第五章 功率放大电路PPT课件
合集下载
(模电)功率放大电路课件
VCC 2
(Uomax )2
Pomax
2 RL
VC2C 8RL
RW ui
max 78.5%
R6
R8 R1
R2 T4 R5
+ VCC
T1
T3
C UP
uO
T2 RL
5.4集成功率放大器LM386及其应用
• 1.LM386简介
• LM386是一种低电压通用型低频OTL集成功放。 该电路功耗低、允许的电源电压范围宽、通频 带宽、外接元件少, 广泛用于收录音机、对讲 机、电视伴音等系统中。输入端以地位参考, 同时输出端被自动偏置到电源电压的一半,在 6V电源电压下,它的静态功耗仅为24mW,使得 LM386特别适用于电池供电的场合。
功率放大电路
5.1 概 述 5.2 乙类互补对称功率放大电路 5.3 甲乙类互补对称功率放大电路
甲乙类双电源互补对称电路 甲乙类单电源互补对称电路
5.4 集成功率放大器 LM386及其应用
5.1 概述
什么是功率放大器?能输出较大功率的放大器称为功率放
大器。在电子系统中,模拟信号被放大后,往往要去推动一 个实际的负载。如使扬声器发声、继电器动作、 仪表指针偏 转等。由于功放属于大信号放大电路,故电路的动态分析方 法应采用图解法,而不再采用微变等效电路法。
• 2.LM386引脚图
• LM386的管脚排列如图所示, 为双列直插塑料封 装。 LM386有8个引脚,2、3脚分别为反相、同 相输入端; 4脚接地; 5脚为输出端; 6脚为电源端; 7脚为旁路端, 可外接旁路电容以抑制纹波; 1、8 脚为电压增益设定端。如果1、8两端之间接入不 同阻值的电阻和电容,即可得到20-200之间的电 压增益。
《功率放大电路 》课件
《功率放大电路》 PPT课件
xx年xx月xx日
• 功率放大电路概述 • 功率放大电路的工作原理 • 功率放大电路的设计与实现 • 功率放大电路的常见问题与解决
方案 • 功率放大电路的发展趋势与展望
目录
01
功率放大电路概述
定义与特点
总结词:基本概念
详细描述:功率放大电路是一种电子电路,其主要功能是将微弱的输入信号放大 至足够大的功率,以满足各种应用需求。其主要特点包括高输出功率、高效率、 良好的线性度和稳定性等。
功率放大电路的效率问题
01
功率放大电路的效率直接影响到能源利用率和设备发热情况。
02
功率放大电路的效率是指在输出功率中有效功率所占的比例。
如果效率不高,会导致能源利用率低,设备发热严重。
解决方案: 采用高效功率放大器件和拓扑结构减小能量损耗。
05
电流连续工作模式,晶体管在整个信号周期内均 处于导通状态,适用于低频信号放大。
乙类功率放大电路
采用两个晶体管分别放大正负半周期信号,以实 现功率放大,适用于高频信号放大。
3
甲乙类功率放大电路
结合甲类和乙类放大电路的特点,晶体管在信号 正负半周期内导通,适用于一般信号放大。
功率放大电路的效率分析
01
失真
由于非线性效应引起的输出信 号畸变程度。
带宽
表示功率放大电路能够正常工 作的频率范围。
03
功率放大电路的设计与实 现
功率放大电路的设计原则
效率优先
设计时应优先考虑效率,确保电路在放大信 号的同时,尽可能减少能量损失。
线性度
在放大过程中,应保持信号的线性关系,避 免失真。
稳定性
为避免自激振荡,电路设计应确保功率放大 电路的稳定性。
xx年xx月xx日
• 功率放大电路概述 • 功率放大电路的工作原理 • 功率放大电路的设计与实现 • 功率放大电路的常见问题与解决
方案 • 功率放大电路的发展趋势与展望
目录
01
功率放大电路概述
定义与特点
总结词:基本概念
详细描述:功率放大电路是一种电子电路,其主要功能是将微弱的输入信号放大 至足够大的功率,以满足各种应用需求。其主要特点包括高输出功率、高效率、 良好的线性度和稳定性等。
功率放大电路的效率问题
01
功率放大电路的效率直接影响到能源利用率和设备发热情况。
02
功率放大电路的效率是指在输出功率中有效功率所占的比例。
如果效率不高,会导致能源利用率低,设备发热严重。
解决方案: 采用高效功率放大器件和拓扑结构减小能量损耗。
05
电流连续工作模式,晶体管在整个信号周期内均 处于导通状态,适用于低频信号放大。
乙类功率放大电路
采用两个晶体管分别放大正负半周期信号,以实 现功率放大,适用于高频信号放大。
3
甲乙类功率放大电路
结合甲类和乙类放大电路的特点,晶体管在信号 正负半周期内导通,适用于一般信号放大。
功率放大电路的效率分析
01
失真
由于非线性效应引起的输出信 号畸变程度。
带宽
表示功率放大电路能够正常工 作的频率范围。
03
功率放大电路的设计与实 现
功率放大电路的设计原则
效率优先
设计时应优先考虑效率,确保电路在放大信 号的同时,尽可能减少能量损失。
线性度
在放大过程中,应保持信号的线性关系,避 免失真。
稳定性
为避免自激振荡,电路设计应确保功率放大 电路的稳定性。
功率放大电路PPT课件
知识清单
知识清单
2.LM386
LM386是一种小功率音频放大器,它外接元件少,功耗低,频率响应范围宽等。电源电压
使用范围为4~16V。图3-4(a)为管脚功能图、图3-4(b)为典型应用电路。
知识点精讲
【知识点1】甲类功率放大电路的计算
【例1】已知某甲类功率放大电路的 = 12, = 30, = 8Ω,求输出功率 ,变压比
知识点精讲
【解】本题选B。
知识点精讲
下列描述OCL和OTL功放电路功能不正确的是
( )
A.都能实现功率放大功能,都能消除交越失真
B.OCL电路采用双电源,电路结构复杂,OTL功放电路结构简单,便于集成
C.OCL功放电路广泛应用于一些高级音响设备中
D.LM386集成功放的内部为OTL电路
【分析】乙类OCBiblioteka 和OTL功放电路都存在交越失真,但在对称的功放管前加上偏置电路,为功
内半周导通,半周截止。
(3)甲乙类:Q点位置略高于乙类,但低于甲类。当输入正弦信号时,功放管导通大于半
周。
知识清单
二、甲类功率放大电路
1.电路特点:非线性失真小,但静态电流较大,晶体管消耗的功率大,效率低。输入与输出
均采用变压器耦合,输出变压器的作用一方面隔断直流耦合交流,另一方面变换阻抗,使负载
采用一个正电源和一个负电源供电,发射极输出,直接耦合。
2.输出功率
1 2
≈
/
2
3.实用电路为克服交越失真,电路需设置静态工作点,使功放管处于微导通状态。选用功放管
时,极限参数应满足:
> 2 , >
, > 0.2
功率放大电路ppt课件
IB 1 .8 5 A i A S
R L 8
CH8 功率放大电路
v V v I B i AS i
VBIAS=0.6V 放大器的效率
ቤተ መጻሕፍቲ ባይዱ
P om η 100 % 24 . 7 % ( P P ) VCVE
效率低(笔记)
CH8 功率放大电路
8.3 乙类双电源互补对称功率放大电路
P P P 11 . 46 W V o T
CH8 功率放大电路
Pom % 78 . 5 % PV (2)所选功率管的最大允许管耗PCM必须大
PT1max=0.2Pom=1.8W ;
管子c-e耐压V(BR)CEO应大于2VCC=24V ; 管子的最大集电极电流ICM应大于Iomax=VCC / RL=12/8=1.5A。 (3)因为管耗最大时Vom≈0.6VCC ,所以管耗最大时的输出功率为: 2 Vom (0.6VCC)2 Po 3 . 24 W 2 RL 2 8 (4)因为在
8.3.3 功率BJT的选择
功率与输出幅 度的关系 2. 功率BJT的选择 P390
CH8 功率放大电路
CH8 功率放大电路
例题.工作在乙类的OCL电路如图所示。已 知VCC=12V,RL=8Ω,vi为正弦电压。
1.求在Vces≈0 的情况下,电路的最大输出功 率Pomax、及此时的效率η和管耗PT 。 2.根据主要极限值选择管子。 3.求管耗最大时的输出功率Po 。
V om
4 V CC
0 .5 4 V CC 7 .6 V 0.5 时, V om
8.3.3 功率BJT的选择
1. 最大管耗和最大输出功率的关系
因为
V 1V CC om V P ( om ) T1 R π 4 L
R L 8
CH8 功率放大电路
v V v I B i AS i
VBIAS=0.6V 放大器的效率
ቤተ መጻሕፍቲ ባይዱ
P om η 100 % 24 . 7 % ( P P ) VCVE
效率低(笔记)
CH8 功率放大电路
8.3 乙类双电源互补对称功率放大电路
P P P 11 . 46 W V o T
CH8 功率放大电路
Pom % 78 . 5 % PV (2)所选功率管的最大允许管耗PCM必须大
PT1max=0.2Pom=1.8W ;
管子c-e耐压V(BR)CEO应大于2VCC=24V ; 管子的最大集电极电流ICM应大于Iomax=VCC / RL=12/8=1.5A。 (3)因为管耗最大时Vom≈0.6VCC ,所以管耗最大时的输出功率为: 2 Vom (0.6VCC)2 Po 3 . 24 W 2 RL 2 8 (4)因为在
8.3.3 功率BJT的选择
功率与输出幅 度的关系 2. 功率BJT的选择 P390
CH8 功率放大电路
CH8 功率放大电路
例题.工作在乙类的OCL电路如图所示。已 知VCC=12V,RL=8Ω,vi为正弦电压。
1.求在Vces≈0 的情况下,电路的最大输出功 率Pomax、及此时的效率η和管耗PT 。 2.根据主要极限值选择管子。 3.求管耗最大时的输出功率Po 。
V om
4 V CC
0 .5 4 V CC 7 .6 V 0.5 时, V om
8.3.3 功率BJT的选择
1. 最大管耗和最大输出功率的关系
因为
V 1V CC om V P ( om ) T1 R π 4 L
《功率放大电路》PPT课件
V1 基极电位进一步提高,进 入良好的导通状态;
负半周,VB下降,V1截止,V2 基极电位进一步降低,进入
良好的导通状态。从而克服
死区电压的影响,去掉交越
失真。
+UCC
R1 V1
V1
B
UL
ui V2
iL
R2
V2 RL
-UCC
两管导通时间均比半个周期大一些的工作方式称为
“甲乙类放大” 。
HOME
甲乙类放大的波形关系:
b ib V1
V2
ic1 1ib ,
ib2
e
ie1
(1
1)ib ,
ic2 2ib2 ,
e
ic ic1 ic2 1 2 (1 1) ib
HOME
方式二:
e
e
b ib V1 V2
ic c
ib b
c ic
复合管构成方式很多。不论哪种等效方式,等效 后晶体管的性能确定均如下:
Po 18.1 55.7%
PU 32.5
HOME
(2) 在最大输出功率时,最大输出电压为24V。
Pom
1
U
2 CC
2 RL
1 24 36W 28
PUm
2
U
2 CC
RL
2 242
8
45.8W
PV = PU – Po= 45.8 - 36 = 9.8W (此时两管的功耗并
电压,又要输出大电流。 2。两者都放大信号,但前者要输出大电流,所以 对器件要求高,即耐压高,电流大,包括对三极 管,电阻,电容等。 2。后者对电源转换效率要求不高,因为输出功率 较小,所以电源本身功耗不大,一般可以不考虑 功率损耗。而前者对电源要求高,电路设计中要 提高能量转换效率。
负半周,VB下降,V1截止,V2 基极电位进一步降低,进入
良好的导通状态。从而克服
死区电压的影响,去掉交越
失真。
+UCC
R1 V1
V1
B
UL
ui V2
iL
R2
V2 RL
-UCC
两管导通时间均比半个周期大一些的工作方式称为
“甲乙类放大” 。
HOME
甲乙类放大的波形关系:
b ib V1
V2
ic1 1ib ,
ib2
e
ie1
(1
1)ib ,
ic2 2ib2 ,
e
ic ic1 ic2 1 2 (1 1) ib
HOME
方式二:
e
e
b ib V1 V2
ic c
ib b
c ic
复合管构成方式很多。不论哪种等效方式,等效 后晶体管的性能确定均如下:
Po 18.1 55.7%
PU 32.5
HOME
(2) 在最大输出功率时,最大输出电压为24V。
Pom
1
U
2 CC
2 RL
1 24 36W 28
PUm
2
U
2 CC
RL
2 242
8
45.8W
PV = PU – Po= 45.8 - 36 = 9.8W (此时两管的功耗并
电压,又要输出大电流。 2。两者都放大信号,但前者要输出大电流,所以 对器件要求高,即耐压高,电流大,包括对三极 管,电阻,电容等。 2。后者对电源转换效率要求不高,因为输出功率 较小,所以电源本身功耗不大,一般可以不考虑 功率损耗。而前者对电源要求高,电路设计中要 提高能量转换效率。
第五章-放大与震荡电路ppt课件
2. 稳定静态工作点原理
利用上偏置电阻 RB1 和下偏置电阻 RB2 组成串联分压器,为基极提供稳定 的静态工作电压 UBQ。
电源 VCC 的分压为
由此可见,UBQ 只取决于 VCC、RB1 和 RB2,它们都不随温度的变化而变化, 所以 UBQ将稳定不变。
3. 分压式射极偏置放大电路的估算
从分压式偏置电路的交流等效电路图 c 可以看出,它与共射极基本放大电 路的交流等效电路相似,只是 RB = RB1//RB2 不同。所以,输入电阻、输出 电阻和电压放大倍数的估算公式完全相同。
固定偏置放大电路
固定偏置放大电路中各元件的作用
2. 工作原理
在没有信号输入时,放大电路中三极管各电极电压、电流均为直流。当有 信号输入时,电路中两个电源(直流电源和信号源)共同作用,电路中的电压 和电流是两个电源单独作用时产生的电压、电流的叠加量。
(1)静态分析 所谓静态指的是放大器在没有交流信号输入(即 ui = 0)时的工作状态。
石英谐振器的等效电路如图所示,C0 为极板间的电容,C-L-R 支路 是石英晶体谐振器的等效电路。
石英晶体实物外形
石英晶体谐振器等效电路
当 C-L-R 支路产生串联谐振时,等效电路的阻抗最小(等于 R),串联谐 振频率为
当电路产生并联谐振时,并联谐振频率为
如图所示为晶体谐振器的频率特性曲线。石英晶体谐振器的频率稳定性非 常好。
静态工作点 a)输入特性曲线上的 Q 点 b)输出特性曲线上的 Q 点
未设静态工作点时 ui 和 iB 波形
具有合适静态工作点时的 ui 和 iB 波形
波形失真与静态工作点的关系
2)静态工作点的估算。通常把放大电 路中只允许直流电流通过的路径称为直流等 效电路。直流等效电路的画法原则:放大电 路中的电容可以视为开路,电感可以视为短 路。
模拟电子技术第五章放大器的工作原理和分析方法gpppt课件
14
集电极电源,
为电路提供能
+VC 量。并保证集
C
电结反偏。
R
C2
C1
C
T
R
RL
b VBB
10/15/2023
15
共射放大电路
R
C1
C
R b VBB
集电极电阻,
+VC
将变化的电流 转变为变化的
C
电压。
C2
T RL
10/15/2023
16
耦合电容:
电解电容,有极性,
大小为10 F~50 F R
C1
iC
( 2 )改变 V CC ,保持 R b ,
Rc , 不变;
iC
Q3 Q1
IB
Q2
O
uCE
Rb 增大, Q 点下移;
Rb 减小, Q 点上移;
Q2 IB
Q1
O
uCE
升高 VCC ,直流负载线平 行右移,动态工作范围增大, 但管子的动态功耗也增大。
10/15/2023
47
3. 改变 Rc,保持 Rb , VCC, 不变;
这就是说,交流负载线的斜率为:
交流负载线的作法: ①斜 率为-1/R'L 。 (R'L= RL /Rc )
②经过Q点。
10/15/2023
39
交流负载线的作法
IC
交流负载线
①斜 率为-1/R'L。 (R'L= RL /Rc )
Q
直流负载线
IB
②经过Q点。
UC
注意:
VCC E
(1)交流负载线是有交流 输入信号时工作点的运动轨迹。
4、输出端接负载,把集电极电流的变化转化成负载 的电压变化。
第5章 功率放大电路
集电极电 流波形
QA
ICQ
=2
uCE
0
2 ωt
(2) 乙类放大电路 静态工作点在截止区,如图5.1.3所示,静态集电极电流 为零,无静态功耗,但输出波形严重失真。 iC 特点 集电极电 流波形 iC2 a. 静态功耗 =π
PC U CEQ I CQ 0
b. 能量转 换效率高
QA
0 uCE
给功率管(T1和T2)一定的直流偏置,使其工作于微 导通状态,即甲乙类工作状态。 U CC (1) 甲乙类互补推挽电路 a. 利用二极管提供偏压 电路如图5-6所示 二极管提供偏 压,使T1、T2 呈微导通状态
2 U CC 4 PT1(U om U CC ) ( ) 0.137Pom RL 4
这是不是最 在理想情况下(即无静态电流,忽略管子饱和压降), 大的管耗呢?
2 1 U CCU om U om 求管耗的极值: PT 2 PT1 ( ) RL 4
令
dPT 1 2VCC U om 0 dU om RL π
uo
T2
RL
静态功耗为零
U CC
图5-2(a)乙类OCL功放电路原理图
b. ui >0 时 T1导通,T2截止
c. ui <0 时
T2导通,T1截止
输入信号ui
0 t
U CC
U CC
ui
0 t
T1
ic1
RL
ui
T2
电流io方向
ic 2
RL
uo
输入信号ui 电流io 方向
uo
uo≈ui
uo≈ui
5.2 乙类互补对称功率放大电路
第5章 功率放大电路
⒉ 电路计算
按乙类互补对称功放电路,但必须用VCC /2代替各 式中的VCC。
⒊ 调试方法
中点电压UA可调R1,功放管电流可调R4,但两者 互有牵连,反复调节2~3次,可满足要求。
5.2.3 OCL电路
双电源无输出电容互补对称电路。
⒈ 电路分析
⑴ V1V3、V2V4组成复合功放管; ⑵ R10R11V5组成恒压源, 提供功放管静态偏置; ⑶ V7V8组成差动输入级, 调节R6能调节中点电压; ⑷ V6管是驱动管; ⑸ R13C5组成自举电路; ⑹ R2C3R3组成电压串联(交流)负 反馈网络,调节R3可调节整个功
处在甲乙类状态下工作的三极管,
V1
其静态工作点的正向偏置电压很 小,两个管子在静态时处在微导 通的状态,当输入信号输入时,
V2
管子即进入放大区对输入信号进 行放大。处在甲乙类状态下工作 的互补功放电路如图所示。
图中的电阻R1和R2,二极管D1和D2分别组成三极管T1和T2的偏置电 路,用来消除交越失真。
因乙类放大器只在信号的半个周期内有功率输出,所以,该放大器有信号输 出 时,电源消耗的功率PE为电源电压和半波电流 即 的平均值的乘积,
由此可得,在理想的情况下,乙类放大器的能量转换效率η为
(3) 甲乙类工作状态
乙类放大器将静态工作点取在如图9-1-2所示的IC为零的Q点上,工作在这种 状态下的放大器虽然效率比较高,但在信号交接的时候会产生交越失真。为了消 除交越失真,将静态工作点的值取在如图9-1-3所示的Q点,具有这种工作点特性 的放大器称为甲乙类工作状态。
●
●
●
●
●
●
●
●
●
5.1 功率放大电路的基本概念
《功率放大》课件
非线性失真的测量
非线性失真的抑制
通过优化电路设计、选择合适的元件 和采取有效的反馈措施等可以抑制非 线性失真。
非线性失真可以通过测量谐波失真系 数、互调失真系数等指标来评估。
频率响应
频率响应的定义
01
频率响应是指功率放大器在不同频率下的输出功率的变化情况
。
频率响应的测量
02
在标准测试条件下,使用合适的测试设备对功率放大器的频率
功率放大器的分类
总结词
功率放大器可以根据不同的分类标准进行分类,如按工作频段可分为射频功率放大器和音频功率放大器等。
详细描述
根据不同的分类标准,功率放大器可以分为多种类型。按工作频段可分为射频功率放大器和音频功率放大器等; 按用途可分为通用型和专用型;按电路结构可分为分立式和集成式。不同类型的功率放大器具有不同的特点和应 用范围。
无线通信系统
移动通信基站
在无线通信系统中,功率放大器用于 放大信号,确保信号覆盖范围和通信 质量。
卫星ห้องสมุดไป่ตู้信
卫星通信系统中的功率放大器用于将 信号放大并发送到卫星上,实现远距 离通信。
雷达与声呐系统
雷达
雷达系统中的功率放大器用于放大发射信号,提高探测距离和精度。
声呐
在声呐系统中,功率放大器用于放大声音信号,提高水下探测的灵敏度和距离。
03
功率放大器的主要 参数
输出功率
输出功率
指功率放大器输出的最大 功率,通常以瓦特(W) 为单位表示。
输出功率的测量
在标准测试条件下,使用 合适的测试设备对功率放 大器的输出功率进行测量 。
输出功率的调整
根据实际需要,可以通过 调节音量控制或输入信号 的大小来调整功率放大器 的输出功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、功放管的最大耐压U(BR)CEO 当一只管子饱和导通时,另一只管子承受的最大反向电
压为2VCC。故
U (BR)CEO 2VCC
二、对功率放大电路的要求 1、应有足够大的输出功率。 2、效率要尽可能的高。 3、非线性失真要小。 4、功率管要采取散热等保护措施。
5.1.2 功率放大电路的分类
1、按静态工作点分类:
图5.1.1 各类功率放大电路的静态工作点及其波形 (a)工作点位置 (b)甲类波形 (c)甲乙类波形(d)乙类波形
5.2 乙类互补对称功率放大电路
功率放大器早期采用变压器耦合输出,可实现阻抗匹配, 但体积大、传输损耗大,在实际中已使用不多。
目前大量应用的是无变压器的乙类互补对称功率放大 电路。按电源供给的不同,分为双电源互补对称功放电路 和单电源互补对称功放电路。
ห้องสมุดไป่ตู้
5.2.1 OCL电路
一、基本电路及其工作原理 双电源互补对称电路又称无输出电容的功放电路,简称 OCL电路,其原理电路如图5.2.1 (a)所示。图中V1、V2为导 电类型互补(NPN、 PNP)且性能参数完全相同的功放管。两 管均接成射极输出电路以增强带负载能力。
1 2
V CC
U CE(sat) 2 1 VC2C
RL
2 RL
2.直流电源供给功率PV 根据富氏级数分解,周期性半波电流的平均值Iav=
Icm /π ,因此正负电源供给的直流功率
PV
I avV CC
I avV EE
2 I avV CC
2 π
VCC
I
cm
2VCCU cem π RL
3.管耗PC
2.效率η
η就是负载上得到的有用信号功率Po与电源供给的直流
功率PV之比,即
Po
PV
3.非线性失真系数THD THD用来衡量非线性失真的程度,即:
THD 1
I
2 m2
I
2 m3
1
U
2 m2
U
2 m3
I m1
U m1
式中,Im1、Im2、Im3…和Um1、Um2、Um3…分别表示输出电 流和输出电压中的基波分量和各次谐波分量的振幅。
为便于分析,将V2管的特性曲线倒置于V1管特性曲线的右 下方,且使Q点位置对齐。图中显示了两管信号电流iC1和iC2波形 及合成后的uce波形。
从图中可以看出,任意一个半周期内,每个管子c、e两端信 号电压为|uCE|=|VCC|-|uo|,而输出电压uo=-uce=ioRL=icRL。
在一般情况下,Uom=Ucem,Iom=Icm,其大小随输入信号幅 度而变,最大输出电压幅度为Uom(max)=VCC-UCE(sat)≈VCC。
2、按信号频率分类 (1)低频 本章讨论 (2)高频 《高频电路》中讨论
5.1.3 低频功率放大电路的主要技术指标
1.最大输出功率Pom 输出功率Po等于输出电压与输出电流的有效值乘积,即
P om
1 2 Iom
1 2
U om
1 2
IomU om
Iom表示输出电流振幅,Uom表示输出电压振幅。 最大输出功率Pom是在电路参数确定的情况下,负载上 可能获得的最大交流功率。
图5.2.1 OCL基本原理电路 a)基本原理电路 b)输入信号波形 c)输出信号波形
1、静态分析 静态时两管零偏而截止, 故静态电流为零,又由于两管特 性对称,故两管输出端的静态电压为零。
2、动态工作情况
电路输入如图5.2.1(b)所示的正弦信号。(1)在ui正半 周期间, V1发射结正偏而导通,V2发射结反偏而截止。(2) 在ui负半周期间,V1发射结反偏截止,V2发射结正偏导通。
图5.2.2 乙类互补对称功率放大电路的图解分析
三、电路性能参数计算 1.最大输出功率Pom 由图可见,Iom=Icm,Uom=Ucem,得
Po
1 2
I cmU cem
1 2
U2 cem RL
当输入信号足够大时,Ucem=VCC—UCE(sat)≈VCC,则
( ) Pom
1
U
2 cem
2 RL
(1)平均管耗 由于V1、V2各导通半个周期,且两管对称,故两管的管耗 相同,每只管子的平均管耗为
PC1
12(PV Po)
1(VCCU cem
RL
π
U
2 cem
)
4
(2)输出最大功率时的管耗Pc1(Ucem≈Vcc) Pc1(Ucem)≈0.137Pom。
(3)最大管耗
当 Ucem=
2 π
VCC
5.1 功率放大电路概述
能够向负载提供足够信号功率的放大电路称为功率放大电 路(Power amplifier),简称功放。
5.1.1 功率放大电路特点和要求
一、功率放大电路的特点
从能量控制的观点来看,功率放大电路与电压放大电路都 属于能量转换电路,均将电源的直流功率转换成被放大信号的 交流功率。两种电路的比较如下表所示:
V1、V2两管分别在正、负半周轮流工作,使负载RL获 得一个完整的正弦波信号电压,如图5.2.1(c)所示。
*二、图解分析
该电路负载线方程式为uCE=VCC-iCRL,设管子的ICEO=0, 则静态电流IC1=IC2=0。则UCEQ=VCC。属于乙类功放电路。由此 可作出如图5.2.2所示斜率为-1/RL的负载线。
教学目标
5、熟悉常用集成功率放大器(LA4102、LM386、TDA2030
等)引脚功能,了解其主要技术指标。熟悉集成功放应用电 路组成、外接元器件作用,会估算闭环增益。
6、选学BTL电路原理及其由集成功放构成的应用电路。
7、选学功放管二次击穿和热致击穿现象及其保护措施,功
放管等功率器件散热计算及散热片的选择。
第五章 功率放大电路
5.1 功率放大电路概述 5.2 乙类互补对称功率放大电路 5.3 集成功率放大器 *5.4 功率管的安全使用
教学目标
1、了解功放电路特点、分类、对功放电路要求。熟悉低频
功放电路主要技术指标。
2、熟悉OCL、OTL电路组成、工作原理、性能参数估算方
法。
3、掌握交越失真产生原因、消除交越失真方法。 4、掌握复合管组成原则。
时出现最大管耗,且为Pcm1≈0.2Pom。
4.效率
Po π U cem
PV 4 VCC
当电路输出最大功率时,Ucem≈VCC,
m
π 4
78.5%
四、功放管的选择
功放管的极限参数有PCM、ICM、U(BR)CEO,应满足下列条件 1、功放管集电极的最大允许功耗
PCM Pcm1 0.2Pom
压为2VCC。故
U (BR)CEO 2VCC
二、对功率放大电路的要求 1、应有足够大的输出功率。 2、效率要尽可能的高。 3、非线性失真要小。 4、功率管要采取散热等保护措施。
5.1.2 功率放大电路的分类
1、按静态工作点分类:
图5.1.1 各类功率放大电路的静态工作点及其波形 (a)工作点位置 (b)甲类波形 (c)甲乙类波形(d)乙类波形
5.2 乙类互补对称功率放大电路
功率放大器早期采用变压器耦合输出,可实现阻抗匹配, 但体积大、传输损耗大,在实际中已使用不多。
目前大量应用的是无变压器的乙类互补对称功率放大 电路。按电源供给的不同,分为双电源互补对称功放电路 和单电源互补对称功放电路。
ห้องสมุดไป่ตู้
5.2.1 OCL电路
一、基本电路及其工作原理 双电源互补对称电路又称无输出电容的功放电路,简称 OCL电路,其原理电路如图5.2.1 (a)所示。图中V1、V2为导 电类型互补(NPN、 PNP)且性能参数完全相同的功放管。两 管均接成射极输出电路以增强带负载能力。
1 2
V CC
U CE(sat) 2 1 VC2C
RL
2 RL
2.直流电源供给功率PV 根据富氏级数分解,周期性半波电流的平均值Iav=
Icm /π ,因此正负电源供给的直流功率
PV
I avV CC
I avV EE
2 I avV CC
2 π
VCC
I
cm
2VCCU cem π RL
3.管耗PC
2.效率η
η就是负载上得到的有用信号功率Po与电源供给的直流
功率PV之比,即
Po
PV
3.非线性失真系数THD THD用来衡量非线性失真的程度,即:
THD 1
I
2 m2
I
2 m3
1
U
2 m2
U
2 m3
I m1
U m1
式中,Im1、Im2、Im3…和Um1、Um2、Um3…分别表示输出电 流和输出电压中的基波分量和各次谐波分量的振幅。
为便于分析,将V2管的特性曲线倒置于V1管特性曲线的右 下方,且使Q点位置对齐。图中显示了两管信号电流iC1和iC2波形 及合成后的uce波形。
从图中可以看出,任意一个半周期内,每个管子c、e两端信 号电压为|uCE|=|VCC|-|uo|,而输出电压uo=-uce=ioRL=icRL。
在一般情况下,Uom=Ucem,Iom=Icm,其大小随输入信号幅 度而变,最大输出电压幅度为Uom(max)=VCC-UCE(sat)≈VCC。
2、按信号频率分类 (1)低频 本章讨论 (2)高频 《高频电路》中讨论
5.1.3 低频功率放大电路的主要技术指标
1.最大输出功率Pom 输出功率Po等于输出电压与输出电流的有效值乘积,即
P om
1 2 Iom
1 2
U om
1 2
IomU om
Iom表示输出电流振幅,Uom表示输出电压振幅。 最大输出功率Pom是在电路参数确定的情况下,负载上 可能获得的最大交流功率。
图5.2.1 OCL基本原理电路 a)基本原理电路 b)输入信号波形 c)输出信号波形
1、静态分析 静态时两管零偏而截止, 故静态电流为零,又由于两管特 性对称,故两管输出端的静态电压为零。
2、动态工作情况
电路输入如图5.2.1(b)所示的正弦信号。(1)在ui正半 周期间, V1发射结正偏而导通,V2发射结反偏而截止。(2) 在ui负半周期间,V1发射结反偏截止,V2发射结正偏导通。
图5.2.2 乙类互补对称功率放大电路的图解分析
三、电路性能参数计算 1.最大输出功率Pom 由图可见,Iom=Icm,Uom=Ucem,得
Po
1 2
I cmU cem
1 2
U2 cem RL
当输入信号足够大时,Ucem=VCC—UCE(sat)≈VCC,则
( ) Pom
1
U
2 cem
2 RL
(1)平均管耗 由于V1、V2各导通半个周期,且两管对称,故两管的管耗 相同,每只管子的平均管耗为
PC1
12(PV Po)
1(VCCU cem
RL
π
U
2 cem
)
4
(2)输出最大功率时的管耗Pc1(Ucem≈Vcc) Pc1(Ucem)≈0.137Pom。
(3)最大管耗
当 Ucem=
2 π
VCC
5.1 功率放大电路概述
能够向负载提供足够信号功率的放大电路称为功率放大电 路(Power amplifier),简称功放。
5.1.1 功率放大电路特点和要求
一、功率放大电路的特点
从能量控制的观点来看,功率放大电路与电压放大电路都 属于能量转换电路,均将电源的直流功率转换成被放大信号的 交流功率。两种电路的比较如下表所示:
V1、V2两管分别在正、负半周轮流工作,使负载RL获 得一个完整的正弦波信号电压,如图5.2.1(c)所示。
*二、图解分析
该电路负载线方程式为uCE=VCC-iCRL,设管子的ICEO=0, 则静态电流IC1=IC2=0。则UCEQ=VCC。属于乙类功放电路。由此 可作出如图5.2.2所示斜率为-1/RL的负载线。
教学目标
5、熟悉常用集成功率放大器(LA4102、LM386、TDA2030
等)引脚功能,了解其主要技术指标。熟悉集成功放应用电 路组成、外接元器件作用,会估算闭环增益。
6、选学BTL电路原理及其由集成功放构成的应用电路。
7、选学功放管二次击穿和热致击穿现象及其保护措施,功
放管等功率器件散热计算及散热片的选择。
第五章 功率放大电路
5.1 功率放大电路概述 5.2 乙类互补对称功率放大电路 5.3 集成功率放大器 *5.4 功率管的安全使用
教学目标
1、了解功放电路特点、分类、对功放电路要求。熟悉低频
功放电路主要技术指标。
2、熟悉OCL、OTL电路组成、工作原理、性能参数估算方
法。
3、掌握交越失真产生原因、消除交越失真方法。 4、掌握复合管组成原则。
时出现最大管耗,且为Pcm1≈0.2Pom。
4.效率
Po π U cem
PV 4 VCC
当电路输出最大功率时,Ucem≈VCC,
m
π 4
78.5%
四、功放管的选择
功放管的极限参数有PCM、ICM、U(BR)CEO,应满足下列条件 1、功放管集电极的最大允许功耗
PCM Pcm1 0.2Pom