含有绝对值的_不等式PPT课件
合集下载
绝对值不等式(共12张PPT)
• 对于不等式 |ax+b|<c (c>0),乃基本不等式 的推广,应用整体思想,视ax+b为一个整体, 可迅速地将原不等式转化为-c<ax+b<c.
第2页,共12页。
• 例1 解不等式 |3x-4|≥x+2 • 解绝对值不等式,重在去绝对值符号,回绕
此来展开思路,不难产生如下想法. • 思考一:讨论3x-4的符号去绝对值符号; • 思考二:讨论x+2的符号; • 思考三:直接去绝对值符号. • 原不等式可化为 • 3x-4≤-(x+2) 或 3x-4≥x+2 • 解得 x≤1/2 或 x≥3.
• 解得 x<-2 或 x>3
• 因此 ∁U A={x | -2≤x≤3 }. • ∵ ∁U A∩B=B,∴ B ∁U A • 当c≤0时,B=,显然B是A的子集.
• 当c>0时,由 |x+1|<c 得 -c<x+1<c,故 -c-1<x<c-1.
∵AB,∴c--c-1≤1≥3 -2
解得 c≤1. ∴ 0<c≤1.
例 解关于x的不等式 a|x-1|>2+a
• 当a<0时,x∈R. 当c≤0时,B= ,显然B是A的子集.
观察:|x-3|-|x+1|<1的点应位于点的右侧,故不等式的解集为 {x | x>1/2}. 当a=1时,y=a,此时函数 y=(1-a)x-a=-1为常函数,
• 当a=0时,x∈R且x≠0。 1) 函数y=|x-3|-|x+1|的值域为____.
Ⅲ)
x>3 (x-3)-(x+1)<1
I)
的解集为空集;Ⅱ)的解为
1 2
<x≤3;Ⅲ)的解为 x>3
综上所述,原不等式的解集为{x | x>12 }. 另解: 注意到式子|x-3|-|x+1|表示数轴上坐标为x的一点到坐标 为3的点的距离与到坐标为-1的点的距离的差.
2.1绝对值三角不等式课件
(3)如果ab=0,则a=0或b=0 易得: |a+b|=|a|+|b|
综上所述,可得:
定理1: 如果a,b是实数, 则 |a+b||a|+|b|, 当且仅当ab0时,等号成立.
如果把定理1中的实数a,b分别换为向量 a, b,能得
出什么结果?
定理1的几何意义
在不等式|a+b||a|+|b|中, 绝对值三角不等式
当且仅当(a-b)(b-c)0时,等号成立.
定理2的几何意义
在数轴上,a,b,c所对应的点分别为A,B,C,
AB C x a• b• c•
A
CB x
• •a
•c
•
b
B
AC x
b• •
a• •c
(1)当点B在点A,C之时, |a-c|=|a-b|+|b-c|
(2)当点B在点A,C之外时, |a-c|<|a-b|+|b-c|
思考题:
S(x)=2(|x-10|+|x-20|),xk 1,k 10
若函数s(x)能取到最小值20,求k的范围。
作业
P20: 1,2,3,4,
谢谢聆听
THANK YOU FOR YOUR
用向量 a、b 分别替换实数a,b,
y
当向量 a b 不共线时,则由向量加法的 a b
三角形法则,
b
向量 a、b、a+b 构成三角形,
ax
O
故可得向量形式的不等式:
|a+b|<|a|+|b|
当向量a b 共线呢?
故该定理的几何意义为:
三角形的两边之和大于第三边.
定理1: 如果a,b是实数, 则 |a+b||a|+|b|, 当且仅当ab0时,等号成立.
含绝对值的不等式PPT课件
的温度范围是(
).
A.18℃~20℃ B.20℃~22℃ C.18℃~21℃ D.18℃~22℃
2.求下列不等式的解集:
(1)3 x 1
3.求不等式
1
|
;(2) − 1 ⩽ 2 ;(3)| 3x 2 | 1 ;(4) x +1| ≥ 3 .
2
+ ≥ (b > 0)
4.求不等式 x < 5 的解集.
2
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
如图所示是某矿泉水的标签,显示该矿泉水的pH值(25℃)为
7.3 ± 0.5,该矿泉水pH值的取值范围是什么?
设该矿泉水的pH值(25℃)为x,则x的取值范围可表示为
x 7.3 ≤ 0.5
设
就是
t x 7.3
.
,那么不等式 x 7.3 ≤ 0.5 可化为得 | t | ≤ 0.5 ,也
变量的代数式,即用单一字表示一个代数式,从而将一些数学问题化
难为易、化繁为简.
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
例2 求不等式 | 2 x 3 | ≤1 的解集.
解 不等式 | 2 x 3 | ≤1 ,也就是 1 ≤ 2 x 3 ≤1 ,于是 2 ≤ 2x ≤ 4 ,
0.5 ≤ t ≤ 0.5
,由此解得
0.5 ≤ x 7.3 ≤ 0.5
,即 6.8 ≤ x ≤ 7.8
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
一般地,形如 + < 和 + > ( > 0)的不等式可以通
过 “变量替换”的方法求解.
绝对值不等式PPT课件
方法技巧
1.形如|ax+b|≤c(≥c)(c>0)的三种解法 解法一:等价法 |ax+b|≤c⇔-c≤ax+b≤c. (|ax+b|≥c⇔ax+b≤-c或ax+b≥c) 解法二:分类讨论法
|ax+b|≤c⇔aaxx
b b
0, c
或ax(axbb)0,
c.
解法三:平方法
|ax+b|≤c⇔(ax+b)2≤c2. 2.形如|x+a|+k|x+b|≤c(≥c)的解法
x
|
x
5 2
或x
7 2
.
(2)解法一:因为|x+1|+|m-x|≥|x+1+m-x|=|m+1|,
由题意得|m+1|≥6,
即m+1≥6或m+1≤-6,
解得m≥5或m≤-7,
即m的取值范围是(-∞,-7]∪[5,+∞).
2x m 1, x m,
解法二:①当m<-1时, f(x)=m 1, m x 1,
2
围.
解析 令f(x)=|2x-1|+|x+2|,
易求得f(x)min=
5 2
,
依题意得a2+ 1 a+2≤ 5 ⇔-1≤a≤1 .
2
2
2
考点突破
考点一 绝对值不等式的解法
典例1 解不等式:|x-1|-|x-5|<2. 解析 ①当x<1时,原不等式等价于1-x-(5-x)<2,即-4<2,不等式恒成立, ∴x<1. ②当1≤x≤5时,原不等式等价于x-1-(5-x)<2,即x<4, ∴1≤x<4. ③当x>5时,原不等式等价于x-1-(x-5)<2,即4<2,无解. 综合①②③知原不等式的解集为(-∞,4).
含绝对值的不等式解法PPT教学课件
一、复习回顾
• 不等式解集含义; • 会在数轴上表示解集; • 不等式性质及其利用; • 绝对值的定义,含有绝对值的不等式的解法,
当a>0时,
| x | a a x a; | x | a x a或x a.
二、定理:
| a | | b || a b || a | | b |
证明: | a | a | a |
例4.已知|a|<1,|b|<1,求证:
证明:a b 1 ab
1
ab 1 ab
2
1
a b 1. 1 ab
a2 2ab b2 1 2ab a2b2
1 a2 b2 a2b2 0
1 a2 1 b2 0.
由 a 1, b 1,可得 1 a 2 1 b2 0成立,所以
在设置情境上绞尽脑汁的原因。从教育现象学视角审视“情境教学”“情境学习”与“情境教育”,或许会更深入。
ab 1 ab
1.
注 这道题的证明过程中,用了
这一结论.
定理:| a | | b || a b || a | | b |
四. 练习:
2.求证:
(1)|(A+B)-(
五、课时小结
1. 含绝对值不等式解法关键是去掉绝对 值符号;
2. 注意在解决问题过程中不等式的几何 意义;
如果我们能够从现象学的视角去思考与把握,那么任何一个平常的经验就可以转化为教学资源。试想,学生有了亲身经验,而且是当下或者最近的经验,他们会无话可说、无文可写吗?马克 斯·范梅南说:“从某种意义上说,所有现象学都是指向实践的——生活的实践。”②我以为,这个论断对杜威的“教育即生活”做了很好的诠释,同时也为我们正确地理解情境与教学提供了一种思
=|x|+2|y|+3|z|.
• 不等式解集含义; • 会在数轴上表示解集; • 不等式性质及其利用; • 绝对值的定义,含有绝对值的不等式的解法,
当a>0时,
| x | a a x a; | x | a x a或x a.
二、定理:
| a | | b || a b || a | | b |
证明: | a | a | a |
例4.已知|a|<1,|b|<1,求证:
证明:a b 1 ab
1
ab 1 ab
2
1
a b 1. 1 ab
a2 2ab b2 1 2ab a2b2
1 a2 b2 a2b2 0
1 a2 1 b2 0.
由 a 1, b 1,可得 1 a 2 1 b2 0成立,所以
在设置情境上绞尽脑汁的原因。从教育现象学视角审视“情境教学”“情境学习”与“情境教育”,或许会更深入。
ab 1 ab
1.
注 这道题的证明过程中,用了
这一结论.
定理:| a | | b || a b || a | | b |
四. 练习:
2.求证:
(1)|(A+B)-(
五、课时小结
1. 含绝对值不等式解法关键是去掉绝对 值符号;
2. 注意在解决问题过程中不等式的几何 意义;
如果我们能够从现象学的视角去思考与把握,那么任何一个平常的经验就可以转化为教学资源。试想,学生有了亲身经验,而且是当下或者最近的经验,他们会无话可说、无文可写吗?马克 斯·范梅南说:“从某种意义上说,所有现象学都是指向实践的——生活的实践。”②我以为,这个论断对杜威的“教育即生活”做了很好的诠释,同时也为我们正确地理解情境与教学提供了一种思
=|x|+2|y|+3|z|.
绝对值不等式精选教学PPT课件
|b|-|a|≤|a+b| ≤|a|+|b|
变形:结合定理和变形又可变式为
︱|a|-|b|︱≤|a+b|≤|a|+|b|
推论1 a11 a22 a33 a1 a2 a3 a1 a2 a3
推抡1还可推广到 n N, n 2的情形 a1 a2 a3 an a1 a2 a3 an
2.绝对值不等式基本定理的主要应用,特 别是在解决某些函数值域时更显优越性.
知识的建构
绝对值不 等式定理
绝对值不等式定理 的两个重要的推论
应用(证明不 等式,求值域
作业
课本22页习题 6.5 第1,2,3 题.
终于懂得 没有人会无条件爱你一生一世 他们总是爱你这样或者那样 绝不仅仅 单纯的爱你 这样一个女人 所以 如果一个男人不爱你的钱 只爱你的身体 那么 你已经可以为自己的幸运 烧香拜佛了 还有什么是真爱呢 真正的爱情 年少时站在校园里期待的那种爱情 早已 在尘世中消失离别的时候 每一句话都是那么重 缓缓地扣击着我们的心灵 窗被敲开了 我们诉说着回忆中的快乐 回想著一张张可爱的笑脸 院子里,操场上 充满了甜甜的空气
定理证明
先证:|a+b|≤|a|+|b|
证法二
证明: a b2 a b 2
a2 b2 2ab a2 b2 2 ab 2ab 2 ab 0
(a b)2 ( a b )2
ab a b
(当且仅当ab 0时等号成立)
下面证明:|a|-|b|≤|a+b|
当a b时显然成立
(A) |a-b|<2h (C) |a-b|<h
(B) |a-b|>h (D) |a-b|>h
2. 已知 |a-c|<1 , 求证 |a|< |c|+1
变形:结合定理和变形又可变式为
︱|a|-|b|︱≤|a+b|≤|a|+|b|
推论1 a11 a22 a33 a1 a2 a3 a1 a2 a3
推抡1还可推广到 n N, n 2的情形 a1 a2 a3 an a1 a2 a3 an
2.绝对值不等式基本定理的主要应用,特 别是在解决某些函数值域时更显优越性.
知识的建构
绝对值不 等式定理
绝对值不等式定理 的两个重要的推论
应用(证明不 等式,求值域
作业
课本22页习题 6.5 第1,2,3 题.
终于懂得 没有人会无条件爱你一生一世 他们总是爱你这样或者那样 绝不仅仅 单纯的爱你 这样一个女人 所以 如果一个男人不爱你的钱 只爱你的身体 那么 你已经可以为自己的幸运 烧香拜佛了 还有什么是真爱呢 真正的爱情 年少时站在校园里期待的那种爱情 早已 在尘世中消失离别的时候 每一句话都是那么重 缓缓地扣击着我们的心灵 窗被敲开了 我们诉说着回忆中的快乐 回想著一张张可爱的笑脸 院子里,操场上 充满了甜甜的空气
定理证明
先证:|a+b|≤|a|+|b|
证法二
证明: a b2 a b 2
a2 b2 2ab a2 b2 2 ab 2ab 2 ab 0
(a b)2 ( a b )2
ab a b
(当且仅当ab 0时等号成立)
下面证明:|a|-|b|≤|a+b|
当a b时显然成立
(A) |a-b|<2h (C) |a-b|<h
(B) |a-b|>h (D) |a-b|>h
2. 已知 |a-c|<1 , 求证 |a|< |c|+1
绝对值三角不等式 课件
分析:将2x+3y-2a-3b写成2(x-a)+3(y-b)的 形式后利用定理1和不等式性质证明.
证明:|2x+3y-2a-3b|=|2(x-a)+3(y-b)| ≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|
<2×4ε+3×6ε=ε.
某段铁路线上依次有A、B、C三站,AB=5 km,BC=3 km.在列车运行时刻表上,规定列车8时整从A 站出发,8时07分到达B站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A站正点发车在B站停留1分 钟,并在行驶时以同一速度v km/h正点发车,在B站停留1 分钟,并在行驶时以同一速度v km/h匀速行驶.列车从A站 到达某站的时间与时刻表上相应时间之差的绝对值称为列 车在该站的运行误差.
绝对值三角不等式
1.解在绝对值符号内含有未知数的不等式(也称绝对 值不等式),关键在于去掉绝对值符号,化成普通的不等 式.主要的依据是绝对值的意义.
在数轴上,一个点到原点的距离称为这个点所表示的 数的绝对值.
x,如果x>0 即|x|=0,如果x=0 .
-x,如果x<0
练习1:求下列各数的绝对值:
(1)3 (2)-8 (3)0
①当 0<v≤3700时,(*)式变形为30v0-7+48v0-11≤2, 解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为
300 480
解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为 7-3v00+4v80-11≤2, 解得3700<v≤41810; ③当 v>41810时,(*)式变形为 7-3v00+11-4v80≤2, 解得41810<v≤1495.
若|a-b|>c,|b-c|<a,求证:c<a. 证明:由|a-b|>c,及|b-c|<a得 c-a<|a-b|-|b-c|≤|(a-b)+(b-c)| =|a-c|=|c-a|. 由c-a<|c-a|知c-a<0,故c<a.
证明:|2x+3y-2a-3b|=|2(x-a)+3(y-b)| ≤|2(x-a)|+|3(y-b)| =2|x-a|+3|y-b|
<2×4ε+3×6ε=ε.
某段铁路线上依次有A、B、C三站,AB=5 km,BC=3 km.在列车运行时刻表上,规定列车8时整从A 站出发,8时07分到达B站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A站正点发车在B站停留1分 钟,并在行驶时以同一速度v km/h正点发车,在B站停留1 分钟,并在行驶时以同一速度v km/h匀速行驶.列车从A站 到达某站的时间与时刻表上相应时间之差的绝对值称为列 车在该站的运行误差.
绝对值三角不等式
1.解在绝对值符号内含有未知数的不等式(也称绝对 值不等式),关键在于去掉绝对值符号,化成普通的不等 式.主要的依据是绝对值的意义.
在数轴上,一个点到原点的距离称为这个点所表示的 数的绝对值.
x,如果x>0 即|x|=0,如果x=0 .
-x,如果x<0
练习1:求下列各数的绝对值:
(1)3 (2)-8 (3)0
①当 0<v≤3700时,(*)式变形为30v0-7+48v0-11≤2, 解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为
300 480
解得 39≤v≤3700; ②当3700<v≤41810时,(*)式变形为 7-3v00+4v80-11≤2, 解得3700<v≤41810; ③当 v>41810时,(*)式变形为 7-3v00+11-4v80≤2, 解得41810<v≤1495.
若|a-b|>c,|b-c|<a,求证:c<a. 证明:由|a-b|>c,及|b-c|<a得 c-a<|a-b|-|b-c|≤|(a-b)+(b-c)| =|a-c|=|c-a|. 由c-a<|c-a|知c-a<0,故c<a.
含绝对值的不等式PPT教学课件
取3枚洁净无锈的铁钉,分别放入3支试管 中进行下面的实验
步骤一、 在试管1中加入少量的蒸馏水,使铁钉的一半浸没在水中 步骤二、 在试管2中注满迅速冷却的沸水塞紧橡皮塞 步骤三、 在试管3中加入少量干燥剂(生石灰或无水氯化钙,再放一团干 棉球,塞紧橡皮塞
一半在水中
一周后
全浸在水中
干燥空气中
铁钉浸没一半在水中: 铁在空气、水的界面处生锈 铁钉完全浸没在水中(上面还加植物油): 铁未生锈 铁钉放在干燥的空气中(加干燥剂等): 铁未生锈
b:形成保护层
– 刷油漆、涂油、烧制搪瓷(物理方法) – 电镀上一层耐腐蚀的金属(镀铬、锌、锡)、
c:改善腐蚀环境等
– 保持铁制品表面干燥和洁净
• 自行车的构件如支架、链条、钢圈等, 分别采取了什么防锈措施?
刷油漆
镀铬
涂油
一.防止金属的腐蚀 二.回收利用废旧金属
三.合理有效开采矿物 四.寻找金属的代用品
(C)若 ab 0,则 a b a b
(D)若 ab 0,则 a b a b
2. a, b是实数,则使 a 成b 立1的
充分不必要条件的是
(A) a b 1
(C)a 1
(B) a 1 且 b 1
2
2
(D)b 1
定理应用
a b ab a b
a b ab a b
化学方程式: Fe2O3+3CO 高温 2Fe+3CO2
3、设备:高炉
高炉炼铁图: 焦炭
铁矿石
石灰石
热空气 炉
渣
生铁
出
出口
口
有关杂质问题的计算
例 1000t含氧化铁80%的赤铁矿石,理论上可炼出纯铁的 质量是多少?
《含绝对值的不等式》课件
零点分段法
将数轴分为几个区间,分 别讨论每个区间内不等式 的解,最后取并集。
几何意义法
利用绝对值的几何意义, 将不等式问题转化为图形 问题,通过观察图形求解 。
代数法
通过代数运算和不等式性 质,去掉绝对值符号,转 化为普通的不等式问题。
含绝对值的不等式的应用
解决实际问题
数学建模中的应用
含绝对值的不等式在现实生活中有广 泛的应用,如距离问题、费用问题、 时间问题等。
通过使用绝对值不等式,我们可以将复杂的问题简化,从而 更快地找到解决方案。此外,绝对值不等式还可以帮助我们 证明一些数学定理和性质,进一步加深对数学的理解。
在物理中的应用
在物理学中,绝对值不等式也具有广泛的应用。例如,在解决力学、电磁学、热 学等方面的问题时,我们经常需要用到绝对值不等式来建立数学模型和进行数值 模拟。
绝对值不等式可以帮助我们理解物理现象的本质,预测物理系统的行为,并为实 验提供理论支持。此外,绝对值不等式还可以帮助我们优化物理实验的设计,提 高实验的精度和可靠性。
在经济中的应用
在经济学中,绝对值不等式也被广泛应用于各种问题中。 例如,在研究市场供需关系、投资组合优化、风险管理等 方面,绝对值不等式都发挥着重要的作用。
通过使用绝对值不等式,我们可以更好地理解市场的运行 规律,预测市场的变化趋势,并为决策提供科学依据。此 外,绝对值不等式还可以帮助我们评估投资风险和回报, 优化资产配置,提高投资效益。
05
总结与思考
对含绝对值不等式的总结
01
绝对值不等式的定义与性质
绝对值不等式是数学中一类重要的不等式,它涉及到绝对值的运算性质
。通过学习,我们掌握了绝对值不等式的定义、性质以及解法。
绝对值不等式的证明PPT课件
,则下列不等式一定成立的是
A
提示:
|x-a|+ | b-x|+|x-a-b|≥|x-a-b+x+x+a+b|=3|x|
定理应用
例2 设 求证:
例2 已知函数y=|x|-|x-3| ,求函数的值域
解法1 :
利用函数法
3
0
-3
3
x
通过图像观察函数的值域为[-3,3]
解法2
利用不等式法
由 | |x|-|x-3| |≤| x-(x-3) | =3得: -3≤|x|-|x-3|≤3
︱|a|-|b|︱≤|a+b|≤|a|+|b|
把定理中的b换为-b可变形为 |a|-|-b|≤|a-b| ≤|a|+|-b|
试一试
(5)|a+b|-|a-b| ≤
|a+b|-|a-b|
≤
2|a| |a+b|+|a-b| 2|b| ≤ |a+b|+|a-b|
≤
1.若|a-c|<h , |b-c| <h ,则下列不等式一定成立的是( A)
知识的建构
绝对值不 等式定理 绝对值不等式定理 的两个重要的推论 应用(证明不 等式,求值域
所以,
时,等号成立.
,当且仅当
能否根据定理1的研究思想,探究
( 1)
( 2)
之间的关系.
之间的关系.
定理2 如果a,b是实数,则
前一个等号成立条件: 后一个等号成立条件: 几何意义:三角形两边和大于第三边, 两边差小于第三边.
定理变式
|a|-|b|≤|a+b|≤|a|+|b| 变形: 把定理中的a换为b,b换为a,定理可变式为 |b|-|a|≤|a+b| ≤|a|+|b| 变形:结合定理和变形又可变式为
含有绝对值的不等式课件(共17张PPT)
解 (1)这个不等式等价于 -5<2x-3<5,
-5+3<2x-3+3<5+3, -2<2x<8,
把x的系数化为1,得 -1<x<4,
因此,原不等式的解集为(-1,4).
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
(2)原不等式等价于
数学
基础模块(上册)
第二章 不等式
2.2.4 含有绝对值的不等式
人民教育出版社
第二章 不等式 2.2.4 含有绝对值的不等式
学习目标
知识目标 能力目标
理解含有绝对值的不等式概念及其解集的学习,掌握含有绝对值的不等式的 解题方法
学生运用分组探讨、合作学习,掌握含有绝对值的不等式的解题方法,提高 运用含有绝对值的不等式知识解决实际问题能力
一般地,一元二次不等式可以通过配方化为x2>m2和 x2<m2(m>0)的形式,于是,我们可以将一元二次不等 式化为含有绝对值的不等式进行求解. 试一试
(1)x≤3;
(2) 2 x -1>3
分析 将不等式化成x≤m或>m的形式后求解.
解 (1)原不等式的解集为[-3,3];
(2)这个不等式可化>2,故其解集为
(- ,- 2)U(2,+ )。
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2x-3≥5,
①
或
2x-3≤-5,
②
不等式①的解集为[4,+ ),不等式②的解集为(- ,-1].
因此,原不等式的解集为(- ,-1]∪[4,+ ).
探索研究 用配方法求解一元二次不等式.
-5+3<2x-3+3<5+3, -2<2x<8,
把x的系数化为1,得 -1<x<4,
因此,原不等式的解集为(-1,4).
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
(2)原不等式等价于
数学
基础模块(上册)
第二章 不等式
2.2.4 含有绝对值的不等式
人民教育出版社
第二章 不等式 2.2.4 含有绝对值的不等式
学习目标
知识目标 能力目标
理解含有绝对值的不等式概念及其解集的学习,掌握含有绝对值的不等式的 解题方法
学生运用分组探讨、合作学习,掌握含有绝对值的不等式的解题方法,提高 运用含有绝对值的不等式知识解决实际问题能力
一般地,一元二次不等式可以通过配方化为x2>m2和 x2<m2(m>0)的形式,于是,我们可以将一元二次不等 式化为含有绝对值的不等式进行求解. 试一试
(1)x≤3;
(2) 2 x -1>3
分析 将不等式化成x≤m或>m的形式后求解.
解 (1)原不等式的解集为[-3,3];
(2)这个不等式可化>2,故其解集为
(- ,- 2)U(2,+ )。
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2x-3≥5,
①
或
2x-3≤-5,
②
不等式①的解集为[4,+ ),不等式②的解集为(- ,-1].
因此,原不等式的解集为(- ,-1]∪[4,+ ).
探索研究 用配方法求解一元二次不等式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 13
作业
10/17/2019
教材P33,习题第3题.
Page 14
10/17/2019
Page 15
2019/10/17 16
-4 -3 -2 -1 0
|-3|=3
12 3
|3|=3
4 5x
Page 4
新授
10/17/2019
2. |x|>m与|x|<m的几何意义
问题
(1)解方程|x|=3,并说明|x|=3的几何意义是什么?
-4 -3 -2 -1 0
1 2 3 4 5x
|x|=3的几何意义是:在数轴上对应实数3的点到原
点
所以原不等式的解集是
{x| x< 1 或 x>2}.
ห้องสมุดไป่ตู้
想一想
怎样用区间来表 示这个不等式的解 集?
Page 10
重点难点突破
10/17/2019
(1) 解含绝对值的不等式关键是去掉绝对值符号; (2) 去绝对值符号时一定要注意不等式的等价性,即去掉 绝对值符号后的不等式(组)与原不等式是等价的.
Page 11
m = 0或m< 0
时上述结果还成 立吗? 为什么?
练习1
-m
0
m
解下列不等式 :
(1)|x| < 1; (2)|x|≥ 5;
12.
(3)3|x| >
x
Page 7
新授
例1 解不等式 |2x3| ≤
1.
解:由原不等式可得
1 ≤ 2x3 ≤ 1, 2 ≤ 2x ≤ 4,
化简,得
1 ≤ x ≤ 2,
10/17/2019
含有绝对值的不等式
Page 1
复习回顾
10/17/2019
1. 不等式的基本性质有哪些? 1.不等式的基本性质 (1)不等式的两边都加上(或减去)同一个整式,
不等号的方向不变,即 a>b a+c>b+c
(2)不等式两边乘(或除以)同一个正数,不等号 的方向不变 ,即 a>b,c>0 aXc>bXc
3].
-4 -3 -2 -1
0
12 3
4 5x
不等式|x|>3的解集 就是表示数轴上到原点的距离大于3的点的集合.
即 {x|x<3或x>3}=(,3)∪ (3,+) .
Page 6
新授
如果 m> 0,那么 ︱x︱ ≤ m ︱x︱> m
10/17/2019
想一想
{x|m ≤ x ≤ m} {x|x < m或 x >m}
所以原不等式的解集为
{x|1 ≤ x ≤
2}.
10/17/2019
不等式|x|<a的解 集是{x|-a<x<a}
Page 8
2019/10/17 9
新授
10/17/2019
例2 解不等式 |2x3|>1 .
解:原不等式等价于不等式:
不等式|x|>a的解 集是{x|x<-a或x> a}
2x3< 1 或2x3>1, x< 1 或 x>2,
练习
10/17/2019
练习2
解下列不等式:
(1)|x+5|≤7 ; (2)|5 x-3|>
2.
Page 12
小结
10/17/2019
1、公式:
不等式|x| ≤ m的解集是{x|-m ≤ x ≤ m}. 不等式|x| > m的解集是{x|x < -m 或 x>m}.
2、解题步骤: 整理 化简 套用公式 求解 写出解集
(3)不等式两边乘(或除以)同一个负数,不等号 的方向改变,即 a>b,c<0 aXc<bXc
Page 2
复习回顾
10/17/2019
2. | m |=
(m>0) (m=0) (m<0)
Page 3
10/17/2019
新授
1. |m|的几何意
义
数 m 的绝对值|m|,在数轴上等于对应实数m的点到原点的距离
的距离等于3,这样的点有二个: 对应实数3和3的点.
Page 5
新授
10/17/2019
问题
(2)试叙述|x| ≤ 3,|x|>3的几何意义,你
能写出其解集吗?
-4 -3 -2 -1
0
12 3
4 5x
不等式|x| ≤ 3的解集是表示数轴上到原点的距离小于或等于3的点的集合.
即 {x|3 ≤ x ≤ 3}=[3,