充要条件的判定方法
高考数学复习点拨 解析充要条件的三种常用判断方式
1 / 1解析充要条件的三种常用判断方式1.利用集合间的相互关系进行判断.若一个命题的条件和结论所描述的对象形成一个集合,则可用集合间的相互关系来判定充分条件,必要条件.设P ,Q 分别为命题p,q 所描述的对象形成的集合. (1).若q p Q P 是则称,⊆的充分条件. (2).若P Q ⊆,则称p 是q 的必要条件. (3).若P Q ⊂,则称p 是q 的必要非充分条件. (4) .若Q P ⊂,则称p 是q 的充分非必要条件. (5).若Q P =,则称p 是q 的充要条件.(6).若φ=⋂Q P ,则称p 是q 成立的既不充分也不必要条件. (7).若A B ,⊆⊆且B A ,则称p 是q 成立的既不充分也不必要条件. 例1. 条件A :()()014B ,041≥-+≥+-x x x x :结论,则判断条件是结论的什么条件. 解:由于A 的解集是:M =(][)+∞⋃-∞-,14,,而B 的解集是:N=(]()+∞⋃-∞-,14,,显然N ⊂M ,于是A 是B 的必要非充分条件.2.利用互为逆否命题的等价性进行判断.由于互为逆否命题是相互等价的,当我们正面对命题进行判断较为困难时,可将其转化为逆否命题来判断.例3.,:,:B A x q B x A x p ⋂∉∉∉或的是说明q p 什么条件.解:原命题等价于判断B x A x p B A x q ∈∈⌝⋂∈⌝且是::的什么条件. 易见:B A x B x A x B x A x B A x ⋂∈⇒∈∈∈∈⇒⋂∈且及 且,,故p q p q ⌝⌝⌝⇔⌝是即的充要条件.所以p 是q 的充要条件. 例4.,5:,23:≠+≠≠y x q y x p 且的是说明q p 什么条件. 解:原命题等价于判断23:5:==⌝=+⌝y x p y x q 或是的什么条件. 显然.,q p p q ⌝⇒⌝⌝⇒⌝所以p 是q 的既不充分也不必要条件. 3.利用真值表进行判断.我们首先给出关于命题p 和q 的真值表.pqq p 或q p 且p ⌝真 假 真 假 假 假 真 真 假 真 假 假 假 假 真 真真真真真由于复合命题是由简单命题与逻辑联结词“或” ,“且”,“非”等构成的,因此利用真值表进行判断充要条件时,关键是能够将一个复合命题写成用逻辑联结词“或” ,“且”,“非”连接的与之等价的复合命题的形式.例5.判断命题0>x 是0≥x 的什么条件.解: ,000=>≥x x x 或即由真值表知:p 真q p 或⇒真,但q p 或真p ⇒真. 0>x 0≥⇒x ,但00>⇒≥x x .故0>x 是0≥x 的充分不必要条件. 例6.判断命题22b a ≠是b a b a -≠≠或的什么条件.解:.22b a b a b a -≠≠≠且即由真值表知:真或真,但或真真且q p q p p q p ⇒⇒b a b a b a q p -≠≠≠∴⇒或是真. 且22的充分不必要条件.以上二例紧扣真值表,在判断时要能够剖析命题中所蕴含的逻辑联结词,进而将复合命题分解.。
判断充要条件的方法
判断充要条件的方法宝子们,今天咱们来唠唠判断充要条件这个事儿呀。
那啥是充要条件呢?简单来说呢,如果有条件A和结论B。
要是A能推出B,同时B也能推出A,那A就是B的充要条件啦。
就像两个人互相能依靠,少了谁都不行呢。
咱先说说怎么判断充分条件哈。
充分条件就是只要这个条件成立,结论就一定成立。
比如说“天下雨”(这就是条件啦),那“地面湿”(这是结论),天下雨的时候,地面通常就会湿,这时候“天下雨”就是“地面湿”的充分条件。
但是宝子们要注意哦,地面湿可不一定就是天下雨了,也许是有人泼水了呢。
所以充分条件是一种单向的推出关系。
再说说必要条件呢。
必要条件就是如果结论要成立,这个条件就必须得有。
还拿地面湿举例子,如果地面是干的,那肯定就没有天下雨,所以“地面湿”是“天下雨”的必要条件哦。
必要条件就像是一个基础,没有它,结论就站不住脚啦。
那怎么判断充要条件呢?就是看这个条件和结论能不能双向奔赴。
就像你和你的好朋友,你去找他,他也来找你。
如果从条件到结论能推导,从结论到条件也能推导,那就是充要条件啦。
比如说“一个三角形是等边三角形”和“这个三角形的三个内角都相等”,等边三角形肯定三个内角相等,三个内角相等的三角形也肯定是等边三角形,这就是充要条件啦。
还有一种简单的判断方法呢,就是看逻辑关系的完整性。
如果把条件和结论看成两个集合,充要条件就是这两个集合完全重合。
充分条件就是条件这个集合包含在结论集合里,必要条件就是结论集合包含在条件集合里。
宝子们,判断充要条件其实没那么难啦,只要把这些关系搞清楚,多做几道题练练手,很快就能掌握这个小技能啦。
加油哦,宝子们!。
充要条件的理解及判定方法
x-1 由|1- |≤2,得 p:-2≤x≤10, 3
解得 m≥9为所求.
另法:¬q是¬p 的充分而非必要条 件等价于p是q的充分而非必要条件,
则[-2,10]就是[1-m,1+m]的真子集.
二、重难点讲解 例5 判断:“b2-4ac=0”是“一元二次方程 ax2+bx+c=0(a≠0)有两个相等的 实根”的什么条 件?并证明结论。 解:是充要条件. 1。充分性 :设b2-4ac=0 将ax2+bx+c=0(a≠0)配方得: a(x+b/2a)2=(b2-4ac)/4a, (x+b/2a)2=(b2-4ac)/4a2 ∵ b2-4ac=0 ∴ (x+b/2a)2=0 ∴ x1=x2= -b/2a 即方程有两个相等的实数根.
p
q 则说p是q的充要条件;
q是p的必要条件.
q,则说p是q的充分条件; p,则说p是q的必要条件; 如果既有p q,又有q p,就记作
q,则说p是q的顾
2.从集合角度理解以上的定义: q,相当于P Q ,即 P Q 或 P、Q 有它就行
①p
②q
p
p,相当于Q
P ,即
Q
P 或 P、Q
缺它丌行
同一事物
q,相当于P=Q ,即
P、Q
一、知识点回顾
3.三种条件的理解,可以通过下列电路图来说明 对于电路通
A
B C D E
①
②
③
① A、B仅充分
② C、D仅必要
③ E充要
一、知识点回顾
4.判别步骤: ① 认清条件和结论。 ② 考察p q和q p的真假。 注意: ①在句型: A是B的 ? 条件中,A是条件,B是结论. ②在句型:A的 ? 条件是B中,B是条件,A是结论. 5.判别技巧: ① 可先简化命题. ② 否定一个命题只要举出一个反例即可. ③ 将命题转化为等价的逆否命题后再判断.
充要条件的判断方法
充分条件、必要条件与集合的关系
题 指出下列各题中,p是q的什么条件? 设集合 A={x|x 满足条件 p},集合 B={x|x 满足
(1)p:ax2+ax+1>0的解集是R;q:0<a<4. }, A⊆B, p 是 q 的什么条件?q 是 p 的什么条 若 则 (2)p : x 2 1;q : 6 1. x 5
Байду номын сангаас
变式:设p:A={x|2x2-3x+1≤0},
q:B={x|x2-(2a+1)x+a(a+1)≤0},
若 p 是 q 的必要不充分条件,求实数a的 取值范围.
【规范解答】解2x2-3x+1≤0得 1 x 1.
1 p : A {x | x 1} 2 2
解x2-(2a+1)x+a(a+1)≤0得a≤x≤a+1.
6.充分必要条件的判断
2011陕西
a -b是 a b 的
A
A充分而不必要条件 B 必要而不充分条件 C充分必要条件 D既不充分也不必要条件 2010山东,设{an}是首项大于零的等比数列, C 则“ a1<a2 ”是“数列{an}是递增数列” 的 A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件
【解析】(1)由
a 2 4a 0, a 0,
得0<a<4,
此时不等式ax2+ax+1>0的解集为R,可见qp;
当a=0时,易见p成立,可见pq,
所以p是q的必要不充分条件.
(2)p:A={x|1<x<3},q:B={x|-1<x<5},AB,
充要条件的判断方法
充要条件的判断方法
一般来说,判断条件有两种方法:统计学概念和逻辑规则。
统计学概念是基于某种量表来衡量事物的位置。
可以建立一个量表,把所有要判断的事物放入,然后根据这个量表来给每个事物一个合适的分数,最后再用一定的标准来把打分结果拉出来,这样就可以准确的判断出一个对象是否符合条件。
另一种方法就是逻辑规则,这种方法可以在大多数情况下都可以使用。
比如,我们要判断一个人的年龄是否超过18岁,可以使用逻辑规则,即先把相关数据拿出来,比如他的出生日期、就读学校的注册时间等,然后根据这些数据来判断他是否已经满18岁。
最后,对于一些判断条件很苛刻的情况,一般都会采用统计学方法,比如,如果要找到一个受众群体,就要拿出和这个受众群体相关的量表,比如它的职业、学历、收入水平等,然后根据这些量表来拉出一个比较准确的结果。
充要条件
充分条件与必要条件知识点梳理要点一、充分条件与必要条件 充要条件的概念符号p q ⇒与p q ⇒/的含义“若p ,则q ”为真命题,记作:p q ⇒; “若p ,则q ”为假命题,记作:p q ⇒/.充分条件、必要条件与充要条件①若p q ⇒,称p 是q 的充分条件,q 是p 的必要条件.②如果既有p q ⇒,又有q p ⇒,就记作p q ⇔,这时p 是q 的充分必要条件,称p 是q 的充要条件.要点诠释:对p q ⇒的理解:指当p 成立时,q 一定成立,即由p 通过推理可以得到q .①“若p ,则q ”为真命题; ②p 是q 的充分条件; ③q 是p 的必要条件以上三种形式均为“p q ⇒”这一逻辑关系的表达.要点二、充分条件、必要条件与充要条件的判断从逻辑推理关系看命题“若p ,则q ”,其条件p 与结论q 之间的逻辑关系①若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件,q 是p 的必要不充分条件; ②若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件,q 是p 的充分不必要条件; ③若p q ⇒,且q p ⇒,即p q ⇔,则p 、q 互为充要条件;④若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. 从集合与集合间的关系看 若p :x ∈A ,q :x ∈B ,①若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件; ②若A 是B 的 真子集,则p 是q 的充分不必要条件; ③若A=B ,则p 、q 互为充要条件;④若A 不是B 的子集且B 不是A 的子集,则p 是q 的既不充分也不必要条件. 要点诠释:充要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:①确定哪是条件,哪是结论; ②尝试用条件推结论, ③再尝试用结论推条件,④最后判断条件是结论的什么条件. 要点三.充要条件的证明要证明命题的条件是结论的充要条件,既要证明条件的充分性(即证原命题成立),又要证明条件的必要性(即证原命题的逆命题成立) 要点诠释:对于命题“若p ,则q ”①如果p 是q 的充分条件,则原命题“若p ,则q ”与其逆否命题“若q ⌝,则p ⌝”为真命题;②如果p 是q 的必要条件,则其逆命题“若q ,则p ”与其否命题“若p ⌝,则q ⌝”为真命题;③如果p 是q 的充要条件,则四种命题均为真命题.类型一:充分条件、必要条件、充要条件的判定例1.指出下列各题中,p 是q 的什么条件? (1) p : (2)(3)0x x --=, q : 2x =; (2) p : 0c =,q : 抛物线2y ax bx c =++过原点 (3) p : 一个四边形是矩形,q : 四边形的邻边相等【答案】(1)∵p : 2x =或3x =, q : 2x =∴p q ⇒/且q p ⇒,∴p 是q 的必要不充分条件; (2)∵p q ⇒且q p ⇒,∴p 是q 的充要条件;(3)∵p q ⇒/且q p ⇒/,∴p 是q 的既不充分条件也不必要条件.例2. “x <-1”是“x 2-1>0”的________条件.【解析】2101,1x x x ->⇒<->,故2110x x <-⇒->,但2101x x ->⇒<-/, ∴“x <-1”是“x 2-1>0”的充分而不必要条件.例3.判断下列各题中p 是q 的什么条件.(1)p :0a >且0b >, q :0ab > (2)p :1>yx, q : x y >. 【答案】(1)p 是q 的充分不必要条件. ∵0a >且0b >时,0ab >成立;反之,当0ab >时,只要求a 、b 同号即可. ∴必要性不成立.(2)p 是q 的既不充分也不必要条件 ∵1>yx在0y >的条件下才有x y >成立. ∴充分性不成立,同理必要性也不成立.例4 设甲,乙,丙是三个命题,如果甲是乙的充要条件,丙是乙的充分非必要条件,那么丙是甲的( ).A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既不充分也不必要条件【答案】A ;【解析】由已知有甲⇔乙,丙⇒乙且乙⇒/丙.于是有丙⇒乙⇒甲,且甲⇒/丙(否则若甲⇒丙,而乙⇒甲⇒丙,与乙⇒/丙矛盾)故丙⇒甲且甲⇒/丙,所以丙是甲的充分非必要条件.练习题1.设x R ∈,则条件“2x >”的一个必要不充分条件为( )A.1x >B.1x <C.3x >D.3x <2.已知x 1,x 2∈R ,则“x 1>1且x 2>1”是“x 1+x 2>2且x 1·x 2>1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.下面四个条件中,使a >b 成立的必要不充分条件是( )A .a -1>bB .a +1>bC .|a |>|b |D .a 3>b 3 4.“a ≠1或b ≠2”是“a +b ≠3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设p ,r 都是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么p 是t 的________条件,r 是t 的________条件.(用“充分”“必要”或“充要”填空)6.设x ∈R ,则“x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7. 设x R ∈ ,则“21x -< ”是“220x x +-> ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件8.已知p :0<x<3,q :|x-1|<2,则p 是q 的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件9.下列叙述中正确的是( )A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β10.已知a>0,b∈R,那么a+b>0是a>|b|成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件类型二:充要条件的探求与证明例1. 设x、y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.【解析】(1)充分性:若xy=0,那么①x=0,y≠0;②x≠0,y=0;③x=0,y=0,于是|x+y|=|x|+|y|如果xy>0,即x>0,y>0或x<0,y<0,当x>0,y>0时,|x+y|=x+y=|x|+|y|.当x<0,y<0时,|x+y|=-(x+y)=-x+(-y)=|x|+|y|.总之,当xy≥0时,有|x+y|=|x|+|y|.(2)必要性:由|x+y|=|x|+|y|及x、y∈R,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,|xy|=xy,∴xy≥0.综上可得|x+y|=|x|+|y|成立的充要条件是xy≥0.判断命题的充要关系有三种方法:(1)定义法;(2)等价法,即利用A B⌝⇒⌝;A B⇔与⌝⇒⌝;B A⇒与B A⇒与A B⌝⇔⌝的等价关系,对于条件或结论是不等关系(否定式)的命题,一般运A B用等价法.⊆,则A是B的充分条件或B是A的(3)利用集合间的包含关系判断,若A B必要条件;若A=B,则A是B的充要条件.例2.已知a, b, c 都是实数,证明ac<0是关于x 的方程ax 2+bx+c=0有一个正根和一个负根的充要条件. 【答案】(1)充分性:若ac<0,则Δ=b 2-4ac>0,方程ax 2+bx+c=0有两个相异实根,设为x 1, x 2,∵c<0, ∴x 1·x 2=ac<0,即x 1,x 2的符号相反,即方程有一个正根和一个负根. (2)必要性:若方程ax 2+bx+c=0有一个正根和一个负根,设为x 1,x 2,且x 1>0, x 2<0,则x 1·x 2=ac<0,∴ac<0综上可得ac<0是方程ax 2+bx+c=0有一个正根和一个负根的充要条件.例3. 求关于x 的方程ax 2+2x+1=0至少有一个负的实根的充要条件. 【答案】 (1)a=0时适合.(2)当a ≠0时,显然方程没有零根,若方程有两异号的实根,则必须满足100440a aa ⎧⎪<⇒<⎨⎪∆=->⎩; 若方程有两个负的实根,则必须满足10201440a a aa ⎧>⎪⎪⎪-<⇒<≤⎨⎪∆=-≥⎪⎪⎩ 综上知,若方程至少有一个负的实根,则a ≤1; 反之,若a ≤1,则方程至少有一个负的实根,因此,关于x 的方程ax 2+2x+1=0至少有一个负的实根的充要条件是a ≤1类型三:充要条件的应用 例1.已知221:|1|2,:210(0),3x p q x x m m --≤-+-≤>若p 是q 的充分不必要条件,求m 的取值范围.【答案】9m ≥【解析】由22210(0)x x m m -+-≤>解得11m x m -≤≤+ 又由1|1|23x --≤解得210x -≤≤ p 是q 的充分不必要条件,所以012,110m m m >⎧⎪-≤-⎨⎪+>⎩或012,110m m m >⎧⎪-<-⎨⎪+≥⎩解得9m ≥例2.已知命题p :1-c <x <1+c (c >0),命题q :x >7或x <-1,并且p 是q 的既不充分又不必要条件,则c 的取值范围是________.【答案】0<c ≤2【解析】命题p 对应的集合A ={x |1-c <x <1+c ,c >0},同理,命题q 对应的集合B ={x |x >7或x <-1}.因为p 是q 的既不充分又不必要条件,所以A B ⋂=∅或A 不是B 的子集且B 不是A 的子集,所以1117c c -≥-⎧⎨+≤⎩,①或1117c c +≥-⎧⎨-≤⎩,②,解①得c ≤2,解②得c ≥-2,又c >0,综上所述得0<c ≤2.例3.已知p :A ={x ∈R |x 2+ax +1≤0},q :B ={x ∈R |x 2-3x +2≤0},若p 是q 的充分不必要条件,求实数a 的取值范围.【答案】-2≤a ≤2【解析】B ={x ∈R |x 2-3x +2≤0}={x |1≤x ≤2}, ∵p 是q 的充分不必要条件, ∴p q ⇒,即AB ,可知A =∅或方程x 2+ax +1=0的两根要在区间[1,2]内∴Δ=a 2-4<0或01224210110a a a ∆≥⎧⎪⎪≤-≤⎪⎨⎪++≥⎪++≥⎪⎩,得-2≤a ≤2.综合练习1. 设x 为实数,则0x <“”是 “12x x+≤-”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件2. 设a 是实数,则1a >“”是11"a<“的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 3. 设,0M N >,01a <<,则“log log a b M N >”是“1M N <+”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件4.“512m =π”是“函数()cos(2)6f x x π=+的图象关于直线x m =对称”的( ) (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D)既不充分也不必要条件5.设 ,,,a b c d 为实数,则“ ,a b c d >>”是“a c b d +>+”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件6. 写出“12x x+-≤”的一个充分不必要条件______7.已知函数()a f x x= ,则“a <0”是“函数()f x 在区间(,)+∞0上存在零点”的( )(A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件8.已知a b <,则下列结论中正确的是( ) (A) 0,c a b c ∀<>+ (B) 0,c a b c ∀<<+ (C) 0,c a b c ∃>>+ (D) 0,c a b c ∃><+ 9.设命题p :(0,),ln 1x x x ∀∈+∞-≤,则p ⌝为( ) (A )(0,),ln 1x x x ∀∈+∞>- (B )000(0,),ln 1x x x ∃∈+∞-≤ (C )(0,),ln 1x x x ∀∉+∞>-(D )000(0,),ln 1x x x ∃∈+∞>-10 已知平面向量(,2),(1,1),a k b k ==∈R ,则2k =是a 与b 同向的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件11. 设 ,,a b m 均为正数,则“b a >”是“a m ab m b+>+”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件12.不等式组1,24x y x y +⎧⎨-⎩≤≥表示的平面区域为D ,则( )(A) (,),22x y D x y ∀∈+≥ (B) (,),22x y D x y ∀∈+≤ (C)(,),22x y D x y ∃∈+-≥(D) (,),22x y D x y ∃∈+-≤13.设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的( ) (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件(D) 既不充分也不必要条件14. 已知等差数列{}n a 的首项为1a ,公差0d ≠.则“139,,a a a 成等比数列” 是“1a d =”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件15.已知n S 是等差数列{}n a 的前n 项和,则“n n S na >对2n ≥恒成立”是“34a a >”的( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D)既不充分也不必要条件 16.已知i 是虚数单位,a ∈R ,则“1a =”是“2(i)a +为纯虚数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件17.已知函数()sin (0)f x x ωω=>,则“函数()f x 的图象经过点(4π,1)”是“函数()f x 的图象经过点(,02π)”的( ) (A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件18.设函数()f x 的定义域为R ,则“函数()y f x =的图像关于y 轴对称”是“函数()f x 为奇函数”的( )(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 19.“m m >3”是“关于x 的方程sin x m =无解”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件20.“2a >”是“函数()log (0,1)a f x x a a =>≠且的图象与函数2()44f x x x =-+的图象的交点个数为2个的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 21.已知命题:(0,)p x ∀∈+∞,21x >,则p ⌝为 .22.已知平面向量,,a b c 均为非零向量,则“()()⋅=⋅a b c b c a ”是“向量,a c 同向”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件23.已知a b ,为非零向量,则“0a b >⋅”是“a 与b 夹角为锐角”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件24.已知a ,b 为正实数,则“1a >,1b >”是“lg lg 0a b +>”的( ) (A)充分而不必要条件 (B) 必要而不充分条件(C)充分必要条件(D) 既不充分也不必要条件25.设,a b ∈R ,则“a b >”是“a a b b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件 26. “1a b >>”是“log 3log 3a b <”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件27.设函数2()f x x bx c =++.则“()f x 有两个不同的零点”是“0x ∃∈R ,使0()0f x <”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件28.设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件29.设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 30.设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件31.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件32.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件33.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为________.34.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤535.设a >0且a ≠1,则“log a b >1”是“b >a ”的( )A .必要不充分条件B .充要条件C .既不充分也不必要条件D .充分不必要条件36.已知m ,n 为两个非零向量,则“m ·n <0”是“m 与n 的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件37.设p :ln (2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是( )A .0,12B .0,12C .(-∞,0]∪12,+∞D .(-∞,0)∪12,+∞38. 设p :实数x 满足x 2-4ax +3a 2<0,a ∈R ;q :实数x 满足x 2-x -6≤0或x 2+2x -8>0.若a <0且非p 是非q 的必要不充分条件,求实数a 的取值范围.39.已知条件p:|5x-1|>a(a>0)和条件q:12x2-3x+1>0,请选取适当的实数a 的值,分别利用所给出的两个条件作为A,B构造命题:“若A则B”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.充分条件与必要条件练习题答案1.【答案】A2.答案 A解析 由x 1>1且x 2>1得x 1+x 2>1+1=2,x 1·x 2>1×1=1,所以x 1>1且x 2>1是x 1+x 2>2且x 1·x 2>1的充分条件;设x 1=3,x 2=12,则x 1+x 2=72>2且x 1·x 2=32>1,但x 2<1,所以不满足必要性.故选A . 3.答案 B解析 寻找使a >b 成立的必要不充分条件,若a >b ,则a +1>b 一定成立,a 3>b 3也一定成立,但是当a 3>b 3成立时,a >b 也一定成立,故选B . 4.答案 B解析 “若a +b =3,则a =1且b =2”显然是假命题,所以“若a ≠1或b ≠2,则a +b ≠3”是假命题.因为“若a =1且b =2,则a +b =3”是真命题,所以“若a +b ≠3,则a ≠1或b ≠2”是真命题,故“a ≠1或b ≠2”是“a +b ≠3”的必要不充分条件.故选B . 5.答案 充分 充要解析 由题知p ⇒q ⇔s ⇒t ,又t ⇒r ,r ⇒q ,q ⇒s ⇒t ,故p 是t 的充分条件,r 是t 的 6.答案 A解析 由x -12<12得-12<x -12<12,解得0<x <1.由x 3<1得x <1.当0<x <1时能得到x <1一定成立;当x <1时,0<x <1不一定成立.所以“x -12<12”是“x 3<1”的充分而不必要条件.故选A .7.【答案】A【解析】|2|1x -<的解集为(1,3),220x x +->的解集为(,2)(1,)-∞-+∞,故|2|1x -< 是220x x +->的充分不必要条件。
判断充要条件的四种常用方法
判断充要条件的四种常用方法徐宜昌一、定义法定义法即借助“⇒”号,可记为:箭头所指为必要,箭尾跟着是充分,即:1. 若p ⇒q 但q p ⇒/,则p 是q 的充分但不必要条件; 2. 若q p p q ⇒⇒但/,则p 是q 的必要但不充分条件; 3. p ⇒q 且q ⇒p ,则p 是q 的既充分又必要条件,即充要条件;4. p q q p ⇒⇒//且,则p 是q 的既不充分又不必要条件。
特别要注意,若p ⇒q ,则有以下说法是等价: ①p 是q 的充分条件; ②q 是p 的必要条件; ③p 的一个必要条件是q ; ④q 的一个充分条件是p 。
例1. αβαβαβ+>>⎧⎨⎩>>⎧⎨⎩4422是的什么条件?并说明理由。
解:由αβαβαβ>>⎧⎨⎩⇒+>>⎧⎨⎩2244,但反之不成立。
不妨取αβαβαβ==+>>⎧⎨⎩1544,,显然满足,但不满足αβαβαβ>>⎧⎨⎩+>>⎧⎨⎩2244,即 ⇒>>⎧⎨⎩/αβ22。
由定义(即箭头方向)可知,αβαβαβ+>>⎧⎨⎩>>⎧⎨⎩4422是的必要但不充分条件。
二、传递性法根据充要关系的传递性来判断的方法叫传递法。
充分条件具有传递性,若A A A A A n n 1231⇒⇒⇒⇒⇒-…,则A A n 1⇒,即A A n 1是的充分条件。
必要条件也有传递性,若A A A A A n n 1231⇐⇐⇐⇐⇐-…,则A A n ⇒1,即A A n 1是的必要条件。
当然充要条件也有传递性。
因此,对于较复杂的(连锁式)充要关系的判断可用连锁式的传递图示法来解答最为适宜。
例2. 若A 、B 都是C 的充要条件,D 是A 的必要条件,B 是D 的必要条件,则D 是C 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件分析:宜采用传递性法来解。
充分条件、必要条件判断的三种方法
充分条件、需要条件断定的三种方法之青柳念文创作聂海峰对于充要条件的断定,许多同学感觉坚苦,下面连系典型例题说明充要条件断定的三种常常使用方法,供大家参考.1. 操纵定义断定如果已知p q⇒,则p是q的充分条件,q是p的需要条件.根据定义可停止断定.例1. 已知p、q都是r的需要条件,s是r的充分条件,q是s的充分条件,那末s是q的_________条件;r是q的_______________条件;p是q的____________条件.解:根据题意可暗示为:r p r q s r q s⇒⇒⇒⇒,,,由传递性可得图1图1所以s是q的充要条件;r是q的充要条件;p是q的需要条件.2. 操纵等价命题断定原命题与其逆否命题是“同真同假”的等价命题,当我们直接断定原命题的真假有坚苦时,可以转化为断定其逆否命题的真假.这一点在充要条件的断定时经常常使用到.由p q⇒,容易懂得p是q的充分条件,而q是p的需要条件却有点抽象.p qq p是等价的,可以诠释为若q⇒与⌝⇒⌝不成立,则p不成立,条件q是需要的.例2. 已知真命题“若a b≥则c d≤”和“若a b<则e f≤”,则“c d≤”是“e f≤”的____________条件.解:“若a b≥则c d>”的逆否命题为“若c d≤则a b<”.又“若a b e f则”<≤所以“若c d e f则”为真命题.≤≤故“c d≤”是“e f≤”的充分条件.3. 把充要条件“直观化”如果p q⇒,我们可以形象地认为p是q的“子集”;如果q p⇒,我们认为p不是q的“子集”,根据集合的包含关系,可借助韦恩图说明,现归纳如下.图2反映了p是q的充分不需要条件时的情形.图3反映了p是q的需要不充分条件时的情形.图4反映了p是q的充要条件时的情形.图5、图6反映了p是q的既不充分也不需要条件时的情形.例3. 若p x x q x x1213,则p是q的什么条件?:或,:==-=-解:由题设可知q x:=2参照图3,可得p是q的需要不充分条件.。
从高考题看“充分条件与必要条件”的判断方法
从高考题看“充分条件与必要条件”的判断方法我在教学过程中,发现许多同学对“充分条件和必要条件”的学习,感到比较困难,经常会判断错.的确,充分条件和必要条件是研究命题条件与结论关系的一个重要概念,较为抽象,也比较容易混淆,因而是一个学习的难点.弄懂这些知识,有助于更好的理解命题成立的条件和提高逻辑推理能力.现在,我通过整理近年来全国各地的高考题,向同学们介绍几种判断充要条件的方法.一、 定义法利用定义判断充分条件和必要条件的方法当然是最基本、最常规的方法.根据定义:(1)若q p ⇒,则称p 是q 的充分条件,同时也称q 是p 的必要条件;(2)若q p ⇒且p q ⇒,则称p 是q 的充要条件;(3)若q p ⇒且q p ,则称p 是q 的充分不必要条件,也称q 是p的必要不充分条件;(4)若p q 且q p ,则称p 是q 的既不充分又不必要条件.所以只要判断p 能否推出q 或者q 能否推出p 即可.例 1 (2008年北京高考题)“函数))((R x x f ∈存在反函数”是“函数)(x f 在R 上为增函数”的( )A . 充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析:我们在学习反函数时,知道单调函数一定有反函数,但反函数不一定是增函数.所以, “函数))((R x x f ∈存在反函数” “函数)(x f 在R 上为增函数”,而“函数))((R x x f ∈存在反函数”⇐“函数)(x f 在R 上为增函数”.即“函数))((R x x f ∈存在反函数”是“函数)(x f 在R 上为增函数”的必要而不充分条件.所以选B.二、 传递性法对于较复杂的(如连锁式)的关系,常用,,,⇒⇐⇔等符号进行传递,根据这些符号所组成的图示就可以得出结论.例2 (2007年湖北高考题)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④⌝p 是⌝s 的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是 ( )A.①④⑤B. ①②④C. ②③⑤D. ②④⑤解析:对于条件比较多且关系复杂的问题,用推断符号“⇒” 可以直观表示条件与结论之间的关系,结合条件的传递性,易于判断充分必要条件.由题意,s r q p ,,,之间的关系可表示为:由图易知:s 是q 的充要条件;p 是q 的充分不必要条件;而s 是p 的必要条件而不是充分条件,所以⌝p 是⌝s 的必要条件而不是充分条件.所以①②④是正确的,故选B.至于④为什么是正确的,这就是我下面将要介绍的等价命题法.三、等价命题法当所给命题的充要条件不好判定时,可利用四种命题的关系,对命题进行等价转换.常利用原命题与逆命题的真假来判断p 与q 的关系.令p 为命题的条件, q 为命题的结论.具体对应关系如下: ① 如果原命题真而逆命题假,那么p 是q 的充分而不必要条件;② 如果原命题假而逆命题真,那么p 是q 的必要而不充分条件;③ 如果原命题真而逆命题真,那么p 是q 的充要条件;④ 如果原命题假而逆命题假,那么p 是q 的既不充分也不必要条件.例3(2008年陕西高考题)“18a =”是“对任意的正数,21a x x x +≥”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 解析:先判断原命题:“对任意的正数x ,若18a =,则21a x x +≥”的真假. 18a =,11222188x x ∴+≥=,即原命题为真.再判断逆命题:“对任意的正数x ,若21a x x+≥,则18a =”的真假.2222288a a x x a x x +≥=,而当221a ≥时,即18a ≥, 所以逆命题为假.即“18a =”是“对任意的正数,21a x x x+≥”的充分而不必要条件. 而对于一些否定形式的命题常用“原命题⇔逆否命题”,“否命题⇔逆命题”的等价关系,来讨论p 与q 的关系.例4 (2005年福建高考题)已知:0,:0p a q ab ≠≠,则p 是q 的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:先判断原命题“若p 则q ”的真假,原命题的真假较难判断,但它的逆否命题“若┐q 则┐p ”,即“若0ab =,则0a =”显然为假,故原命题也为假,即p q .逆命题的真假较难判断,但它的等价命题否命题“若0a =,则0ab =”显然为真,故逆命题也为真,即p q ⇐.所以p 是q 的必要不充分条件.四、集合法涉及方程的解集,不等式的解集,点集等与集合相关的命题时,一般采用集合间的包含关系来判定两命题之间的充要性.具体对应关系如下:设满足条件p 的元素构成集合A ,满足条件q 的元素构成集合B ,则(1)若A ⊂≠B ,则称p 是q 的充分不必要条件;(2)若B ⊂≠A ,则称p 是q 的必要不充分条件(3)若B A =,则p 是q 的充要条件;(4)若A B 且B A ,则p 是q 的既不充分又不必要条件.当条件与结论能够用集合形式表示时,采用这种方法即将问题转变成了某两个集合的包含关系的判断,又将复杂问题化成了简单问题解决.例5 (2008年湖南高考题)“12x -<成立”是“(3)0x x -<成立”的 ( )A . 充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由12x -<可得{}13A x x =-<<,由(3)0x x -<可得{}03B x x =<<,B ⊂≠A ,∴“12x -<成立”是“(3)0x x -<成立”的必要不充分条件,故选B .从考试要求来看,对充要条件的考查要求是B 级,即要达到理解层次.所以从各类考试中,能够发现对充要条件的考查主要体现在综合问题上,把充要条件与其它知识结合,用充要条件作为载体,而且有时候问题的难点不在充要条件,在其它知识上,此刻的充要条件是作为一种“包装”出现的,而单纯考查充要条件(如例2)这类问题却是不多见的,即使出现,也是以选择题,填空题的形式居多.所以同学们在能正确判断充要条件的基础上,更多的是要注意对充要条件的灵活应用.充分条件、必要条件的判断是对这一知识点最基本的考查.只要领会上面所提到的判断方法,就可以轻松解决这类问题.无论哪一种方法或角度,都需要同学们首先能深刻理解充要条件的定义,会用逻辑语言表达,然后能根据题目条件,考虑是从命题角度还是从集合角度进行判断,而且这种方法的选择是显而易见的.希望大家看了本文后,能有所收获,能灵活运用上述方法去解决问题.。
充分条件与必要条件知识点
充分条件与必要条件知识点充分条件和必要条件是高中数学中的重要概念。
虽然这些概念比较抽象,但是它们的理解对于学生来说非常重要。
下面是关于高一数学中充分条件和必要条件的知识点。
1.充分条件、必要条件和充要条件充分条件指的是,如果条件A成立,那么结果B也成立。
也就是说,条件A是B成立的充分条件。
必要条件则是指,如果条件A成立,那么结果B也成立。
也就是说,结果B是条件A成立的必要条件。
充要条件则是指,如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B。
简单来说,如果满足条件A,那么结果B必然成立;如果不满足条件A,那么结果B必然不成立。
因此,条件A是结果B的充分必要条件。
反之,如果有事物情况B,则必然有事物情况A;如果没有事物情况B,则必然没有事物情况A。
因此,结果B是条件A的充分必要条件。
简单来说,如果满足结果B,那么条件A必然成立;如果不满足结果B,那么条件A必然不成立。
因此,结果B是条件A的充分必要条件。
也就是说,条件A可以推导出结果B,结果B也可以推导出条件A。
2.充分条件、必要条件和充要条件的判断对于命题“若…,则…”,其条件与结论之间的逻辑关系如下:如果条件A成立,那么结果B也成立,用符号表示为A B。
如果条件A成立,但结果B不一定成立,用符号表示为A B。
如果条件A和结果B互相成立,用符号表示为A B。
具体来说,如果XXX且B成立,则条件A是结果B成立的充分条件,结果B是条件A成立的必要条件。
如果XXX 且B成立,则条件A是结果B成立的充分且不必要条件,结果B是条件A成立的必要且非充分条件。
如果A和B互相成立,并且B能推导出A成立,则条件B是结果A成立的充分条件,结果A是条件B成立的必要条件。
如果A和B互相成立,那么它们互为充要条件。
要证明A是B的充要条件,需要分两步:①先证明A是B成立的充分条件;②再证明A是B成立的必要条件。
如果A和B互相成立,那么它们互为充要条件。
充分条件、必要条件
一、充分条件、必要条件、充要条件的定义
1.若p 则q 为真,q p ⇒;若p 则q 为假,q p ⇒
条件 结论
2.定义
(1)若q p ⇒,则p 是q 的充分条件
(2)若p q ⇒,则p 是q 的必要条件
(3)若q p ⇒且p q ⇒,则q 是p 的充要条件
二、充分条件、必要条件的判断方法
(1)定义法:直接利用定义进行判断断
步骤: ①分清条件、结论
②
技巧:①可先化简命题再进行判断;②否定一个命题只需举出一个反例即可。
(2)集合法:集合A ,B 分别是使命题p ,q 为真命题的对象所组成的集合.
⎩
⎨⎧⇒⇒p q q p 充分不必要条件 A B 必要不充分条件
充要条件
既不充分也不必要条件
三、充分条件与必要条件的应用
例:已知p :,q :{x |x 2-2x +1-m 2≤0,m >0},若p 是q 的充分不
必要条件,求实数m的取值范围.
令A=,
……………………………………………………2分
B={x|x2-2x+1-m2≤0,m>0}
={x|[x-(1-m)]·[x-(1+m)]≤0,m>0},
∴B={x|1-m≤x≤1+m,m>0}.………………4分
∵p是q的充分不必要条件,
∴A B.……………………………………………6分
四、证明充要条件
步骤:①分清条件、结论;
②证明充分性:条件⇒结论;
③证明必要性:结论⇒条件;
④下结论。
技巧:证明充要条件,即证明命题的原命题和逆命题都成立.证明充要性时一定要注意分类讨论,要搞清它的叙述格式,避免在论证时将充分性错当必要性证,而又将必要性错当充分性证.。
充要条件----
解得 0<a≤1.
• 综上可知,若方程至少有一个负的实根,则a≤1 ;反之,若a≤1,则方程至少有一个负的实根, 因此,关于x的方程ax2+2x+1=0至少有一个负 的实根的充要条件是a≤1.
• 另解:
• 跟踪练习:
• 求方程x2-2(m+2)x+m2-1=0有两个大于2的根的充要条件。 • 解: 由于方程x2-2(m+2)x+m2-1=0有两个大于2的根,设这两个 根为x1,x2,则有
• 3.从 互为逆否命题的等价形式看充分条件,必要条件 • [例题] 已知条件A是“x≠3且y≠2”,条件B是“x+y≠5”. 试判断A是B的什么条件?
[解析] ∵非 A
非 A: “x=3 或 y=2”, B: 非 “x+y=5”, 非 B,且非 B 非 A,
∴A既不是B的充分条件,也不是B的必要条件 ∴A是B的既不充分也不必要条件
• 二:求充要条件的综合题目: • [例4] 求关于x的方程ax2+2x+1=0至少有一个负的实 根的充要条件.
[解析] ①a=0 时适合.
②当 a≠0 时,显然方程没有零根,若方程有两异号 的实根,则 a<0;若方程有两个负的实根,
1 a>0, 则必须满足 2 -a<0, Δ=4-4a≥0,
一:条件的判定 1、从逻辑推理关系看充分条件、必要条件: 1)A B且B A,则A是B的
充分非必要条件
2)若A
3)若A 4)A
B且B
B且B B且B
A,则A是B的
必要非充分条件
A,则A是B的
既不充分பைடு நூலகம்不必要条件
A,则A是B的
充分且必要条件
例1:指出下列各组命题中,p是q的 什么条件 (1)p:a+b=0,q:a2+b2=0; (2)p:函数f(x)=2x+1,q:函数f(x)是 增函数; (3)p:△ABC有两个角相等, q:△ABC是等腰三角形;
第3课充要条件(经典例题练习、附答案)
第3课 充要条件◇考纲解读掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.◇知识梳理判断充要条件关系的三种方法:①定义法:若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇒,则A 是B 的_______条件,B 是A 的_______条件;若B A ⇔,则A 是B 的_______条件.②利用原命题和逆否命题的_______来确定.③利用集合的包含关系:若,B A ⊆则A 是B 的_______条件,B 是A 的_______条件;若A=B ,则A 是B 的_______条件.◇基础训练1.(2006安徽卷)“3x >”是24x >“的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 2“x 是2的倍数或是3的倍数”是“x 是6的倍数”的( ) A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分又不必要条件3.(2008中山一模)设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2008佛山)“2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ). A .充分条件不必要 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 ◇典型例题例1.设集合{2},{3},M x x P x x =>=<""x M x P ∈ ∈那么或""x M P ∈ 是的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件 例2.已知p :-2≤x ≤10,q :x 2-2x +1-m 2≤0(m >0),若⌝p 是⌝q 的必要而不充分条件,求实数m 的取值范围.◇能力提升1.如果y x ,是实数,那么“0>xy ”是“y x y x +=+”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件2.已知命题A,B ,如果⌝A 是⌝B 的充分而不必要条件,那么B 是A 的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 非充分非必要条件3.若p :⎩⎨⎧>>+44αββα ,q :⎩⎨⎧>>22βα ,则p 是q 的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分又不必要条件4.(2008惠州一模) “p 或q 是假命题”是“非p 为真命题”的( )A .充分条件不必要B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知真命题“a b c d ≥⇒>”和“a b e f <⇔≤”,那么“c d ≤”是“e f ≤”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第3课 充要条件◇知识梳理1.①充分,必要, 必要,充分,充要.② 逆否命题.③ 充分,必要,充要.◇基础训练1. B2. C3. B4. A◇典型例题例1.解:"}3{}2{"""R x x x x M P x N x M x =<>=∈∈∈ 即或M P x M P x x x x M P x ∈⇐∈<<∈∈显然即},32{"",所以选B例2.解:由题意知,命题若⌝p 是⌝q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件p :-2≤x ≤10q : x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件,∴不等式-2≤x ≤10的解集是x 2-2x +1-m 2≤0(m >0)解集的子集 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, 实数m 的取值范围是[9,+∞)◇能力提升1.A2. C3. B4.A5. A6.A。
高考数学充分条件与必要条件
(2)必要性:把B当作已知条件,结合命题的前提 条件推出A。
; 淘宝内部优惠券 优惠券APP 网购内部优惠券 / 淘宝内部优惠券 优惠券APP 网购内部优惠券
;
一步从侧面表现出何爹剃头技艺的高超。 ? E.文章以自然朴实的语言,真诚地礼赞了传统文化中值得发扬的优秀面,并且表现了作者对于传统文化在现代社会中所处的尴尬地位及日后走向的深切忧虑。 ? 2.何爹这一人物形象具有哪些特点?请结合文章简要概括。 ? 3.文章最后详写何爹最 后一次给三明爹剃头的情节有何作用? ? ? 4.怎样看待何爹“宁可败走麦城也决不背汉降魏”的这种坚持?面对传统技艺的衰落,你对当今逐渐失势的传统文化有何思考? 【参考答案】 一.(1)AD。A正确。说的是开头环境描写的作用是突出剃刀侠在天子脚下,这种繁华人多的环境下竟然 敢动手杀掉蓝翎侍卫,可见剃刀侠艺高人胆大。B、不正确。无根据。这种推测不完全正确,老摊贩认得蓝翎侍卫,不见得就一定是曾被蓝翎侍卫欺负,也可能是他经常看到蓝翎侍卫欺负其他人。C不正确。小说采用了正面描写和侧面描写相结合,如:“挑儿前一个年过半百的瘦老头儿正在刀荡 子上哧哧荡刀”就是正面描写。D正确,这样设计情节更真实。E不正确。本文歌颂了剃刀侠打抱不平,扶危济困的侠义精神,寄托了人们惩处邪恶、彰显正义的善良愿望和朴素理想。 (2)①瘦老头儿荡刀。②蓝翎爷给刮得懒洋洋,并“呼噜呼噜”睡。③剃头后老师傅又找几刀。④上马后,小 卒子问蓝翎爷,蓝翎爷不出声。(每点2分,答满3点得满分,如有其它合理分析酌情给分。) (3)①形体上:蓝翎爷体肥身重,剃刀侠却是年老体瘦;②身份地位上:蓝翎爷前呼后拥,剃刀侠势单力薄。③处世态度上:蓝翎爷暴虐成性,欺行霸市,耀武扬威,剃刀侠淡泊名利,处变不惊,自 甘寂寞。(每点2分,如有其它合理概括酌情给分。) (4)①歌颂了杀富济贫、扶危济困的侠义精神。②寄托了人们惩处邪恶、彰显正义的善良愿望和朴素理想。③弱小战胜强权,正义挫败邪恶,反映出民众的智慧和力量。④散发出老独有的文化气息。(每点2分,如有其它合理探究酌情给分 ) 二.(1)BC? A项根据文意看不出前后之间有因果关系,且李叔同是“风流儒雅”的少年公子,A项叙述与原文有别。D项对李同叔出家原因的阐述在文中缺少根据,并且“这种思想”在他出家创作的诗词中也可以表象出来。E项“做一样,像一样”不是作者的评价,是夏丐尊先生的评价。 ? ? (2)①音乐方面,他创作了我国第一部音乐刊物《音乐小杂志》,提倡音乐的社会教育功能;②在近现代美术史上,他开设了室内室外写生课,且在教课中采用了男性裸体模特写生,具有历史性的开创意义;③在戏剧是发展史上,他组织成立了“春柳社”,扮演过茶花女,因演技高超而受到日 本戏剧家的高度评价;④在文坛上,他创作的诗词题材博大,内容深广,超越世人;⑤在做教师时,他脱下西装,穿上黑马褂、布鞋,戴上金丝边框眼镜,为人师表,他一丝不苟。(答出其中任意3点) ? ?(3)李叔同多才多艺,文艺的园地几乎被他走遍了,而且他在很多艺术领域都卓有成建 树,最后他又远离了这一切,出家为僧,将生命最大化地归于平淡,因此说他是“绚丽至极归于平淡”。这句话是对李叔同的整体评价,起到了总结全文的作用。 ? ?(4)赞同作者的观点。李叔同先生在做学问上非常严谨。这主要表现在他无论在哪一领域,都能认真去做,非常负责任。如教书 ,他对自己的要求就是为人师表,一丝不苟。 同时李叔同先生一点也不拘谨,他在所从事的领域,无论是音乐,还是美术、戏剧,都极度创新意识,如他以敏锐的艺术灵感创造了很多中国艺术史上的第一,创办了我国第一部音乐刊物《音乐小杂志》,首倡男性裸体模特写生,改变只授临摹画帖 的状况等。 (不赞同作者的观点,只要结合原文,言之有理也可。) 三 、1、 解析 B项在本段无夸张。D项说红柳木“生命力更顽强,更值得人类学习”文中无据。答案 BD 2、 答案 荒凉、凄清、荒无人烟、干旱无雨;此环境为下文写三种植物做了铺垫,烘托出三种植物顽强的生命力。 ? 3、答案 起承上启下(过渡)的作用,从对胡杨林、骆驼刺的描写转向对红柳木的描写。 ? (1)趴伏或者挺直腰杆;(2)抗争(“挣扎奋斗”也可);(3)点缀美化着戈壁滩;(4)永不放弃。 ? 4、答案 指红柳木身处绝境但不绝望、勇于与命运抗争的勇气和精神。联系人生、自然界中不凡、不屈 和高贵的生命都能给我们太多的启示:生命只有一次,在人生的道路上,事业、前途、爱情……都可能会不顺利,人生也会陷入绝境,但不必悲观,不要绝望,只有一息尚存,一切都会好起来;生存本身就是一种资本,一种幸运,一种对不公平命运的勇敢挑战和蔑视,人生就要像红柳一样,身 处逆境却能点亮美化世界,赢得敬畏和尊重。 ? 四?、1、?解析 C项“暗示了相对封闭的自然环境使得秦岭女孩脸上满是羞涩”,应是 “用环境的幽美,烘托秦岭女孩的纯真、自然”;E错在“形象地表达了人生苦短的惆怅”。答案 CE ?2、 答案 文章的③④⑤段是详写,具体描述了作者与 年轻乘客、秦岭女孩和中年乞丐邂逅的经历。而⑥、⑦两段是略写(概述),点出人生“一转身”中发生的种种变化,是对前文详写的拓展。 ? 3.(1)?答案 在山色、水声和花香中,秦岭女孩保持着最纯真的表情(美好的环境,美好的人情),因而这时的她是最美丽的。 ? (2)?答案 转眼间,作 者身边只有一个老年乞丐,却找不到他要寻找的那个中年乞丐。然而,他们同样生活在贫寒与苦难中。 ? 4.答案 “转身”指的是人们在人生路途中与美好事物相逢机遇的短暂(或答:失去美好事物的迅速)。作者告诉人们:人生中任何美好的东西都是稍纵即逝的,因此要格外懂得珍惜。 ?五 、1、 解析 A项作者讲述这个故事,是为了说明应该历史地看待事物;B项应是沙漠玫瑰之美惊天动地;D项沙漠玫瑰之名是原来就有的,不是作者命名的。答案 CE ? 2.答案 ①是一蓬干草,真正枯萎、干的、死掉的草,很难看。②形状:是一种地衣,松枝形状。③颜色:开放时叶绿色,张 开有玫瑰形图案。④生命力:整个浸泡在水里八天就会复活,干放一两年遇水仍会复活。 3.? 答案 ①照应开头。“鉴往知来,认识过去才能预测未来”;②承上启下的过渡作用,承接上文沙漠玫瑰的故事;领起下文,由记叙转入议论,应历史地看待事物,没有一个现象是孤立存在的。 ? 4 .?答案 不能删去,因为:①结构上:首尾呼应,浑然一体。②总领全文,卒章显志,点明、深化中心。历史告诉你,应历史地看待事物,没有一个现象是孤立存在的,鉴往知来。③运用以小见大手法,构思巧妙。由沙漠玫瑰的开放推及应历史地看待事物的深刻哲理。 六、1、?解析 A项主要 是为了引起下文,为下文写人提供背景。C项“可见祖母的笑是苦涩而痛楚的”与文不符。E项没有深化主旨。 答案 BD ? 2答案 起到了抒情线索作用,把景、情、人很好地结合在一起,使行文脉络清晰。第一次承上启下,由景及人。第二次深化对祖母的怀念,情感达到高潮。 ? 3.答案 ① 落叶上的脉络,如同祖母的皱纹。 ? ②祖母总是不停地翻捡那些落叶,把中意的珍藏起来。 ? ③祖母的书里夹着各种各样的落叶,仿佛为自己的青春留下的标记。 ? ④祖母习惯在落叶上写哀婉的宋词,怀念着祖父。 ? ⑤一个落叶的秋天,祖母如同秋叶安详离去。 ? 4. 答案 “生如夏花之 灿烂,死如秋叶之静美”,生命虽然短暂,也可能充满痛苦与无奈,无论幸与不幸,我们都要保持乐观的人生态度和优雅的姿态。不气馁,不消沉,以包容之心去对待苦难与不幸,去采撷生活中哪怕是一丝一缕的阳光和快乐。总之,要珍惜现在,热爱生活。 七、1、? 解析 B项“就必须借助外 物的指引,如‘道路’‘灯光’等”概括不全,还应有“要有坚强的意志,历经磨难挫折”。D项“退缩”有误,文中无此信息;“茫然”有误,海光出现的时候,给人以希望。 答案 BD ? 2.答案 ①点题。本文的重点就是围绕“海光”而层层推进的。 ? ②承上启下。由上文在艰难的夜行中 ,失落了任何辨识大海的标记,让我们备感踌躇、预感不祥和恐惧,过渡到下文写大海重新为我们带来了魅力,给我们增添了勇气和活力,让我们面对目标而不知疲倦地前进。 ? 3. ?答案 作者经历了看海途中的艰难跋涉,最后靠海光的指引才到达海边,由此而产生了新的感悟,认识到找出 神秘的海光对人生的启迪答案,要比单纯的观看日出更有人生意义。 ? 4. ?答案 ①人们的奋斗总是有目标的,只要坚定不移,就能感受到成功的到来。 ? ②走向目标的旅程是遥远而又曲折的,既要满怀希望,又要有坚强的意志,从这个意义上说,实现目标的过程比最终的目标更有意义。 ? ③理想和现实的统一才是真正的成功,而现实又常常在变化,所以,免不了有挫折。 八.?1. 解析 C项“为了不拖累主人而选择了自尽”的说法错误,从“小男孩”的行为看;D项“人类是……群体”的说法过于绝对,“创作动因”的说法也于文无据。答案 CD ?2. ?答案 ①描绘(勾勒)出 春天风和日丽的景象,推动了后面农夫们春耕和老黄牛腿断等情节的发展。②表现(勾勒)出了黑夜的寂静和沉重,渲染了孤独和凄凉的气氛,为后面老黄牛的眷念和回忆作了铺垫。③表现出深夜里整个村子的黑暗和阴森,不仅渲染了不安和恐怖的气氛,还推动了后面主人和屠夫合谋杀牛、老黄 牛自尽等情节的发展。 ? 3.? 答案 ①“鞭子的抽打声和吆喝声”和“主人斥责他”体现了自私的主人对卖力耕田的老黄牛毫不怜惜的冷漠;②“主人望着老黄牛,目光变得闪烁不定”表现出主人在兽医的建议下盘算杀牛卖钱的残忍心理;③“倏然间,主人家正屋的灯亮了”,从侧面表现出 主人雇用屠夫要实施杀牛卖钱的冷酷。(必须是表现“主人对老黄牛无情”的伏笔) ? 4. ?答案 从立意看,另一种结局能够表现出小男孩的纯真和善良,有利于表现作者对人性中“真、善、美”的期盼和追求。但这样完美的结局不利于表现立意的批判性,并会削弱小说的感染力。(要从立意角 度说,言之成理即可) 九.1.? 解析 A项不是想用果品转移孩子的注意力,而是从前一直是妻子点香,父亲不忍睹物伤怀。D项“使哀恸的父亲变得愤怒”不当。 ? 答案 AD ?
数学充分必要条件的判断技巧
I don’t know what I can say this day. At this moment, I only know that my heart is cold. I am no longer the person who was full of passion for love yesterday. I am disheartened and cold about love. .同学互助一起进步(页眉可删)数学充分必要条件的判断技巧数学充分必要条件的判断技巧,各位同学知道怎么判断充分必要条件吗?其实是有技巧的哦,看看下面吧!数学充分必要条件的判断技巧【1】一、借助于“推出方向”理解充分条件与必要条件。
若pq,则下列说法等价:p是q的充分条件,q是p的必要条件。
若pq,则称p与q互为充要条件,或p的充要条件是q,或q 的充要条件是p。
例1、若A、B都是C的充要条件,D是A的必要条件,B是D 的必要条件,则D是C的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解:可用“推出方向”解。
由已知:AC,BC,AD,DB,可以推出D与C的关系:由DB,BC,得DC;由CA,AD,可得:CD。
CD,即D是C的充要条件。
二、借助子集的概念理解充分条件与必要条件。
若将命题p、q看成集合,当pq时,p是q的充分条件,q是p 的必要条件。
这里可以用“小范围推出大范围”帮助记忆。
例2、(1)若p:x1,q:x5,则p是q的条件。
(2)若p:(x-1)(x-2)=0,q:x=2,则q是p的条件。
解:从集合角度考虑:(1)中有qp;(2)中有pq。
根据“小范围推出大范围”知:(1)的p是q的必要但不充分条件;(2)中的q是p的充分但不必要条件。
三、借助原命题与其逆否命题为等价命题理解充分条件与必要条件。
例3、若p:x1,若y2,q:x+y3,则p是q的条件。
解:考虑其逆否命题:q:x+y=3,p:x=1且y=2,显然有:pq。
(第2讲)充要条件的理解及判定方法
aasf题目高中数学复习专题讲座高考要求充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系重难点归纳(1)要理解“充分条件”“必要条件”的概念当“若p则q”形式的命题为真时,就记作p⇒q,称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质(4)从集合观点看,若A⊆B,则A是B的充分条件,B是A的必要条件;若A=B,则A、B互为充要条件(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性)典型题例示范讲解例1已知p|1-31-x|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p是⌐q的必要而不充分条件,求实数m的取值范围命题意图本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性知识依托本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了错解分析对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难技巧与方法利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决解由题意知命题若⌐p是⌐q的必要而不充分条件的等价命题即逆否命题为p是q的充分不必要条件p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 * ∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞)例2已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件 命题意图 本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性 知识依托 以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定 错解分析 因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明 技巧与方法 由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明 解a 1=S 1=p +q当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p 若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1这是{a n }为等比数列的必要条件下面证明q =-1是{a n }为等比数列的充分条件当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1) 211)1()1(-----=n n n n p p p p a a =p 为常数 ∴q =-1时,数列{a n }为等比数列即数列{a n }是等比数列的充要条件为q =-1例3已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β, 证明|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件 证明(1)充分性由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线又|α|<2,|β|<2,∴f (±2)>0即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b ) 又|b |<4⇒4+b >0⇒2|a |<4+b(2)必要性由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线∴方程f (x )=0的两根α,β同在(-2,2)内或无实根∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2例4 写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x 、y 都是奇数,则x +y 是偶数;(2)若xy =0,则x =0或y =0;(3)若一个数是质数,则这个数是奇数.解:(1)命题的否定:x 、y 都是奇数,则x +y 不是偶数,为假命题. 原命题的否命题:若x 、y 不都是奇数,则x +y 不是偶数,是假命题.(2)命题的否定:xy =0则x ≠0且y ≠0,为假命题.原命题的否命题:若xy ≠0,则x ≠0且y ≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题. 原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题. 例5 有A 、B 、C 三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A 盒子上的纸条写的是“苹果在此盒内”,B 盒子上的纸条写的是“苹果不在此盒内”,C 盒子上的纸条写的是“苹果不在A 盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里? 解:若苹果在A 盒内,则A 、B 两个盒子上的纸条写的为真,不合题意.若苹果在B 盒内,则A 、B 两个盒子上的纸条写的为假,C 盒子上的纸条写的为真,符合题意,即苹果在B 盒内.同样,若苹果在C 盒内,则B 、C 两盒子上的纸条写的为真,不合题意. 综上,苹果在B 盒内. 学生巩固练习 1函数f (x )=x |x +a |+b 是奇函数的充要条件是( ) A ab =0 B a +b =0 C a =b D a 2+b 2=0 2 “a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既非充分条件也不是必要条件 3 a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的___ 4命题A 两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B 曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件 5设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件? 6已知数列{a n }、{b n }满足b n =nna a a n +++++++ 321221,求证数列{a n }成等差数列的充要条件是数列{b n }也是等差数列 7已知抛物线C y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件 8 p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件(充要条件) 参考答案 1解析若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b )=-(x |x +a |+b )=-f (x ) ∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )=(-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0∴a 2+b 2=0是f (x )为奇函数的必要条件 答案 D 2解析若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax 故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件 答案 A 3解析当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2 答案 充要条件 4解析若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0); 反之不成立 答案充分不必要 5解根据韦达定理得a =α+β,b =αβ 判定的条件是p :⎩⎨⎧>>12b a ,结论是q :⎩⎨⎧>>11βα (注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p (2)为证明pq ,可以举出反例取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立 综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件 6证明①必要性设{a n }成等差数列,公差为d ,∵{a n }成等差数列 1212(12)[1223(1)]1231n n a a na a n d n n b nn n +++++++⋅+⋅++-∴==+++++++ 12(1)3a n d =+-⋅从而b n +1-b n =a 1+n ·32d -a 1-(n -1) 32d =32d 为常数故{b n }是等差数列,公差为32d ②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d∵b n (1+2+…+n )=a 1+2a 2+…+na n① b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n②①-②得na n =2)1(2)1(--+n n b n n n b n -1111111113[(1)][(2)](1)22222n n n n n n n a b b b n d b n d b n d -+-+-'''=-=+--+-=+-⋅ 从而得a n +1-a n =23d ′为常数,故{a n }是等差数列 综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列 7解 ①必要性由已知得,线段AB 的方程为y =-x +3(0≤x ≤3)由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解 消元得x 2-(m +1)x +4=0(0≤x ≤3)设f (x )=x 2-(m +1)x +4,则有2(1)440(0)40(3)93(1)401032m f f m m ⎧∆=+-⨯>⎪=≥⎪⎪⎨=-++≥⎪+⎪<<⎪⎩ 1033m ⇒<≤ ②充分性当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x ∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件是3<m ≤310 8解 若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2 则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1, 根据韦达定理 ⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0 方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件 课前后备注1.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意有p ⇒r ,r ⇒s ,s ⇒q ,∴p ⇒r ⇒s ⇒q .但由于r p ,∴q p .答案:A2. “cos2α=-23”是“α=k π+12π5,k ∈Z ”的 A.必要不充分条件 B.充分不必要条件C.充分必要条件D.既不充分又不必要条件 解析:cos2α=-23⇔2α=2k π±6π5⇔α=k π±12π5. 答案:A3.在△ABC 中,“A >B ”是“cos A <cos B ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在△ABC 中,A >B ⇔cos A <cos B (余弦函数单调性).答案:C4.命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.答案:充分不必要5.函数f (x )=x 2-2ax -3在区间[1,2]上存在反函数的充分必要条件是A.a ∈(-∞,1]B.a ∈[2,+∞)C.α∈[1,2]D.a ∈(-∞,1]∪[2,+∞)解析:∵f (x )=x 2-2ax -3的对称轴为x =a ,∴y =f (x )在[1,2]上存在反函数的充要条件为[1,2]⊆(-∞,a ]或[1,2]⊆[a ,+∞),即a ≥2或a ≤1.答案:D6.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求数列{a n }成等比数列的充要条件.分析:先根据前n 项和公式,导出使{a n }为等比数列的必要条件,再证明其充分条件.解:当n =1时,a 1=S 1=p +q ;当n ≥2时,a n =S n -S n -1=(p -1)·p n -1.由于p ≠0,p ≠1,∴当n ≥2时,{a n }是等比数列.要使{a n }(n ∈N *)是等比数列,则12a a =p ,即(p -1)·p =p (p +q ),∴q =-1,即{a n }是等比数列的必要条件是p ≠0且p ≠1且q =-1.再证充分性:当p ≠0且p ≠1且q =-1时,S n =p n -1,a n =(p -1)·p n -1,1n n a a =p (n ≥2), ∴{a n }是等比数列.。
充要条件的概念
充要条件的概念
充要条件也即充分必要条件,意思是说,如果能从命题p推出命题q,而且也能从命题q推出命题p,则称p是q的充分必要条件,且q也是p的充分必要条件。
如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件(简称:充要条件),反之亦然。
假设A是条件,B是结论。
(1)由A可以推出B,由B可以推出A,则A是B的充分必要条件,或者说A的充分必要条件是B。
(2)由A可以推出B,由B不可以推出A,则A是B的充分不必要条件。
(3)由A不可以推出B,由B可以推出A,则A是B的必要不充分条件。
(4)由A不可以推出B,由B不可以推出A,则A是B的既不充分也不必要条件。
充分条件与必要条件的判断方法
充分条件与必要条件的判断方法充分条件与必要条件是数学逻辑中用来描述事物之间关系的两个概念。
充分条件表示一些条件是导致另外一个条件(结论)成立的条件,必要条件则表示一些条件是另外一个条件(结论)成立的必需条件。
在判断充分条件与必要条件时,有以下几种常见方法:1.逆否命题法:逆否命题是充分条件与必要条件的等价形式。
对于一个命题P→Q,其逆否命题为非Q→非P。
所以判断一个命题是否是充分条件与必要条件可以通过判断其逆否命题是否成立来确定。
如果逆否命题成立,则原命题是充分条件与必要条件;如果逆否命题不成立,则原命题不是充分条件与必要条件。
2.反证法:反证法是一种常用的证明方法,用来证明一个命题的否定不成立,从而得到原命题的成立。
使用反证法可以判断一些条件是否是必要条件。
假设原命题的否定成立,然后推导出一个矛盾的结论,说明原命题不是必要条件。
反证法只能确定必要条件,不能确定充分条件。
3.实例法:实例法是通过构造特定的实例来判断一个条件是否是充分条件与必要条件。
如果找到了一个实例,使得条件成立而结论不成立,则说明这个条件不是充分条件。
反之,如果找到了一个实例,使得条件不成立而结论仍然成立,则说明这个条件不是必要条件。
实例法只是判断一个条件是否是充分条件或必要条件的一种方法,不是绝对可靠的。
4.定义法:有时候,一个条件的充分性或必要性可以通过已知的定义来判断。
如果一个结论是由一些条件的定义直接得出的,则可以判定这个条件是充分条件。
反之,如果一个条件是由一些结论的定义直接得出的,则可以判定这个条件是必要条件。
5.推理法:推理法是通过逻辑推理来判断一个条件是否是充分条件或必要条件。
根据已知的条件,运用一定的数学推理规则进行推导,从而得出结论。
如果推理过程中可以从条件推导出结论,则可以判断这个条件是充分条件。
反之,如果推理过程中可以从结论推导出条件,则可以判断这个条件是必要条件。
总结起来,充分条件与必要条件的判断方法包括逆否命题法、反证法、实例法、定义法和推理法。
充要条件
• (3)利用集合间的包含关系进行判断:如果 条件p和结论q都是集合,那么若p⊆q,则p 是q的充分条件;若p⊇q,则p是q的必要条 件;若p=q,则p是q的充要条件. • 4.充要条件的传递性 • 若A⇒B,B⇒C,C⇒D,则A⇒D,即A是D 的充分条件,利用这一结论可研究多个命 题之间的充要关系.
• (3) 根据线面垂直定义知, l ⊥ α ⇒ l ⊥ m 且 l⊥n, • 当m∥n时,l⊥m且l⊥n⇒/ l⊥α,故选A.
• 在下列四个结论中,正确的有 ( ) • (1)x2>4是x3<-8的必要不充分条件; • (2) 在△ ABC 中,“ AB 2 + AC 2 = BC 2 ”是 “△ABC为直角三角形”的充要条件; • (3)若a,b∈R,则“|a|+|b|=0”是“a,b 全不为0”的充要条件; • (4)若a,b∈R,则“|a|+|b|≠0”是“a,b 不全为0”的充要条件;
• • • •
A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(4) [答案] D [ 解析 ] 对于结论 (1) ,由 x 3 < - 8 ⇒ x < - 2⇒x2>4,但是x2>4⇒x<-2或x>2⇒x3<-8 或x3>8,不一定有x3<-8,故(1)正确;对 于结论 (4) ,由 | a | + | b | ≠ 0 ⇒ a , b 不全为 0 , 反之,由 a , b 不全为 0 ⇒ | a | + | b | ≠ 0 ,故 (4) 正确.
课本例4:已知:圆O的半径为r,圆心O到直线l的距离为d, 求证:d=r是直线l与圆O相切的充要条件。
证明: (1)充分性:作OP l于点P,则OP=d.若d=r,则点P在圆O上, 在直线l上任取一点Q(异于点P),连接OQ.在直角三角形OPQ中 OQ>OP=r.所以,除点P外直线l上的点都在圆O的外部,即直线 l与圆O仅有一个公共点P,所以直线与圆相切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充要条件的判定方法
充要条件是数学中的一个重要概念,是正确进行逻辑推理必不可少的基础知识.高考对充要条件的考查主要以其他知识为载体进行两类问题的考查:一类是充要条件的判别;一类是有关充要性命题的证明,尤以考查充要条件的判别为主.要正确判断“充分且不必要条件”、“必要且不充分条件”、“充要条件”、“非充分非必要条件”,应该明确:①条件是什么,结论是什么;②条件是结论的什么条件;尝试从条件推导结论,从结论推导条件.下面就介绍几种充要条件的判定方法.
一、直接用定义判定
能够保证一个事件一定发生的条件,叫做这个事件发生的充分条件;一个事件要发生必须具备的条件叫做这个事件发生的必要条件;一个条件既能保证某个事件发生,同时又是这个事件发生必须具备的条件,就叫做这个事件发生的充要条件.在实际应用中,体现充要条件的文字还有“当且仅当”、“有且仅有”、“必需且只需”等语句.用逻辑符号表示为:
(1)若p ⇒q ,且q ⇒/p ,则p 是q 的充分且不必要条件,q 是p 的必要且不充分条件;
(2)若q ⇒p ,且p ⇒/q ,则p 是q 的必要且不充分条件,q 是p 的充分且不必要条件;
(3)若p ⇒q ,且q ⇒p(或⌝p ⇒⌝q),则p 是q 的充要条件(此时q 也是p 的充要条件);
(4)若p ⇒/q ,且q ⇒/p ,则p 是q 的非充分非必要条件.
例1(2004年辽宁高考)已知α、β是不同的两个平面,直线a ⊂α,直线b ⊂β,命题p :a 与b 无公共点;命题q:α∥β,则p 是q 的 ( )
A .充分而不必要的条件
B .必要而不充分的条件
C .充要条件
D .既不充分也不必要的条件
解析:若α与β相交,设交线为c ,若a ∥c ,b ∥c ,则a ∥b ,此时a 与b 无公共点,所以p ⇒/q ;若α∥β,则a 与b 的位置关系是平行或异面,a 与b 无公共点,所以q ⇒p ,由此可知p 是q 必要而不充分的条件.故选B .
例2(2004年浙江高考题)“sinA=12
”是“A=30º”的 ( ) A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:记条件是p :sinA=12
,结论为q :A=30º.由条件P 得A=k ·360º+30º或A=k ·360º+150º(k ∈Z),因此A=30º仅为其中的一个值,则p ⇒/q ,但是,当A=30º时,sinA=12成立,∴q ⇒p ,∴“sinA=12
”是“A=30º”必要非充分的条件.故选B.
二、利用命题的四种形式进行判定
(1)如果原命题成立,逆命题不成立,则原命题的条件是充分非必要的;
(2)如果原命题不成立,逆命题成立,则原命题的条件是必要非充分的;
(3)如果原命题和它的逆命题都成立,则原命题的条件充要的;
(4)如果原命题和它的逆命题都不成立,则原命题的条件是非充分非必要的.
例3(2004年天津高考题)已知数列{a n},那么“对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上”是“{a n}为等差数列”的()
A.必要而不充分条件
B.充分而不必要条件
C.充要条件
D.既不充分也不必要条件
解析:构造原命题:“若对任意的n∈N*,则点P n(n,a n)都在直线y=2x+1上,则{a n}为等差数列”.此命题为真.其逆命题:“若{a n}为等差数列,则对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上”.此命题为假,所以“对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上”是“{a n}为等差数列”的充分不必要条件.故选B.
三、利用双箭头的传递性判定
由于逻辑联结符号“⇒”、“⇐”、“⇔”具有传递性,因此可根据几个条件的关系,经过若干次的传递,判断所要判断的两个条件之间的依存关系.
例4(2004年重庆高考文科)已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件.那么p是q成立的()
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
解析:用双箭头符号表示p、q、r、s的关系:p⇒r,s⇐r,q⇐s,即p⇒r,r⇒s,s⇒q,∴p⇒r⇒s⇒q,即p⇒q,又r⇒/p,则q⇒/p,故p是q的充分非必要条件.故选A.
四、利用集合的子集判定
(1)若A⊂__B,就是x∈A则x∈B,则A是B的充分条件,B是A的必要条件;
(2)若A≠⊂B,就是x∈A则x∈B,且A中至少有一个元素不在B中,则A是B的充分非必要条件,B是A的必要非充分条件.
(3)若A=B,就是A⊂__B且A⊃__B,则A是B的充分条件,同时A是B的必要条件,即A是B的充要条件.
(4)若A⊄B,A/⊃B,则A是B的既不充分也不必要条件.
例5(2004上海春季高考)若非空集合M≠⊂N,则“a∈M或a∈N”是“a∈M∩N”的(B )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
解析:由于M≠⊂N,所以M∪N=N,M∩N=M,又由并集的定义知:a∈M或a∈N⇔a∈M∪N=N⇔a∈N,a∈M∩N=M⇔a∈M,而M≠⊂N,所以“a∈M或a∈N”⇐“a∈M∩N”,所以“a∈M或a∈N”是“a∈M∩N”
例6 已知真命题“a ≥b c >d ”和“a <b e ≤f ”,则“c ≤d ”是“e ≤f ”的________条件. 分析 ∵a ≥b c >d(原命题),
∴c ≤d a <b(逆否命题).
而a <b e ≤f ,
∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件.
答 填写“充分”.
说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.
已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?
分析 画出关系图1-21
,观察求解.
解 s 是q 的充要条件;(s r q ,q s)
r 是q 的充要条件;(r q ,q s r)
p 是q 的必要条件;(q s r p)
说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.
例7 关于x 的不等式
|x |x 3(a 1)x 2(3a 1)0A B A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?
()()a a +-⊆1212
22
分析 化简A 和B ,结合数轴,构造不等式(组),求出a .
解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}
当≤+即≥时,23a 1a 13
B ={x|2≤x ≤3a +1}.
A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13
B ={x|3a +1≤x ≤2}
A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩
⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.
∴“”是“≤≤或=-”的充要条件.
说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达
准确,推理无误.。