概率统计模拟题一答案
九年级数学概率统计练习题及答案
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率论与数理统计练习题(含答案)
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论与数理统计模拟试题&参考答案
练习题一一、填空题。
1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。
2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。
3、若)(~λP X ,则=EX ,=DX 。
4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。
5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++ 服从__________。
6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。
7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x xx x x ϕ+≤<⎧⎪=-≤≤⎨⎪⎩其它,则E ξ=__________。
二、判断题。
1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。
( )2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n Sn χσ-。
( )3、随机变量Y X ,相互独立必推出Y X ,不相关。
( )4、已知θ 是θ的无偏估计,则2θ 一定是2θ的无偏估计。
( )5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为0.4。
( )三、选择题。
1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。
3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e -2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为(A )()3131-y F (B )()13+y F (C )1)(3+y F (D )⎪⎭⎫⎝⎛-3131y F3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )24、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。
考研数学一(概率统计)模拟试卷1(题后含答案及解析)
考研数学一(概率统计)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.对任意两个事件A和B,若P(AB)=0,则( ).A.AB=B.C.P(A)P(B)=0D.P(A—B)=P(A)正确答案:D解析:选(D),因为P(A—B)=P(A)一P(AB).知识模块:概率统计部分2.在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于( ).A.{T(1)≥t0}B.{T(2)≥t0)C.(T(3)≥t0)D.{T(4)≥t0}正确答案:C解析:{T(1)≥t0)表示四个温控器温度都不低于临界温度t0,而E发生只要两个温控器温度不低于临界温度t0,所以E={T(3)≥t0},选(C).知识模块:概率统计部分3.设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是( ).A.B.C.P(AB)=P(A)P(B)D.P(A-B)=P(A)正确答案:D解析:因为A,B不相容,所以P(AB)=0,又P(A-B)=P(A)-P(AB),所以P(A-B)=P(A),选(D).知识模块:概率统计部分4.设A,B为两个随机事件,其中00且P(B|A)=,下列结论正确的是( ).A.P(A|B)=B.P(A|B)≠C.P(AB)=P(A)P(B)D.P(AB)≠P(A)P(B)正确答案:C解析:知识模块:概率统计部分5.设0,则下列结论正确的是( ).A.事件A,B互斥B.事件A,B独立C.事件A,B不独立D.事件A,B对立正确答案:B解析:知识模块:概率统计部分6.设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则( ).A.f1(x)+f2(x)为某一随机变量的密度函数B.f1(x)f2(x)为某一随机变量的密度函数C.F1(x)+F2(x)为某一随机变量的分布函数D.F1(x)F2(x)为某一随机变量的分布函数正确答案:D解析:可积函数f(x)为随机变量的密度函数,则f(x)≥0且,显然(A)不对,取两个服从均匀分布的连续型随机变量的密度函数验证,(B)显然不对,又函数F(x)为分布函数必须满足:(1)0≤F(x)≤1;(2)F(x)单调不减;(3)F(x)右连续;(4)F(-∞)=0,F(+∞)=1,显然选择(D).知识模块:概率统计部分7.设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与一X分布函数相同,则( ).A.F(x)=F(一x)B.F(x)=一F(一x)C.f(x)=f(一x)D.f(x)=一f(一x)正确答案:C解析:知识模块:概率统计部分8.设随机变量X的密度函数为,则P{a 知识模块:概率统计部分9.设随机变量X~N(μ,σ2),则P(|X一μ|<2σ)( ).A.与μ及σ2都无关B.与μ有关,与σ2无关C.与μ无关,与σ2有关D.与μ及σ2都有关.正确答案:A解析:知识模块:概率统计部分10.设X~N(μ,42),Y~N(μ,52),令p=P(X≤μ一4),q=P(Y≥μ+5),则( ).A.p>qB.p<qC.p=qD.p,q的大小由μ的取值确定正确答案:C解析:知识模块:概率统计部分11.设随机变量X~N(μ,σ2),其分布函数为F(x),则对任意常数a,有( ).A.F(a+μ)+F(a一μ)=1B.F(μ+a)+F(μ一a)=1C.F(a)+F(一a)=1D.F(a一μ)+F(μ一a)=1正确答案:B解析:知识模块:概率统计部分12.设随机变量X~U[1,7],则方程x2+2Xx+9=0有实根的概率为( ).A.B.C.D.正确答案:C解析:知识模块:概率统计部分填空题13.设P(B)=0.5,P(A—B)=0.3,则P(A+B)=__________.正确答案:0.8解析:因为P(A—B)=P(A)一P(AB),所以P(A+B)=P(A—B)+P(B)=0.8.知识模块:概率统计部分14.设P(A)=0.6,P(B)=0.5,P(A—B)=0.4,则P(B—A)=_________,P(A+B)=__________.正确答案:0.9解析:因为P(A—B)=P(A)一P(AB),所以P(AB)=0.2,于是P(B—A)=P(B)一P(AB)=0.5—0.2=0.3,P(A+B)=P(A)+P(B)一P(AB)=0.6+0.5一0.2=0.9.知识模块:概率统计部分15.设事件A,B相互独立,P(A)=0.3,且,则P(B)=___________.正确答案:解析:知识模块:概率统计部分16.设A,B为两个随机事件,且P(A)=0.7,P(A—B)=0.3,则=_________.正确答案:0.6解析:由P(A—B)=P(A)一P(AB)=0.3及P(A)=0.7,得P(AB)=0.4,则=1一P(AB)=0.6.知识模块:概率统计部分17.设P(A)=0.4,且P(AB)=P(AB),则P(B)=____________.正确答案:0.6解析:因为P(AB)=P(A+B)=1一P(A+B),所以P(AB)=1一P(A+B)=1一P(A)一P(B)+P(AB),从而P(B)=1一P(A)=0.6.知识模块:概率统计部分18.设A,B为两个随机事件,则=_________.正确答案:0解析:知识模块:概率统计部分19.设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则A,B,C都不发生的概率为___________.正确答案:解析:A,B,C都不发生的概率为=1一P(A+B+C),而ABCAB且P(AB)=0,所以P(ABC)=0,于是P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)=,故A,B,C都不发生的概率为.知识模块:概率统计部分20.设事件A,B,C两两独立,满足ABC=,P(A)=P(B)=P(C),且P(A+B+c)=,则P(A)=__________.正确答案:解析:由P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)且ABC=,P(A)=P(B)=P(C),得知识模块:概率统计部分21.有16件产品,12个一等品,4个二等品.从中任取3个,至少有一个是一等品的概率为_________正确答案:解析:设A={抽取3个产品,其中至少有一个是一等品},.知识模块:概率统计部分22.设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为__________.正确答案:解析:设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),知识模块:概率统计部分23.从n阶行列式的展开式中任取一项,此项不含a11的概率为,则n=_________.正确答案:9解析:n阶行列式有n!项,不含a11的项有(n一1)(n一1)!个,则=,则n=9.知识模块:概率统计部分24.设一次试验中,出现事件A的概率为P,则n次试验中A至少发生一次的概率为___________,A至多发生一次的概率为___________.正确答案:解析:知识模块:概率统计部分25.正确答案:解析:知识模块:概率统计部分26.正确答案:4解析:知识模块:概率统计部分27.设X~B(2,p),Y~B(3,p),且P(X≥1)=,则P(Y≥1)=_________.正确答案:解析:知识模块:概率统计部分28.设X~N(2,σ2),且P(2≤X≤4)=0.4,则P(X<0)=__________.正确答案:0.1解析:知识模块:概率统计部分29.设随机变量X服从参数为λ的泊松分布,且P(X=0)=,则P(X≥1)=_________正确答案:1-e-2解析:知识模块:概率统计部分30.设随机变量X服从参数为λ的指数分布,且E[(X一1)(X+2)]=8,则λ=__________.正确答案:解析:知识模块:概率统计部分31.正确答案:2解析:知识模块:概率统计部分32.一工人同时独立制造三个零件,第k个零件不合格的概率为,以随机变量X表示三个零件中不合格的零件个数,则P(X=2)=__________.正确答案:解析:知识模块:概率统计部分33.正确答案:解析:Y的可能取值为2,3,6,知识模块:概率统计部分34.设随机变量X~N(0,1),且Y=9X2,则Y的密度函数为__________.正确答案:解析:知识模块:概率统计部分35.设随机变量X的概率密度函数为,则Y=2X的密度函数为fY(y)=_________正确答案:解析:知识模块:概率统计部分36.设离散型随机变量X的分布函数为则Y=X2+1的分布函数为_________.正确答案:解析:知识模块:概率统计部分解答题解答应写出文字说明、证明过程或演算步骤。
概率论与数理统计模拟试卷和答案
北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。
[A] P (A)=1-P (B ) [B] P (A │B)=0 [C] P (A │B )=1[D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。
[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A │B )=P (B )[D] P (A │B )=P(A )3、若A 、B 相互独立,则下列式子成立的为( )。
[A] )()()(B P A P B A P = [B] 0)(=AB P [C])()(A B P B A P = [D])()(B P B A P =4、下面的函数中,( )可以是离散型随机变量的概率函数。
[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ=== [D] {}41(1,2,3)2k P k k ξ===--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。
概率统计参考答案(习题一)
概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。
解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。
(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。
则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。
2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。
3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。
解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。
4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。
概率论与数理统计模拟试题及答案
概率论与数理统计试题 考试时间:120分钟 试卷总分100分 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 评卷教师一、填空题(满分15分)1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。
2.设随机变量X 服从参数为二项分布,且21}0{==X P ,则=p 。
3.设),3(~2σN X ,且1.0}0{=<X P ,则=<<}63{X P4.已知DX=1,DY=2,且X 和Y 相互独立,则D(2X-Y)=5.已知随机变量X 服从自由度为n 的t 分布,则随机变量2X 服从的分布是 。
二、选择题(满分15分)1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是 。
装订线(A )0.125, (B )0.25, (C )0.375, (D )0.5 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。
(A )γγn ! (B )γγn C r n ! (C )nn γ! (D) n n n C γγ! 3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。
(A )-21(B )0 (C )21 (D )14.掷一颗骰子600次,求“一点” 出现次数的均值为 。
(A )50 (B )100 (C )120 (D )1505.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。
(A )x 1 (B )∑=-n i i X n 111 (C )∑=-n i i X n 1211 (D )x 三、计算题(满分60分)1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(8413.0)1(=Φ,9772.0)2(=Φ)3.在区间(0,1)中随机地取两个数,求事件“两数之和小于56”的概率。
概率论与数理统计试习题与答案
设 为来自总体 的一个样本, 服从指数分布,其密度函数为 ,其中 为未知参数,试求 的矩估计量和极大似然估计量。
八、(本题满分12分)
设某市青少年犯罪的年龄构成服从正态分布,今随机抽取9名罪犯,其年龄如下:22,17,19,25,25,18,16,23,24,试以95%的概率判断犯罪青少年的年龄是否为18岁。
概率论与数理统计试题与答案(2012-2013-1)
概率统计模拟题一
一、填空题(本题满分18分,每题3分)
1、设 则 =。
2、设随机变量 ,若 ,则 。
3、设 与 相互独立, ,则 。
4、设随机变量 的方差为2,则根据契比雪夫不等式有 。
5、设 为来自总体 的样本,则统计量 服从
分布。
6、设正态总体 , 未知,则 的置信度为 的置信区间的长度 。(按下侧分位数)
对 求导,得
五、(本题满分10分)解: ;
六、(本题满分13分)矩估计: ,
极大似然估计:似然函数 ,
,
七、(本题满分12分)解:欲检验假设
因 未知,故采用 检验,取检验统计量 ,今 , , , , ,拒绝域为 ,因 的观察值 ,未落入拒绝域内,故在 下接受原假设。
八、(本题满分8分)因 ,故
概率统计模拟题二
试求: (1)常数 ; (2) 落在 内的概率; (3) 的分布函数 。
五、(本题满分12分)
设随机变量 与 相互独立,下表给出了二维随机变量 的联合分布律及关于 和 边缘分布律中的某些数值,试将其余数值求出。
六、(本题满分10分)设一工厂生产某种设备,其寿命 (以年计)的概率密度函数为:
工厂规定,出售的设备若在售出一年之内损坏可予以调换。若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望。
考研数学一(概率统计)模拟试卷31(题后含答案及解析)
考研数学一(概率统计)模拟试卷31(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则时间E等于( ).A.{T(1)≥t0}B.{T(2)≥t0}C.{T(3)≥t0}D.{T(4)≥t0}正确答案:C解析:{T(1)≥t0}表示四个温控器温度都不低于临界温度t0,而E发生只要两个温控器温度不低于临界温度t0,所以E={T(3)≥t0},选(C).知识模块:概率统计2.设连续型随机变量X的密度函数为f(x),分布函数为F(x),如果随机变量X与-X分布函数相同,则( ).A.F(x)=F(一x)B.F(x)=一F(一x)C.f(x)=f(一x)D.f(x)=一f(一x)正确答案:C解析:FX(x)=P(X≤x)=∫-∞xf(t)dt,F-X(x)=P(一X≤x)=P(X≥一x)=1一P(X≤一x)=1一∫-∞-xf(t)dt,因为X与一X有相同的分布函数,所以∫-∞xf(t)dt=1一∫-∞-xf(t)dt,两边求导数,得f(x)=f(一x),正确答案为(C).知识模块:概率统计3.设X,Y为两个随机变量,P(X≤1,Y≤1,P(X≤1)=P(Y≤1)=,则P {min(X,Y)≤1}=( ).A.B.C.D.解析:令A={X≤1},B={Y≤1},则P(AB)=,P(A)=P(B)=,P{min(X,Y)≤1}=1一P{min(X,Y)>1}=1一P(X>1,Y>1)=1—=P(A+B)=P(A)+P(B)一P(AB)=,选(C).知识模块:概率统计4.设X,Y为两个随机变量,若E(XY)=E(X)E(Y),则( ).A.D(XY)=D(X)D(Y)B.D(X+Y)=D(X)+D(Y)C.X,Y独立D.X,Y不独立正确答案:B解析:因为E(XY)=E(X)E(Y),所以Cov(X,Y)=0,又D(X+Y)=D(X)+D(Y)+2Cov(X,Y),所以D(X+Y)=D(X)+D(Y),选(B).知识模块:概率统计5.设随机变量X~F(m,n),令P{X>Fα(m,n)}=α(0<α<1),若P(X <k)=α,则k等于( ).A.Fα(m,n)B.F1-α(m,n)C.D.正确答案:B解析:根据左右分位点的定义,选(B).知识模块:概率统计填空题6.设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则A,B,C都不发生的概率为________.正确答案:解析:A,B,C都不发生的概率为=1一P(A+B+C),而ABCAB且P(AB)=0,所以P(ABC)=0,于是P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)=,故A,B,C都不发生的概率为.知识模块:概率统计7.设随机变量X的密度函数为f(x)=,若P{X>1)=,则a=________.正确答案:2解析:P{X>1}=∫1af(x)dx=∫1a,则a=2.知识模块:概率统计8.设二维随机变量(X,Y)的联合密度函数为f(x,y)=则a=__________,P(X>Y)=__________.解析:由1=a∫0+∞e-2xdx∫0+∞e-3ydy,得a=6,于是f(x,y)=,P{X >Y}=∫0+∞dx∫0x6e-2x-3ydy=2∫0+∞e-2x(1一e-3x)dx=.知识模块:概率统计9.设随机变量X服从参数为λ的指数分布,则P{X>}=__________.正确答案:e-1解析:因为X~E(λ),所以FX(x)=,则=e-1.知识模块:概率统计10.设随机变量X,Y相互独立,D(X)=4D(y),令U=3X+2Y,V=3X一2Y,则ρUV=_________.正确答案:解析:Cov(U,V)=Cov(3X+2Y,3X一2Y)=9Cov(X,X)~4Cov(Y,Y)=9D(X)一4D(Y)=32D(Y),由X,Y独立,得D(U)=D(3X+2Y)=9D(X)+4D(Y)=40D(Y),D(V)=D(3X一2Y)=9D(X)+4D(Y)=40D(Y),所以.知识模块:概率统计11.设X1,X2,X3,X4,X5为来自正态总体X~N(0,4)的简单随机样本,Y=a(X1一2X2)2+b(3X3—4X4)2+cX32(abc≠0),且Y~χ2(n),则a=_________,b=________,c=________,n=_________.正确答案:,n=3解析:因为X1一2X2~N(0,20),3X3一4X4~N(0,100),X5~N(0,4),知识模块:概率统计12.设总体X的分布律为P(X=i)=(i=1,2,…,θ),X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为________(其中θ为正整数).正确答案:解析:E(X)=,令E(X)=,则θ的矩估计量为.知识模块:概率统计解答题解答应写出文字说明、证明过程或演算步骤。
概率论与数理统计试题与答案完整版
概率论与数理统计试题与答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计试题与答案(2012-2013-1)概率统计模拟题一一、填空题(本题满分18分,每题3分)1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,若95)1(=≥X p ,则=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。
4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,则统计量∑==n1i i X Y 服从分布。
6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。
(按下侧分位数)二、选择题(本题满分15分,每题3分)1、 若A 与自身独立,则( )(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P2、下列数列中,是概率分布的是( )(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,则有( )(A) np X E 2)12(=- (B) )1(4)12(p np X D -=-(C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,则随着σ的增大,概率()σμ<-X P ( )。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,则下列结果错误..的是( )。
概率论与数理统计模拟试题集(6套,含详细答案)
《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
概率论与数理统计习题1及答案
概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.”C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生;(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC =A B C (6) ABC(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C (8) AB ∪BC ∪CA =AB C ∪A B C ∪A BC ∪ABC5.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.67.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求: (1) 在什么条件下P (AB )取到最大值? (2) 在什么条件下P (AB )取到最小值? 【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.9.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)510. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率. 【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.11.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN -- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N MnN-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p ==18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()()()()()()P AB P A P AB P B AB P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====,24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C = 故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22n n n P A =- 45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P(甲正>乙正)=P (甲反>乙反)因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥ 即有 ()()P AC P BC ≥同理由 (|)(|),P A C P B C ≥得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k k i k k i j k i i i n P A n nP A A nn P A A A n --==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk k i n i ki j n i j n n k n i i i n i i i n n n n i ni S P A n n n S P A A n n S P A A A n S P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n k n n n n n n n--=---++-- 故所求概率为 121121()1C (1)C (1)n k i i n n i P A n n =-=--+--+111(1)C (1)n nk n n n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1.【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知 (),()m n P B P B m n m n==++ 1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r r r m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
《概率论与数理统计》模拟试题及答案
模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
P( A ∪B) = 。
2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论与数理统计模拟试题及解答
模拟试题(一)参考答案一.单项选择题(每小题2分,共16分)1、设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或(D) AB 未必是不可能事件解 若AB 为零概率事件,其未必为不可能事件.本题应选D.2、设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( )(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C -解 所求事件的对立事件为“3次都不成功”,其概率为3p ,故所求概率为31p -.若直接从正面去求较为麻烦.本题应选C.3、若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续解 由连续型随机变量概率密度的定义可知,)(x f 是定义在),(+∞-∞上的非负函数,且满足⎰∞+∞-=1d )(x x f ,所以A 一定成立.而其它选项不一定成立.例如服从]21,31[上的均匀分布的随机变量的概率密度⎪⎩⎪⎨⎧≤≤=其他,0,2131,6)(x x f在31=x 与21=x 处不连续,且在这两点的函数值大于1.因而本题应选A. 4、若随机变量X 的概率密度为)( e21)(4)3(2+∞<<-∞=+-x x f x π,则=Y ( ))1,0(~N(A)23+X (B)23+X (C)23-X (D)23-X 解 X 的数学期望3-=EX ,方差2=DX ,令23+=X Y ,则其服从标准正态分布.故本题应选A.5、若随机变量Y X ,不相关,则下列等式中不成立的是( ) (A) 0),cov(=Y X (B) DY DX Y X D +=+)((C) DY DX DXY ⋅=(D) EY EX EXY ⋅=解 因为0=ρ,故0),cov(=⋅=DY DX Y X ρ,DY DX Y X DY DX Y X D +=++=+),cov(2)(, 但无论如何,都不成立DY DX DXY ⋅=.故本题应选C.6、设样本n X X X ,,,21⋅⋅⋅取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X(B) )1,0(~N Xn(C))(~212n X ni i χ∑=(D))1(~-n t SX解 )1,0(~nN X ,),0(~n N X n ,)1(~-⋅n t S X n ,只有C 选项成立.本题应选C. 7、样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量(A)∑=ni iX1(B) X(C) )46(1.01n X X +(D) 321X X X -+解 由无偏估计量的定义计算可知,∑=ni iX1不是无偏估计量,本题应选A.8、在假设检验中,记0H 为待检假设,则犯第一类错误指的是( ) (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H解 弃真错误为第一类错误,本题应选B.二.填空题(每空2分,共14分)1、同时掷三个均匀的硬币,出现三个正面的概率是________,恰好出现一个正面的概率是________. 解81;83. 2、设随机变量X 服从一区间上的均匀分布,且31,3==DX EX ,则X 的概率密度为________. 解 设],[~b a X ,则,3112)( ,322=-==+=a b DX b a EX 解得2=a , 4=b , 所以X 的概率密度为⎪⎩⎪⎨⎧≤≤=.0,42,21)(其他x x f3、设随机变量X 服从参数为2的指数分布, Y 服从参数为4的指数分布,则=+)32(2Y X E ________. 解 473])([232)32(222=++=+=+EY EX DX EY EX Y X E . 4、设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6||{Y X P ________.解 根据切比雪夫不等式,12136),cov(26)(}6||{2=++=+≤≥+Y X DY DX Y X D Y X P . 5、假设随机变量X 服从分布)(n t ,则21X 服从分布________(并写出其参数).解 设)(~n t nZY X =,其中)1,0(~N Y ,)(~2n Z χ,且)1(~22χY ,从而)1,(~122n F Y n ZX =. 6、设n X X X ,,,21 )1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.解 ∑=--=ni i X X n S 122)(11. 三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 解 由全概率公式可得27.02.09.09.01.0)|()()|()()(=⋅+⋅=+=A B P A P A B P A P B P .31)()|()()()()|(===B P A B P A P B P AB P B A P .四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率.解 设21,A A 分别表示第一台,第二台车床加工的零件的事件.B 表示产品是合格品的事件. (1) 由全概率公式可得973.098.03197.032)|()()|()()(2211≈⋅+⋅=+=A B P A P A B P A P B P . (2) 247.0973.0102.031)()|()()()()|(2222≈-⋅===B P A B P A P B P B A P B A P . 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以Y X ,记第一次,第二次取得球上标有的数字,求:(1) ) ,(Y X 的联合分布; (2) Y X ,的边缘分布; (3) Y X ,是否独立;(4) )(XY E .解 (1) YX 1 2 3 1 061 121 2 61 61 613 121 61(2)41)1(==X P ,21)2(==X P ,41)3(==X P .41)1(==Y P ,21)2(==Y P ,41)3(==Y P .(3)因为)1()1(1610)1,1(===≠===Y P X P Y X P ,故Y X ,不独立. (4)613261226112121316121)(⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅=XY E 612312113⋅⋅+⋅⋅+623=.六.(本题12分)设随机变量X 的密度函数为)( e )(||2+∞<<-∞=-x Ax x f x ,试求:(1) A 的值; (2) )21(≤<-X P ; (3) 2X Y =的密度函数. 解 (1) 因⎰∞+∞-x x f d )(⎰∞+-===0214d e 2A x x A x ,从而41=A ; (2) ⎰⎰⎰---+==≤<-20201221d e 41d e 41d )(}21{x x x x x x f X P xx 12e 45e 251----=;(3) 当0≤y 时,0)(=y F Y ;当0>y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤=)()(y F y F X X --=,所以,两边关于y 求导可得,.e 4121e 4121e 41)(yyyY y yy yy y f ---⋅=-⋅⋅-⋅⋅=故Y 的密度函数为⎪⎩⎪⎨⎧>⋅≤=-.0,e 41,0,0)(y y y y f yY七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).解 设⎩⎨⎧=人购买该种商品第人不购买该种商品第i i X i ,1,,0(1000,,2,1 =i ),X 表示购买该种商品的人数,则)6.0,1000(~B X .又设商品预备n 件该种商品,依题意,由中心极限定理可得)240600240600()()(-≤-=-≤-=≤n X P DXEX n DX EX X P n X P997.0)240600(=-Φ≈n .查正态分布表得75.2240600=-n ,解得6436.642≈=n 件.八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R .(1) 从罐内任取一球,取得黑球的个数X 为总体,即⎩⎨⎧=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21 ,其中有m 个白球,求比数R 的最大似然估计值.解(1) X 1 0 PR R +1 R+11即R R R R R x X P xxx+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+==-1111)(1 )1,0(=x ; (2)nx ni i iR R x XP R L i)1()()(1+∑===∏=,两边取对数,)1ln()(ln R n x R R L i +-∑=,两边再关于R 求导,并令其为0,得011=+-∑R nx i , 从而∑∑-=ii x n xR ˆ,又由样本值知,m n x i-=∑,故估计值为1ˆ-=m n R . 九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω):A 批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141. 已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等? (2) 两批电子元件的平均电阻是否有显著差异? (2281.2)10(025.0=t ,15.7)5,5(025.0=F )解 (1) 2221122210 σσσσ≠=:,:H H .检验统计量为2221S S F =)5 ,5(~F (在0H 成立时),由05.0=α,查得临界值15.7)5 ,5(025.02/==F F α,15.712/1=-αF . 由样本值算得962.00000078.00000075.0==F ,由于2/2/1ααF F F <<-,故不能拒绝10H ,即认为两批电子元件的电阻的方差相等.(2) 211210 μμμμ==:,:H H . 统计量2)1()1()11(2122221121-+-+-+-=n n sn s n n n YX T )10(~t (在0H 成立时),查表得临界值228.2)10(025.02/==t t α.再由样本值算得005.2120000078.00000075.0139.01405.0=+-=T ,因为2/||αt T <,故接收0H .即认为两批电子元件的平均电阻无显著差异.模拟试题(二)参考答案一.单项选择题(每小题2分,共16分)1.设C , ,B A 表示3个事件,则C B A 表示( ). (A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生 解 本题应选C. 2.已知)(,61)|(,31)()(B A P B A P B P A P 则====( ). (A) 187 (B) 1811 (C) 31 (D) 41解 181)|()()(==A B P A P AB P ,187)()()(1)(1)()(=+--=-==AB P B P A P B A P B A P B A P . 故本题应选A.3.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则( )(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P (C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P解 )2,1(~N Y X +,)2,1(~--N Y X ,故本题应选B.4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ( ) (A) 40 (B) 34 (C) 25.6 (D) 17.6解 2.1),cov(=⋅=DY DX Y X XY ρ,6.25),cov(1249)23(=-+=-Y X DY DX Y X D .故本题应选C.5.若随机变量X 服从参数为λ的泊松分布,则2X 的数学期望是( )(A) λ(B)λ1 (C) 2λ (D) λλ+2 解 222)(λλ+=+=EX DX EX ,本题应选D.6.设n X X X ,,,21 是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是( )(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) 1/3--=n S X t μ(D) 1/4--=n S X t μ解 ),(~2nN X σμ,)1(~)(1122--∑=n t X Xni iσ,再由t 分布的定义知,本题应选B.7.设总体X 均值μ与方差2σ都存在,且均为未知参数,而,,,21 X X n X 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是( )(A) X (B) ∑=-n i i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 解 本题应选D.8.在假设检验时,若增大样本容量,则犯两类错误的概率( ) (A) 都增大 (B) 都减小(C) 都不变 (D) 一个增大一个减小 解 本题应选B.二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.解 设A 表示两件中有一件不合格品,B 表示两件都是不合格品.则所求的极限为51)()()()()|(===A PB P A P AB P A B P2.设随机变量X 服从)8.0 ,1(B 分布,则X 的分布函数为________.解 X 服从0-1分布,其分布函数为⎪⎩⎪⎨⎧≥<≤<=.11,10,2.0,0,0)(x x x x f3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<X P ,则}0{<X P =________.解 2=μ,即其密度函数关于2=x 对称.由对称性知2.026.01}0{=-=<X P . 4.设总体X 服从参数为p 的0-1分布,其中)10(<<p p 未知.现得一样本容量为8的样本值:0,1,0,1,1,0,1,1,则样本均值是________,样本方差是________.解 由定义计算知85=X ;56152=S . 5.设总体X 服从参数为λ的指数分布,现从X 中随机抽取10个样本,根据测得的结果计算知27101=∑=i ix,那么λ的矩估计值为________.解 27101ˆ==X λ.6.设总体) ,(~2σμN X ,且2σ未知,用样本检验假设00μμ=:H 时,采用的统计量是________. 解 )1(~0--=n t nSX T μ (0H 为真时).三.(本题8分)设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球.现在从三个盒子中任取一盒,再从中任取一球,求:(1)取到的球是黑球的概率;(2)若取到的是黑球,它是取自Ⅰ号盒中的概率.解 设321,,A A A 分别表示从第Ⅰ,Ⅱ,Ⅲ号盒中取球,B 表示取到黑球. (1) 由全概公式可得≈⋅+⋅+⋅==∑=5083130531201431)|()()(31i i i A B P A P B P 0.342; (2) 由贝叶斯公式得≈=)()|()()|(111B P A B P A P B A P 0.682.四.(本题6分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,,,,002cos 21)(πx x x f , 对X 独立地重复观察4次,用Y 表示观察值大于3π地次数,求2Y 的数学期望. 解 21d 2c o s 21)3(3==>⎰πππx x X P ,)21,4(~B Y ,从而 5)(22=+=EY DY EY .五.(本题12分) 设),(Y X 的联合分布律为YX 0 1 2 1 0.1 0.05 0.35 2 0.3 0.1 0.1 问:(1) Y X ,是否独立;(2) 计算)(Y X P =的值;(3) 在2=Y 的条件下X 的条件分布律. 解 (1) 因为)0()1(4.05.02.01.0)0,1(===⋅=≠===Y P X P Y X P , 所以Y X ,不独立; (2) 15.01.005.0)2,2()1,1()(=+===+====Y X P Y X P Y X P ;(3) 9745.035.0)2()2,1()2|1(========Y P Y X P Y X P ,92971)2|2(=-===Y X P .六.(本题12分)设二维随机变量) ,(Y X 的概率密度为⎩⎨⎧≤≤≤=,,0,10,12),(2其他x y y y x f 求:(1) X 的边缘密度函数)(x f X ;(2) )(XY E ; (3) )1(>+Y X P . 解 (1)⎩⎨⎧≤≤⎪⎩⎪⎨⎧=≤≤==⎰⎰∞+∞-.,0,104,0,10,d 12d ),()(302其他其他x xx y y y y x f x f x X(2) 21d 12d )(0310==⎰⎰y xy x XY E x ;(3) ==>+⎰⎰-y y x Y X P x x d 12d )1(1212187.七.(本题6分)一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总长度为)1.020(±mm 时产品合格,试求产品合格的概率.解 设i X 表示第i 部分的长度,10,,2,1 =i ,X 表示部件的长度.由题意知2=i EX ,0025.0=i DX ,且∑==101i i X X ,20=EX ,025.0=DX .由独立同分布的中心极限定理知,产品为合格品的概率为)025.01.0|025.020(|)1.0|20(|≤-=≤-X P X P4714.01)025.01.0(2=-Φ=. 八.(本题7分)设总体X 具有概率密度为⎪⎩⎪⎨⎧>-=--,,0,0,e )!1()(1其他x x k x f x k k θθ 其中k 为已知正整数,求θ的极大似然估计.解 设n X X X ,,,21 是来自总体X 的样本,当0,,,21>n x x x 时,似然函数∑-===-=-=∑∏ni ix ni k innkni i xk x f L 1e])!1[()()(111θθθ,两边取对数,∑-+--===-∑ni i ni k ix x k n nk L 111ln )!1ln(ln )(ln θθθ,关于θ求导,并令其为0,得0)(ln 1=∑-==ni i x nkL θθ,从而解得θ的极大似然估计为XkX nkni i=∑==1ˆθ. 九.(本题14分)从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:230.01=x ,1337.021=n s , )9(1=n 西支:269.02=x ,1736.022=n s , )8(2=n 若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?)05.0(=α53.4)7 ,8( (025.0=F ,90.4)8 ,7(025.0=F ,) 1315.2)15(0025.0=t解 本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,接受0H ,即可认为东、西两支矿脉含锌量的平均值相等.(请参见模拟试题(一)第九大题)十.(本题5分) 设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,0,3)(23其它θθx x x f其中θ为未知参数,n X X X ,,,21 为来自总体X 的样本,证明:X 34是θ的无偏估计量.证明 ⎰∞+∞-===x x xf EX X E X E d )(343434)34(θθθ==⎰033d 334x x , 故X 34是θ的无偏估计量.模拟试题(三)参考答案一.填空题(每小题2分,共14分)1.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 .解 设A 表示一次射击中击中目标,依题意,四次都没击中的概率为81801)(4-=A P ,解得31)(=A P ,从而射手的命中率为32)(=A P . 2.若事件A ,B 独立,且p A P =)(,q B P =)(则=+)(B A P . 解 pq p B P A P B P A P B A P +-=-+=1)()()()()( .3.设离散型随机变量X 服从参数为λ(0>λ)的泊松分布,已知==)1(X P )2(=X P ,则λ= .解 )2(e 2e)1(2=====--X P X P λλλλ,从而解得2=λ.4.设相互独立的两个随机变量X ,Y 具有同一分布律,且X 的分布律为:X 0 1P 21 21则随机变量},max{Y X Z =的分布律为 . 解 Z 的可能取值为0,1.412121)0()0()0,0()0(=⋅========Y P X P Y X P Z P .43411)1(=-==Z P .5.设随机变量X ,Y 的方差分别为25=DX ,36=DY ,相关系数4.0=XY ρ,则),(Y X Cov = .解 12),cov(=⋅=DY DX Y X XYρ.6.设总体X 的期望值μ和方差2σ都存在,总体方差2σ的无偏估计量是21)(∑=-n i i X X n k ,则=k .解 1-=n n k . 7.设总体),(~2σμN X ,μ未知,检验2020σσ=H :,应选用的统计量是 .解)1(~)(2212--∑=n X Xni iχσ (0H 为真时)二 .单项选择题(每小题2分,共16分)1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( )(A)!10!6!4 (B)107 (C)!10!7!4 (D)104 解 本题应选C.2.若事件B A ,相互独立,则下列正确的是( ) (A) =)|(A B P )|(B A P (B) =)|(A B P )(A P (C) )|(B A P )(B P =(D) =)|(B A P )(1A P -解 由独立性的定义知,==)()|(A P B A P )(1A P -,故本题应选D.3.设随机变量X 服从参数为n ,p 的二项分布,且6.1=EX ,28.1=DX ,则n ,p 的值为( ) (A) n =8,p =2.0 (B) n =4,p =4.0 (C) n =5,p =32.0(D) n =6,p =3.0解 由6.1=np ,28.1)1(=-p np ,解得n =8,p =2.0,本题应选A.4.设随机变量X 服从正态分布)1,2(N ,其概率密度函数为)(x f ,分布函数为)(x F ,则有( ) (A) =≥)0(X P =≤)0(X P5.0 (B) =≥)2(X P =≤)2(X P 5.0 (C) )(x f =)(x f -,),(∞+-∞∈x (D) =-)(x F -1)(x F , ),(∞+-∞∈x解 2=EX ,故其密度函数关于2=x 对称,故本题应选B.5.如果随机变量X 与Y 满足:)(Y X D +)(Y X D -=,则下列式子正确的是( ) (A) X 与Y 相互独立 (B) X 与Y 不相关 (C) 0=DY(D) 0=⋅DY DX解 由)(Y X D +)(Y X D -=,可得0),cov(=Y X ,从而可知X 与Y 不相关,故本题应选B.6.设n X X X ,,,21 是来自总体),(~2σμN X 的样本,X 为样本均值,令=Y 212)(σ∑=-ni iX X,则~Y ( )(A) )1(2-n χ (B) )(2n χ (C) ),(2σμN (D)),(2nN σμ解 本题应选A.7.设n X X X ,,,21 是取自总体),0(2σN 的样本,可以作为2σ的无偏估计量的统计量是( )(A) ∑=n i i X n 121 (B) ∑=-n i i X n 1211 (C) ∑=n i i X n 11 (D)∑=-ni i X n 111 解 由无偏估计的定义及期望的性质知,2221212)(1)1(σ==+===∑∑==DX EX DX EX EX n X n E ni i n i i ,故A 选择正确,同理验算其他选项,B,C,D 均不正确.故本题应选A.8.样本n X X X ,,,21 来自正态总体),(2σμN ,若进行假设检验,当( )时,一般采用统计量nS X t /0μ-=(A) μ未知,检验2σ=20σ(B) μ已知,检验2σ=20σ(C) 2σ未知,检验 μ=0μ(D) 2σ已知,检验μ=0μ解 本题应选C. 三.(本题8分)有两台车床生产同一型号螺杆,甲车床的产量是乙车床的5.1倍,甲车床的废品率为%2,乙车床的废品率为%1,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?解 设21,A A 分别表示螺杆由甲,乙车床生产的事件.B 表示螺杆是废品的事件.由贝叶斯公式可得)|()()|()()|()()|(2211111A B P A P A B P A P A B P A P B A P +=75.001.05202.05302.053=⋅+⋅⋅=. 四.(本题8分)假设一部机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?解 设X 表示一周中所获的利润,其分布律为:X 0 5 10 P 548.08.02.051-⋅⋅- 48.02.05⋅⋅ 58.0从而由期望的定义计算可得216.5=EX .五.(本题12分)1.设随机向量X ,Y 的联合分布为:X Y 1 2 31 0 61 1212 61 61 613 121 61(1) 求X ,Y 的边际分布;(2) 判断X ,Y 是否独立. 解 (1) X 的边际分布为: Y 的边际分布为:X 1 2 3 Y 1 2 3P 41 21 41 P 41 21 41(2) X 与Y 不相互独立.2.设随机变量),(Y X 的联合密度函数为:),(y x f =⎩⎨⎧<<-其他,,,,00e y x y求概率)1(≤+Y X P .解 ==≤+⎰⎰--y x Y X P x xy d e d )1(1210211e2e 1---+.六.(本题8分)设连续型随机变量X 的分布函数为:=)(x F ⎪⎩⎪⎨⎧≤>+-,,,,000e 22x x B A x 求: (1) 系数A 及B ;(2) 随机变量X 的概率密度; (3) )9ln 4ln (≤≤X P .解 (1) 由分布函数的性质知1)e(lim )(22==+=+∞-+∞→A B A F x x ,)0(0)e(lim )(lim 202F B A B A x F x x x ==+=+=-→→++,从而1-=B ;(2) 分布函数的导数即为其概率密度,即)(x f =⎪⎩⎪⎨⎧≤>-000e 22x x x x ,,,(3) 61)4ln ()9ln ()9ln 4ln (=-=≤≤F F X P . 七.(本题8分)设n X X X ,,,21 为总体X 的一个样本,X 的概率密度为:)(x f =⎪⎩⎪⎨⎧≤≤-其他,,,,0101x x θθ其中0>θ,求未知参数θ的矩估计量与极大似然估计量.解 令X x x EX =+==⎰1d 10θθθθ,从而解得θ的矩估计量为2)1(XX -=θ. 极大似然估计为:∑∑==+=ni ini iXX n 11ln ln θ.(具体做法类似与模拟试卷二第八题)八.(本题10分)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为5.66分,标准差为15分,问在显著水平05.0下,是否可认为全体考生的平均成绩为70分?解 假设0H :70=μ,选取统计量ns X T /μ-=)1(~-n t , (0H 为真时)在05.0=α下,查t 分布的双侧临界值表知0301.2025.0=t . 另一方面,计算统计量的值0301.24.136/15705.66||<=-=T ,从而接受原假设,即可认为全体考生的平均成绩为70分.九.(本题12分)两家银行分别对21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为x =2600元和y =2700元,样本标准差相应地为811=S 元和1052=S 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(10.0=α)解 此题要求检验21μμ=,由于t 检验必须在方差相等的条件下进行,因此必须先检验21σ与22σ是否相等.第一步假设0H :21σ=22σ,统计量2221s s F =~)1,1(21--n n F ,经检验,接受0H :21σ=22σ;第二步假设0H :21μμ=, 统计量2)1()1()11(2122221121-+-+-+-=n n s n s n n n YX T )2(~21-+n n t经检验,拒绝0H ,即两家银行的储户的平均年存款余额有显著差异.(请参见模拟试题(一)第九大题)十.(本题4分)设总体X 服从参数为λ的泊松分布,λ为未知参数,⎩⎨⎧-=为偶数,,为奇数,,X X X T 11)(证明:)(X T 是λ2-e的一个无偏估计量.证明 ∑∞===)()()]([x x X P x T X T E∑∞=-=0!)(x xex x T λλ=-=∑∞=-0!)1(n nne n λλλ2-e ,所以)(X T 是λ2-e的一个无偏估计量.模拟试题(四)参考答案一.填空题(每小题2分,共20分)1.设)(A P =0.4,)(B P =0.5.若,7.0)(=B A P 则=+)(B A P . 解 55.0)|()()()()(=-+=+B A P B P B P A P B A P2.若随机变量X 服从二项分布,即)1.0,5(~B X ,则=-)21(X D .解 8.19.01.0544)21(=⋅⋅⋅==-DX X D . 3.三次独立重复射击中,若至少有一次击中的概率为6437,则每次击中的概率为 . 解43. 4.设随机变量X 的概率密度是:⎩⎨⎧<<=,,0,10,3)(2其他x x x f 且,784.0)(=≥a X P 则=a .解 由784.0)(=≥a X P 知,10<<α.故,784.01d 3)(132⎰=-==≥ααx x a X P 从而6.0=α. 5.利用正态分布的结论,有:=+-⎰∞+∞---x x x x d e )44(212)2(22π .解 令t x =-2,则原式1)(d e212222=+==⎰∞+∞--EX DX t t t π,这里)1,0(~N X .6.设总体X 的密度函数为:⎩⎨⎧<<=-,,0,10,)(1其他x x x f αα)0(>αα为参数其中,n x x x ,,,21 是来自总体X 的样本观测值,则样本的似然函数=);,,,(21αn x x x L .解 ∏=-ni i nx 11αα.7.设X ,Y 是二维随机向量,DX ,DY 都不为零,若有常数0>a 与b 使1)(=+-=b aX Y P ,这时X 与Y 是 关系.解 完全相关.8.若),(~2σμN X ,n X X X ,,,21 是来自总体X 的样本,2,S X 分别为样本均值和方差,则SnX )(μ-服从 分布.解 )1(-n t .9.设),(~211σμN X ,),(~222σμN Y ,X 与Y 相互独立.从X ,Y 中分别抽取容量为21,n n 的样本,样本均值分别为Y X ,,则Y X -服从分布 .解 ),(22212121n n N σσμμ+-.10.设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z 的相关系数为____________. 解 9.0),cov()4.0,cov(),cov(==-=X Y X Y Z Y . 二.单项选择题(每小题2分,共12分)1. 设随机变量X 的数学期望EX 与2σ=DX 均存在,由切比雪夫不等式估计概率}4{σ<-EX X P 为( )(A) 161≥(B) 161≤(C) 1615≥(D) 1615≤解 本题应选C.2.B A ,为随机随机事件,且A B ⊂,则下列式子正确的是( ). (A) )()(A P B A P =(B) )()()(A P B P A B P -=-(C) )()(A P AB P = (D) )()(B P A B P =解 本题应选A.3. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其他,,,,010)(x B Ax x f 且127=EX ,则( ).(A) 5.0,1-==B A(B) 1,5.0=-=B A(C) 1,5.0==B A (D) 5.0,1==B A 解 令1d )(10=+⎰x B Ax ,127d )(1=+⎰x x B Ax ,解得5.0,1==B A ,故本题应选D. 4.若随机变量X 与Y 不相关,则有( ). (A) )(9)()3(Y D X D Y X D -=- (B) )()()(Y D X D XY D ⨯= (C) 0)]}()][({[=--Y E Y X E X E(D) 1)(=+=b aX Y P 解 本题应选C.5.已知随机变量),(~21n n F F ,且αα=>)},({21n n F F P ,则=-),(211n n F α( ).(A) ),(121n n F α(B)),(1121n n F α-(C)),(112n n F α(D) ),(1211n n F α-解6.将一枚硬币独立地掷两次,记事件:=1A {掷第一次出现正面},=2A {掷第二次出现正面},=3A {正、反面各出现一次},=4A {正面出现两次},则事件( ).(A) 321,,A A A 相互独立 (B) 432,,A A A 相互独立 (C) 321,,A A A 两两独立(D) 432,,A A A 两两独立解 21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,再由事件独立的充分必要条件可知321,,A A A 两两独立,本题应选C.三.计算题(每小题8分,共48分)1.某厂由甲,乙,丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%,12%.现从该厂产品中任意抽取一件,求:(1) 取到不合格产品的概率;(2) 若取到的是不合格品,求它是由甲厂生产的概率. 解 (1) 运用全概率公式, 0.09;(2) 运用贝叶斯公式, 0.44.(具体做法参见模拟试卷(一)第四题)2.一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为)3,2,1(11=+=i ip i ,以X 表示三个零件中合格品的个数,求:(1) X 的概率分布; (2) X 的方差DX .解 (1)12234132411241=⋅+⋅+=EX , (2)2741924114412=⋅+⋅+=EX ,故521.0)(22=-=EX EX DX . 3.设总体X ),0(~2σN ,2σ为未知参数,n x x x ,,,21 是来自总体X 的一组样本值,求2σ的最大似然估计.解 似然函数21221222222e )21(e)21()(σσσπσπσ∑=∑===--ni i ni i x nx nL ,两边取对数212222ln 22ln 4)(ln σσπσ∑---==ni ix nn L ,关于2σ求导,并令其为零,得0)(21222122=∑+⋅-=σσni ix n , 从而解得极大似然估计量为∑==n i i x n 1221ˆσ. 4.二维随机变量(X ,Y )的联合概率密度:⎩⎨⎧>>=+-其它,,,,00,0e 2),()2(y x y x f y x求: (1) X 与Y 之间是否相互独立,判断X 与Y 是否线性相关;(2) )1(≤+X Y P . 解 (1) ⎪⎩⎪⎨⎧≤>==⎰⎰∞++-∞+∞-0,0,0,d e 2d ),()(0)2(x x y y y x f x f y x X341⎩⎨⎧≤>=-.0,0,0,e x x x 同理⎩⎨⎧≤>=-.0,0,0,e )(2y y yf y Y 从而)()(),(y f x f y x f Y X =,故X 与Y 相互独立,因而X 与Y 一定不相关.(2) =≤+)1(X Y P =⎰⎰-+-y x x y x d 2e d 10)2(1021)e 1(--.5.某人乘车或步行上班,他等车的时间X (单位:分钟)服从参数为51的指数分布,如果等车时间超过10分钟他就步行上班.若此人一周上班5次,以Y 表示他一周步行上班的次数.求Y 的概率分布;并求他一周内至少有一次步行上班的概率.解 此人每天等车时间超过10分钟也即步行上班的概率为210e d e 51)10(--∞+==>⎰x X P sx. 故)e ,5(~2-B Y .52)e 1(1)1(---=≥Y P .6.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈⋅=其他,,,,0]8,1[31)(32x x x f )(x F 是X 的分布函数.求随机变量)(X F Y =的概率分布.解 ⎪⎪⎩⎪⎪⎨⎧>≤<-≤=.8,1,81,1,1,0)(31x x x x x F(3) 当0<y 时,0)()(=≤=y Y P y F Y ;当10<≤y 时,))1(()1()()(331+≤=≤-=≤=y X P y X P y Y P y F Yy y F X =+=))1((3;当1≥y 时,1)()(=≤=y Y P y F Y . 故对)(y F Y 求导可得Y 的概率密度,⎩⎨⎧<<=其它,,,,0101)(y y f Y 即]10[~,U Y 四.应用题(第1题7分、第2题8分,共15分)21 1.假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,用中心极限定理计算命中60发到100发之间的概率.解 设⎩⎨⎧=发炮弹命中第发炮弹没有命中第i i X i ,1,,0 (400,,2,1 =i ),则 ∑==4001i i X X )2.0,400(~B表示400发炮弹命中的发数,且80=EX ,64=DX ,故由中心极限定理知,)6420|6480(|)20|80(|)10060(<-=<-=<<X P X P X P9876.01)820(2=-Φ=. 2.某厂生产铜丝,生产一向稳定.现从该厂产品中随机抽出10段检查其折断力,测后经计算:5.160)(,5.28712=-=∑=n i i x x x .假定铜丝折断力服从正态分布,问是否可以相信该厂生产的铜丝的折断力方差为16?(1.0=α)解 16162120≠=σσ:,:H H .采用统计量 2221S n σχ-=,在0H 成立时,)9(~22χχ.由1.0=α,查得临界值 325.3)9(295.022/1==-χχα, 919.16)9(205.022/==χχα, 由样本值算得03.10165.1602≈=χ,由于22/222/1ααχχχ<<-,所以不拒绝0H ,即该厂生产的铜丝的折断力方差为16. 五.证明题(5分)若随机变量X 的密度函数)(x f ,对任意的R x ∈,满足:)()(x f x f -=,)(x F 是其分布函数.证明:对任意实数a ,有⎰-=-a x x f a F 0d )(21)(. 证明 ⎰⎰⎰-∞--∞-+==-a ax x f x x f x x f a F 00d )(d )(d )()(⎰-+=a x x f 0d )(21 (令x t -=) ⎰⎰⎰-=-=--=a a a x x f t t f t t f 000d )(21d )(21d )(21.。
概率论与数理统计练习题及其答案
概率论与数理统计模拟试题(概率论部分)一、填空题(每小题3分):1、同时抛出两枚硬币,两枚硬币均为正面的概率为 ;2、依次抛两枚骰子,若第一枚为3点,则第二枚也为3点的概率为 ;3、设事件A 、B ,()0.8,()0.5,()P A P AB P AB === ;4、若事件A 、B 互斥,()0.3,()0.4,()P A P B P A B ==-= ;5、设A 和B 相互独立,且()0.4,()0.3P A P B ==,则()P A B += ;6、设随机变量~(0,1)X N ,分布函数为()x Φ,则(0)Φ= ;7、设2(0,)XN σ,若{}20.45P X <-=,则{}22P X -<<= ;8、已知随机变量X 服从区间[0,1]上的均匀分布,21Y X =-,则DY = ; 9、设随机变量X 与Y 相互独立,方差分别为2和3,则(23)D X Y -= ; 10、设随机变量X 、Y 满足()()()E XY E X E Y =,则协方差(,)Cov X Y = ; 11、设随机变量X 、Y 满足0XY ρ=,则协方差(,)Cov X Y = ; 二、选择题(每小题3分,每题只有一个正确答案):1、设事件A 、B ,()0,P AB =则下面说法中正确的是( ).()A A 、B 互斥;()B A 、B 相互独立;()C ()0P A =或()0P B =;()D ()()P A B P A -=.2、(),(),(),()P A a P B b P A B c P AB ====( ).()A a b -; ()B c b -; ()C a ab -; ()D b a -.3、设事件A 、B 互斥,()0P A >,()0P B >,则下面说法中正确的是( ); ()A ()0P B A >;()B ()()P A B P A =;()C ()0P A B =;()D ()()()P AB P A P B =.4、()0.8,()0.7,()0.8,P A P B P A B ===则下面说法中正确的是( );()A A 、B 相互独立;()B A 、B 互斥;()C A B ⊂;()D ()()()P A B P A P B +=+.5、设事件A 、B 相互独立,则下面的说法中,错误的是( );()A A 与B 独立;()B A 与B 独立;()C ()()()P AB P A P B =;()D A 、B 一定互斥.6、设随机变量X 的概率密度为2(3)4(),x f x x --=-∞<<∞,则( )(0,1)N .3()4X A -; ()B ; 3()2X C +; ()D . 7、设总体X 服从2(3,4)N ,且常数c 满足{}{}P X c P X c >=<,则C 等于( );()A 3; ()B 2; ()C 1; ()D 0.8、设()P A p =,则n 次独立重复试验中事件A 至少发生一次的概率为( ).()A p ; ()B 1p -; ()C (1)n p -; ()D 1(1)n p --.9、设随机变量X 与Y 相互独立,方差分别为6和3,则(2)D X Y -=( ).()A 9; ()B 15; ()C 27; ()D 33.10、若随机变量X 和Y 的协方差(,)0Cov X Y =,则下列结论中正确的 ( ) ()A X 、Y 相互独立; ()B ()D X Y DX DY +=+;()C ()D X Y DX DY -=-; ()D ()D XY DX DY =⋅.三、计算题(一维随机变量部分)1、如图系统由3个电子元件组成,各元件独立工作,其正常工作的概率皆为0.8,求系统正常工作的概率.解:()()()()P P AB C P AB P C P ABC ==+- ()()()()()()P A P B P C P A P B P C =+- 0.80.80.80.80.80.80.928.=⨯+-⨯⨯=2、在区间(0,1)上任意取5个数,求这5个数中有2个大于23的概率. 解:设取得的数为X ,则2133P X ⎧⎫>=⎨⎬⎩⎭,又设5个数中大于23的个数为Y ,则{}2522511802133243P Y C -⎛⎫⎛⎫==-=⎪⎪⎝⎭⎝⎭. 3、设随机变量X 在[]2,5上服从均匀分布,现在对X 进行三次独立观测,求至少有两次观测值大于3的概率.解:由已知,X 的分布密度为:1,25()30,.x f x ⎧≤≤⎪=⎨⎪⎩其他,则 {}5312333P X dx >==⎰,设在三次独立观测中观测值大于3的次数为Y ,则2(3,)3Yb ,那么{}223333212202()()()33327P Y C C ≥=+=.4、已知离散型随机变量X 的分布列为:10120.10.40.20.3-⎛⎫ ⎪⎝⎭,求: (1) {1 1.5}P X -<≤;(2) 2()E X 、DX . 解: (1) {1 1.5}0.40.20.6P X -<≤=+=. (2) 0.7EX =2()00.410.340.3 1.5E X =⨯+⨯+⨯=. 22()() 1.50.70.8.DX E X EX =-=-= 5、已知随机变量X 的概率密度为:(12),01()0,A x x f x +<<⎧=⎨⎩其它, (1) 求A 的值; (2) 计算{0.10.5}P X << 解: (1) 由 11()(12)2f x dx A x dx A +∞-∞==+=⎰⎰得12A =. (2): {}0.50.10.10.5()P X f x dx <<=⎰.0.50.11(12)0.322x dx =+=⎰.6、已知随机变量X 服从(0,1)上的均匀分布,求X Y e =的概率密度函数.解:X 的概率密度:1,01()0,x f x <<⎧=⎨⎩,其他 当0Y ≤时,()0Y f x =;当0Y >时,(){}{}(ln )X Y X F y P Y y P e y F y =≤=≤=,故1,1()0,Y X y e y f y F ⎧<<⎪'==⎨⎪⎩其他. 7、已知连续型随机变量X 的密度函数为sin 0,()0A x x f x π<<⎧=⎨⎩ 其他.,求: (1)常数A ; (2)求33P X ππ⎧⎫-<<⎨⎬⎩⎭.解: (1) 由 01()sin 2f x dx A xdx A π+∞-∞===⎰⎰,得 12A =. (2)330311()sin 3324P X f x dx xdx πππππ+-⎧⎫-<<===⎨⎬⎩⎭⎰⎰.四、(二维随机变量部分:边缘分布、函数分布、概率、期望、方差)1、在区间(0,1)任意取2个数,求这2个数之和小于65的概率。
概率论与数理统计模拟试题5套带答案
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》模拟试题一答案
一、填空(每空3分,共42分)
1、从1,2,…,100这100个数中,任意抽取一个数,此数能被2或被5整除的概
率为 0.6 . 2、已知5.0)(,2.0)(==B P A P ,且事件A 与B 相互独立,则=)(AB P 0.1 .3、设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤<=.5.1,
1,
5.11,21
,10,2
,0,
0)(x x x x x
x x F
则)3.14.0(≤<X P = 0.6 .
4、已知随机变量Y X , 相互独立,且),1,0(~),1,0(~N Y N X 设221Y X Z += ,Y X Z +=2则~1Z )2(2χ; ~2Z )2,0(N ;=)(1Z E 2 .
5、设随机变量X 的分布律为
则)42(≤≤X P =
4
3. 6、设随机变量X 的分布函数为⎪⎪⎪
⎩⎪
⎪⎪⎨⎧≥<≤<=.2,1,20,sin ,0,0)(ππx x x A x x F 则A = 1 .
7、已知在10只产品中有2只次品,在其中取两次,每次任取一只,作不放回抽样,
第二次取出的是次品的概率为 0.2 . 8、若随机变量X 在区间(0,10)上服从均匀分布,则
)31(≤≤X P = 0.2 ; )(X E = 5 .9、已知随机变量Y X , 相互独立,且
),5,2(~),4,1(~N Y N X
则=>+)3(Y X P 0.5 .
10、设总体)(~λπX , n X X X ,,,21 是来自总体的一个样本,X 和2S 分别为样本
均值和样本方差,则参数λ的矩估计为 X .
11、已知随机变量Y X ,满足关系12=+X Y ,则XY ρ -1 . 二、单项选择(每题2分,共8分) 1、已知0)(,1)(==B P A P ,则(D ). A 、 A 为必然事件,B 为不可能事件
B 、 A 为必然事件,B 不是不可能事件
C 、 A 不是必然事件,B 为不可能事件
D 、 A 不一定是必然事件,B 不一定是不可能事件 2、已知X 服从泊松分布,则==}{x X P ( B ).
A 、
λ
λe x
x
B 、
λ
λ-e
x x
!
C 、
λ
λe x x
!
D 、
λλ--e x x
!
3、设),(~2σμN X ,)(b X a P ≤≤=( B ). A 、)()(a b Φ-Φ B 、)(
)(
σ
μ
σ
μ
-Φ--Φa b
C 、)(
)(
σ
μ
σ
μ
-Φ+-Φa b D 、)(
)(
σ
μ
σ
μ
-Φ--Φb a
4、当2σ已知时,总体均值μ的1-α置信水平下的置信区间为(A ). A 、n
Z X σ
α
2
± B 、n
Z σ
μα
2
0± C 、n
t X σ
α
2
± D 、n
Z X 2
2
σα
±
三、(每题10分,共30分)
1、某厂有4个车间D C B A ,,,生产同种产品,日产量分别占全厂产量的30%,40%,10%,20%. 已知这四个车间产品的次品率分别为0.10, 0.05, 0.20和0.15,从该厂任意抽取一件产品,发现是次品,问这件次品是由A 车间生产的概率为多少? 解:设k A 分别表示4个车间D C B A ,,,生产的产品 ,4,3,2,1=k B 表示取到的产品是次品,
由已知得: ,2.0)(,1.0)(,4.0)(,3.0)(4321====A P A P A P A P
15.0)|(,2.0)|(,05.0)|(,1.0)|(4321====A B P A B P A B P A B P
由全概率公式 ∑==4
1)()()(i i i A B P A P B P = 1.0
由贝叶斯公式 3.0)
()
()()(111==
B P A P A B P B A P
2、设随机变量X 的概率密度是 ,0 0 ,3)(32
⎪⎩⎪
⎨⎧<<=其它.θθx x x f
(1)若8/7)1(=>X P ,求θ的值;(2)求X 的期望与方差.
解:(1) 由已知,8
7
1
11
3)()1(3
133
1
1
3
2
=
-
==
==>⎰⎰
∞
θθθθθ
x dx x dx x f X P 解得2=θ. (2)⎰+∞
∞-=dx x xf X E )()(
23
2
32
32==⎰
dx x x
22)]([)()(X E X E X D -= ⎰+∞
∞-=dx x f x X E )()(22
5122
32
3
22
==⎰
dx x x 所以22)]([)()(X E X E X D -==
20
3
3、设随机变量),(Y X 的联合分布律为
设2)(Y X Z -=.(1)求)(Z E ;(2)求),(Y X Cov . 解:(1)Z 的分布律为
显然6.0)(=Z E
(2))()()(),(Y E X E XY E Y X Cov -= 而XY Y X ,,的分布律分别为
所以1.24.033.023.01)(=⨯+⨯+⨯=X E
7.17.023.01)(=⨯+⨯=Y E
8.34.062.04032.022.01)(=⨯+⨯+⨯+⨯+⨯=XY E
得23.07.11.28.3)()()(),(=⨯-=-=Y E X E XY E Y X Cov
四、(10分)设随机变量),(Y X 的联合概率密度为
⎩
⎨
⎧≤≤≤≤+=.,020,10,),(2其它,
y x Axy x y x f 求(1)A 的值;(2)关于X 的边缘概率密度函数. 解:(1)由
⎰⎰
+∞∞-+∞
∞
-dxdy y x f ),(1)(1
2
2=+=
⎰
⎰dy Axy x dx ,
解得 3
1
=
A . (2)关于X 的边缘概率密度
⎪⎩
⎪⎨⎧<<+==
⎰⎰
∞
+∞
-.0,
10,)3
1
(),()(202其它,x dy xy x dy y x f x f X
⎪⎩
⎪⎨⎧<<+=.0,
10,3
2
22其它,x x x 五、(每题5分,共10分)
1、设样本821,,,X X X 来自总体)2,0(N ,
254322211)()(X X X c X X c Y ++++=.
若统计量Y 服从)2(2χ分布,求常数21,c c .
解:由已知, )6,0(~),4,0(~54321N X X X N X X +++,
所以,
)1,0(~4
2
1N X X + ,
)1,0(~6
3
43N X X X ++
由2χ分布的定义, ++22
1)4
(
X X 23
43)6
(
X X X ++)2(~2χ,
得4
1
1=
c ,612=c .
2、设总体X 的分布律为
其中)10(<<θθ为未知参数.已知取得了样本值1,2,1321===x x x . 求θ的最大似然估计.
解:似然函数为 )1(2)1(2)()(5223
1θθθθθθθ-=-===∏=i i x X P L
)1ln(ln 52ln )(ln θθθ-++=L
θ
θθθ--=11
5)(ln d L d 由
0115)(ln =--=θθθθd L d ,得6
5ˆ=θ
附录: 9772.0)2(,975.0)96.1(,8413.0)1(=Φ=Φ=Φ.。