初三数学课件
合集下载
初三数学复习课课件
总结词:掌握代数方程与不等式的解题技巧。
二次根式与一元二次方程
详细描述:通过解决涉及二次根式和一元二次方程的题 目,学生可以更好地理解两者之间的关联,掌握解题方 法,提高解决复杂代数问题的能力。
几何模拟试题
三角形与四边形
详细描述:通过解决三角形与四边形的题目,学生可以 深入理解三角形与四边形的性质和判定条件,掌握解题 方法,提高解决几何问题的能力。 总结词:掌握圆的基本性质及其应用。
几何重点难点
几何变换
掌握平移、旋转和轴对称的变换性质,理解变换在几何问题中的应用。
函数重点难点
一次函数与反比例函数
01
二次函数
03
02
掌握一次函数和反比例函数的图像和性质, 理解函数图像的平移和对称变换。
04
掌握二次函数的图像和性质,理解二次函 数的顶点和对称轴。
函数的应用
05
06
掌握函数在实际问题中的应用,理解函数 的最大值和最小值的求解方法。
03
复习解题方法
代数解题方法
代数方程求解
总结了代数方程的基本 解法,包括移项、合并 同类项、去括号、解方
程等步骤。
不等式求解
介绍了不等式的基本性 质和解题技巧,包括移 项、合并同类项、去分
母等步骤。
因式分解
总结了因式分解的常用 方法和技巧,包括提公
因式法、公式法等。
分式化简
介绍了分式化简的基本 方法和技巧,包括约分 、通分、分子分母同乘
04
复习易错题解析
代数易错题解析
总结词
代数式运算错误
详细描述
学生在进行代数式运算时,常常因为对运算法则理解不透彻或粗心大意导致运算错误,如括号处理不 当、符号混淆等。
初三数学课件ppt
包括一元一次不等式的性质和解法, 以及不等式组的性质和解法。
函数
函数的定义和性质
包括函数的定义、函数的表示方法、函数的单调性、奇偶性和周 期性等。
一次函数和反比例函数
包括一次函数和反比例函数的定义、性质和图像,以及它们的实际 应用。
函数的应用
通过实例和问题解决,让学生了解函数在实际生活中的应用,如路 程、速度和时间的关系等。
01
点、线、面的关系
理解点、线、面在三维空间中的关系,如点在面上、线在面上、线与线
相交、线与线平行等。
02
立体图形的分类与性质
了解常见的立体图形,如长方体、正方体、球体、圆柱体等,理解其性
质和特点。
03
立体图形的表面积与体积计算
掌握立体图形的表面积和体积计算公式,理解表面积与体积的关系。
03
概率与统计初步
数据中获取有用的信息。
统计方法
常见的统计方法包括描述性统计 和推断性统计,其中描述性统计 是对数据进行整理和描述,而推 断性统计则是对数据进行推理和
预测。
统计应用
统计在各个领域都有广泛的应用 ,如经济学、社会学、医学等。
数据处理与图表
数据处理
数据处理是指对数据进行清洗、去重、排序、筛选等操作 ,以便更好地利用数据进行分析和预测。
圆
圆的性质
掌握圆的基本性质,如圆上任一点到圆心的距离等于半径,圆心 角与圆周角的关系等。
圆的周长与面积计算
掌握圆的周长和面积计算公式,理解周长与直径、半径的关系,面 积与半径的关系。
圆与三角形、四边形的关系
理解圆与三角形、四边形在面积和周长计算中的关系,如圆内接三 角形、外切三角形等。
立体几何初步
初三上数学课件(人教版)-实际问题与一元二次方程(第一课时)
1.会根据具体问题(按一定传播速度传播问题、数字问 题和利润问题)中的数量关系列一元二次方程并求解。
2.能根据问题的实际意义,检验所得结果是否合理。 3.进一步掌握列方程解应用题的步骤和关键。
重点:列一元二次方程解决实际问题 . 难点:找出实际问题中的等量关系 .
未知量
间接设
实际意义
问题:有一人患了流感,经过两轮传染后,有121人患了 流感,每轮传染中平均一个人传染了几个人?
B
9
解:设3月份到5月份营业额的月平均增长率为x, 根据题意得,400×(1+10%)(1+x)2=633.6, 解得,x =0.2=20%,x =2.2(不合题意舍去).答:(略)
解:设这个两位数的个位数字为x,
则十位数字为x-2,这个两位数为10(x-2)+x,
依题意得10(x-2)+x=3x(x-2)
分析:设每轮传染中平均一个人传染x个人,
⑴开始有一人患了患流感,第一轮的传染源就是这个
人,他传染了x个人,用代数式表示第一轮后,共有___人
患了流感;第二轮传染中,这些人中每一个人又传染了x人
,用代数式表示
,第二轮后,共有
人患流感
。
⑵根据等量关系列方程:_______.
⑶解这个方程得:_______.
(2)设未知数(几种设法) .设较小的奇数为x,则另 一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设 较小的奇数为2x-1,则另一个奇数2x+1. 解法二:
设较小的奇数为x-1,则较大的奇数为x+1
据题意,得(x-1)(x+1)=323. 整理后,得x2=324. 解这个方程,得x1=18,x2=-18. 当x=18时,18-1=17,18+1=19.
2.能根据问题的实际意义,检验所得结果是否合理。 3.进一步掌握列方程解应用题的步骤和关键。
重点:列一元二次方程解决实际问题 . 难点:找出实际问题中的等量关系 .
未知量
间接设
实际意义
问题:有一人患了流感,经过两轮传染后,有121人患了 流感,每轮传染中平均一个人传染了几个人?
B
9
解:设3月份到5月份营业额的月平均增长率为x, 根据题意得,400×(1+10%)(1+x)2=633.6, 解得,x =0.2=20%,x =2.2(不合题意舍去).答:(略)
解:设这个两位数的个位数字为x,
则十位数字为x-2,这个两位数为10(x-2)+x,
依题意得10(x-2)+x=3x(x-2)
分析:设每轮传染中平均一个人传染x个人,
⑴开始有一人患了患流感,第一轮的传染源就是这个
人,他传染了x个人,用代数式表示第一轮后,共有___人
患了流感;第二轮传染中,这些人中每一个人又传染了x人
,用代数式表示
,第二轮后,共有
人患流感
。
⑵根据等量关系列方程:_______.
⑶解这个方程得:_______.
(2)设未知数(几种设法) .设较小的奇数为x,则另 一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设 较小的奇数为2x-1,则另一个奇数2x+1. 解法二:
设较小的奇数为x-1,则较大的奇数为x+1
据题意,得(x-1)(x+1)=323. 整理后,得x2=324. 解这个方程,得x1=18,x2=-18. 当x=18时,18-1=17,18+1=19.
九年级上册数学精品课件: 传播问题与一元二次方程
1+x+(1+x)x(1=+x)2
1(+1x+x) (1+x)2∙
第三轮 2
x
(1+x)2+(1+x)2∙x(1+x)3
=
(1+x)n
第n轮 经过n轮传染后共有 (1+x)n 人患流感.
例1:某种植物的主干长出若干数目的支干,每个支干又 长出同样数目的小分支,主干,支干和小分支的总数是91, 每个支干长出多少小分支?
答:平均一个人传染了____1__0__个人.
注意:一元二次方程的解有可能不符合题意,所以 一定要进行检验.
想一想:如果按照这样的传染速度,三轮传染后有多 少人患流感? 分析
第一轮传染后 第二轮传染后的 第三轮传染后的
的人数
人数
人数
(1+x)1
(1+x)2
(1+x)3
第1种做法 以1人为传染源,3轮传染后的人数是:
导入新课
视频引入
导入新课
图片引入
传染病,一传十, 十传百… …
讲授新课
一 传播问题与一元二次方程
合作探究
引例:有一人患了流感,经过两轮传染后共有121人 患了流感,每轮传染中平均一个人传染了几个人?
分析 :设每轮传染中平均一个人传染了x个人. 传染
源记作小明,其传染示意图如下:
第2轮
第1轮 1
2
•••
小明
x
注意:不要 忽视小明的 二次传染
小明
第1轮传染后人数
x+1
第2轮传染后人数
x(x+1)+x+1
根据示意图,列表如下:
人教版数学初三上册课件:二次函数
典例精析
例1 下列函数中哪些是二次函数?为什么?(x是自
变量)
① y=ax2+bx+c ② s=3-2t²
③y=x2
不一定是,缺少 a≠0的条件.
④
y
1 x2
不是,右边 是分式.
⑤y=x²+x³+25
不是,x的最 高次数是3.
⑥ y=(x+3)²-x²
y=6x+9
方法归纳
判断一个函数是不是二次函数,先看原函数 和整理化简后的形式再作判断.除此之外,二次函 数除有一般形式y=ax2+bx+c(a≠0)外,还有其特殊 形式如y=ax2,y=ax2+bx, y=ax2+c等.
二 二次函数定义的应用
例2 y m 3 xm27.
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
解:(1)由题可知,m2 7 1, 解得 m= 2 2;
m 3 0,
m2 7 2,
(2)由题可知,
解得 m=3.
m 3 0,
注意 第(2)问易忽略二次项系数a≠0这一限制条件,从而 得出m=3或-3的错误答案,需要引起同学们的重视.
问题2 某工厂一种产品现在的年产量是20件,计划 今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y将随计划所定的x的 值而确定,y与x之间的关系怎样表示?
分析:这种产品的原产量是20件, 一年后的产量是 20(1+x) 件,再经过一年后的产量是 20(1+x)2 件,即
k 2 3k 4 2,
解:(1)由题意,得
k 1 0,
解得 k=2;
初三数学_根的判别式_课件
(2)方程化为:4x2-12x+9=0, ∴b2-4ac=(-12)2-4×4×9=0. ∴方程有两个相等的实数根.
(3)方程化为:5y2-7y+5=0, ∴b2-4ac=(-7)2-4×5×5=-51<0. ∴方程无实数根.
九年级数学名师课程
例2 若关于x的一元二次方程kx2-2x-1=0有两个不相等的 实数根,则k的取值范围是( B )
九年级数学名师课程
一元二次方程根的判别式
九年级数学名师课程
九年级数学名师课程
一、知识回顾
用公式法解下列方程:
⑴ x2+x-1 = 0
⑵ x2-6x+9 = 0
⑶2x2-2x+1 = 0
你在用公式法求解过程中遇到哪些不同的情况?
你是怎样处理所遇到的问题的?
从上面几个方程不同的解的情况,你能归纳出什么结论呢?
九年级数学名师课程
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根. 2.根据根的情况,也可以逆推出Δ的情况,这方面 的知识主要用来求取值范围等问题.
3.求判别式时,应该先将方程化为一般形式. 4.应用判别式解决有关问题时,前提条件为 “方程是一元二次方程”,即二次项系数不为0.
解: 4m2 42m 4
拓展补充: 4m2 8m 16
4 m2 2m 1 12
4m 12 12 0
所以,不论m为何值,这个方程总有两个不相等的实 数根
九年级数学名师课程
例4.在一元二次方程 ax2 bx c 0(a 0)中
若a与c异号,则方程 ( )
A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法确定
(3)方程化为:5y2-7y+5=0, ∴b2-4ac=(-7)2-4×5×5=-51<0. ∴方程无实数根.
九年级数学名师课程
例2 若关于x的一元二次方程kx2-2x-1=0有两个不相等的 实数根,则k的取值范围是( B )
九年级数学名师课程
一元二次方程根的判别式
九年级数学名师课程
九年级数学名师课程
一、知识回顾
用公式法解下列方程:
⑴ x2+x-1 = 0
⑵ x2-6x+9 = 0
⑶2x2-2x+1 = 0
你在用公式法求解过程中遇到哪些不同的情况?
你是怎样处理所遇到的问题的?
从上面几个方程不同的解的情况,你能归纳出什么结论呢?
九年级数学名师课程
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根. 2.根据根的情况,也可以逆推出Δ的情况,这方面 的知识主要用来求取值范围等问题.
3.求判别式时,应该先将方程化为一般形式. 4.应用判别式解决有关问题时,前提条件为 “方程是一元二次方程”,即二次项系数不为0.
解: 4m2 42m 4
拓展补充: 4m2 8m 16
4 m2 2m 1 12
4m 12 12 0
所以,不论m为何值,这个方程总有两个不相等的实 数根
九年级数学名师课程
例4.在一元二次方程 ax2 bx c 0(a 0)中
若a与c异号,则方程 ( )
A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法确定
九年级上册数学ppt课件
一、教材分析
(一)教材所处的地位及作用。 本节课是九年级上册(人教版)
第二十三章第二节 中心对称的第一课 时。它是初中数学的一项重要内容。 它与轴对称、轴对称图形、旋转有着 密不可分的联系,实际生活中也随处可 见中心对称的应用。
(二)教学目标
1 、知识目标:
(1)理解并掌握中心对称的概念和性质。
2.动手操作
学生在教师的引导下动手操作, 旋转三角板,画出关于点O对称的 两个三角形,在学生画出两个中心 对称的三角形后,及时展开中心对 称性质的研究。
设计意图
通过学生动手操作、合作交流, 来获取知识,这样设计有利于突破 难点,也让学生体会到观察、猜想、 归纳的数学思想及学习过程,提高 学生分析问题和解决问题的能力。
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你又有什么发现?
O
重合
B
(2) C
重合
设计意图
鼓励学生通过观察、思考 和讨论,用自己的语言来描述 这些图案的共同特征,初步感 受中心对称的概念。这种以实 际问题为切入点导入新课,不 仅自然,而且也反映了数学来 源于生活,学习数学是为了服 务于生活。
3、归纳验证
归纳:通过动手操作、合作交流,探索 中心对称的性质,让学生在整个学习过 程中感受学习数学的乐趣,使学生学会 “文字语言”与“数学语言”这两种表 达方式。
验证:学生在探究过程中进行了画图、 旋转还有证明等活动,引导学生从中体 会到数形结合和从特殊到一般的数学思 想,而且这一过程也有利于培养学生严 谨、科学的学习态度。
教法
数学是一门培养人的思维,发展 人的思维的重要学科,因此在教学中, 不仅要使学生“知其然”,而且还要 使学生“知其所以然”。针对初三年 级学生的认知结构和心理特征,本节 课可选择“引导探索法”,引导学生 自主探索,合作交流,这种教学理念 紧随新课改理念,也反映了时代精神。
(一)教材所处的地位及作用。 本节课是九年级上册(人教版)
第二十三章第二节 中心对称的第一课 时。它是初中数学的一项重要内容。 它与轴对称、轴对称图形、旋转有着 密不可分的联系,实际生活中也随处可 见中心对称的应用。
(二)教学目标
1 、知识目标:
(1)理解并掌握中心对称的概念和性质。
2.动手操作
学生在教师的引导下动手操作, 旋转三角板,画出关于点O对称的 两个三角形,在学生画出两个中心 对称的三角形后,及时展开中心对 称性质的研究。
设计意图
通过学生动手操作、合作交流, 来获取知识,这样设计有利于突破 难点,也让学生体会到观察、猜想、 归纳的数学思想及学习过程,提高 学生分析问题和解决问题的能力。
(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你又有什么发现?
O
重合
B
(2) C
重合
设计意图
鼓励学生通过观察、思考 和讨论,用自己的语言来描述 这些图案的共同特征,初步感 受中心对称的概念。这种以实 际问题为切入点导入新课,不 仅自然,而且也反映了数学来 源于生活,学习数学是为了服 务于生活。
3、归纳验证
归纳:通过动手操作、合作交流,探索 中心对称的性质,让学生在整个学习过 程中感受学习数学的乐趣,使学生学会 “文字语言”与“数学语言”这两种表 达方式。
验证:学生在探究过程中进行了画图、 旋转还有证明等活动,引导学生从中体 会到数形结合和从特殊到一般的数学思 想,而且这一过程也有利于培养学生严 谨、科学的学习态度。
教法
数学是一门培养人的思维,发展 人的思维的重要学科,因此在教学中, 不仅要使学生“知其然”,而且还要 使学生“知其所以然”。针对初三年 级学生的认知结构和心理特征,本节 课可选择“引导探索法”,引导学生 自主探索,合作交流,这种教学理念 紧随新课改理念,也反映了时代精神。
初三数学ppt课件
1.二次函数的图象有着丰富的内涵,解决二次函数 的题目应尽可能地画出大致的抛物线图象,结合图 形,解决问题.利用a、b、c的值可判断二次函数的 大致位置情况;反之,若已知二次函数的大致位 置,也可以判断出一些特殊关系式或字母的取值 范围等. 2.二次函数还与一元二次方程的知识紧密联系.利 用方程根的性质、根的判别式,可判定抛物线与x 轴交点的情况;反之,可以求某些字母的取值范 围. 3.要准确辨析条件,选用适当的形式求二次函 数解析式,即已知任意三点坐标选用一般式; 已知顶点坐标、对称轴或最值常可选用顶点式; 已知抛物线与x轴的两个交点坐标常选用交点式.
C.2a+b>0
D.4a-2b+c<0
a﹥0 b﹤0 c﹤0 X= - b/2a<1 ∴-b<2a ∴2a+b>0
当x=-2时, y=4a-2b+c >0
8
10、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是( D)
A.a>0
B.a>- 4/9
C.a> 9/4 D.a<9/4且a≠0
轴交于A、B两点,与y轴交于点C,且OB= 3,
CB=2 3,∠CAO=30°,求抛物线的解析式和它
的顶点坐标.
OC= 3
OA= 3 3
y 1 x2 4 3x 3 33
顶点坐标为( 2 3,1)
13
挑恭 战喜 成你 功
把你的喜悦和大家一起分享, 也请把你的收获告诉你的同桌吧!
14
四、方法小结
2m1时图象过原点另一个交点坐标为103当m1且m3时抛物线的顶点在第四象限轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论13如图所示已知抛物线yaxcb2cao30求抛物线的解析式和它的顶点坐标
C.2a+b>0
D.4a-2b+c<0
a﹥0 b﹤0 c﹤0 X= - b/2a<1 ∴-b<2a ∴2a+b>0
当x=-2时, y=4a-2b+c >0
8
10、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是( D)
A.a>0
B.a>- 4/9
C.a> 9/4 D.a<9/4且a≠0
轴交于A、B两点,与y轴交于点C,且OB= 3,
CB=2 3,∠CAO=30°,求抛物线的解析式和它
的顶点坐标.
OC= 3
OA= 3 3
y 1 x2 4 3x 3 33
顶点坐标为( 2 3,1)
13
挑恭 战喜 成你 功
把你的喜悦和大家一起分享, 也请把你的收获告诉你的同桌吧!
14
四、方法小结
2m1时图象过原点另一个交点坐标为103当m1且m3时抛物线的顶点在第四象限轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论轴只有一个交点抛物线与轴总有交点且当抛物线与为何值时无论13如图所示已知抛物线yaxcb2cao30求抛物线的解析式和它的顶点坐标
初三下册数学课件 余弦、正切
巩固练习
第二十八章 锐角三角函数
如图,6个形状相同的菱形组成网格,菱形的顶点
称为格点,若O=60°,A,B,C三点都在格点上,
求tanABC
A
C
O
B
D
A O
C B
Hale Waihona Puke 巩固练习第二十八章 锐角三角函数
如图,在平行四边形ABCD中,AEBC于点E, 1
AFCD于点F,若AE=6,AF=4,cosEAF= 3,求CF
其中∠A =∠D,∠C =∠F = 90°,则
成立吗?为什么?
B
AC DF AB DE E
A
C
D
F
知识探究
第二十八章 锐角三角函数
我们来试着证明前面的问题:
∵ ∠A=∠D,∠C=∠F=90°,
∴ ∠B=∠E,
从而 sinB = sinE,
因此 AC DF .
AB DE
B
E
A
CD
F
知识探究
第二十八章 锐角三角函数
注意数形结合,构造直角三角形).
2. sinA、 cosA是一个比值(数值).
3. sinA、 cosA的大小只与∠A的大小有关,而与直角三
角形的边长无关.
巩固练习
第二十八章 锐角三角函数
1.Rt△ABC中,∠C=90°,如果AB=2,BC=1,
那么cosB的值为( A )
A. 1
B. 3
C. 3
A
B
E
D F
C
课堂小结
余弦函数 和
正切函数
余弦 正切
第二十八章 锐角三角函数
cos A =∠A斜的边邻边 tan A =∠∠AA的的对邻边边
2024版年度初三数学最新课件
当方程组无法直接求解时,可以引入参数进 行求解。
2024/2/2
12
03
函数初步认识
Chapter
2024/2/2
13
函数概念及表示方法
函数定义
函数是一种特殊的对应关系,表 示输入与输出之间的依赖关系。
2024/2/2
表示方法
函数可以用解析式、表格、图象等 多种形式表示。
函数三要素
定义域、值域、对应关系是构成函 数的三个基本要素。
2024/2/2
分式的概念 分式的基本性质
分式的运算 分式方程
分母中含有字母的式子叫做分式, 分式有意义的条件是分母不为零。
分式的加、减、乘、除运算,以 及约分、通分等运算技巧。
6
二次根式化简与计算
01
02
03
ห้องสมุดไป่ตู้
04
二次根式的概念
形如√a(a≥0)的式子叫做二 次根式,其中a叫做被开方数。
二次根式的性质
2024/2/2
31
创新思维和批判性思维培养
一题多解
鼓励学生从不同角度思考问题, 寻求多种解题方法,培养学生的 创新思维能力。
错题分析
引导学生分析错题原因,找出解 题过程中的漏洞,培养学生的批 判性思维能力。
反思与质疑
鼓励学生对所学知识进行反思和 质疑,提出自己的见解和疑问, 增强学生的创新思维和批判性思 维能力。
2024/2/2
32
THANKS
感谢观看
2024/2/2
33
通过移项、合并同类项、系数化为1 等步骤求解一元一次不等式。
2024/2/2
11
方程组求解策略
代入消元法
加减消元法
(初三数学课件)人教版初中九年级数学上册第24章圆24.3 正多边形和圆教学课件
拓 广 探 索 题
一个平面封闭图形内(含边界)任意两点距离的最大值称
为该图形的“直径”,封闭图形的周长与直径之比称为图
形的“周率”,下面四个平面图形(依次为正三角形、正
方形、正六边形、圆)的周率从左到右依次记为a1,a2,
a3,a4,则下列关系中正确的是( B )
A.a4>a2>a1
B.a4>a3>a2
五边形的各条对角线,画出一个五角星.
巩固练习
连 接 中 考
尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通
过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A、B、C、D、E、F六
个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两
弧的一个交点;③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是( D )
A. 3 r
B.(1+ )r
C.(1+
)r
D. 2 r
巩固练习
连 接 中 考
解:如图连接CD、AC、DG、AG.
∵AD是⊙O直径,
∴∠ACD=90°,
在Rt△ACD中,AD=2r,DC=OD=r,∠DAC=30°,
∴AC= 3 r,∵DG=AG=CA,OD=OA,
∴OG⊥AD,
∴∠GOA=90°,∴OG=
探究新知
知识点
正多边形的画法
Hale Waihona Puke 多姿多彩的正多边形:观察生活中的
正多边形图案.
探究新知
几种常见的正多边形
探究新知
由于正多边形在生产、生活实际中有广泛的应用性,
所以会画正多边形应是学生必备能力之一.
怎样画一个正多边形呢?
一个平面封闭图形内(含边界)任意两点距离的最大值称
为该图形的“直径”,封闭图形的周长与直径之比称为图
形的“周率”,下面四个平面图形(依次为正三角形、正
方形、正六边形、圆)的周率从左到右依次记为a1,a2,
a3,a4,则下列关系中正确的是( B )
A.a4>a2>a1
B.a4>a3>a2
五边形的各条对角线,画出一个五角星.
巩固练习
连 接 中 考
尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通
过下列尺规作图考他的大臣:
①将半径为r的⊙O六等分,依次得到A、B、C、D、E、F六
个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两
弧的一个交点;③连结OG.
问:OG的长是多少?
大臣给出的正确答案应是( D )
A. 3 r
B.(1+ )r
C.(1+
)r
D. 2 r
巩固练习
连 接 中 考
解:如图连接CD、AC、DG、AG.
∵AD是⊙O直径,
∴∠ACD=90°,
在Rt△ACD中,AD=2r,DC=OD=r,∠DAC=30°,
∴AC= 3 r,∵DG=AG=CA,OD=OA,
∴OG⊥AD,
∴∠GOA=90°,∴OG=
探究新知
知识点
正多边形的画法
Hale Waihona Puke 多姿多彩的正多边形:观察生活中的
正多边形图案.
探究新知
几种常见的正多边形
探究新知
由于正多边形在生产、生活实际中有广泛的应用性,
所以会画正多边形应是学生必备能力之一.
怎样画一个正多边形呢?
初三九年级数学ppt课件弧长和扇形面积公式
5.方法小结: 问题1:求一个图形的面积,而这个图形是未知图形时,我 们应该把未知图形化为什么图形呢? 问题2:通过以前的学习,我们又是通过什么方式把未知图 形化为已知图形的呢?
活动6 达标检测2
1 . 120°的圆心角所对的弧长是 12π cm , 则此弧所在的圆的半径是
________. 2 . 如图, 在4×4 的方格中 (共有16 个方格 ) , 每个小方格都是边长为 1
活动5 反馈新知
1 . 已知扇形的半径为 3 cm , 面积为 3π cm2 , 则扇形的圆心角是 ________°,扇形的弧长是________cm.(结果保留π)(答案:120,2π) 2.师生共同完成教材第112页例2. 3.完成教材第113页练习第3题. 4.如图,已知扇形的圆心角是直角 ,半径是2,则图中阴影部分的 面积是________.(结果不计算近似值)(答案:π-2)
的正方形. O , A , B 分别是小正方形的顶点 , 则扇形 OAB 的弧长等于
________.(结果保留根号及π)
3.如图,矩形ABCD中,AB=1,AD=,以AD的长为半径的⊙A 交BC边于点E,则图中阴影部分的面积为________.
活动7 课堂小结与作业布置 课堂小结 1.弧长公式是什么?扇形的面积公式呢?是怎样推导出来的? 如何理解这两个公式?这两个公式有什么作用?这两个公式有 什么联系? 2.在解决部分与整体关系的问题时,我们应学会用什么方法 去解决? 3.解决不规则图形的面积问题时,我们应用什么数学思想去 添加辅助线? 作业布置 教材第115页 习题24.4第1题的(1),(2)题,第2~8题.
24.4
弧长和扇形面积
第1课时 弧长和扇形面积公式
1.理解弧长与圆周长的关系 ,能用比例的方法推导弧长公式 , 并能利用弧长公式进行相关计算. 2.类比推导弧长公式的方法推导扇形面积公式 ,并能利用扇形 面积公式进行相关计算.
初三数学圆PPT课件
第1页/共32页
点的轨迹
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半 径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线 的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到 两条直线距离都相等的一条直线
第2页/共32页
三种位置关系
点与圆 直线与圆 圆与圆
第3页/共32页
点与圆的位置关系
点在圆内 d<r 内
点C在圆
点在圆上 d=r 圆上
点在此圆外 d>r 第4页/共32页
点B在
A
d
r B
O d
C
点A在圆
直线与圆的位置关系
• 直线与圆相离 d>r 无交点 • 直线与圆相切 d=r 有一个交点 • 直线与圆相交 d<r 有两个交点
第31页/共32页
感谢您的观看!
第32页/共32页
B
O
A
圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 D C
对的弧是等弧
即:在⊙O中,∵∠C、∠D都是所对的圆周角
B
O
∴∠C=∠D
A
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆, C
所对的弦是直径
即:在⊙O中,∵AB是直径 或∵∠C=90°
点的轨迹
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半 径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线 的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到 两条直线距离都相等的一条直线
第2页/共32页
三种位置关系
点与圆 直线与圆 圆与圆
第3页/共32页
点与圆的位置关系
点在圆内 d<r 内
点C在圆
点在圆上 d=r 圆上
点在此圆外 d>r 第4页/共32页
点B在
A
d
r B
O d
C
点A在圆
直线与圆的位置关系
• 直线与圆相离 d>r 无交点 • 直线与圆相切 d=r 有一个交点 • 直线与圆相交 d<r 有两个交点
第31页/共32页
感谢您的观看!
第32页/共32页
B
O
A
圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 D C
对的弧是等弧
即:在⊙O中,∵∠C、∠D都是所对的圆周角
B
O
∴∠C=∠D
A
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆, C
所对的弦是直径
即:在⊙O中,∵AB是直径 或∵∠C=90°
《初三数学圆》课件
圆和其他几何图形
总结词
利用圆的性质解决其他几何图形问题
详细描述
除了三角形和四边形,圆的性质还可以应用于其他几何图形问题中。例如,在解决与球 体、柱体、锥体等相关的问题时,可以通过引入辅助圆或利用圆的相关性质来简化问题
,提高解题效率。
THANKS
切线的性质
切线与半径垂直,切线与 半径相交于切点。
切线的判定
如果直线经过半径的外端 并且垂直于半径,那么这 条直线就是圆的切线。
切线的判定定理
01
切线的判定定理:如果一条直线同时满足以下 两个条件,则它是圆的切线
03
2. 与半径垂直。
02
1. 经过半径的外端;
04
应用:利用切线的判定定理可以判断一条直线是否 为圆的切线,从而确定切点。
圆心和半径
总结词
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
详细描述
圆心位于圆的中心,是圆的对称轴。 半径是从圆心到圆上任一点的线段, 所有的半径长度都相等。半径的长度 决定了圆的大小。
圆的性质
总结词
圆的性质包括其对称性、旋转不变性和相似性等。
详细描述
圆具有旋转不变性和对称性,这意味着旋转一个圆或其任何部分不会改变其形 状或大小。此外,相似的圆具有相同的面积和周长,但可以有不同的半径或圆 心位置。
《初三数学圆》ppt课件
$number {01}
目录
• 圆的基本性质 • 圆的周长和面积 • 圆和直线的位置关系 • 圆的切线定理 • 圆的定理和推论 • 圆的综合应用
01
圆的基本性质
圆的定义
总结词
通过一个定点,在平面上作所有 与定点等距离的点的集合形成的 图形称为圆。
初三数学ppt课件
详细描述:立体几何是研究空间几何形状和物体位置关系的学科,涉及平面、直线、体积等概念和定 理,如平行线、垂直线、勾股定理等,需要培养学生的空间思维和想象力。
04 专题部分
运动问题
总结词:掌握运动问题的解题思路和数学模型,了解物理 运动和数学运动的概念和关系。
详细描述
1. 定义运动的概念和分类。
2. 分析匀速运动和变速运动的特征和公式。
一元二次方程
定义
一元二次方程是一个整式方程,它的一般形式是ax^2 + bx + c = 0,其中a、b、c是常数且a≠0 。
解法
配方法、公式法、因式分解法
应用
解决实际问题,如计算面积、体积等
函数与图像
定义
函数是数学表达式的集合,它的 一般形式是y = f(x),其中x是自 变量,y是因变量。图像是函数的
日常生活应用
初三数学中的许多概念和原理在日常生活中都有广泛的应用 。
初三数学的学习方法
01
制定学习计划
合理安排时间,设
定学习目标,保持
02
一定的学习节奏。
多做练习
通过大量的练习, 加深对知识点的理
解和记忆。
04
及时总结
定期对所学内容进
03
行总结和回顾,查
漏补缺。
积极思考
主动思考和解决问 题,不依赖他人,
不逃避困难。
初三数学的教学目标
掌握初中数学基础知识
确保学生掌握初中数学的基本概念、 原理和算法。
提高应用能力
为学生进入高中后的数学学习打下坚 实的基础。
培养数学思维
通过解决问题和分析案例,培养学生 的逻辑思维和分析能力。
为高中数学打下基础
04 专题部分
运动问题
总结词:掌握运动问题的解题思路和数学模型,了解物理 运动和数学运动的概念和关系。
详细描述
1. 定义运动的概念和分类。
2. 分析匀速运动和变速运动的特征和公式。
一元二次方程
定义
一元二次方程是一个整式方程,它的一般形式是ax^2 + bx + c = 0,其中a、b、c是常数且a≠0 。
解法
配方法、公式法、因式分解法
应用
解决实际问题,如计算面积、体积等
函数与图像
定义
函数是数学表达式的集合,它的 一般形式是y = f(x),其中x是自 变量,y是因变量。图像是函数的
日常生活应用
初三数学中的许多概念和原理在日常生活中都有广泛的应用 。
初三数学的学习方法
01
制定学习计划
合理安排时间,设
定学习目标,保持
02
一定的学习节奏。
多做练习
通过大量的练习, 加深对知识点的理
解和记忆。
04
及时总结
定期对所学内容进
03
行总结和回顾,查
漏补缺。
积极思考
主动思考和解决问 题,不依赖他人,
不逃避困难。
初三数学的教学目标
掌握初中数学基础知识
确保学生掌握初中数学的基本概念、 原理和算法。
提高应用能力
为学生进入高中后的数学学习打下坚 实的基础。
培养数学思维
通过解决问题和分析案例,培养学生 的逻辑思维和分析能力。
为高中数学打下基础
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 26.2.4
2
a<0时,y最大=4ac-b2
4a
平移规律:
y=ax
平 移 h 个 单 位 向 左 或 向 右
2
向上或向下 平移k个单位
y=ax +k
平 移 h 个 单 位 向 左 或 向 右
2
y=a(x-h)
2
向上或向下 平移k个单位
y=a(x-h) +k
2
• 例1:填空: 2 • 把抛物线y=3x 向左平移2个单位,再向上平
A P
B
x
二次函数
德育培训:尚子越
知识框架:
二次函数与一元 二次方程
实际问题
二次函数 y=ax2+bx+c (a≠0)
解析式 图象 性质 平移规律
实际问题 的解决
二次函数的 图象与性质
·二次函数的概念
·二次函数的图象特点 ·二次函数的性质
·题型分析
1.什么叫二次函数 ?
形如y=ax2+bx+c (a、b、c是常数,a≠0) 的函数叫做x的二次函数 。 如:y=-x2, y=2x2-4x+3 , y= 100-5x2, y= -2x2+5x-3 。
移1个单位,所得到的抛物线对应的函数关系式 2 是 : Y=3(X+2) +1 。
3 2
题型分析:
(一)抛物线与x轴、y轴的交点及所构成 的面积 例1:填空: (1)抛物线y=x2-3x+2与y轴的交点坐 (0,2) 标是____________ ,与x轴的交点 (1,0)和(2,0) 坐标是____________ ; (2)抛物线y=-2x2+5x-3与y轴的交 (0,-3) 点坐标是____________ ,与x轴的 3 (1,0)和(2 ,0) 交点坐标是____________ .
3 2
例2:已知抛物线y=x2-2x-8, (1)求证:该抛物线与x轴一定有两个交点; (2)若该抛物线与x轴的两个交点分别为A、B,且 它的顶点为P,求△ABP的面积。 (1)证明:∵△=22-4× (-8)=36>0
∴该抛物线与x轴一定有两个交点
y
(2)解:∵抛物线与x轴相交时
x2-2x-8=0 解方程得:x1=4, x2=-2 ∴AB=4-(-2)=6 而P点坐标是(1,-9) ∴S△ABP=27
2.一般二次函数 y=ax2+bx+c(a≠0) 的图象特点和函数性质
图 26.2.4
图象特:
(1)是一条抛物线; (2)对称轴是:x=- 2a 2 4ac-b (3)顶点坐标是:(-2a , 4a ) (4)开口方向: a>0时,开口向上; a<0时,开口向下.
函数性质: (1) a>0时,对称轴左侧(x<-2a), 函数值y随x的增大而减小 ;对称轴 右侧(x>- ),函数值y随x的增大而 2a 增大 。 a<0时,对称轴左侧(x<- 2a), 函数值y随x的增大而增大 ;对称轴 右侧(x>- 2a ),函数值y随x的增大而 减小 。 (2) a>0时,y最小= 4ac-b 4a
2
a<0时,y最大=4ac-b2
4a
平移规律:
y=ax
平 移 h 个 单 位 向 左 或 向 右
2
向上或向下 平移k个单位
y=ax +k
平 移 h 个 单 位 向 左 或 向 右
2
y=a(x-h)
2
向上或向下 平移k个单位
y=a(x-h) +k
2
• 例1:填空: 2 • 把抛物线y=3x 向左平移2个单位,再向上平
A P
B
x
二次函数
德育培训:尚子越
知识框架:
二次函数与一元 二次方程
实际问题
二次函数 y=ax2+bx+c (a≠0)
解析式 图象 性质 平移规律
实际问题 的解决
二次函数的 图象与性质
·二次函数的概念
·二次函数的图象特点 ·二次函数的性质
·题型分析
1.什么叫二次函数 ?
形如y=ax2+bx+c (a、b、c是常数,a≠0) 的函数叫做x的二次函数 。 如:y=-x2, y=2x2-4x+3 , y= 100-5x2, y= -2x2+5x-3 。
移1个单位,所得到的抛物线对应的函数关系式 2 是 : Y=3(X+2) +1 。
3 2
题型分析:
(一)抛物线与x轴、y轴的交点及所构成 的面积 例1:填空: (1)抛物线y=x2-3x+2与y轴的交点坐 (0,2) 标是____________ ,与x轴的交点 (1,0)和(2,0) 坐标是____________ ; (2)抛物线y=-2x2+5x-3与y轴的交 (0,-3) 点坐标是____________ ,与x轴的 3 (1,0)和(2 ,0) 交点坐标是____________ .
3 2
例2:已知抛物线y=x2-2x-8, (1)求证:该抛物线与x轴一定有两个交点; (2)若该抛物线与x轴的两个交点分别为A、B,且 它的顶点为P,求△ABP的面积。 (1)证明:∵△=22-4× (-8)=36>0
∴该抛物线与x轴一定有两个交点
y
(2)解:∵抛物线与x轴相交时
x2-2x-8=0 解方程得:x1=4, x2=-2 ∴AB=4-(-2)=6 而P点坐标是(1,-9) ∴S△ABP=27
2.一般二次函数 y=ax2+bx+c(a≠0) 的图象特点和函数性质
图 26.2.4
图象特:
(1)是一条抛物线; (2)对称轴是:x=- 2a 2 4ac-b (3)顶点坐标是:(-2a , 4a ) (4)开口方向: a>0时,开口向上; a<0时,开口向下.
函数性质: (1) a>0时,对称轴左侧(x<-2a), 函数值y随x的增大而减小 ;对称轴 右侧(x>- ),函数值y随x的增大而 2a 增大 。 a<0时,对称轴左侧(x<- 2a), 函数值y随x的增大而增大 ;对称轴 右侧(x>- 2a ),函数值y随x的增大而 减小 。 (2) a>0时,y最小= 4ac-b 4a