物品都有自己的重量和价值,要求在不超过背包总重量的情况下,如何选择物品使得背包中物品的总价值最大。

贪心算法解法:按照物品的重量对物品进行排序,然后每次选择重量最小的物品,直到背包已满或无物品可选。

由于贪心算法每次选择的都是当前情况下的最优解,因此最终得到的方案总是可以找到一个大于等于当前最优解的方案。

3. 网格找零问题(Currency Change Problem):问题描述:给定一组面值不同的硬币,要求用最少的组合方式从一定金额中找零。

贪心算法解法:首先对硬币面值进行排序,然后每次使用当前面值最小的硬币进行组合,直到金额为零或无硬币可选。

贪心算法在此问题中的思路是每次选择最小的硬币进行使用,这样可以保证找零的最小数量。

以上题目和解答只是贪心算法的一部分应用,实际上贪心算法在许多其他领域也有广泛的应用,例如网页布局优化、任务调度、网络流等等。

贪心算法的优势在于其简单易懂、易于实现,但也有其局限性,例如无法处理一些存在冲突的情况或最优解不唯一的问题。

因此在实际应用中需要根据具体问题选择合适的算法。

c++贪心算法经典例题

c++贪心算法经典例题

c++贪心算法经典例题和详解贪心算法(Greedy Algorithm)是一种优化问题解决方法,其基本思想是每一步都选择当前状态下的最优解,以期望达到全局最优解。

贪心算法的特点是每一步都要做出一个局部最优的选择,而这些局部最优选择最终构成了全局最优解。

下面是一个经典的贪心算法例题以及详解:例题:活动选择问题(Activity Selection Problem)假设有一个需要在同一时段使用同一个资源的活动集合,每个活动都有一个开始时间和结束时间。

设计一个算法,使得能够安排最多数量的互不相交的活动。

# 输入:-活动的开始时间数组`start[]`。

-活动的结束时间数组`end[]`。

# 输出:-选择的互不相交的活动的最大数量。

# 算法详解:1. 首先,将活动按照结束时间从小到大排序。

2. 选择第一个活动,并将其加入最终选择的集合中。

3. 对于剩下的活动,选择下一个结束时间最早且与前一个活动不冲突的活动。

4. 重复步骤3,直到所有活动都被选择。

```cpp#include <iostream>#include <algorithm>#include <vector>using namespace std;// 定义活动结构体struct Activity {int start, end;};// 比较函数,用于排序bool compareActivities(Activity a, Activity b) {return a.end < b.end;}// 贪心算法解决活动选择问题void activitySelection(vector<Activity>& activities) {// 按照结束时间排序sort(activities.begin(), activities.end(), compareActivities);// 第一个活动总是被选中cout << "Selected activity: (" << activities[0].start << ", " << activities[0].end << ")" << endl;// 选择其余活动int lastSelected = 0;for (int i = 1; i < activities.size(); i++) {// 如果当前活动的开始时间大于等于上一个选择的活动的结束时间,则选择该活动if (activities[i].start >= activities[lastSelected].end) {cout << "Selected activity: (" << activities[i].start << ", " << activities[i].end << ")" << endl;lastSelected = i;}}}int main() {vector<Activity> activities = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};cout << "Activities before sorting:" << endl;for (const Activity& activity : activities) {cout << "(" << activity.start << ", " << activity.end << ") ";}cout << endl;activitySelection(activities);return 0;}```在这个例子中,我们首先定义了一个活动的结构体`Activity`,然后编写了一个比较函数`compareActivities` 用于排序。

c++贪心算法经典例题

c++贪心算法经典例题

c++贪心算法经典例题(原创实用版)目录一、贪心算法的基本概念与特点二、贪心算法的经典例题1.背包问题2.带有期限的作业排序3.最小生成树4.单源点最短路径三、贪心算法的应用场景与策略选择四、贪心算法的优缺点及注意事项五、总结正文一、贪心算法的基本概念与特点贪心算法是一种求解最优化问题的方法,其主要特点是在每一步都做出当前看来最好的选择,从而希望导致结果是全局最好的解。

贪心算法不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。

二、贪心算法的经典例题1.背包问题:给定一组物品,每种物品都有一定的价值和重量,要求在限定的总重量内,选取若干物品放入背包,使得背包中物品的总价值最大。

2.带有期限的作业排序:给定一组作业,每项作业有固定的执行时间和期限,要求在期限内尽可能多地完成作业,使得完成作业的总时间最小。

3.最小生成树:给定一个无向连通图,要求找出一棵包含所有顶点且边权值之和最小的生成树。

4.单源点最短路径:给定一个有权值边的无向图,要求找出从指定源点到其他所有顶点的最短路径。

三、贪心算法的应用场景与策略选择贪心算法适用于问题能够分解成子问题来解决的情况,子问题的解可以相互独立地求得。

在贪心算法的应用过程中,需要仔细分析问题的特点,选择合适的贪心策略。

贪心策略的选择必须满足无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。

四、贪心算法的优缺点及注意事项贪心算法的优点是简单易懂、代码实现简单,且在许多情况下能够得到整体最优解。

缺点是贪心算法并不适用于所有问题,对于一些具有特殊性质的问题,可能无法得到最优解。

在使用贪心算法时,需要注意贪心策略的选择,避免因为贪心策略不合适而导致解的不正确。

五、总结贪心算法是一种求解最优化问题的方法,其关键在于选择合适的贪心策略。

贪心算法适用于问题能够分解成子问题来解决的情况,能够快速得到满意的解。

c++贪心算法经典例题

c++贪心算法经典例题

c++贪心算法经典例题摘要:一、贪心算法简介1.贪心算法的定义2.贪心算法的特点3.贪心算法适用的问题类型二、C++贪心算法经典例题1.背包问题a.0-1 背包问题b.完全背包问题c.动态背包问题2.最小生成树a.Kruskal 算法b.Prim 算法3.单源点最短路径a.Dijkstra 算法b.Floyd-Warshall 算法4.最长公共子序列a.贪心算法实现b.动态规划实现正文:一、贪心算法简介贪心算法(Greedy Algorithm)是一种求解最优解的方法。

它是在对问题求解时,总是做出在当前看来是最好的选择。

贪心算法并不追求整体最优解,只希望得到较为满意的解。

贪心算法的关键是贪心策略的选择,必须满足无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。

贪心算法适用的问题类型包括背包问题、最小生成树、单源点最短路径和最长公共子序列等。

二、C++贪心算法经典例题1.背包问题背包问题(Knapsack Problem)是一种典型的贪心算法问题。

它描述的是有一个背包,有一定的容量,需要装载若干物品,每个物品有一定的价值和重量,要求在不超过背包容量的前提下,如何选择装载物品使得背包中的物品总价值最大。

背包问题可以分为0-1 背包问题、完全背包问题和动态背包问题。

2.最小生成树最小生成树(Minimum Spanning Tree,简称MST)是一种图论中的算法问题。

给定一个加权连通图,求解一个生成树,使得该生成树中所有边的权值之和最小。

最小生成树的经典算法有Kruskal 算法和Prim 算法。

3.单源点最短路径单源点最短路径(Single Source Shortest Path)问题是在一个图中,从源点出发到其他所有顶点的最短路径。

经典算法包括Dijkstra 算法和Floyd-Warshall 算法。

4.最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)问题是求两个序列中最长的公共子序列。

贪心法例题

贪心法例题

贪心法例题
贪心法是一种常见的算法思想,在解决一些优化问题时被广泛应用。

下面是几个贪心法的例题:
1. 分发糖果
给定一个数组 ratings,表示一群孩子的评分,现在需要给这些孩子分发糖果。

规定每个孩子至少分配到一个糖果,且评分更高的孩子必须得到更多的糖果。

问最少需要准备多少个糖果。

2. 会议室安排
给定一组会议,每个会议有开始时间和结束时间,现在需要在有限的会议室内安排这些会议,使得尽可能多的会议得以举行。

请问最多可以安排多少个会议。

3. 分割回文串
给定一个字符串 s,将其分割成一些子串,使得每个子串都是回文串。

请问最少需要分割多少次。

4. 零钱兑换
给定一组硬币的面值和一个总金额 amount,现在需要用这些硬币来找零。

请问最少需要多少个硬币才能凑出总金额。

以上例题均可以使用贪心法来解决,具体实现方式需要根据题目要求进行调整。

贪心法在实际应用中的效果取决于问题本身的特点,不适用于所有问题。

- 1 -。

贪心算法练习题

贪心算法练习题

贪心算法练习题贪心算法是一种常用的解决问题的思想和方法,它通常用于求解优化问题。

贪心算法的核心思想是:在每一步选择中都采取当前状态下最优的选择,从而希望最终能够达到全局最优。

在实际应用中,贪心算法常用于解决一些分类问题,如最小生成树、最短路径、背包问题等。

下面,将给出一些贪心算法的练习题,帮助读者更好地理解和掌握贪心算法的应用。

1. 零钱兑换问题假设我们有不同面额的硬币,如 1 美元、2 美元、5 美元等,我们希望找零 n 美元的时候,最少需要多少个硬币。

请用贪心算法解决此问题,并给出相应的代码实现。

2. 区间覆盖问题给定一个区间集合,选择尽可能少的区间,使得这些区间的并集能够覆盖全部的区间。

请使用贪心算法解决此问题,并给出相应的代码实现。

3. 活动选择问题给定 n 个活动的开始时间和结束时间,选择尽可能多的不相交的活动。

请使用贪心算法解决此问题,并给出相应的代码实现。

4. 任务调度问题假设我们有 n 个任务和 m 台执行任务的机器,每个任务需要一个单位的时间,在每台机器上只能执行一个任务。

如何安排任务,使得所有任务都能够被执行,并且时间最短。

请使用贪心算法解决此问题,并给出相应的代码实现。

以上是一些常见的贪心算法练习题,通过解决这些问题,读者可以更加深入地理解和掌握贪心算法的应用。

当然,在实际应用中,贪心算法并不是万能的,它只能求解一些特定类型的优化问题,对于其他类型问题的求解可能并不适用。

因此,在使用贪心算法时,需要仔细分析问题的特性,判断是否适用贪心算法,并注意贪心选择的合理性。

通过不断练习和实践,读者可以逐渐掌握贪心算法的应用技巧,提高问题求解的效率和准确性。

最后,希望读者能够善于思考,灵活运用贪心算法解决实际问题,并在实践中不断学习和进步。

贪心算法作为一种常用的解决问题的思想和方法,对于提高算法设计和分析能力具有重要意义。

贪心算法练习题

贪心算法练习题

贪心算法练习题贪心算法1.喷水装置(一)描述现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以它为中心的半径为实数Ri(0<Ri<15)的圆被湿润,这有充足的喷水装置i(1<i<600)个,并且一定能把草坪全部湿润,你要做的是:选择尽量少的喷水装置,把整个草坪的全部湿润。

输入第一行m表示有m组测试数据每一组测试数据的第一行有一个整数数n,n表示共有n个喷水装置,随后的一行,有n个实数ri,ri表示该喷水装置能覆盖的圆的半径。

输出输出所用装置的个数样例输入252 3.2 4 4.5 6101 2 3 1 2 1.2 3 1.1 1 2样例输出25根据日常生活知道,选择半径越大的装置,所用的数目越少。

因此,可以先对半径排序,然后选择半径大的。

另外,当装置刚好喷到矩形的顶点时,数目最少。

此时只要装置的有效喷水距离的和不小于20时,输出此时的装置数目即可。

2.喷水装置(二)时间限制:3000 ms | 内存限制:65535 KB难度:4描述有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。

请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。

输入第一行输入一个正整数N表示共有n次测试数据。

每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。

随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。

输出每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。

如果不存在一种能够把整个草坪湿润的方案,请输出0。

样例输入22 8 61 14 52 10 64 56 5样例输出123.会场安排问题描述学校的小礼堂每天都会有许多活动,有时间这些活动的计划时间会发生冲突,需要选择出一些活动进行举办。

练习题_贪心穷举迭代算法

练习题_贪心穷举迭代算法

练习题_贪心穷举迭代算法
练习题:
1.迭代算法
编写一函数,利用牛顿迭代法、双点弦截法求方程的根。

2.穷举法
(1)现有面值为1元、2元和5元的钞票(假设每种钞票的数量都足够多),从这些钞票中取30张使其总面值为100元,问有多少种取法?输出每种取法中各种面额钞票的张数.
(2)晨晨有一个E_mail邮箱的密码是一个5位数。

但因为有一段比较长的日子没有打开这个邮箱了,晨晨把密码忘了。

不过晨晨自己是8月1日出生,而他妈妈的生日是9月1日。

他特别喜欢把同时是81和91的倍数用作密码。

晨晨还记得这个密码中间一位(百位数)是1。

请设计一个程序帮他找回这个密码。

3.贪心算法
(1) [背包问题]有一个背包,背包容量是M=150。

有7个物品,物品不可以分割成任意大小。

要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

物品A B C D E F G
重量35 30 60 50 40 10 25
价值10 40 30 50 35 40 30。

算法作业——第4章贪心算法

算法作业——第4章贪心算法

算法作业——第4章贪⼼算法第4章 贪⼼算法 习题贪⼼算法 习题第4章【+】阅读、掌握课本经典范例代码的实现:(1)活动安排问题;(2)最优装载问题;(3)哈夫曼编码;(4)单源最短路径;(5)最⼩⽣成树;(6)多机调度问题。

【第1题】单项选择题(1)下⾯是贪⼼算法的基本要素的是( )。

A.重叠⼦问题B.构造最优解C.贪⼼选择性质D.定义最优解(2)下⾯问题( )不能使⽤贪⼼法解决。

A.单源最短路径问题B. n皇后问题C.最⼩花费⽣成树问题D.背包问题(3)采⽤贪⼼算法的最优装载问题的主要计算量在于将集装箱依其重量从⼩到⼤排序,故算法的时间复杂度为( )。

A.O(n)B.O(n2)C.O(n3)D.O(nlog2n)(4)关于0-1背包问题以下描述正确的是( )。

A.可以使⽤贪⼼算法找到最优解B.能找到多项式时间的有效算法C.使⽤教材介绍的动态规划⽅法可求解任意0-1背包问题D.对于同⼀背包与相同的物品,做背包问题取得的总价值⼀定⼤于等于做0-1背包问题(5)⼀棵哈夫曼树共有215个结点,对其进⾏哈夫曼编码,共能得到( )个不同的码字。

A.107B.108C.214D.215【第2题】求解哈夫曼编码中如何体现贪⼼思路?【第3题】举反例证明0-1背包问题若使⽤的算法是按照vi/wi的⾮递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装⼊背包,则此⽅法不⼀定能得到最优解(此题说明0-1背包问题与背包问题的不同)。

*【第4题】给定数轴X上n个不同点的集合,{x1,x2,...,xn},其中,x1<x2<...<xn。

现在⽤若⼲个长度为1的闭区间来覆盖这些点。

设计⼀个算法找到最少的闭区间个数和位置。

证明算法的正确性并估计算法的时间复杂度。

【第5题】(编程)求解硬币问题。

有1分、2分、5分、10分、50分和100分的硬币各若⼲枚,现在要⽤这些硬币来⽀付W元,最少需要多少枚硬币。

说明:⽤结构体数组A存放硬币数据,A[i].v存放硬币i的⾯额,A[i].c存放硬币i的枚数。

贪心算法例题

贪心算法例题

贪心算法例题
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。

以下是一个贪心算法的例子:
问题描述:有100个人在一酒吧,一次酒局中大家都决定向其他每个人敬酒,但只有距离较近的人之间才能互敬。

酒局结束后,每人都记录下他们之间互敬了多少次。

现给出所有人的互敬次数,找出互敬次数最多的那个人。

贪心策略:从最多互敬次数的人开始,每次都选择能互敬次数最多的人,直到达到最大互敬次数为止。

具体实现:
1. 首先将所有人的互敬次数存入一个数组中。

2. 从数组中找到互敬次数最多的人,假设其互敬次数为max_times。

3. 从数组中删除所有互敬次数小于max_times的人,因为他们的互敬次数已经确定不会超过max_times。

4. 重复步骤2和3,直到数组为空。

这个贪心算法的例子中,每次选择都是基于当前情况下的最优选择,希望通过这种方式达到全局最优的结果。

贪心算法例题

贪心算法例题

贪心算法例题1木板制造问题描述现在需要制造N块木板,每块木板都有一个长度L和宽度W。

用来制造木板的机器在使用之前需要花1分钟时间进行调节,而且,如果在制造完一块木板L0×W0之后继续制造木板L1×W1,那么除非满足L0≤L1且W0≤W1,否则在制造L1×W1之前仍要花费1分钟进行调节。

现在给出欲制造的N块木板的尺寸,你的任务是确定至少需要花多长时间调节机器。

时间复杂度要求实现O(N2)时间复杂度的算法。

本题算法的最优时间复杂度为Θ(NlogN)。

2 雷达安装问题描述在笛卡尔坐标系上,我们认为海岸线是x轴,陆地在x轴下方,海洋在x轴上方,而每个岛屿都认为是海中的一个点。

现在要在海岸线上安装一些雷达,雷达的覆盖半径为d。

如果某个岛屿与离它最近的雷达之间的距离不超过d,这个岛屿就被监视了。

现在有N个岛屿需要监视,给出这N个岛屿的坐标,你的任务是确定为了监视所有的岛屿至少需要安装多少个雷达。

时间复杂度要求实现Θ(NlogN)时间复杂度的算法,而这也是本题时间复杂度的下限。

3 修理牛棚问题描述农夫约翰的牛棚是N个房间一个紧挨着一个排成一行的结构,每个房间的宽度都是1。

在一个暴风雨的夜晚,牛棚所有的天花板都被吹走了。

好在许多牛正在度假,所以牛棚没有住满,有些房间里面有牛,有些没有。

一共有S (1≤S≤N)个房间是有牛居住的。

农夫约翰打算至少先把有牛居住的房间的屋顶修好。

他的木材提供商只愿意提供M块木板,但是每块木板都可以是任意长度的。

农夫约翰想知道他至少需要购买多长的木板才能把牛都盖住。

时间复杂度要求实现O(NlogN)复杂度的算法。

本题算法的最优时间复杂度为Θ(N)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贪心算法
1.喷水装置(一)
描述
现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以它为中心的半径为实数Ri(0<Ri<15)
的圆被湿润,这有充足的喷水装置i(1<i<600)个,并且一定能把草坪全部湿润,你要做的是:选择尽量少的喷水装置,把整个草坪的全部湿润。

输入
第一行m表示有m组测试数据
每一组测试数据的第一行有一个整数数n,n表示共有n个喷水装置,随后的一行,有n个实数ri,ri表示该喷水装置能覆盖的圆的半径。

输出
输出所用装置的个数
样例输入
2
5
2 3.2 4 4.5 6
10
1 2 3 1 2 1.2 3 1.1 1 2
样例输出
2
5
根据日常生活知道,选择半径越大的装置,所用的数目越少。

因此,可以先对半径排序,然后选择半径大的。

另外,当装置刚好喷到矩形的顶点时,数目最少。

此时只要装置的有效喷水距离的和不小于20时,输出此时的装置数目即可。

2.喷水装置(二)
时间限制:3000 ms | 内存限制:65535 KB
难度:4
描述
有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有
n(n<=10000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。

请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。

输入
对于每一组输入,输出最多能够安排的活动数量。

每组的输出占一行
样例输入
2
2
1 10
10 11
3
1 10
10 11
11 20
样例输出
1
2
提示注意:如果上一个活动在T时间结束,下一个活动最早应该在T+1时间开始。

解题思路:这是一个贪心法中选择不相交区间的问题。

先对活动结束时间从小到大排序,排序的同时活动的起始时间也要跟着变化。

而且,结束时间最小的活动一定会安排,不然这段时间就白白浪费了。

后一个活动的起始时间如果比前一个活动的结束时间大,即两个活动没有相交时间,就把这个活动也安排上。

就这样一直找到结束时间最大的,输出时间数目即可。

排序时可用下面的方法,排序的同时起始时间也跟着变了。

如果输入
0 6
3 4
1 9
2 8
则排序后的结果就是
3 4
0 6
2 8
1 9
Sample Output
3
5
4.Doing homework
问题描述:Ignatius比赛回来之后,每位老师给Ignatius一个交作业的最后期限,如果交不上去就扣分。

每门作业都要一天时间完成,求最少扣多少分。

先输入一个T表示有T组测试数据,接下来每组数据先输入一个N,代表有N个作业,然后输入两行,第一行表示每门作业要交的日期,第二行表示对应的如果不交这门作业要扣的分数。

输出要扣的最少分数。

解题思路:先对日期从小到大排序,如果日期相同,则扣分多的排在前面。

如果相同日期内有扣分多的,则就用前面做扣分少的作业的时间来做这门作业;如果没有比他小的,就扣这门作业的分。

Sample Input
3
3
3 3 3
10 5 1
3
1 3 1
6 2 3
7
1 4 6 4
2 4 3
3 2 1 7 6 5 4
Sample Output
3
5
5.过河问题
时间限制:1000 ms | 内存限制:65535 KB
难度:5
描述
在漆黑的夜里,N位旅行者来到了一座狭窄而且没有护栏的桥边。

如果不借助手电筒的话,大家是无论如何也不敢过桥去的。

不幸的是,N个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。

如果各自单独过桥的话,N人所需要的时间已知;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。

问题是,如何设计一个方案,让这N人尽快过桥。

6.摘枇杷
时间限制:2000 ms | 内存限制:65535 KB
难度:3
描述
理工学院的枇杷快熟了,ok,大家都懂得。

而且大家都知道,学校的枇杷树都是一列一列的。

现在小Y同学已经在筹划怎么摘枇杷了。

现在我们假设有一列枇杷树,而且每棵枇杷树上枇杷果的数量小Y都已经知道了。

相关文档
最新文档