理科数学2017年高考考试大纲
2017年高考数学考纲分析及后期备考策略(2017年3月12日)
二、研究备考应对策略定计划
三、研究高考试卷题型找规律 四、研究学生定策略
一、研究考纲和考试说明找方向
《考试大纲》是高考命题的重要依据,也是学生备考和 教师指导学生复习的重要依据.因此,我们需要认真研读 《考试大纲》和《考试说明》,特别要对“考试的内容 与要求”深入研究,透彻理解,特别要注意对每个知识 点的层次要求,把握好复习方向,做到心中有数.
一、研究考纲和考试说明找方向
2. 数学思想方法
函数与方程的思想 数形结合的思想
分类与整合的思想
化归与转化的思想 特殊与一般的思想 统计与概率的思想
一、研究考纲和考试说明找方向
3. 数学能力---5个能力2个意识
(1)空间想象 (2)抽象概括 (3)推理论证 (4)运算求解 (5)数据处理 两 (1)应用意识 个 意 (2)创新意识 识
16-2-6
以数学文化的形式考查了数学的应用与运算能力 课本中体现数学文化的内容
1.必修1第91页:中外历史上的方程求解 2.必修2第30页:祖暅原理 3.必修2第124页:坐标法与机器证明(吴文俊) 4.必修3第36页:《九章算术》更相减损术 5.必修3第37页:秦九韶算法 6.必修3第45页:割圆术 7.必修5第21页:秦九韶:三斜求积公式 8.必修5第48页:一尺之锤,日取其半…… 9.必修5第59页:九连环(中国古智力游戏) 10.选修2-3第33页:杨辉三角
二、研究备考应对策略定计划 二轮复习的时间阶段
①一轮复习(2016.5.25----2016.12.31)
②二轮复习(2017.1.1----2017.4.16) ③考前强化(2017.4.17----2017.5.21) ④全方位模拟(2017.5.22——2017.6.5)
2017年高考数学考纲解析及复习策略
2
主要内容
一、考纲主要变化 二、2017年考纲解析 三、2016年试题分析
四、常考题型
五、高考试题中体现的命题特点
六、高考试题对我们的启示
七、二、三轮复习建议
八.强调几个问题
3
一、考纲主要变化
(一)主要变化 (二)几个新提法:一体四层四翼
4
二、2017年考纲解析
(一)由教育部考试中心编写的《2017年普通高等学校招 生全国统一考试大纲》近日出炉,详细介绍了今年高考各 学科的考试范围、命题思想、试卷结构等。 1、在能力要求内涵方面,增加了基础性、综合性、应用 性、创新性的要求,增加了数学文化的要求。 2、在现行考试大纲三个选考模块中删去“几何证明选 讲”,其余2个选考模块的内容和范围都不变。 (二)对知识的要求依次是了解、理解、掌握三个层次。
2013
2014
2015
2016
22
22
22
22
22
4,8,20 11,12,20 10,16,20 7,11,20 4,11,20
19
高考年份 知识点 2012 2013 2014 2015 2016
函数与 导数 题号
22
22
22
22
22
10,12, 8,10, 21 21
8,15, 21
5,12, 12,16, 21 21
20
四、常考题型
1.集合试题 2.复数试题
3.逻辑试题
4.算法试题
5.向量试题
7.三角函数试题
21
8.数列试题 9.排列组合、二项式定理题 10.统计与概率题
11.立体几何试题
12.解析几何试题
2017年高考新课标1理科数学及答案
2017年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合A ={x |x <1},B ={x |31x <},则A. B. C. D.(2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. B. C. D.(3)设有下面四个命题:若复数满足,则;:若复数满足,则; :若复数满足,则;:若复数,则.其中的真命题为A. B. C. D. (4)记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.8{|0}A B x x =<I A B =R U {|1}A B x x =>U A B =∅I 14π812π41p z 1z∈R z ∈R 2p z 2z ∈R z ∈R 3p 12,z z 12z z ∈R 12z z =4p z ∈R z ∈R 13,p p 14,p p 23,p p 24,p p n S {}n a n 4524a a +=648S ={}n a(5)函数在单调递减,且为奇函数.若,则满足的的取值范围是A. B. C. D. (6)展开式中的系数为 A.15 B.20 C.30 D.35 (7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.16 (8)右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A.A >1 000和n =n +1B.A >1 000和n =n +2C.A ≤1 000和n =n +1D.A ≤1 000和n =n +2()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]621(1)(1)x x++2x(9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +),则下面结论正确的是A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把 得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2 C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2(10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A.16B.14C.12D.10 (11)设x ,y ,z 为正数,且,则A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z(12)几位大学生响应国家的创业号召,开发了一款应用软件。
2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。
2017高考数学考纲、考题、专题及备考建议 (共164张PPT)
P R F y A
(I)若 F 在线段 AB 上,R 是 PQ 的中点,证明 AR∥FQ; Q B (II)若△PQF 的面积是△ABF 的面积的两倍,求 AB 中点的 轨迹方程. A( x1 , y1 ), B( x2 , y2 ) P ( 1 , y1 ), Q( 1 , y2 ) R( 1 , y1 y2 ) 2 2 2 2 y1 y2 y1 y1 y2 1 k y1 y2 y1 y2 1 AR 1 2 x1 x2 2 x 1 y1 y x1 1 1 y1 y2 2 y2 y2 1 kFQ 1 y1 y2 y1
ˆ 中斜率和截距的最小二乘估计公式分别 ˆ a ˆ bt 回归方程y ˆ 为b
(t
i 1
n
i n
t i )( yi yi )
2 ( t t ) i i i 1
ˆ ˆ y ˆ bt ,a
t y
i 1 i
n
i
t yi
i 1
n
理科第11题,文科第12题 x y 11.已知O是坐标原点, F 是椭圆 2 2 1(a b 0)的左 a b 焦点, A, B分别为C的左 , 右顶点.P为C 上一点, 且PF x
P F Q B x
共线 y1 y2 2
y2 x 1
y12 y22 2 x1 2 x2
( y1 y2 )2 2( x1 x2 ) 4
2016年全国新课标Ⅲ卷数学姊妹题
3 5.(理)若 tan , 则 cos 2 2sin 2 ( A ) 4 64 48 16 A. B. C .1 D. 25 25 25
17年高考考试大纲
17年高考考试大纲2017年高考考试大纲是指导考生准备高考的重要文件,它规定了考试的科目、内容、形式以及评分标准。
以下是2017年高考考试大纲的主要内容概述:语文:语文科目主要考察学生的阅读和理解能力、写作能力以及语言运用能力。
考试内容包括现代文阅读、文言文阅读、语言知识运用、写作等。
考试形式通常包括选择题、填空题、简答题和作文。
数学:数学科目分为文科数学和理科数学。
文科数学侧重于基础数学知识的应用,而理科数学则更注重数学思维和解题技巧。
考试内容通常包括代数、几何、概率统计等,形式为选择题和解答题。
英语:英语科目主要测试学生的听力、阅读、写作和翻译能力。
考试内容包括听力理解、阅读理解、完形填空、短文改错、书面表达等。
考试形式包括选择题和主观题。
文科综合:文科综合包括政治、历史、地理三个学科。
考试内容涵盖各学科的基本理论和知识,以及对这些知识的理解和应用。
考试形式通常包括选择题和非选择题。
理科综合:理科综合包括物理、化学、生物三个学科。
考试内容强调对科学原理的理解和科学探究的能力。
考试形式通常包括选择题和实验设计题。
思想政治:思想政治科目主要测试学生对马克思主义基本理论、中国特色社会主义理论体系的理解,以及对国家政策和时事政治的掌握。
考试形式包括选择题和论述题。
体育与健康:体育与健康科目的考试内容可能包括体育知识、健康教育以及体育技能测试。
考试形式可能包括理论考试和实践测试。
艺术:艺术科目的考试内容可能包括音乐、美术、舞蹈等,考试形式可能包括表演、作品展示和理论知识测试。
考试形式:高考通常采用笔试形式,部分科目可能包含口试或实践操作。
考试时间通常为每年的6月,具体日期由各地教育考试院确定。
评分标准:各科目的评分标准通常包括对知识点掌握程度的考核、对问题解决能力的评估以及对表达和沟通能力的测试。
评分细则由各地教育考试院根据国家教育部门的指导制定。
考生在准备高考时,应仔细阅读当年的高考考试大纲,了解考试的具体要求,合理规划复习计划,确保全面掌握各科目的知识点和考试技巧。
2017年全国统一高考数学试卷(理科)(新课标ⅲ)
2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2017•新课标Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A ∩B中元素的个数为()A.3B.2C.1D.02.(5分)(2017•新课标Ⅲ)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)(2017•新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.805.(5分)(2017•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=16.(5分)(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)(2017•新课标Ⅲ)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5B.4C.3D.28.(5分)(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)(2017•新课标Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.810.(5分)(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)(2017•新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.﹣B.C.D.112.(5分)(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
2017高考全国卷1数学试题及答案解析(理科)
2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .AB =RC .{}1=>A B x xD .A B =∅2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43. 设有下面四个命题,则正确的是()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p , 4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1B .2C .4D .85. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x的取值范围是() A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16 8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<<D .325y x z <<12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 二、 填空题:本题共4小题,每小题5分,共20分。
2017年高考数学理科内容要求(考试大纲、考试说明等变化)
(理科)内容福建考试说明要求全国考试大纲要求全国考试说明要求1.集合能使用韦恩图表达集合的关系及运算。
与福建考试说明要求相同能使用韦恩图表达集合的基本关系及基本运算。
2.函数概念与基本初等函数Ⅰ了解简单的分段函数,并能简单应用。
与福建考试说明要求相同了解简单的分段函数,并能简单应用(补充:函数分段不超过三段)。
会运用函数图像理解和研究函数的性质。
与福建考试说明要求相同会运用基本初等函数的图像分析函数的性质。
掌握指数函数图象通过的特殊点。
与福建考试说明要求相同掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图像。
掌握对数函数图象通过的特殊点。
与福建考试说明要求相同掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图像。
根据具体函数的图象,能够用二分法求相应方程的近似解。
与福建考试说明要求相同全国考试说明未涉及3.立体几何初步了解平行投影与中心投影,会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图。
会用平行投影方法画出简单空间图形的三视图与直观图。
会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
与福建考试说明要求相同全国考试说明未涉及了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
了解球、棱柱、棱锥、台的表面积和体积的计算公式。
与全国考试大纲要求相同4.平面解析几何初步掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
与福建考试说明要求相同掌握确定直线位置的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
会推导空间两点间的距离公式。
与福建考试说明要求相同会简单应用空间两点间的距离公式。
5.算法初步理解几种基本算法语句。
与福建考试说明要求相同了解几种基本算法语句。
6.统计会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
2017年全国各地高考数学真题试卷(含答案和解析)
!!!!! !"!已知双曲线 %+#$$ 02-$$ '!+&#的 右 顶 点 为 "以 " 为
圆心2为半径作圆"圆 " 与双曲线% 的 一 条 渐 近 线 交 于 3 1 两点!若.3"1'	则 % 的离心率为!!!!! !&!如图圆形 纸 片 的 圆 心 为 4半 径 为"4:该 纸 片上的等边三角形 "$% 的中心为4!&0 . 为圆4 上 的 点/&$%/0%"/."$ 分 别是以$%%""$ 为底 边 的 等 腰 三 角 形!沿 虚线剪开后分别以 $%%""$ 为 折 痕 折 起
复
数
(
满
足
! (
(#则
(('
'$&若复数( 满足($(#则(('
'(&若 复 数(!#($ 满 足(!($(#则(!'($'
'- &若 复 数((#则((! 其 中 的 真 命 题 为 $! ! %
)%'!#'(! !
*%'! #'-
+%'$#'(! !
,%'$ #'-
-!记 )* 为 等 差 数 列 !+*"的 前 * 项 和 !若 +- /+" '$-#)& '-.#则
出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!已知集合 "'!#"##!"#$'!#"(# #!"#则$!!%
精细研究,准确备考(2017届理数高考考纲解读)
精细研究,准确备考-------------2017届理科数学高考考纲解读2017年,是湖南省第二年使用全国卷;下面我代表我们高三理科数学备课组做2017届高考考纲解读,不当之处,欢迎指正。
本次解读的主题为—精细研究,准确备考。
精细研究分两个部分:1.考纲研究 2.考题研究准确备考:整体规划,计划落实到天一.考纲研究1、全卷分必考和选考两部分,仍然是12个选择题、4个填空题和五个解答题,外加一个二选一的题,删除了几何证明部分。
2、试题总体难度要求差不多。
3、数学科《考纲》考试宗旨主要测试数学的“三基、五能、两意识”.三基:数学基础知识、基本技能和基本思想方法(是知识转化为能力的桥梁).五能:空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力.两意识:数学应用意识与创新意识相同之处在这里不一一阐述,下面仅就17年和16年考纲中的变化做相关解读。
1. 【数据处理能力】“数据处理能力主要依据统计或统计案例中的据处理能力主要依据统计或统计案例中的方法对数据进行整理,分析,并解决给定的实际问题”改为“数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论。
”【解读】对于数据处理能力的描述变得更为清晰、具体,要求根据具体问题的特点,选用直方图、条形图或者茎叶图、频数表等数据分析方法对数据进行分析,通过计算均值、方差或者回归直线方程对数据进行处理,并给出决策意见。
2. 【选考内容删减】现行考试大纲三个选考模块中删去“几何证明选讲”,其余2个选考模块的内容和范围都不变。
考生从“坐标系与参数方程”“不等式选讲”2个模块中任选1个作答。
【解读】“几何证明选讲”这个考点,历来不是备考的重点内容,删去此内容有利于减轻学生的备考负担。
需要注意的是,删去这部分内容,并不意味着弱化对考生相关能力的要求,在立体几何和解析几何中也渗透有平面几何的内容。
考纲解读 2017年高考理科数学《考试大纲》新解-2017年高考数学【理】考纲揭秘及预测
2017年高考理科数学《考试大纲》新解《考试大纲》是高考命题的规范性文件和标准,是考试评价、复习备考的依据.国家教育部有关部门每年都邀请专家,依据高校人才选拔需求、国家课程标准调整以及考生实际水平变化,对《考试大纲》进行修订,以适应高校对新生基本能力和综合素质的要求.日前教育部考试中心函件《关于2017年普通高考考试大纲修订内容的通知》(教试中心函﹝2016﹞179号),公布了2017年高考各考试大纲的修订内容,其中数学的修订内容如下:1.在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,增加了数学文化的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体.具体内容详见(二)考纲综合解读中的第二点内容.2.在现行考试大纲三个选考模块中删去“几何证明选讲”,其余2个选考模块的内容和范围都不变,考生从“坐标系与参数方程”“不等式选讲”2个模块中任选1个作答.具体内容详见(二)考纲综合解读中的第三点内容.“一不变”:核心考点不变2017年的高考中,核心考点仍然是函数与导数、三角函数、解三角形、数列、立体几何、解析几何、概率与统计、选考内容等.在选择题或填空题中,集合、复数、程序框图、三视图、三角函数的图象和性质、线性规划、平面向量、数列的概念与性质、圆锥曲线的简单几何性质、解三角形、导数与不等式的结合、函数的性质仍然是高频考点.在解答题中,除数列和三角函数轮流命题外,立体几何、概率与统计、解析几何、函数导数与不等式、选考内容仍然是必考内容.1.函数或方程或不等式的题目,先直接思考后建立三者的联系.首先考虑定义域,其次使用“三合一定理”;2.选择题与填空题中出现不等式的题目时,优选特殊值法;3.求参数的取值范围时,应该建立关于参数的等式或不等式,用函数的定义域或值域或解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;4.恒成立问题或它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复、不遗漏;5.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择根与系数的关系求解,使用根与系数的关系时必须先考虑是否为二次方程及根的判别式;6.求椭圆或双曲线的离心率,建立关于a、b、c之间的关系等式即可;7.求三角函数的周期、单调区间或最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;8.数列的题目与和有关,优选作差的方法;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;9.导数的常规题目一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或者前一问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;10.概率与统计的解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;“二变”:数学文化解读教育部考试中心函件《关于2017年普通高考考试大纲修订内容的通知》要求“增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.比如,在数学中增加数学文化的内容”因此我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给广大师生的复习备考以专业的帮助与指导.一、数学文化与算法【例1】在《算法统宗》中有一“以碗知僧”的问题,具体如下“巍巍古寺在山中,不知寺内几多僧. 三百六十四只碗,恰合用尽不差争. 三人共食一碗饭,四人共进一碗羹. 请问先生能算者,S,运行如图所示的程序框图,则输出的S的值为都来寺内几多僧. ” 记该寺内的僧侣人数为A.414 B.504C.462 D.540【答案】C【例2】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的m的值为,则输入的a的值为A .218B .4516C .9332D .18964【答案】C【解析】起始:23m a =-,1i =,第一次循环:2(23)349m a a =--=-,2i =;第二次循环:2(49)3821m a a =--=-,3i =;第三次循环:2(821)31645m a a =--=-,4i =;接着可得2(1645)3329m a a =--=-,此时跳出循环,输出m 的值为3293a -.令32930a -=,解得9332a =,故选C . 二、数学文化与数列【例3】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中,甲所得为 A .53钱 B .32钱 C .43钱 D .54钱 【答案】C【例4】《孙子算经》是中国古代重要的数学专著,其中记载了一道有趣的数学问题:“今有出门,望见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色.”则这个数学问题中动物有______________只.(数字作答) 【答案】590490【解析】由题意,知“堤、木、枝、巢、禽、雏、毛”的数量构成一个首项19a =,公比9q =的等比数列{}n a ,其通项公式为1999n nn a -=⋅=,则动物的数量为()5655699919590490a a +=+=+=(只). 三、数学文化与概率统计【例5】欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见 “行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5cm 的圆,中间有边长为0.5cm 的正方形孔,现随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为 A .49π B .94π C .49πD .49π 【答案】A【解析】圆的面积为2221.59()(cm )216r ππ=π=,正方形的面积为2210.50.25(cm )4== ,所以油(油滴的大小忽略不计)正好落入孔中的概率为1449916P ==ππ ,故选A.【例6】南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率的值在3.1415926与3.1415927之间,成为世界上第一个把圆周率的值精确到7位小数的人,他的这项伟大成就比外国数学家得出这样精确数值的时间至少要早一千年,创造了当时世界上的最高水平.我们用概率模型方法估算圆周率,向正方形及其内切圆随机投掷豆子,在正方形中的80颗豆子中,落在圆内的有64颗,则估算圆周率的值为A .3.1B .3.14C .3.15D .3.2 【答案】D四、数学文化与立体几何C .463D .63【答案】C【解析】依算法,设棱台的上底面的长、宽分别为、(0,0)y x y >>,则下底面的长、宽分别为x 2、【例8】中国古代数学名著《九章算术》中记载了公元前334年商鞅造的一种标准量器____商鞅铜方升,其三视图如图所示(单位: 寸). 若π取,其体积为12.6(立方寸),则三视图中的为A .3.4B .4.0C .3.8D .3.6 【答案】C2131(5.4)12.62x x ⨯⨯+π()-=,解得 3.8x =,故选C.学%【例9别为,,a b c ,三角形的面积S 可由公式()()()S p p a p b p c =---求得,其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足12,8a b c +==,则此 A. 45B. 85C. 415D. 815B六、数学文化与推理与证明【例10】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:,,,,,….该数列的特点是:前两个数都是,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,则2222132243354201520172016()()()()a a a a a a a a a a a a ---⋅⋅⋅-= A.B. 1-C. 2017D. 2017-【答案】B【解析】由题意得,根据斐波那契数列可知,22132243()1,()1a a a a a a -=-=-,22354465()1,()1a a a a a a -=-=-,…所以根据计算的规律可得,当为偶数时,221()1n n n a a a ++-=-,当为奇数时,221()1n n n a a a ++-=,所以2222132243354201520172016()()()()1a a a a a a a a a a a a ---⋅⋅⋅-=-,故选B.弘扬中国传统文化,尤其是数学文化,是2017年高考数学命题的新的“考向”增加对数学文化的要求,是践行社会主义核心价值观、弘扬中国优秀传统文化的具体体现,通过对这些问题的解答使考生深刻认识到中华民族优秀传统的博大精深和源远流长.相信2017年在数学命题中,仍会适当增加对中国传统文化进行考查的内容,如将四大发明、勾股定理等所代表的中国古代科技文明作为试题背景材料,遵循继承、弘扬、创新的发展路径,注重传统文化在现实中的创造性转化和创新发展,体现中国传统科技文化对人类发展和社会进步的贡献,从而实现考试的社会意义和现实目的.“三变”:选考模块的调整在考试内容与范围方面,删去了选修4-1里的“几何证明选讲”.删去的理由是几何证明选讲考查的是初中平面几何的知识,作为基础知识,可以在立体几何、解析几何知识中考查,不需要再单独设置专题考查,同时在以前的教学大纲和2017年修订的课程标准中都不包含.选考模块的试题由三道变为两道,可以说减轻了师生备考的负担,对于大多数学生来讲,可以从原来面对平面几何题较为尴尬的境地解放了出来!可以更具有针对性的复习备考另外两个选考模块.最后一个大题的选择性减少,这就要求我们在备考阶段的聚焦点只能在“坐标系与参数方程”、“不等式选讲”两部分上下功夫.【例1】在平面直角坐标系中,曲线122cos :sin x C y αα=+⎧⎨=⎩(α为参数)经伸缩变换线为2C ,以坐标原点O 为极点,轴正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)若,A B 是曲线2C 上的两点,且.【解析】(1)曲线1C 的参数方程22cos sin x y αα=+⎧⎨=⎩化为普通方程为即2x x y y =='⎧⎨'⎩,代入上式,可知曲线2C 的方程为()2211x y -+=,即222x y x +=, 故曲线2C 的极坐标方程为2cos ρθ=. (2)设()1,A ρθ,,【例2(1)解不等式()5f x >;(2. 【解析】(1)原不等式可化为1125x x ≤-->⎧⎨⎩或1235x -<≤>⎧⎨⎩或2215x x >⎧⎨->⎩,解得2x <-或3x >,所以不等式()5f x >的解集为()(),23,-∞-+∞.(2,所以()3f x ≥,即()min 3f x =.坐标系与参数方程中主要的考查点有三个:(1)极坐标方程、参数方程与直角坐标方程之间的相互转化,此内容相对比较容易,在备考的时候熟记公式,以及各个曲线的参数方程即可得到满分.(2)极坐标的几何意义(即对应的点到极点的距离),由于有时利用极坐标的几何意义能快速求解,降低解题难度,提高解题效率,所以理解极坐标的几何意义就刻不容缓.(3)参数方程的几何意义,由于有时在解决最值问题时,利用三角知识能够快速求解,尤其是对圆锥曲线上的动点问题(2016年高考新课标Ⅲ卷有所涉及),直线参数方程中参数“”的考查非常频繁,考生备考时应注重了解参数“”的含义和应用方法,特别地,应用直线的参数方程时,需先判断是否为标准形式,再考虑参数的几何意义. 学¥对于不等式选讲,从历年全国高考中进行分析,绝对值不等式的解法与证明、恒成立问题,用基本不等式证明不等式是高考考查的热点和重点,难度中等.预计2017年,仍会考查绝对值不等式的求解、证明及恒成立问题.高考的特点是以学生解题能力的高低为标准的一次性选拔,这就使得临场发挥显得尤为重要,研究和总结临场解题策略,进行应试训练和心理辅导,已成为高考数学的重要内容之一,正确运用数学高考临场解题策略,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能挖掘思维和知识的潜能,考出最佳成绩.一、“内紧外松”,集中注意力,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松.二、一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败.应该说,审题要慢,解答要快.审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据.而思路一旦形成,则可尽量快速完成.三、确保运算准确,立足一次成功时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功.解题速度是建立在解题准确度基础上的,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答.所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤.四、讲求规范书写,力争既对又全考试的又一个特点是以卷面为唯一依据.这就要求不但会而且要对,对且全,全而规范.会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学非智力因素失分的一大方面.字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬,“感情分”也就相应低了,此所谓心理学上的“光环效应”.“书写要工整,卷面能得分”讲的也正是这个道理.五、执果索因,逆向思考,正难则反对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件.六、面对难题,讲究策略,争取得分会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分,下面有两种常用方法:1.缺步解答.对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数.2.跳步解答.当解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找其他途径;如能得到预期结论,就再回头集中力量攻克这一过渡环节.若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答.欢迎访问“高中试卷网”——。
2017年全国统一高考数学理科新课标1(解析版)
2017年全国统一高考数学试卷(理科)(新课标Ⅰ)有一项大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只一、选择题:本是符合题目要求的.x<1} ,则()1.(5 分)(2017?新课标Ⅰ)已知集合A={ x| x<1},B={ x| 3A.A∩B={ x| x<0} B.A∪B=R C.A∪B={ x| x>1} D.A∩B=?2.(5 分)(2017?新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5 分)(2017?新课标Ⅰ)设有下面四个命题p1:若复数z满足∈R,则z∈R;2∈R,则z∈R;p2:若复数z满足zp3:若复数z1,z2 满足z1z2∈R,则z1= ;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p44.(5 分)(2017?新课标Ⅰ)记S n 为等差数列{ a n}的前n 项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5 分)(2017?新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤ 1 的x 的取值范围是()A.[ ﹣2,2] B.[ ﹣1,1] C.[ 0,4] D.[ 1,3]6 展开式中 x 2 的系数为( ) 6.(5 分)(2017?新课标Ⅰ)(1+ )(1 +x )A .15B .20C .30D .357.(5 分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等 腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若干 个是梯形,这些梯形的面积之和为()A .10B .12C .14D .16n ﹣2n >1000 的最小偶数n ,那么在 8.(5 分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3和 两个空白框中,可以分别填入( )A .A >1000 和 n=n+1B .A >1000 和 n=n+2C .A ≤ 1000 和 n=n+1D .A ≤ 1000 和 n=n+29.(5 分)(2017?新课标Ⅰ)已知曲线 C 1:y=cosx ,C 2:y=sin (2x+),则下面结论正确的是 ()A .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线 C 2B.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5 分)(2017?新课标Ⅰ)已知 F 为抛物线C:y2=4x 的焦点,过F作两条互相垂直的直线l1,l2,直线l1 与C交于A、B两点,直线l2 与C 交于D、E两点,则| AB|+| DE| 的最小值为()A.16 B.14 C.12 D.1011.(5 分)(2017?新课标Ⅰ)设x、y、z为正数,且 2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5 分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大”的活动.这款软件的激活码为下面数了“解数学题获取软件激活码家学习数学的兴趣,他们推出学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯,其中第一项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小 20,接下来的两项是为2 的整数幂.那么该款软件的激活码是()整数N:N>100 且该数列的前N项和A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5 分)(2017?新课标Ⅰ)已知向量,的夹角为60°,| | =2,| | =1,则| +2 | = .14.(5 分)(2017?新课标Ⅰ)设x,y 满足约束条件,则z=3x﹣2y 的最小值为.15.(5 分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A 为圆心,b 为半径作圆A,圆A 与双曲线 C 的一条渐近线交于M、N 两点.若∠MAN=6°0,则C 的离心率为.ABC 的中心为 O .D 、E 、F 为圆O 上的点,△ DBC ,△ ECA ,△FAB 分别是以B C ,CA ,AB 为底边 的等腰三角形.沿虚线剪开后,分别以B C ,CA ,AB 为折痕折起△ DBC ,△ECA ,△ FAB ,使得 D 、3)的最大值为. E 、F 重合,得到三棱锥. 当△ ABC 的边长变化时, 所得三棱锥体积(单位:cm三、解答题:共70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.17.(12 分)(2017?新课标Ⅰ)△ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知△ ABC 的面积 为.(1)求 sinBsinC ;(2)若 6cosBcosC=1,a=3,求△ ABC 的周长.18.(12 分)(2017?新课标Ⅰ)如图,在四棱锥 P ﹣A BCD 中,AB ∥CD ,且∠ BAP=∠CDP=90°. (1)证明:平面 PAB ⊥平面 PAD ;(2)若 PA=PD=AB=D ,C ∠ APD=9°0,求二面角 A ﹣P B ﹣C 的余弦值.19.(12 分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生 产线上随机抽取 16 个零件,并测量其尺寸(单位: cm ).根据长期生产经验,可以认为这条生产 线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的 16 个零件中其尺寸在( μ﹣3σ, μ+3σ)之外的 零件数,求 P (X ≥ 1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在( μ﹣3σ, μ+3σ)之外的零件,就认为这条生产线在 这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16 个零件的尺寸:9.9 10. 9.9 9.9 10. 9.9 9.9 10. 5126601280410. 9.9 10. 10. 9.2 10. 10. 9.9 2611302204055经计算得= =9.97,s==≈ 0.212,其中 x i 为抽取的第i 个零件的尺寸, i=1,2,⋯ ,16. 用样本平均数 作为 μ的估计值 ,用样本标准差s 作为 σ的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3 +3)之外的数据,用剩下的数据估计μ和 σ(精确到 0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ﹣3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592,≈ 0.09.20.(12 分)(2017?新课标Ⅰ)已知椭圆C : +=1(a >b >0),四点 P 1(1,1),P 2(0,1),P 3(﹣1,),P 4(1,)中恰有三点在椭圆C 上.(1)求 C 的方程;(2)设直线l 不经过 P 2 点且与 C 相交于 A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1, 证明: l 过定点.2x +(a ﹣2)e x ﹣x . 21.(12 分)(2017?新课标Ⅰ)已知函数f (x )=ae(1)讨论f (x )的单调性;(2)若 f (x )有两个零点,求 a 的取值范围.[选修4-4,坐标系与参数方程]22.(10分)(2017?新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参l的参数方程为,(t为参数).数),直线1,求C与l的交点坐标;(1)若a=﹣(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]2+ax+4,g(x)=|x+1|+|x﹣1|. 23.(2017?新课标Ⅰ)已知函数f(x)=﹣x(1)当a=1时,求不等式f(x)≥g(x)的解集;.1,1],求a的取值范围(2)若不等式f(x)≥g(x)的解集包含[﹣2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.x<1} ,则()1.(5 分)(2017?新课标Ⅰ)已知集合A={ x| x<1},B={ x|3A.A∩B={ x| x<0} B.A∪B=R C.A∪B={ x| x>1} D.A∩B=?【考点】1E:交集及其运算.【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【分析】先分别求出集合 A 和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={ x| x<1},x<1} ={ x| x<0},B={ x|3∴A∩B={ x| x<0},故A 正确,D 错误;A∪B={ x| x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5 分)(2017?新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【专题】35 :转化思想;4O:定义法;5I :概率与统计.可.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即为1,则正方形的边【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为2,长则黑色部分的面积S= ,则对应概率P= = ,故选:B.本题的【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决关键.3.(5 分)(2017?新课标Ⅰ)设有下面四个命题p1:若复数z满足∈R,则z∈R;2∈R,则z∈R; p2:若复数z满足zp3:若复数z1,z2 满足z1z2∈R,则z1= ;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.;5N :数系的扩充和复数.【专题】2A :探究型;5L :简易逻辑.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案【解答】解:若复数z 满足∈R,则z∈R,故命题p1 为真命题;p2:复数z=i 满足z2=﹣1∈R,则z?R,故命题p2 为假命题;p3:若复数z1=i,z2=2i 满足z1z2∈R,但z1≠,故命题p3 为假命题;p4:若复数z∈R,则=z∈R,故命题p4 为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性4.(5 分)(2017?新课标Ⅰ)记S n 为等差数列{ a n}的前n 项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【考点】85:等差数列的前n 项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n 项和公式列出方程组,求出首项和公差,由此能求出{ a n}的公差.【解答】解:∵S n 为等差数列{a n} 的前n 项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{ a n}的公差为4.故选:C.意等差数【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注列的性质的合理运用.5.(5 分)(2017?新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,﹣1≤f(x﹣2)≤ 1 的x 的取值范围是()足则满A.[ ﹣2,2] B.[ ﹣1,1] C.[ 0,4] D.[ 1,3]【考点】3P:抽象函数及其应用.【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤ 1 化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[ 1,3] ,故选:D.档.中【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度6 展开式中x2 的系数为() 6.(5 分)(2017?新课标Ⅰ)(1+ )(1 +x)A.15 B.20 C.30 D.35【考点】DA:二项式定理.4R:转化法.【专题】35 :转化思想;【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+ )(1 +x)6 展开式中:若(1+ )=(1+x2)提供常数项1,则(1+x)6 提供含有x2 的项,可得展开式中x2 的系数:﹣2 项,则(1+x)6 提供含有x4 的项,可得展开式中x2 的系数:﹣若(1+ )提供x由(1+x)6 通项公式可得.可知r=2 时,可得展开式中x2 的系数为.可知r=4 时,可得展开式中x2 的系数为.(1+ )(1 +x)6 展开式中x2 的系数为:15+15=30.故选:C.础题.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基7.(5 分)(2017?新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等为2,俯视图为等腰直角三角形,该多面体的各个面中有若干长腰直角三角形组成,正方形的边个是梯形,这些梯形的面积之和为()32页)第10页(共A.10 B.12 C.14 D.16【考点】L!:由三视图求面积、体积.【专题】11 :计算题;31 :数形结合;44 :数形结合法;5Q :立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形= ×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.n﹣2n>1000 的最小偶数n,那么在8.(5 分)(2017?新课标Ⅰ)如图程序框图是为了求出满足3和两个空白框中,可以分别填入()第11页(共32页)A.A>1000 和n=n+1 B.A>1000 和n=n+2C.A≤1000 和n=n+1 D.A≤1000 和n=n+2【考点】EF:程序框图.38 :对应思想;49 :综合法;5K :算法和程序框图.【专题】11 :计算题;“”内不能输入“A>1000”,定【分析】通过要求A>1000 时输出且框图中在“否”时输出确定n=n+2.进而通过偶数的特征确【解答】解:因为要求A>1000 时输出,且框图中在“否”时输出,“>A1000”,所以“”内不能输入又要求n 为偶数,且n 的初始值为0,所以“”中n 依次加2 可保证其为偶数,所以D 选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5 分)(2017?新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+ ),则下面结论正确的是()A.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C232页)第12页(共B.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11 :计算题;35 :转化思想;57 :三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1 上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+ )=cos(2x+ )=sin(2x+ )的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5 分)(2017?新课标Ⅰ)已知 F 为抛物线C:y2=4x 的焦点,过 F 作两条互相垂直的直线l1,l2,直线l1 与C交于A、B两点,直线l2 与C 交于D、E两点,则| AB|+| DE| 的最小值为()A.16 B.14 C.12 D.10【考点】K8:抛物线的性质.【专题】11 :计算题;34 :方程思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当 A 与D,B,E关于x 轴对称,即直线DE的斜率为1,| AB|+| DE| 最小,根据弦长公式计算即可.方法二:设直线l1 的倾斜角为θ,则l2 的倾斜角为+θ,利用焦点弦的弦长公式分别表示出| AB| ,| DE| ,整理求得答案【解答】解:如图,l1⊥l2,直线l1 与C交于A、B 两点,直线l2 与C交于D、E两点,要使| AB|+| DE| 最小,第13页(共32页)1,D E的斜率为直线则A与D,B,E关于x轴对称,即l2过点(1,0),又直线l2的方程为y=x﹣1,则直线4y﹣4=0,联立方程组,则y2﹣∴y1+y2=4,y1y2=﹣4,∴|DE|=?|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,l1的倾斜角为θ,则l2的倾斜角为+θ,方法二:设直线|AB|==根据焦点弦长公式可得|DE|===∴|AB|+|DE|=+==,22θ≤1,∵0<sin∴当θ=45时°,|AB|+|DE|的最小,最小为16,故选:A.32页)第14页(共【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题.11.(5 分)(2017?新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x= ,y= ,z= .可得3y= ,2x= ,5z= .根据= = ,>= .即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x= ,y= ,z= .= =>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z 为正数,x=3y=5z=k>1.lgk>0.令 2则x= ,y= ,z= .∴3y= ,2x= ,5z= .∵= = ,>= .∴>lg >>0.∴3y<2x<5z.另解:x、y、z 为正数,x=3y=5z=k>1.lgk>0.令 2则x= ,y= ,z= .∴= = >1,可得2x>3y,= = >1.可得5z>2x.第15页(共32页)综上可得: 5z >2x >3y .解法三:对 k 取特殊值,也可以比较出大小关系. 故选: D .【点评】 本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力, 属于中档题.12.(5 分)(2017?新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大 家学习数学的兴趣,他们推出了 “解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋯ ,其中第一项是0,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小 2整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 【考点】 8E :数列的求和.【专题】 35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】 方法一: 由数列的性质, 求得数列 { b n }的通项公式及前 n 项和,可知当 N 为时(nn +1﹣n ﹣2,容易得到N >100 时,n ≥ ∈N +),数列 {a n } 的前 N 项和为数列 {b n }的前 n 项和,即为 214,分别判断,即可求得该款软件的激活码;n +1﹣2﹣n ,及项数,由题意可知:2n +1 为 2 方法二:由题意求得数列的每一项,及前n 项和 S n =2的整数幂.只需将﹣2﹣n 消去即可,分别即可求得 N 的值.n +1﹣1,(n ∈N【解答】 解:设该数列为 {a n },设 b n = +⋯ + =2+),则= a i ,1﹣1+22﹣1+⋯ +2n +1﹣1=2n+1由题意可设数列 { a n }的前 N 项和为 S N ,数列 {b n }的前 n 项和为 T n ,则T n =2 ﹣n ﹣2,n +1﹣n ﹣2, 可知当 N 为时(n ∈N +),数列 { a n } 的前 N 项和为数列 { b n } 的前 n 项和,即为 2容易得到 N >100 时,n ≥ 14,30﹣29﹣2+25﹣1=230,故A 项符合题意. A 项,由=435,440=435+5,可知 S 440=T 29+b 5=226﹣25﹣2+25﹣1=226+4,显然不为 2 的整数幂,B 项,仿上可知=325,可知S330=T25+b5=232页)第16页(共故 B 项不符合题意.21﹣20﹣2+210﹣1=221+210﹣23,显然不为2 的整C 项,仿上可知 =210,可知 S 220=T 20+b 10=2数幂,故 C 项不符合题意.15﹣14﹣2+25﹣1=215+15,显然不为2 的整数幂,D 项,仿上可知 =105,可知 S 110=T 14+b 5=2故 D 项不符合题意. 故选 A .方法二:由题意可知:, , ,⋯,根据等比数列前 n 项和公式,求得每项和分别为: 21﹣1,22﹣1,23﹣1,⋯ ,2n ﹣1,每项含有的项数为: 1,2,3,⋯ ,n , 总共的项数为N = 1+2+3 +⋯ +n= ,所有项数的和为S n :21﹣1+22﹣1+23﹣1+⋯ +2n ﹣1=(21+22+23+⋯ +2n )﹣n =﹣n =2n +1﹣2﹣n ,由题意可知: 2n +1为2 的整数幂.只需将﹣2﹣n 消去即可, 则①1+2+(﹣2﹣n )=0,解得: n=1,总共有 +2=3,不满足N >100, ②1 +2 +4+(﹣2﹣n )=0,解得: n=5,总共有 +3=18,不满足N >100,③1 +2 +4+8 +(﹣2﹣n )=0,解得: n=13,总共有 +4=95,不满足N >100,④1+2+4+8+16+(﹣2﹣n )=0,解得: n=29,总共有 +5=440,满足N >100,∴该款软件的激活码440. 故选: A .【点评】 本题考查数列的应用,等差数列与等比数列的前n 项和,考查计算能力,属于难题.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.【专题】31 :数形结合;5A :平面向量及应用.4O:定义法;【分析】根据平面向量的数量积求出模长即可.第17页(共32页)【解答】解:【解法一】向量,的夹角为60°,且| | =2,| | =1,∴= +4 ? +42+4×2×1×cos60°+4×12=2=12,∴| +2 | =2 .【解法二】根据题意画出图形,如图所示;结合图形= + = +2 ;在△OAC中,由余弦定理得| | = =2 ,即| +2 | =2 .故答案为:2 .【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5 分)(2017?新课标Ⅰ)设x,y 满足约束条件,则z=3x﹣2y 的最小值为﹣5 .【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y 满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5 分)(2017?新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A 为圆心,b 为半径作圆A,圆A 与双曲线 C 的一条渐近线交于M、N 两点.若∠MAN=6°0 ,则C 的离心率为.【考点】KC:双曲线的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解 A 到渐近线的距离,推出a,c 的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以 A 为圆心,b 为半径做圆A,圆A 与双曲线C的一条渐近线交于M、N 两点.若∠MAN=6°0 ,可得 A 到渐近线bx+ay=0的距离为:bcos30°= ,可得:= ,即,可得离心率为:e= .故答案为: .【点评】 本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转 化思想以及计算能力.16.(5 分)(20 17?新课标Ⅰ)如图,圆形纸片的圆心为 O ,半径为 5cm ,该纸片上的等边三角形ABC 的中心为 O .D 、E 、F 为圆 O 上的点,△ DBC ,△ ECA ,△FAB 分别是以 BC ,CA ,AB 为底边 的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△ DBC ,△ECA ,△ FAB ,使得 D 、3)的最大值为 E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3. 4 cm【考点】 LF :棱柱、棱锥、棱台的体积.【专题】 11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题. 【分析】 由题,连接OD ,交 BC 于点 G ,由题意得 OD ⊥BC ,OG= BC ,设O G=x ,则B C=2 x , DG=5﹣x ,三棱锥的高h =,求出 S △ABC =3,V==,令 f(x )=25x4﹣10x 5,x ∈( 0, ),f ′(x )=100x 3﹣50x 4,f (x )≤ f (2)=80,由此能求出体积最大 值.【解答】 解:由题意,连接OD ,交 BC 于点 G ,由题意得 OD ⊥BC ,OG= BC ,即 OG 的长度与B C 的长度成正比, 设O G=x ,则B C=2 x ,DG=5﹣x , 三棱锥的高h ===,=3,则V = == ,令f(x)=25x4﹣50x4,10x5,x∈(0,),f ′(x)=100x3﹣2x3≤0,解得x≤2,令f ′(x)≥0,即x4﹣则f(x)≤f(2)=80,∴V≤=4 cm3,∴体积最大值为 4 cm3.故答案为:4 cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关、系合函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结思想、化归与转化思想,是中档题.骤.第17~21题为必考题,每三、解答题:共70分.解答应写出文字说明、证明过程或演算步个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12 分)(2017?新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11 :计算题;33 :函数思想;4R:转化法;56 :三角函数的求值;58 :解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA= ,即可求出A= ,再根据正弦定理可得bc=8,根据余弦定.理即可求出b+c,问题得以解决【解答】解:(1)由三角形的面积公式可得S△ABC= acsinB= ,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=,1∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=?===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)(2017?新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=D,C∠APD=9°0,求二面角A﹣PB﹣C的余弦值.【考点】MJ:二面角的平面角及求法;LY:平面与平面垂直.【专题】15 :综合题;31 :数形结合;41 :向量法;5G :空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边a则AD= .取AD中点O,BC中点E,连接PO、OE,以O为形ABCD为矩形,设PA=AB=2,坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=9°0,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA? 平面PAD,PD? 平面PAD,∴AB⊥平面PAD,又AB? 平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=9°0,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O 为坐标原点,分别以OA、OE、OP所在直线为x、y、z 轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD?平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.P B﹣C为钝角,由图可知,二面角A﹣∴二面角A﹣P B﹣C的余弦值为.用空间向量了利本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练【点评】求二面角的平面角,是中档题.19.(12分)(2017?新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生:cm).根据长期生产经验,可以认为这条生产产线上随机抽取16个零件,并测量其尺寸(单位线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).3σ,μ+3σ)之外的(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣零件数,求P(X≥1)及X的数学期望;3σ,μ+3σ)之外的零件,就认为这条生产线在(2)一天内抽检零件中,如果出现了尺寸在(μ﹣行检查.这一天的生产过程可能出现了异常情况,需对当天的生产过程进;(ⅰ)试说明上述监控生产过程方法的合理性(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.1010.9.99.910.9.99.910.5 126 6 01 2 8 049.11 9.9 10. 10. 9.2 10. 10. 9.926 1 13 02 2 04 05 5经计算得= =9.97,s= = ≈0.212,其中x i 为抽取的第i 个零件的尺寸,i=1,2,⋯,16.需用样本平均数作为μ的估计值,用样本标准差s 作为σ的估计值,利用估计值判断是否3+3 )之外的数据,用剩下的数据估计μ和σ剔除(﹣查?对当天的生产过程进行检(精确到0.01).附:若随机变量3σ<Z<μ+3σ)Z服从正态分布N(μ,σ2),则P(μ﹣=0.9974,0.997416≈0.9592,≈0.09..【考点】CP:正态分布曲线的特点及曲线所表示的意义【专题】11 :计算题;35 :转化思想;4A :数学模型法;5I :概率与统计.P(X=0)=0.0408,利用二项分布的期望公式计【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣;算可得结论(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3 )=(9.334,10.606),.进而需剔除(﹣3+3 )之外的数据9.22,利用公式计算即得结论3σ,μ+3σ)之内的概率为0.9974,【解答】解:(1)由题可知尺寸落在(μ﹣0.9974=0.0026,3σ,μ+3σ)之外的概率为1﹣则落在(μ﹣0.9974)0×0.997416≈0.9592,因为P(X=0)= ×(1﹣P(X=0)=0.0408,所以P(X≥1)=1﹣又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;3+3 )之外的概率只有0.0026,(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣一天内抽取的16 个零件中,出现尺寸在(﹣3+3 )之外的零件的概率只有0.0408,出发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能的.合理现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是=0.212,由样本数据可以=9.97,σ的估计值为(ⅱ)由=9.97,s≈0.212,得μ的估计值为看出一个3+3 )之外,因此需对当天的生产过程进行检查.零件的尺寸在(﹣3+3 )之外的数据9.22,剩下的数据的平均数为剔除(﹣(16×9.97﹣9.22)=10.02,10.02.因此μ的估计值为2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3 )之外的数据9.22,剩下的数据的样本方差为15×10.022)≈0.008,(1591.134﹣9.222﹣≈0.09.值为因此σ的估计求算【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运题.解能力,注意解题方法的积累,属于中档20.(12 分)(2017?新课标Ⅰ)已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;过P2 点且与 C 相交于A,B 两点.若直线P2A 与直线P2B 的斜率的和为﹣1,(2)设直线l 不经证明:l 过定点.【考点】KI:圆锥曲线的综合;K3:椭圆的标准方程.题.围问【专题】14 :证明题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆 C2=4,b2=1,由此能求出椭圆C的方程.上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a,得(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,。
2017年全国统一高考真题数学试卷(理科)(新课标ⅲ)(含答案及解析)
2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5B.4C.3D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
2017年新课标全国卷2高考理科数学试题及标准答案
2017年新课标全国卷2高考理科数学试题及标准答案2017年普通高等学校招生全国统一考试理科数学注意事项:1.在答题前,考生需要填写自己的姓名和准考证号,并将条形码准确粘贴在指定区域内。
2.选择题需要使用2B铅笔填涂,非选择题需要使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清晰。
3.考生需要按照题号顺序在答题卡上作答,超出答题区域书写的答案无效,草稿纸和试卷上的答题也无效。
4.作图可以先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.考生需要保持答题卡的清洁,不要折叠、弄破、弄皱,也不允许使用涂改液、修正带、刮纸刀。
选择题:1.计算$\frac{3+i}{1+i}$的值。
A.$1+2i$ B.$1-2i$ C.$2+i$ D.$2-i$2.设集合$\mathbb{A}=\{1,2,4\}$,$\mathbb{B}=\{x|x^2-4x+m=\emptyset\}$。
若$\mathbb{A}^2\subseteq\mathbb{B}$,则$\mathbb{B}=$A.$\{1,-3\}$ B.$\{1,0\}$ C.$\{1,3\}$ D.$\{1,5\}$3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90$\pi$ B.63$\pi$ C.42$\pi$ D.36$\pi$5.设$x$,$y$满足约束条件$\begin{cases}2x+3y-3\leq0\\5x-2y+3\geq0\\y+3\geq0\end{cases}$,则$z=2x+y$的最小值是()A.$-15$ B.$-9$ C.1 D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种 B.18种 C.24种 D.36种7.甲、乙、丙、XXX同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给XXX看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的$a=-1$,则输出的$S=$A.2 B.3 C.4 D.59.若双曲线$C:\frac{x^2}{4}-\frac{y^2}{9}=1$与直线$L:x+y=0$相交于$A$,$B$两点,则$\overline{AB}^2=$A.$\frac{25}{3}$ B.$\frac{28}{3}$ C.$\frac{31}{3}$ D.$\frac{34}{3}$2.2/a-2/b=1的一条渐近线被圆(x-2)^2+y^2=4所截得的弦长为2,则C的离心率为()解:将2/a-2/b=1化简得b=2a/(a-2),代入圆方程得(x-2)^2+y^2=4-4a^2/(a-2)^2.设C的坐标为(x0,y0),则C点到圆心O(2,0)的距离为√[(x0-2)^2+y0^2],到渐近线的距离为|(2/a)x0-(2/b)y0-1|/√(a^2+b^2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科数学Ⅰ.考核目标与要求根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.23.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.33.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.Ⅱ.考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题.必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数. 4(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)了解指数函数x y = a 与对数函数log a y = x互为反函数( a > 0 ,且a ≠1).4.幂函数(1)了解幂函数的概念.(2)结合函数y = x , 2 y = x , 3 y = x , 1yx= ,1y = x2的图像,了解它们的变化情况.5.函数与方程(1)结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图像,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.•公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.5•公理2:过不在同一条直线上的三点,有且只有一个平面.•公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.•公理4:平行于同一条直线的两条直线互相平行.•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.•垂直于同一个平面的两条直线平行.•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句6理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. (七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了\\\\\解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2. 三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出π2±α , π ±α 的正弦、余弦、正切的诱导公式,能画出y = sin x , y = cos x , y = tan x的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[ 0,2π ]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间π π,2 2⎛ ⎫- ⎪⎝ ⎭内的单调性.(4)理解同角三角函数的基本关系式:2 2 sin x + cos x =1, sintancosxxx= .7(5)了解函数y = A sin(ωx +ϕ)的物理意义;能画出y = A sin(ωx +ϕ)的图像,了解参数A , ω ,ϕ 对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法8(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:2a bab≥(a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程1.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.2.曲线与方程了解方程的曲线与曲线的方程的对应关系.9(十六)空间向量与立体几何1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.(十七)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y = C (C为常数),y = x , 2 y = x , 3 y = x , 1yx= , y = x 的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax + b)的复合函数)的导数.•常见基本初等函数的导数公式:(C)' = 0 (C为常数); 1 ( ) n n x nx ' = - , n + ∈N ;(sin x)' = cos x;(cos x)' = -sin x;(e ) e x ' = x;( ) ln x x a ' = a a ( a > 0 ,且a ≠1);1( ln x )x' = ;1。