《正比例》课件.ppt
合集下载
《正比例函数》-课件PPT
![《正比例函数》-课件PPT](https://img.taocdn.com/s3/m/e9a270b4bb4cf7ec4bfed007.png)
2
2
即 y 4x 它是正比例函数
(2)当x=7时,y=4x=4×7=28
课堂总结
1、这正节比课例你函学数的到概念。 2、用了待什定么系?数法求正
比例函数的解析式。
1、写出下列个题中的X和Y的关系式,并判 断Y是否是X的正比例函数?
(1)电报收费标准是每个字0.1元,电报费Y(元)
与字数X(个)之间的函数关系.
练习
已知正比例函数当自变量x等于-4时, 函数y的值等于2。
(1)求正比例函数的解析式和自变 量的取值范围;
(2)求当x=6时函数y的值。
解:(1)设正比例函数解析式是 y=kx,
设
把 x =-4, y =2 代入上式,得 2 = -4k 代
解得
k= -
1 2
求
∴所求的正比例函数解析式是y=-
x 2
是正比例函数,
∵函数 y (m 1)xm2
是正比例函数,
∴ m-1≠0
求m的值。
m2=1 即 m≠1
m=±1
函数是正比例函数 ∴ m=-1
函数解析式可转化为y=kx
(k是常数,k ≠0)的形式。
(1)若 y =5x 3m-2 是正比例函数,
练习
则m= 1 。
(2)若 y (m 2)xm23 是正比例函数,
解:h = 0.5n
(4)冷冻一个0℃的物体,使它每分 下降2℃,物体的温度T(单位:℃)随 冷冻时间t(单位:分)的变化而变化.
解:T = -2t
认真观察以上出现的四个函数解析式,分 别说出哪些是函数、常数和自变量.
函数解析式 函数 常数 自变量 这些这函些数函解数析解式都
l =2πr l 2π
正比例和反比例ppt课件
![正比例和反比例ppt课件](https://img.taocdn.com/s3/m/e1643e8d59f5f61fb7360b4c2e3f5727a5e92488.png)
在直角坐标系中,反比例函数图 像是一个双曲线。
正反比例的性质对照
相同点
两者都涉及到两个量的变化关系,其中一个量变化时,另一个量也相应变化。
不同点
正比例中,比值是一定的;反比例中,比值是不定的。正比例关系是一条直线,而反比例 关系是一个双曲线。
应用场景
正比例关系在物理、化学、工程等领域都有广泛应用,如速度、密度等;反比例关系在电 力、运输、通讯等领域常见,如电流与电阻、运输成本与运输距离等。
02 正比例和反比例的应用
正比例的应用
01
02
03
计算增长率
在统计学中,正比例常用 于计算某一变量的增长率 ,如GDP增长率、人口增 长率等。
猜测模型
在猜测模型中,正比例关 系可用于猜测未来趋势, 例如猜测产品销售量与广 告投入的关系。
线性回归分析
在回归分析中,正比例关 系可用于描写两个变量之 间的线性关系,例如身高 与体重的关系。
在坐标系中,反比例关系表现为一条 双曲线。
当一个量y随着另一个量x的增大而减 小,或者随着x的减小而增大时,我们 说y与x成反比。
正反比例数学表达的异同点
相同点
正比例和反比例都涉及到两个量之间的变化关系,且都存在 一个常数k来描写这种关系。
不同点
正比例是y与x之间的直接关系,而反比例是xy之间的乘积关 系;正比例关系中y随x增大而增大,而反比例关系中y随x增 大而减小或随x减小而增大;正比例在坐标系中表现为直线, 而反比例表现为双曲线。
则它们成反比例。
反比例关系在现实生活中也广泛 存在,如一定质量的物体下,压 力与面积成反比;一定速度下,
距离与时间成反比等。
正反比例的异同点
相同点
正比例和反比例都是描写两个量之间关系的比例关系,都涉及到两个变量的变 化趋势。
正反比例的性质对照
相同点
两者都涉及到两个量的变化关系,其中一个量变化时,另一个量也相应变化。
不同点
正比例中,比值是一定的;反比例中,比值是不定的。正比例关系是一条直线,而反比例 关系是一个双曲线。
应用场景
正比例关系在物理、化学、工程等领域都有广泛应用,如速度、密度等;反比例关系在电 力、运输、通讯等领域常见,如电流与电阻、运输成本与运输距离等。
02 正比例和反比例的应用
正比例的应用
01
02
03
计算增长率
在统计学中,正比例常用 于计算某一变量的增长率 ,如GDP增长率、人口增 长率等。
猜测模型
在猜测模型中,正比例关 系可用于猜测未来趋势, 例如猜测产品销售量与广 告投入的关系。
线性回归分析
在回归分析中,正比例关 系可用于描写两个变量之 间的线性关系,例如身高 与体重的关系。
在坐标系中,反比例关系表现为一条 双曲线。
当一个量y随着另一个量x的增大而减 小,或者随着x的减小而增大时,我们 说y与x成反比。
正反比例数学表达的异同点
相同点
正比例和反比例都涉及到两个量之间的变化关系,且都存在 一个常数k来描写这种关系。
不同点
正比例是y与x之间的直接关系,而反比例是xy之间的乘积关 系;正比例关系中y随x增大而增大,而反比例关系中y随x增 大而减小或随x减小而增大;正比例在坐标系中表现为直线, 而反比例表现为双曲线。
则它们成反比例。
反比例关系在现实生活中也广泛 存在,如一定质量的物体下,压 力与面积成反比;一定速度下,
距离与时间成反比等。
正反比例的异同点
相同点
正比例和反比例都是描写两个量之间关系的比例关系,都涉及到两个变量的变 化趋势。
正比例函数的概念数学PPT课件
![正比例函数的概念数学PPT课件](https://img.taocdn.com/s3/m/f5041fcd9a89680203d8ce2f0066f5335a816796.png)
(1)正方形的边长为x cm,周长为y cm.
y=4x 是正比例函数
(2)某人一年内的月平均收入为x元,他这一年
(12个月)的总收入为y元.
y=12x 是正比例函数
(3)一个长方体的长为2cm,宽为1.5cm,高为
x cm ,体积为y cm3.
y=3x 是正比例函数
02
练 一 练
LEARNING
OBJECTIVES
感谢您的聆听
EIGHT
GRADE
MATHEMATICS
COURSEWARE
八年级下 册
VOLUME
II
体积V(单位:cm3)的变化而变化.
m=7.8v
01
归纳
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,
其中k叫做比例系数.
比例系数
y = kx (k≠0的常数)
自变量
思考 为什么强调k是常数, k≠0呢?
因为当k=0时,正比例函数y=0×x,即y=0,
这不能准确表达自变量与函数的关系,失去了解析式的意义
(1)写出汽车行驶途中所耗油费 y(元)与行程 x(km)之间的函数关
系式,并指出y是x的什么函数;
解: y=5×15x÷100,
即
.
y是x的正比例函数.
01
生例3
(2)计算该汽车行驶220 km所需油费多少?
解:当x=220时,
即该汽车行驶220 km所需油费165元.
01
练一练
列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数.
是正比例函数,正比例系数为2
判定一个函数是
否是正比例函数,
要从化简后来判
断!
例1
y=4x 是正比例函数
(2)某人一年内的月平均收入为x元,他这一年
(12个月)的总收入为y元.
y=12x 是正比例函数
(3)一个长方体的长为2cm,宽为1.5cm,高为
x cm ,体积为y cm3.
y=3x 是正比例函数
02
练 一 练
LEARNING
OBJECTIVES
感谢您的聆听
EIGHT
GRADE
MATHEMATICS
COURSEWARE
八年级下 册
VOLUME
II
体积V(单位:cm3)的变化而变化.
m=7.8v
01
归纳
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,
其中k叫做比例系数.
比例系数
y = kx (k≠0的常数)
自变量
思考 为什么强调k是常数, k≠0呢?
因为当k=0时,正比例函数y=0×x,即y=0,
这不能准确表达自变量与函数的关系,失去了解析式的意义
(1)写出汽车行驶途中所耗油费 y(元)与行程 x(km)之间的函数关
系式,并指出y是x的什么函数;
解: y=5×15x÷100,
即
.
y是x的正比例函数.
01
生例3
(2)计算该汽车行驶220 km所需油费多少?
解:当x=220时,
即该汽车行驶220 km所需油费165元.
01
练一练
列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数.
是正比例函数,正比例系数为2
判定一个函数是
否是正比例函数,
要从化简后来判
断!
例1
人教版《正比例函数》PPT完美课件
![人教版《正比例函数》PPT完美课件](https://img.taocdn.com/s3/m/986235312cc58bd63186bdfa.png)
人教版 · 数学· 八年级(下)
第19章 一次函数 19.2.1 正比例函数 第2课时 正比例函数的图象和性质
学习目标
1.会画正比例函数的图象。 2.能根据正比例函数图象的规律探究正比例函数的 性质。
回顾旧知
正比例函数 一般地,形如 y=kx(k 是常数,k≠0) 的函数,叫做正比例函数,其中 k 叫做比例系数.
∵点Q(-m,m+3)在这个函数图象上,∴m+3=(-2)×(-m),解得m=3
4 些点连接起来,得到一条经过原 思考 画正比例函数的图象时,怎样画最简单?为什么?
13.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(
)
k>2
D.
x … -1.5 -1 -0.5 0 0.5 1 1.5 … y … 6 4 2 0 -2 -4 -6 …
y=-4x y
9
4
1 -4-3-2-1O 1 2 3 4
x
如图,在直角坐标系中描出表中 x 和 y 的值对应坐标的点,将这 些点连接起来,得到一条经过原 点和第二、第四象限的直线,它 就是函数 y=-4x 的函数图象.
巩固新知
1. 正比例函数 y = (k-2)x 的图象如图所示,则 k 的取值范围
是( D ).Leabharlann yk-2<0
经过第二、第四象限
O
x
A. k>0
B. k<0
C. k>2
D. k<2
7.已知在正比例函数y=(k-1)x的图象中,y随x的增大而减小,则k的取值范围是(
)
(1)正比例函数必须满足两个条件:①比例系数k是常数,且k≠0.
第19章 一次函数 19.2.1 正比例函数 第2课时 正比例函数的图象和性质
学习目标
1.会画正比例函数的图象。 2.能根据正比例函数图象的规律探究正比例函数的 性质。
回顾旧知
正比例函数 一般地,形如 y=kx(k 是常数,k≠0) 的函数,叫做正比例函数,其中 k 叫做比例系数.
∵点Q(-m,m+3)在这个函数图象上,∴m+3=(-2)×(-m),解得m=3
4 些点连接起来,得到一条经过原 思考 画正比例函数的图象时,怎样画最简单?为什么?
13.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是(
)
k>2
D.
x … -1.5 -1 -0.5 0 0.5 1 1.5 … y … 6 4 2 0 -2 -4 -6 …
y=-4x y
9
4
1 -4-3-2-1O 1 2 3 4
x
如图,在直角坐标系中描出表中 x 和 y 的值对应坐标的点,将这 些点连接起来,得到一条经过原 点和第二、第四象限的直线,它 就是函数 y=-4x 的函数图象.
巩固新知
1. 正比例函数 y = (k-2)x 的图象如图所示,则 k 的取值范围
是( D ).Leabharlann yk-2<0
经过第二、第四象限
O
x
A. k>0
B. k<0
C. k>2
D. k<2
7.已知在正比例函数y=(k-1)x的图象中,y随x的增大而减小,则k的取值范围是(
)
(1)正比例函数必须满足两个条件:①比例系数k是常数,且k≠0.
小学六年级 数学《正比例》教学课件
![小学六年级 数学《正比例》教学课件](https://img.taocdn.com/s3/m/b0ac5ecc4028915f804dc2a0.png)
(3)说明这个比值所表示的意义. 这个比值的意义是每天生产的吨数(或生产效率)
(4)表中相关联的两种量成正比例关系吗?为什么? 生产量和时间是两种相关联的量. 生产量 = 每天生产的吨数(一定) 因为 时间 所以 生产量和时间成正比例.
做一做
判断下面每题中的两种量是不是成正比例,并 说明理由. (1)苹果的单价一定,购买苹果的数量和总价. 苹果的数量和总价是两种相关联的量, 因为 总价 = 单价(一定) 数量
(2)总价是怎样随着米数的变化的?
米数扩大,总价随着扩大; 米数缩小,总价也随着缩小.
例题 2、在一间布店的柜台上,有一张写着某种花布的 米数和总价的表.
数量(米)
总价(元)
1
2
3
4
5
6
7
… …
8.2 16.4 24.6 32.8 41 49.2 57.4
观察上表,回答下面的问题:
(3)相对应的总价和米数的比各是多少?比值是多少?
8.2 =8.2 1
16.2 =8.2 2
24.6 =8.2 3
……
小结 总价和米数是两种什么样的量?
两种相关联的量 为什么?
总价随着米数的变化而变化 怎样变化? 米数扩大,总价随着扩大;米数缩小,总价随着缩小.
扩大、缩小的规律是什么?
总价和米数的比的比值总是一定的 总价 =单价(一定) 米数
总结 比较例1、例2,这两个例子有什么共同点?
两种相关联的量,一种量变化,另一种量也
如果这两种量中相对应的两个数的比值 随着变化, (也就是商)一定, 这两种量就叫做成正比例的量, 它们的关系叫做正比例关系.
x
y
= k (一定)
例题 3、每袋面粉的重量一定,面粉的总重量和袋数是 不是成正比例? 面粉的总重量和袋数是两种相关联的量,它们与每袋
正比例和反比例ppt课件
![正比例和反比例ppt课件](https://img.taocdn.com/s3/m/7452ca4ab42acfc789eb172ded630b1c59ee9bb1.png)
反比例的性质及证明
01 反比例的定义
当两个量的乘积恒定时,称这两个量成反比例。
02 反比例的性质
反比例的两个量具有相反的符号,当一个量增加 时,另一个量会相应减少,且它们的乘积恒定。
03 反比例的证明
可以通过绘制图表或使用代数方法证明两个量之 间的反比例关系。
正比例和反比例的练习题及
05
解析
正比例的练习题及解析
函数
正比例关系是函数关系中的一种,其中自变量和因变量之间的比例常数k称为正比例系数。通过 掌握正比例函数的性质和图像,我们可以更好地理解其他函数的关系和性质。
正比例和反比例在实际问题中的意义
资源分配
在资源分配过程中,正比例关系可以帮助我们更好地规划资 源的分配,确保各项任务能够按照比例完成。例如,在多个 部门协同工作时,通过调整各部门之间的任务分配比例,可 以更好地完成任务。
06
总结与回顾
正比例和反比例的重要性和应用价值
正比例和反比例是数学中重要的概念,对于理解 函数和变量之间的关系以及解实际问题具有重 要意义。
在实际生活中,正比例和反比例关系广泛存在, 如购物时的价格和数量、速度和时间等。掌握正 比例和反比例的概念和应用有助于解决日常生活 中的问题。
正比例和反比例的异同点及注意事项
02 正比例中,当一个量增加时,另一个量也增加; 而在反比例中,当一个量增加时,另一个量减少 。
02 正比例和反比例可以相互转化,比如时间和距离 的关系就是典型的正比例关系,但如果考虑速度 恒定的情况下,时间和距离就成反比例关系。
02
正比例和反比例的应用
在生产生活中的实际应用
生产计划
在生产过程中,企业需要制定生产计划,根据产品的需 求量和库存量来确定每日的生产量。正比例关系可以帮 助企业更好地规划生产,避免库存积压或缺货现象。
正比例函数(第一课时)课件
![正比例函数(第一课时)课件](https://img.taocdn.com/s3/m/48f48619ac02de80d4d8d15abe23482fb5da0256.png)
中应用
直线运动问题
路程、速度和时间的关系
当物体做匀速直线运动时,路程与时间成正比例关系,即s=vt,其中s表示路 程,v表示速度,t表示时间。
相遇和追及问题
当两个物体在同一直线上运动时,它们之间的相对速度等于两物体速度之和或 之差。因此,相遇问题和追及问题可以通过正比例函数来求解。
题目:一辆汽车以60千米/小时的速度匀速行驶,行驶 路程s(千米)与行驶时间t(小时)之间的关系式为s = 60t,求当t = 2时,汽车行驶的路程s。 解答过程
2. 将v = 60和t = 2代入上式,得到s = 60 × 2 = 120 。
分析:本题主要考察正比例函数在实际问题中的应用。 根据题意,速度v = 60千米/小时,时间t = 2小时,我 们需要求出路程s。 1. 根据正比例函数的定义,我们有s = vt。
比例系数 k 决定了直线的斜率,即 k = tanα (α 为直线与 x 轴正方向的夹角)。
函数图像是一条经过原点的直线。
性质:正比例函数具有以下性质
当 x > 0 时,y 与 x 同号;当 x < 0 时 ,y 与 x 异号。
图像特征
图像形状
01
正比例函数的图像是一条直线。
图像位置
02
该直线经过坐标原点 (0,0)。
结合实际问题进行求解
01
仔细阅读题目,理解题 意,将实际问题抽象成 数学模型。
02
根据题意列出方程或方 程组,注意方程两边的 量要对应。
03
解方程或方程组,求出 未知数的值,并对结果 进行验证和取舍。
04
将求得的未知数的值代 回原方程进行检验,确 保答案的正确性。
06
典型例题分析与解答过程展示
直线运动问题
路程、速度和时间的关系
当物体做匀速直线运动时,路程与时间成正比例关系,即s=vt,其中s表示路 程,v表示速度,t表示时间。
相遇和追及问题
当两个物体在同一直线上运动时,它们之间的相对速度等于两物体速度之和或 之差。因此,相遇问题和追及问题可以通过正比例函数来求解。
题目:一辆汽车以60千米/小时的速度匀速行驶,行驶 路程s(千米)与行驶时间t(小时)之间的关系式为s = 60t,求当t = 2时,汽车行驶的路程s。 解答过程
2. 将v = 60和t = 2代入上式,得到s = 60 × 2 = 120 。
分析:本题主要考察正比例函数在实际问题中的应用。 根据题意,速度v = 60千米/小时,时间t = 2小时,我 们需要求出路程s。 1. 根据正比例函数的定义,我们有s = vt。
比例系数 k 决定了直线的斜率,即 k = tanα (α 为直线与 x 轴正方向的夹角)。
函数图像是一条经过原点的直线。
性质:正比例函数具有以下性质
当 x > 0 时,y 与 x 同号;当 x < 0 时 ,y 与 x 异号。
图像特征
图像形状
01
正比例函数的图像是一条直线。
图像位置
02
该直线经过坐标原点 (0,0)。
结合实际问题进行求解
01
仔细阅读题目,理解题 意,将实际问题抽象成 数学模型。
02
根据题意列出方程或方 程组,注意方程两边的 量要对应。
03
解方程或方程组,求出 未知数的值,并对结果 进行验证和取舍。
04
将求得的未知数的值代 回原方程进行检验,确 保答案的正确性。
06
典型例题分析与解答过程展示
正比例与反比例ppt课件
![正比例与反比例ppt课件](https://img.taocdn.com/s3/m/913d908d85254b35eefdc8d376eeaeaad1f316c1.png)
-1-
第 1 课时 变化的量
■考点 认识“变化的量” 生活中存在着许多互相依存的变量,其中一个量随着另一个量的变化而
变化。例如一天的气温随着时间的变化而变化;汽车行驶的路程随着行驶时间 的变化而变化;生产总量随着生产天数的变化而变化等。
-2-
例1 连一连,把相互变化的量连起来。
路程
正方形周长
边长
-16-
第 4 课时 反比例
■考点 反比例的意义与判断方法 1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中
相对应的两个数的积一定,这两种量就叫作成反比例的量,它们的关系叫作反 比例关系。
2.如果用字母y和x表示两种相关联的量,用k表示它们的积(一定),反比例 关系可以用字母表示:xy=k(一定)。
-4-
例2 说一说,一个量怎样随另一个量变化? 一种故事书每本3元,买书的总价与书的本数。 解析:每本故事书的单价一定,买书的总价随着买书的本数的变化而变化, 买的本数越多,总价越多,本数越少,总价越少。 正确答案:买书的总价随着书的本数的增加而增加。 易错答案:买书的总价随着书的本数的变化而变化。 错因分析:错解错在没有点明书的总价随着本数的变化怎样变化。 满分备考:解决两个变化的量的问题时,要联系生活实际和以前学过的关 系,仔细分析,得出结论,并把两个量之间的变化关系描述出来。
刘奇的睡眠时间和天数是否成正比例关系?李英的呢? 解析:分别求出刘奇和李英的睡眠时间和对应天数的比值,如果比值一定则 成正比例关系。 正确答案:刘奇: =10, =10, =10, =10,刘奇的睡眠时间和对应 天数的比值一定,所以成正比例。
-12-
李英: =8, =8, =8, =8, =8,李英的睡眠时间和对应天数的 比值一定,所以成正比例关系。
课件——正比例
![课件——正比例](https://img.taocdn.com/s3/m/d8d58665ddccda38376baff9.png)
ห้องสมุดไป่ตู้
7 10
6 10
5 10
借与剩的和(一定 借与剩的和 一定) 10 一定
总本数( 借+剩=总本数(一定) 剩 总本数 一定)
借出的本数与剩余的本 数成正比例吗? 数成正比例吗?
2.已知 和b成正比例,完成下表。 已知a和 成正比例 完成下表。 成正比例, 已知 15 40
a b
30
50
65 13
2.5 5
时间
=60
应用知识,解决问题 应用知识,
1.审判官:判断下面每题中的两种量是不是成正比例,为什么? 审判官:判断下面每题中的两种量是不是成正比例,为什么? 审判官
(1)大豆的出油率一定,豆油的质量和大豆的质量。 )大豆的出油率一定,豆油的质量和大豆的质量。 (√ ) 豆油的质量
大豆的质量 一定) =大豆的出油率 (一定) 大豆的出油率
周长与边长的比值不变,所以周长与边长成正比例 周长与边长的比值不变,所以周长与边长成正比例 比值不变 面积与边长的比值不确定,所以面积与边长不成正比例 面积与边长的比值不确定,所以面积与边长不成正比例 比值不确定
那么要判断两种量是否成正比例该看什么? 那么要判断两种量是否成正比例该看什么? 1.一种量变化,另一种量也相应变化。 一种量变化,另一种量也相应变化。 一种量变化
2
3
4
5
6
540
7
8
路程/千米 路程 千米 90 180 270 360 450
观察上表,回答下面的问题: 观察上表,回答下面的问题: (1)表中有哪两种量? )表中有哪两种量? (2)这两种量发生什么变化 )这两种量发生什么变化? (3)什么不变? )什么不变 90 = 90 1
7 10
6 10
5 10
借与剩的和(一定 借与剩的和 一定) 10 一定
总本数( 借+剩=总本数(一定) 剩 总本数 一定)
借出的本数与剩余的本 数成正比例吗? 数成正比例吗?
2.已知 和b成正比例,完成下表。 已知a和 成正比例 完成下表。 成正比例, 已知 15 40
a b
30
50
65 13
2.5 5
时间
=60
应用知识,解决问题 应用知识,
1.审判官:判断下面每题中的两种量是不是成正比例,为什么? 审判官:判断下面每题中的两种量是不是成正比例,为什么? 审判官
(1)大豆的出油率一定,豆油的质量和大豆的质量。 )大豆的出油率一定,豆油的质量和大豆的质量。 (√ ) 豆油的质量
大豆的质量 一定) =大豆的出油率 (一定) 大豆的出油率
周长与边长的比值不变,所以周长与边长成正比例 周长与边长的比值不变,所以周长与边长成正比例 比值不变 面积与边长的比值不确定,所以面积与边长不成正比例 面积与边长的比值不确定,所以面积与边长不成正比例 比值不确定
那么要判断两种量是否成正比例该看什么? 那么要判断两种量是否成正比例该看什么? 1.一种量变化,另一种量也相应变化。 一种量变化,另一种量也相应变化。 一种量变化
2
3
4
5
6
540
7
8
路程/千米 路程 千米 90 180 270 360 450
观察上表,回答下面的问题: 观察上表,回答下面的问题: (1)表中有哪两种量? )表中有哪两种量? (2)这两种量发生什么变化 )这两种量发生什么变化? (3)什么不变? )什么不变 90 = 90 1
正比例函数 第一课时 PPT课件(数学人教版八年级下册)
![正比例函数 第一课时 PPT课件(数学人教版八年级下册)](https://img.taocdn.com/s3/m/82654e5953ea551810a6f524ccbff121dd36c583.png)
这时,列车尚未到达距离始发站 1100km的南京南站.
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(3)乘京沪高铁列车从北京南站出发2.5 h后,是否 已经过了距始发站1 100 km 的南京南站?
解:(3)高铁从北京南站出发2.5 h 的行程,是当t 2.5 是函数 y 300t 的值, 即 y 300 2.5 750 (km),
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站 上海虹桥站,约需多少小时(结果保留小数点后一位)?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
数学初中 正比例(第一课时)
认真观察这四个函数解析式,说说这些函数有什么共同点.
l 2r
m 7.8V h 0.5n T 2t
一般地,形如 y kx ( k 是常数, k 0 )的函数,叫做正比例函数, 其中k 叫做比例系数.
数学初中 正比例(第一课时)
例1 下列式子中,哪些表示y 是x 的正比例函数? (1)y=2x ; (2) y=- x ; (3)y=x2 ;
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(3)乘京沪高铁列车从北京南站出发2.5 h后,是否 已经过了距始发站1 100 km 的南京南站?
解:(3)高铁从北京南站出发2.5 h 的行程,是当t 2.5 是函数 y 300t 的值, 即 y 300 2.5 750 (km),
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站 上海虹桥站,约需多少小时(结果保留小数点后一位)?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
数学初中 正比例(第一课时)
认真观察这四个函数解析式,说说这些函数有什么共同点.
l 2r
m 7.8V h 0.5n T 2t
一般地,形如 y kx ( k 是常数, k 0 )的函数,叫做正比例函数, 其中k 叫做比例系数.
数学初中 正比例(第一课时)
例1 下列式子中,哪些表示y 是x 的正比例函数? (1)y=2x ; (2) y=- x ; (3)y=x2 ;
正比例ppt课件
![正比例ppt课件](https://img.taocdn.com/s3/m/28a8573b00f69e3143323968011ca300a6c3f6ab.png)
线性函数
在数学中,线性函数是正比例函数的 一种特例,其中y与x成正比。
面积与边长的关系
当矩形面积一定时,边长与边长成正 比,即边长增加或减少,另一边长也 会相应地增加或减少。
物理中的正比例
电阻与电流的关系
在电路中,当电压一定时,电流与电阻成反比。但实际上,电流与电压成正比 ,而电阻是恒定的,因此电流与电压成正比。
总结词
路程与速度成正比
详细描写
当路程与速度成正比时,速度越大,行走的路程越远。 例如,如果一个人的速度是5公里/小时,他需要走2小时 才能走完10公里的路程。如果他的速度增加到10公里/ 小时,他只需要1小时就能走完这10公里的路程。
谢谢您的凝听
THANKS
密度与质量的关系
总结词
密度与质量成正比
详细描写
密度(ρ)和质量(m)之间的关系 可以用公式 ρ = m/V 来表示,其中 V 是体积。当物体的体积保持不变时 ,密度和质量成正比。这意味着,物 体的质量越大,其密度也越大。
路程与速度的关系
总结词
路程与速度成正比
详细描写
路程(s)和速度(v)之间的关系可以用公式 s = v × t 来表示,其中 t 是时间。当时 间保持不变时,路程和速度成正比。这意味着,速度越大,在相同时间内所经过的路程
正比例的特点
比值恒定
正比例关系的两个量的比 值始终保持不变,即 y/x=k(k为常数)。
同步变化
当一个量增加或减少时, 另一个量也按相同的方向
和相同的比例变化。
线性关系
正比例关系表现为一条直 线,当x增大时,y也增大 ,当x减小时,y也减小。
正比例与反比例的区分
正比例
两个量的比值保持恒定,当一个 量增加时,另一个量也按相同的 比例增加。
在数学中,线性函数是正比例函数的 一种特例,其中y与x成正比。
面积与边长的关系
当矩形面积一定时,边长与边长成正 比,即边长增加或减少,另一边长也 会相应地增加或减少。
物理中的正比例
电阻与电流的关系
在电路中,当电压一定时,电流与电阻成反比。但实际上,电流与电压成正比 ,而电阻是恒定的,因此电流与电压成正比。
总结词
路程与速度成正比
详细描写
当路程与速度成正比时,速度越大,行走的路程越远。 例如,如果一个人的速度是5公里/小时,他需要走2小时 才能走完10公里的路程。如果他的速度增加到10公里/ 小时,他只需要1小时就能走完这10公里的路程。
谢谢您的凝听
THANKS
密度与质量的关系
总结词
密度与质量成正比
详细描写
密度(ρ)和质量(m)之间的关系 可以用公式 ρ = m/V 来表示,其中 V 是体积。当物体的体积保持不变时 ,密度和质量成正比。这意味着,物 体的质量越大,其密度也越大。
路程与速度的关系
总结词
路程与速度成正比
详细描写
路程(s)和速度(v)之间的关系可以用公式 s = v × t 来表示,其中 t 是时间。当时 间保持不变时,路程和速度成正比。这意味着,速度越大,在相同时间内所经过的路程
正比例的特点
比值恒定
正比例关系的两个量的比 值始终保持不变,即 y/x=k(k为常数)。
同步变化
当一个量增加或减少时, 另一个量也按相同的方向
和相同的比例变化。
线性关系
正比例关系表现为一条直 线,当x增大时,y也增大 ,当x减小时,y也减小。
正比例与反比例的区分
正比例
两个量的比值保持恒定,当一个 量增加时,另一个量也按相同的 比例增加。
《正比例》课件
![《正比例》课件](https://img.taocdn.com/s3/m/d26c0f8f59f5f61fb7360b4c2e3f5727a5e9249e.png)
02
正比例的应用
生活中的正比例例子
购物时,商品的单价一定,购买 的数量与花费的钱数成正比例。
速度一定时,行驶的距离与时间 成正比例。
三角形面积一定时,底边长度与 高成正比例。
数学中的正比例应用
在几何学中,线段的长度与其对应的 角度成正比例。
在概率论中,随机事件的概率与其发 生的可能性成正比例。
描述
当两个量x和y成正比时, 它们的比值x/y是一个常 数,这个常数被称为比例 常数。
公式
如果x和y成正比,则存在 一个常数k,使得x/y=k。
举例
如果y=2x,那么x和y的比 值是1:2,比例常数是2。
当两个量成正比时,它们的增减趋势相同
描述
如果一个量增加,另一个 量也以相同的比例增加; 如果一个量减少,另一个 量也以相同的比例减少。
举例
正比例的例子有y=2x,反比例的例 子有xy=6(如x=3时y=2,x=6时 y=1)。
04
正比例的证明
通过图像证明正比例
图像法证明
通过绘制两个比例数的图像,可以 直观地展示正比例关系。在坐标系中 ,当两个比例数成正比时,它们的图 像将形成一条直线。
斜率证明
在图像上,两个成正比的比例数之间 的直线的斜率是恒定的。如果两个比 例数不成正比,那么它们之间的直线 的斜率会发生变化。
《正比例》ppt课件
目 录
• 正比例的定义 • 正比例的应用 • 正比例的性质 • 正比例的证明 • 正比例的练习题
01
正比例的定义
什么是正比例
01
描述两个量之间的变化关系,当 一个量变化时,另一个量也按相 同的比例变化。
02
可以用数学表达式表示为: y/x=k,其中x和两个量之间的图像,从而判断它们是否成正比。如 果数据点大致分布在一条直线上,那么可以认为这两个量之间存在正比关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两种相关联的量,一种量变化,另一 种量也随着变化 ,如果这两种量中相 对应的两个数的积一定,这两种量就 叫做成反比例的量,它们的关系叫做 反比例关系。
如果用x和y表示两种相关联的量,用k表示 它们的比值,那么上面这种数量关系式可以用
x·y=k (一定)来表示
1、正比例图像是一条 什么线?
2、反比例图像是一条 什么线?
(2)
每小时加工数(个)
一辆汽车在高速路上行驶,速度保持 在100千米/时,说一说汽车行驶的路程随 时间变化的情况,并说说可以用哪些方式 来表示这两个量之间的关系?
(1)可以列表
时间/时 1 2 3 4 5 ---
路程/千米 100 200 300 400 500 ---
(2)可以画图
路程/千米
判断下列各题(对的打“√”错的打“X”)
(1)圆的周长与直径成正比例
(√ )
圆的周长÷直径=∏
(2)一捆100米长的电线,用去的长度与剩下的长
度.(不成比例 ) (用去的长度+剩下的长度=100米) (3)三角形的面积一定,它的底和高( 成反比例)
三角形面积(一定)=底×高÷2
(4)一个数与它的倒数。
a× 1 =1 (a≠0) a
(成反比例 )
体积/升
3、右图表示的 60
是一根水管不停 地向水箱注水,
每分滴数/滴 60 50 40 30 ---
时间/分
20 24 30 40 ---
每分滴数与所需时间成反比例
(1)输液时一小瓶葡萄糖液均匀滴落时, 每分滴数与所需时间的关系如下。
每分滴数/滴 60 50 40 30 ---
时间/分
20 24 30 40 ---
60×20=1200, 50×24=1200 40×30=1200, 30×40=1200 每分滴数与时间成反比例
小明的身高与体重不成比例
Hale Waihona Puke (3)体积一定,圆柱体的底面积和 高的关系如下。
底面积/ 分米
300
200
150
120 100 ---
高/分米 2 3 4 5 6 ---
体积一定,圆柱体的底面积和高成反比例
(3)体积一定,圆柱体的底面积和高的关系如下。
底面积/ 分米
300
200
150
120 100 ---
(1)如果 a
一定,
c 成正比例。
(2)如果 b 一定, c 成正比例。
(3)如果 c 一定, b 成反比例
b和 a和 a和
4、判断下面各数量关系中,当哪一个 量一定时,另外两个量成什么比例?
• (1)时间、速度和路程 • (2)工作总量、工作效率和工作
时间 • (3)单价、总价和数量 • (4)平行四边形的面积、底和高
高/分米 2 3 4 5 6 ---
300×2=600, 200×3=600 150×4=600 120×5=600, ,
体积一定,圆柱体的底面积和高成反比例
2、判断下面每题中的两个量是否成正比 例或反比例。
(1)出油率一定,香油质量与芝麻的质量.( 成正比例)
出油率(一定)=香油质量÷芝麻的质量×100%
50
水箱内水的体积 40
的变化情况。
30
20
看图填表
10
0 5 10 15 20 25 时间/分
注水时间/分 5 8 10 13 23 水的体积/升 10 16 20 26 46
4.磁悬浮列车匀速行驶时,路程 与时间的关系如下。
时间/分 1 2 3 4 5 6 … 路程/千米 7 14 21 28 35 42 …
(1)图中的点A表示时间为1分时,磁悬浮列车驶 过的路程为7千米。请你试着描出其它他各点 路程/千米
42 35 28 21
14
A
7
0 1 2 3 4 5 6 7 时间/分
(2)连接各点,它们在一条直线上吗?
路程/千米
42 35 28 21 14 7
0 1 2 3 4 5 6 7 时间/分
(3)列车运行2分半时,行驶的路程是多少? 路程/千米
三、正比例和反比例的相同点和不同点:
正比例
反比例
相同 都有一个不变量;两个变量,一种量
点 随着另一种量变化。
不 比值(商)一定 积一定
同 点
y x
k(一定)x×y=k(一定)
正比例图像是一条反比例图像是一条
直线。
曲线。
(1)
时间(时) 1 2 3 4 5 6 ······ 路程(千米) 40 80 120 160 200 240 ······
总复习
一、正比例
两种相关联的量,一种量变化,另一 种量也随着变化,如果这两种量中相对应 的两个数的比的比值(商)一定,这两种 量就叫做成正比例量,它们之间的关系叫 做正比例关系。
如果用x和y表示两种相关联的量,用k表示 它们 的比值,那么上面这种数量关系式可以用
y/x =k (一定) 来表示。
二、反比例
(2)小明的身高与体重的关系如下 身高/厘米 100 110 120 130 --体重/千克 40 42 43 45 ---
小明的身高与体重不成比例
(2)小明的身高与体重的关系如下 身高/厘米 100 110 120 130 ---
体重/千克 40 42 43 45 ---
100×40=4000, 110×42=4620 120÷43≈2.79 130÷45≈2.89
(2)
每小时加工数 5 10 15 20 25 30 ······ 加工时间 120 60 40 30 24 20 ······
路程(千米)
加工时间(时)
240
120
200
100
160
80
120
60
80
40
40
20
0 1 2 3 4 5 6 7时间(时) 0 5 10 15 20 25 30
(1)
42 35 28 21 14 7
0 1 2 3 4 5 6 7 时间/分
7×2.5=17.5(千米)
一、填空。
1、在数量、单价和总价中: (1)如果 数量 一定, 总价 和
单价 成正比例。
(2)如果 单价 一定, 总价 和 数量 成正比例。
(3)如果 总价 一定, 单价 和 数量 成反比例
2、已知 a × b=c。
500 400 300 200 100
0 12 34 5
时间/分
(3)可以用式子表示
• 如果用t表示汽车行驶 的时间,S表示汽车行 驶的路程,那么
S÷t=100
你还能举出生活中 或数学中一个量随另 一个量变化的例子吗?
下面表格中的两个量是否成正比 例或反比例?为什么?
(1)输液时一小瓶葡萄糖液均匀滴落时, 每分滴数与所需时间的关系如下。
如果用x和y表示两种相关联的量,用k表示 它们的比值,那么上面这种数量关系式可以用
x·y=k (一定)来表示
1、正比例图像是一条 什么线?
2、反比例图像是一条 什么线?
(2)
每小时加工数(个)
一辆汽车在高速路上行驶,速度保持 在100千米/时,说一说汽车行驶的路程随 时间变化的情况,并说说可以用哪些方式 来表示这两个量之间的关系?
(1)可以列表
时间/时 1 2 3 4 5 ---
路程/千米 100 200 300 400 500 ---
(2)可以画图
路程/千米
判断下列各题(对的打“√”错的打“X”)
(1)圆的周长与直径成正比例
(√ )
圆的周长÷直径=∏
(2)一捆100米长的电线,用去的长度与剩下的长
度.(不成比例 ) (用去的长度+剩下的长度=100米) (3)三角形的面积一定,它的底和高( 成反比例)
三角形面积(一定)=底×高÷2
(4)一个数与它的倒数。
a× 1 =1 (a≠0) a
(成反比例 )
体积/升
3、右图表示的 60
是一根水管不停 地向水箱注水,
每分滴数/滴 60 50 40 30 ---
时间/分
20 24 30 40 ---
每分滴数与所需时间成反比例
(1)输液时一小瓶葡萄糖液均匀滴落时, 每分滴数与所需时间的关系如下。
每分滴数/滴 60 50 40 30 ---
时间/分
20 24 30 40 ---
60×20=1200, 50×24=1200 40×30=1200, 30×40=1200 每分滴数与时间成反比例
小明的身高与体重不成比例
Hale Waihona Puke (3)体积一定,圆柱体的底面积和 高的关系如下。
底面积/ 分米
300
200
150
120 100 ---
高/分米 2 3 4 5 6 ---
体积一定,圆柱体的底面积和高成反比例
(3)体积一定,圆柱体的底面积和高的关系如下。
底面积/ 分米
300
200
150
120 100 ---
(1)如果 a
一定,
c 成正比例。
(2)如果 b 一定, c 成正比例。
(3)如果 c 一定, b 成反比例
b和 a和 a和
4、判断下面各数量关系中,当哪一个 量一定时,另外两个量成什么比例?
• (1)时间、速度和路程 • (2)工作总量、工作效率和工作
时间 • (3)单价、总价和数量 • (4)平行四边形的面积、底和高
高/分米 2 3 4 5 6 ---
300×2=600, 200×3=600 150×4=600 120×5=600, ,
体积一定,圆柱体的底面积和高成反比例
2、判断下面每题中的两个量是否成正比 例或反比例。
(1)出油率一定,香油质量与芝麻的质量.( 成正比例)
出油率(一定)=香油质量÷芝麻的质量×100%
50
水箱内水的体积 40
的变化情况。
30
20
看图填表
10
0 5 10 15 20 25 时间/分
注水时间/分 5 8 10 13 23 水的体积/升 10 16 20 26 46
4.磁悬浮列车匀速行驶时,路程 与时间的关系如下。
时间/分 1 2 3 4 5 6 … 路程/千米 7 14 21 28 35 42 …
(1)图中的点A表示时间为1分时,磁悬浮列车驶 过的路程为7千米。请你试着描出其它他各点 路程/千米
42 35 28 21
14
A
7
0 1 2 3 4 5 6 7 时间/分
(2)连接各点,它们在一条直线上吗?
路程/千米
42 35 28 21 14 7
0 1 2 3 4 5 6 7 时间/分
(3)列车运行2分半时,行驶的路程是多少? 路程/千米
三、正比例和反比例的相同点和不同点:
正比例
反比例
相同 都有一个不变量;两个变量,一种量
点 随着另一种量变化。
不 比值(商)一定 积一定
同 点
y x
k(一定)x×y=k(一定)
正比例图像是一条反比例图像是一条
直线。
曲线。
(1)
时间(时) 1 2 3 4 5 6 ······ 路程(千米) 40 80 120 160 200 240 ······
总复习
一、正比例
两种相关联的量,一种量变化,另一 种量也随着变化,如果这两种量中相对应 的两个数的比的比值(商)一定,这两种 量就叫做成正比例量,它们之间的关系叫 做正比例关系。
如果用x和y表示两种相关联的量,用k表示 它们 的比值,那么上面这种数量关系式可以用
y/x =k (一定) 来表示。
二、反比例
(2)小明的身高与体重的关系如下 身高/厘米 100 110 120 130 --体重/千克 40 42 43 45 ---
小明的身高与体重不成比例
(2)小明的身高与体重的关系如下 身高/厘米 100 110 120 130 ---
体重/千克 40 42 43 45 ---
100×40=4000, 110×42=4620 120÷43≈2.79 130÷45≈2.89
(2)
每小时加工数 5 10 15 20 25 30 ······ 加工时间 120 60 40 30 24 20 ······
路程(千米)
加工时间(时)
240
120
200
100
160
80
120
60
80
40
40
20
0 1 2 3 4 5 6 7时间(时) 0 5 10 15 20 25 30
(1)
42 35 28 21 14 7
0 1 2 3 4 5 6 7 时间/分
7×2.5=17.5(千米)
一、填空。
1、在数量、单价和总价中: (1)如果 数量 一定, 总价 和
单价 成正比例。
(2)如果 单价 一定, 总价 和 数量 成正比例。
(3)如果 总价 一定, 单价 和 数量 成反比例
2、已知 a × b=c。
500 400 300 200 100
0 12 34 5
时间/分
(3)可以用式子表示
• 如果用t表示汽车行驶 的时间,S表示汽车行 驶的路程,那么
S÷t=100
你还能举出生活中 或数学中一个量随另 一个量变化的例子吗?
下面表格中的两个量是否成正比 例或反比例?为什么?
(1)输液时一小瓶葡萄糖液均匀滴落时, 每分滴数与所需时间的关系如下。