外文翻译---图像的边缘检测
(2)图像分割边缘检测
边缘检测(Edge Detection) 边缘检测(Edge Detection)
边缘:指图像局部亮度变化显著的部分, 边缘:指图像局部亮度变化显著的部分, 主要存在于目标与目标、目标与背景、 主要存在于目标与目标 、目标与背景、区域与 区域(包括不同的颜色 )之间, 是图像分割、 区域(包括不同的颜色)之间,是图像分割、 纹理特征提取和形状特征提取的重要基础。 纹理特征提取和形状特征提取的重要基础。 边缘表现为图像上的不连续性 (灰度级的突变 灰度级的突变 纹理结构的突变, 颜色的变化) , 纹理结构的突变 , 颜色的变化 。 这种不连 续可利用求导数方便地检测到。 续可利用求导数方便地检测到。
简称LoG算字) 又叫“墨西哥帽子” 简称LoG算字),又叫“墨西哥帽子”函数 LoG算字
边缘检测(Edge Detection) 边缘检测(Edge Detection)
利用边缘检测来分割图像, 利用边缘检测来分割图像,基本思想是先检测 图像中的边缘点, 图像中的边缘点,再按照某种策略将边缘沿点 连接成轮廓,从而构成分割区域。 连接成轮廓,从而构成分割区域。 由于边缘是所要提取目标和背景的分界线, 由于边缘是所要提取目标和背景的分界线, 提 取出边缘才能将目标和背景区分开。 取出边缘才能将目标和背景区分开。
边缘检测
最简单的边缘检测方法是并行微分算子法。 最简单的边缘检测方法是并行微分算子法。 利用相邻区域的像素值不连续的性质, 利用相邻区域的像素值不连续的性质,采 用一阶或二阶导数来检测边缘点。 用一阶或二阶导数来检测边缘点。 一阶导数求极值点,二阶导数求过零点。 一阶导数求极值点,二阶导数求过零点。
简化为:
| ∇ f ( x , y ) |=| f( x , y ) − f( x + 1, y + 1) | + | f( x + 1, y ) − f( x , y + 1) |
外文翻译---图像的边缘检测
附:英文资料翻译图像的边缘检测To image edge examination algorithm research academic reportAbstractDigital image processing took a relative quite young discipline, is following the computer technology rapid development, day by day obtains the widespread application.The edge took the image one kind of basic characteristic, in the pattern recognition, the image division, the image intensification as well as the image compression and so on in the domain has a more widespread application.Image edge detection method many and varied, in which based on brightness algorithm, is studies the time to be most long, the theory develops the maturest method, it mainly is through some difference operator, calculates its gradient based on image brightness the change, thus examines the edge, mainly has Robert, Laplacian, Sobel, Canny, operators and so on LOG. First as a whole introduced digital image processing and the edge detection survey, has enumerated several kind of at present commonly used edge detection technology and the algorithm, and selects two kinds to use Visual the C language programming realization, through withdraws the image result to two algorithms the comparison, the research discusses their good and bad points.对图像边缘检测算法的研究学术报告摘要数字图像处理作为一门相对比较年轻的学科, 伴随着计算机技术的飞速发展, 日益得到广泛的应用. 边缘作为图像的一种基本特征, 在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用.图像边缘提取的手段多种多样,其中基于亮度的算法,是研究时间最久,理论发展最成熟的方法, 它主要是通过一些差分算子, 由图像的亮度计算其梯度的变化, 从而检测出边缘, 主要有Robert, Laplacian, Sobel, Canny, LOG 等算子. 首先从总体上介绍了数字图像处理及边缘提取的概况, 列举了几种目前常用的边缘提取技术和算法,并选取其中两种使用Visual C++语言编程实现,通过对两种算法所提取图像结果的比较,研究探讨它们的优缺点.First chapter introduction§1.1 image edge examination introductionThe image edge is one of image most basic characteristics, often is carrying image majority of informations.But the edge exists in the image irregular structure and innot the steady phenomenon, also namely exists in the signal point of discontinuity place, these spots have given the image outline position, these outlines are frequently we when the imagery processing needs the extremely important some representative condition, this needs us to examine and to withdraw its edge to an image. But the edge examination algorithm is in the imagery processing question one of classical technical difficult problems, its solution carries on the high level regarding us the characteristic description, the recognition and the understanding and so on has the significant influence; Also because the edge examination all has in many aspects the extremely important use value, therefore how the people are devoting continuously in study and solve the structure to leave have the good nature and the good effect edge examination operator question.In the usual situation, we may the signal in singular point and the point of discontinuity thought is in the image peripheral point, its nearby gradation change situation may reflect from its neighboring picture element gradation distribution gradient. According to this characteristic, we proposed many kinds of edge examination operator: If Robert operator, Sobel operator, Prewitt operator, Laplace operator and so on.These methods many are wait for the processing picture element to carry on the gradation analysis for the central neighborhood achievement the foundation, realized and has already obtained the good processing effect to the image edge extraction. . But this kind of method simultaneously also exists has the edge picture element width, the noise jamming is serious and so on the shortcomings, even if uses some auxiliary methods to perform the denoising, also corresponding can bring the flaw which the edge fuzzy and so on overcomes with difficulty.Along with the wavelet analysis appearance, its good time frequency partial characteristic by the widespread application in the imagery processing and in the pattern recognition domain, becomes in the signal processing the commonly used method and the powerful tool.Through the wavelet analysis, may interweave decomposes in the same place each kind of composite signal the different frequency the block signal, but carries on the edge examination through the wavelet transformation, may use its multi-criteria and the multi-resolution nature fully , real effective expresses the image the edge characteristic.When the wavelet transformation criterion reduces, is more sensitive to the image detail; But when the criterion increases, the image detail is filtered out, the examination edge will be only the thick outline.This characteristic is extremely useful in the pattern recognition, we may be called this thick outline the image the main edge.If will be able an image main edge clear integrity extraction, this to the goal division, the recognition and so on following processing to bring the enormous convenience.Generally speaking, the above method all is the work which does based on the image luminance information.In the multitudinous scientific research worker under, has obtained the very good effect diligently.But, because the image edge receives physical condition and so on the illumination influences quite to be big above, often enables many to have a common shortcoming based on brightness edge detection method, that is the edge is not continual, does not seal up.Considered the phase information in the image importance as well as its stable characteristic, causes using the phase information to carry on the imagery processing into new research topic. In this paper soon introduces one kind based on the phase image characteristic examination method - - phase uniform method.It is not uses the image the luminance information, but is its phase characteristic, namely supposition image Fourier component phase most consistent spot achievement characteristic point.Not only it can examine brightness characteristics and so on step characteristic, line characteristic, moreover can examine Mach belt phenomenon which produces as a result of the human vision sensation characteristic.Because the phase uniformity does not need to carry on any supposition to the image characteristic type, therefore it has the very strong versatility.第一章绪论§1.1 图像边缘检测概论图像边缘是图像最基本的特征之一, 往往携带着一幅图像的大部分信息. 而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像处理时所需要的非常重要的一些特征条件, 这就需要我们对一幅图像检测并提取出它的边缘. 而边缘检测算法则是图像处理问题中经典技术难题之一, 它的解决对于我们进行高层次的特征描述, 识别和理解等有着重大的影响; 又由于边缘检测在许多方面都有着非常重要的使用价值, 所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题.在通常情况下,我们可以将信号中的奇异点和突变点认为是图像中的边缘点,其附近灰度的变化情况可从它相邻像素灰度分布的梯度来反映. 根据这一特点,我们提出了多种边缘检测算子:如Robert 算子,Sobel算子,Prewitt 算子, Laplace 算子等.这些方法多是以待处理像素为中心的邻域作为进行灰度分析的基础,实现对图像边缘的提取并已经取得了较好的处理效果. 但这类方法同时也存在有边缘像素宽, 噪声干扰较严重等缺点,即使采用一些辅助的方法加以去噪,也相应的会带来边缘模糊等难以克服的缺陷.随着小波分析的出现, 其良好的时频局部特性被广泛的应用在图像处理和模式识别领域中, 成为信号处理中常用的手段和有力的工具. 通过小波分析, 可以将交织在一起的各种混合信号分解成不同频率的块信号,而通过小波变换进行边缘检测,可以充分利用其多尺度和多分辨率的性质,真实有效的表达图像的边缘特征.当小波变换的尺度减小时,对图像的细节更加敏感;而当尺度增大时,图像的细节将被滤掉,检测的边缘只是粗轮廓.该特性在模式识别中非常有用,我们可以将此粗轮廓称为图像的主要边缘.如果能将一个图像的主要边缘清晰完整的提取出来,这将对目标分割,识别等后续处理带来极大的便利.总的说来,以上方法都是基于图像的亮度信息来作的工作. 在众多科研工作者的努力下,取得了很好的效果.但是,由于图像边缘受到光照等物理条件的影响比较大, 往往使得以上诸多基于亮度的边缘提取方法有着一个共同的缺点, 那就是边缘不连续, 不封闭. 考虑到相位信息在图像中的重要性以及其稳定的特点, 使得利用相位信息进行图像处理成为新的研究课题. 在本文中即将介绍一种基于相位的图像特征检测方法——相位一致性方法. 它并不是利用图像的亮度信息,而是其相位特点,即假设图像的傅立叶分量相位最一致的点作为特征点.它不但能检测到阶跃特征, 线特征等亮度特征, 而且能够检测到由于人类视觉感知特性而产生的的马赫带现象. 由于相位一致性不需要对图像的特征类型进行任何假设,所以它具有很强的通用性.§1.2 image edge definitionThe image majority main information all exists in the image edge, the main performance for the image partial characteristic discontinuity, is in the image the gradation change quite fierce place, also is the signal which we usually said has the strange change place. The strange signal the gradation change which moves towards along the edge is fierce, usually we divide the edge for the step shape and the roof shape two kind of types (as shown in Figure 1-1).In the step edge two side grey levels have the obvious change; But the roof shape edge is located the gradation increase and the reduced intersection point.May portray the peripheral point in mathematics using the gradation derivative the change, to the step edge, the roof shape edge asks its step, the second time derivative separately. To an edge, has the possibility simultaneously to have the step and the line edge characteristic. For example on a surface, changes from a plane to the normal direction different another plane can produce the step edge; If this surface has the edges and corners which the regular reflection characteristic also two planes form quite to be smooth, then works as when edges and corners smooth surface normal after mirror surface reflection angle, as a result of the regular reflection component, can produce the bright light strip on the edges and corners smooth surface, such edge looked like has likely superimposed a line edge in the step edge. Because edge possible and in scene object important characteristic correspondence, therefore it is the very important image characteristic.Forinstance, an object outline usually produces the step edge, because the object image intensity is different with the background image intensity.§1.3 paper selected topic theory significanceThe paper selected topic originates in holds the important status and the function practical application topic in the image project.The so-called image project discipline is refers foundation discipline and so on mathematics, optics principles, the discipline which in the image application unifies which accumulates the technical background develops.The image project content is extremely rich, and so on divides into three levels differently according to the abstract degree and the research technique: Imagery processing, image analysis and image understanding.As shown in Figure 1-2, in the chart the image division is in between the image analysis and the imagery processing, its meaning is, the image division is from the imagery processing to the image analysis essential step, also is further understands the image the foundation. The image division has the important influence to the characteristic.The image division and based on thedivision goal expression, the characteristic extraction and the parameter survey and so on transforms the primitive image as a more abstract more compact form, causes the high-level image analysis and possibly understands into.But the edge examination is the image division core content, therefore the edge examination holds the important status and the function in the image project.Therefore the edge examination research always is in the image engineering research the hot spot and the focal point, moreover the people enhance unceasingly to its attention and the investment.§1.2 图像边缘的定义图像的大部分主要信息都存在于图像的边缘中, 主要表现为图像局部特征的不连续性, 是图像中灰度变化比较剧烈的地方, 也即我们通常所说的信号发生奇异变化的地方. 奇异信号沿边缘走向的灰度变化剧烈,通常我们将边缘划分为阶跃状和屋顶状两种类型(如图1-1 所示).阶跃边缘中两边的灰度值有明显的变化; 而屋顶状边缘位于灰度增加与减少的交界处. 在数学上可利用灰度的导数来刻画边缘点的变化,对阶跃边缘,屋顶状边缘分别求其一阶,二阶导数. 对一个边缘来说,有可能同时具有阶跃和线条边缘特性.例如在一个表面上,由一个平面变化到法线方向不同的另一个平面就会产生阶跃边缘; 如果这一表面具有镜面反射特性且两平面形成的棱角比较圆滑,则当棱角圆滑表面的法线经过镜面反射角时,由于镜面反射分量,在棱角圆滑表面上会产生明亮光条, 这样的边缘看起来象在阶跃边缘上叠加了一个线条边缘. 由于边缘可能与场景中物体的重要特征对应,所以它是很重要的图像特征.比如,一个物体的轮廓通常产生阶跃边缘, 因为物体的图像强度不同于背景的图像强度.§1.3 论文选题的理论意义论文选题来源于在图像工程中占有重要的地位和作用的实际应用课题.所谓图像工程学科是指将数学,光学等基础学科的原理,结合在图像应用中积累的技术经验而发展起来的学科.图像工程的内容非常丰富,根据抽象程度和研究方法等的不同分为三个层次:图像处理,图像分析和图像理解.如图1-2 所示,在图中,图像分割处于图像分析与图像处理之间,其含义是,图像分割是从图像处理进到图像分析的关键步骤,也是进一步理解图像的基础.图像分割对特征有重要影响. 图像分割及基于分割的目标表达, 特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能. 而边缘检测是图像分割的核心内容, 所以边缘检测在图像工程中占有重要的地位和作用. 因此边缘检测的研究一直是图像技术研究中热点和焦点,而且人们对其的关注和投入不断提高.。
外文翻译---MATLAB 在图像边缘检测中的应用
英文资料翻译MATLAB application in image edge detection MATLAB of the 1984 countries MathWorks company to market since, after 10 years of development, has become internationally recognized the best technology application software. MATLAB is not only a kind of direct, efficient computer language, and at the same time, a scientific computing platform, it for data analysis and data visualization, algorithm and application development to provide the most core of math and advanced graphics tools. According to provide it with the more than 500 math and engineering function, engineering and technical personnel and scientific workers can integrated environment of developing or programming to complete their calculation.MATLAB software has very strong openness and adapt to sex. Keep the kernel in under the condition of invariable, MATLAB is in view of the different application subject of launch corresponding Toolbox (Toolbox), has now launched image processing Toolbox, signal processing Toolbox, wavelet Toolbox, neural network Toolbox and communication tools box, etc multiple disciplines special kit, which would place of different subjects research work.MATLAB image processing kit is by a series of support image processing function from the composition, the support of the image processing operation: geometric operation area of operation and operation; Linear filter and filter design; Transform (DCT transform); Image analysis and strengthened; Binary image manipulation, etc. Image processing tool kit function, the function can be divided into the following categories: image display; Image file input and output; Geometric operation; Pixels statistics; Image analysis and strengthened; Image filtering; Sex 2 d filter design; Image transformation; Fields and piece of operation; Binary image operation; Color mapping and color space transformation; Image types and type conversion; Kit acquiring parameters and Settings.1.Edge detection thisUse computer image processing has two purposes: produce more suitable for human observation and identification of the images; Hope can by the automatic computer image recognition and understanding.No matter what kind of purpose to, image processing the key step is to contain a variety of scenery of decomposition of image information. Decomposition of the end result is that break down into some has some kind of characteristics of the smallest components, known as the image of the yuan. Relative to the whole image of speaking, this the yuan more easily to be rapid processing.Image characteristics is to point to the image can be used as the sign of the field properties, it can be divided into the statistical features of the image and image visual, two types of levy. The statistical features of the image is to point to some people the characteristics of definition, through the transform to get, such as image histogram, moments, spectrum, etc.; Image visual characteristics is refers to person visual sense can be directly by the natural features, such as the brightness of the area, and texture or outline, etc. The two kinds of characteristics of the image into a series of meaningful goal or regional p rocess called image segmentation.The image is the basic characteristics of edge, the edge is to show its pixel grayscale around a step change order or roof of the collection of those changes pixels. It exists in target and background, goals and objectives, regional and region, the yuan and the yuan between, therefore, it is the image segmentation dependent on the most important characteristic that the texture characteristics of important information sources and shape characteristics of the foundation, and the image of the texture characteristics and the extraction of shape often dependent on image segmentation. Image edge extraction is also the basis of image matching, because it is the sign of position, the change of the original is not sensitive, and can be used for matching the feature points.The edge of the image is reflected by gray not continuity. Classic edge extraction method is investigation of each pixel image in an area of the gray change, use edge first or second order nearby directional derivative change rule,with simple method of edge detection, this method called edge detection method of local operators.The type of edge can be divided into two types: (1) step representation sexual edge, it on both sides of the pixel gray value varies significantly different; (2) the roof edges, it is located in gray value from the change of increased to reduce the turning point. For order jump sexual edge, second order directional derivative in edge is zero cross; For the roof edges, second order directional derivative in edge take extreme value.If a pixel fell in the image a certain object boundary, then its field will become a gray level with the change. The most useful to change two features is the rate of change and the gray direction, they are in the range of the gradient vector and the direction to said. Edge detection operator check every pixel grayscale rate fields and evaluation, and also include to determine the directions of the most use based on directional derivative deconvolution method for masking.Digital image processing technique has been widely applied to the biomedical field, the use of computer image processing and analysis, and complete detection and recognition of cancer cells can help doctors make a diagnosis of tumor cancers. Need to be made in the identification of cancer cells, the quantitative results, the human eye is difficult to accurately complete such work, and the use of computer image processing to complete the analysis and identification of the microscopic images have made great progress. In recent years, domestic and foreign medical images of cancer cells testing to identify the researchers put forward a lot of theory and method for the diagnosis of cancer cells has very important meaning and practical value.Cell edge detection is the cell area of the number of roundness and color, shape and chromaticity calculation and the basis of the analysis their test results directly affect the analysis and diagnosis of the disease. Classical edge detection operators such as Sobel operator, Laplacian operator, each pixel neighborhood of the image gray scale changes to detect the edge. Although these operators is simple, fast, but there are sensitive to noise, get isolated or in short sections of acontinuous edge pixels, overlapping the adjacent cell edge defects, while the optimal threshold segmentation and contour extraction method of combining edge detection, obtained by the iterative algorithm for the optimal threshold for image segmentation, contour extraction algorithm, digging inside the cell pixels, the last remaining part of the image is the edge of the cell, change the processing order of the traditional edge detection algorithm, by MATLAB programming, the experimental results that can effectively suppress the noise impact at the same time be able to objectively and correctly select the edge detection threshold, precision cell edge detection.2.Edge detection of MATLABMATLAB image processing toolkit defines the edge () function is used to test the edge of gray image.(1) BW = edge (I, "method"), returns and I size binary image BW, includingelements of 1 said is on the edge of the point, 0 means the edge points.Method for the following a string of:1) soble: the default value, with derivative Sobel edge detectionapproximate measure, to return to a maximum gradient edge;2) prewitt: with the derivative prewitt approximate edge detection, amaximum gradient to return to edge;3) Roberts: with the derivative Roberts approximate edge detection margins,return to a maximum gradient edge;4) the log: use the Laplace operation gaussian filter to I carry filtering,through the looking for 0 intersecting detection of edge;5) zerocross: use the filter to designated I filter, looking for 0 intersectingdetection of edge.(2) BW = edge (I, "method", thresh) with thresh designated sensitivitythreshold value, rather than the edge of all not thresh are ignored.(3) BW = edge (I, "method" thresh, direction, for soble and prewitt methodspecified direction, direction for string, including horizontal level said direction; Vertical said to hang straight party; Both said the two directions(the default).(4) BW = edge (I, 'log', thresh, log sigma), with sigma specified standarddeviation.(5) [BW, thresh] = edge (...), the return value of a function in fact have multiple(" BW "and" thresh "), but because the brace up with u said as a matrix, and so can be thought a return only parameters, which also shows the introduction of the concept of matrix MATLAB unity and superiority.st wordMATLAB has strong image processing function, provide a simple function calls to realize many classic image processing method. Not only is the image edge detection, in transform domain processing, image enhancement, mathematics morphological processing, and other aspects of the study, MATLAB can greatly improve the efficiency rapidly in the study of new ideas.MATLAB 在图像边缘检测中的应用MATLAB自1984年由国MathWorks公司推向市场以来,历经十几年的发展,现已成为国际公认的最优秀的科技应用软件。
常用图像边缘检测方法及Matlab研究
常用图像边缘检测方法及Matlab研究韦炜【摘要】The edge detection plays an important role in digital image processing.In order to choose the most appropriate edge detection in the practical application, some common used edge detection methods for vase's edge detection simulation based on Matlab are introduced , which include the differential operator method ( Robert operator, Sobel operator, Prcwitt operator and Kirsch operator) , the Gauss-Laplace operator method, the Canny operator method, the zero-crossing method and the Frei-chen edge detection method, etc.Their distinguishing characteristics and suitable application range have been obtained through camparative study an the results.%边缘检测在数字图像处理中有着重要的作用.为了在实际应用中能够选择最佳的边缘检测方法,采用Matlab语言编程,将若干常用的边缘检测方法应用于花瓶边缘检测仿真实验,包括微分算子法(Robert算子、Sohel算子、Prewitt 算子和Kirsch算子)、高斯-拉普拉斯算子法、坎尼算子法、零交叉法和Frei-chen 边缘检测法等.经过对结果的对比研究,得到其各自特性和适用范围.【期刊名称】《现代电子技术》【年(卷),期】2011(034)004【总页数】4页(P91-94)【关键词】数字图象处理;边缘检测方法;Matlab对比研究;微分算子法【作者】韦炜【作者单位】西安文理学院,陕西西安,710065【正文语种】中文【中图分类】TN919-34边缘检测技术在图像处理与计算机视觉中占有特殊的位置,它是底层视觉处理中最重要的环节之一,也是图像分割、目标区域识别、区域形状提取等图像分析方法的基础[1]。
图像处理中的边缘检测和图像分割
图像处理中的边缘检测和图像分割在计算机视觉领域中,图像处理是一项非常重要的技术。
其中,边缘检测和图像分割是两个关键环节。
本文将从边缘检测和图像分割的基本概念入手,详细介绍它们的原理和应用。
一、边缘检测1、基本概念边缘是指图像中亮度、颜色等性质发生突然变化的地方。
边缘检测就是在图像中寻找这些突然变化的地方,并将它们标记出来。
在实际应用中,边缘检测可以用于目标跟踪、物体检测等方面。
2、常见方法常见的边缘检测算法有Canny、Sobel、Laplacian等。
其中,Canny算法是一种广泛使用的边缘检测算法,其基本原理是通过计算图像中每个像素点的梯度值和方向,来判断该点是否为边缘。
Sobel算法则是利用了图像卷积的思想,先对图像进行卷积操作,再计算得到每个像素点的梯度值。
Laplacian算法则是通过计算图像中每个像素点的二阶导数,来寻找亮度突变的地方。
3、应用场景边缘检测常用于在图像中寻找物体的轮廓线,或者分离图像中的前景和背景等方面。
例如在计算机视觉中的人脸识别中,边缘检测可以用于提取人脸的轮廓线,以便于后续的特征提取和匹配。
二、图像分割1、基本概念图像分割是把图像中的像素点分成不同的区域,以便于更好地理解和处理图像。
分割的结果通常是一个二值图像,其中每个像素点被标记为前景或者背景。
在实际应用中,图像分割可以用于目标检测、图像识别等方面。
2、常见方法常见的图像分割算法有阈值分割、聚类分割、边缘分割等。
其中,阈值分割是一种较为简单且常用的分割算法,其原理是为图像中每个像素点设置一个阈值,大于阈值的像素点被标记为前景,小于阈值的则为背景。
聚类分割算法则是通过对图像中像素点进行聚类操作,来划分不同的区域。
边缘分割则是利用边缘检测的结果,将图像分成前景和背景两个部分。
3、应用场景图像分割可以应用于诸如目标检测、图像识别、医学图像分析等方面。
例如在医学图像分析中,图像分割可以用于将CT或MRI图像中的组织分割成肝、肿瘤等不同的部分,以便于医生更好地进行预测和治疗决策。
图像的边缘检测实验报告
图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。
在
本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。
首先,我们使用了Sobel算子进行边缘检测。
Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。
实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。
接着,我们尝试了Canny边缘检测算法。
Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。
实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。
最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。
实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。
总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。
希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。
图像边缘检测
V ol.15, No.1©2004 Journal of Software 软 件 学 报 1000-9825/2004/15(01)0000 图像边缘检测Edge Detection of ImageLi Jie(Department of Computer Science and Technology,Nanjing University, Nanjing, China)Email:lijie1108@摘 要: 边缘检测是在图像的局部区域上针对像素点的一种运算,在计算机视觉、图像理解等应用中扮演着重要的角色,同时也是图象分析与模式识别的重要环节。
因为图像的边缘包含了模式识别的有用信息,所以边缘检测是图像分析和模式识别中特征提取的主要手段,也使得边缘检测在计算机视觉的一些预处理算法中有着重要的地位。
另外,随着科技日新月异的发展,边缘检测技术也逐渐运用到生产和生活中。
因此,对边缘检测的研究也有很重要的实际应用价值。
本文介绍了边缘检测的一般步骤,对灰度图像的几种边缘检测算法,作简单的介绍。
关键词: 边缘检测; 经验模型分解;Sobel 算子;神经网络中图法分类号: TP-301 文献标识码: A1 引言边缘检测是图像处理领域中最基本的问题,也是经典的技术难题之一,它的解决对于进行高层次的特征提取、特征描述、目标识别和图像理解等有着重大的影响。
因此,边缘检测在图像分割、模式识别、计算机视觉等众多方面都有着非常重要的地位。
然而由于成像过程中的投影、混合、畸变和噪声等导致图像的模糊和变形,边缘往往难于检测,这使得人们一直致力于构造具有良好性质的边缘检测算子。
边缘检测的研究有着久远的历史,其原因一方面是由于课题本身的重要性,另一方面也反映了这个课题的深度和难度。
所以,边缘检测方面的研究具有非常重要的理论意义。
由于边缘为图像中灰度发生急剧变化的区域边界,传统的图像边缘检测方法大多可归结为图像高频分量的增强过程,微分运算自然就成了边缘检测与提取的主要手段。
NI VISION边缘检测
Definition of an EdgeAn edge is a significant change in the grayscale values between adjacent pixels in an image. In NI Vision, edge detection works on a 1D profile of pixel values along a search region, as shown in the following figure. The 1D search region can take the form of a line, the perimeter of a circle or ellipse, the boundary of a rectangle or polygon, or a freehand region. The software analyzes the pixel values along the profile to detect significant intensity changes. You can specify characteristics of the intensity changes to determine which changes constitute an edge.1 Search Lines2 EdgesCharacteristics of an EdgeThe following figure illustrates a common model that is used to characterize an edge.Gray LevelIntensitiesSearchDirection1 Grayscale Profile2 Edge Length3 Edge Strength4 Edge LocationThe following list includes the main parameters of this model.∙Edge strength—Defines the minimum difference in the grayscale values between the background and the edge. The edge strength is also called the edge contrast. The following figure shows an image that has different edge strengths. The strength of an edge can vary for the following reasons: ∙Lighting conditions—If the overall light in the scene is low, the edges in image will have low strengths. The following figure illustrates a change in the edge strength along the boundary of an object relative to different lighting conditions.∙Objects with different grayscale characteristics—The presence of a very bright object causes other objects in the image with lower overall intensities to have edges with smaller strengths.A B C∙Edge length—Defines the distance in which the desired grayscale difference between the edge and the background must occur. The length characterizes the slope of the edge. Use a longer edge length, defined by the size of the kernel used to detect edges, to detect edges with a gradual transition between the background and the edge.∙Edge location—The x, y location of an edge in the image.∙Edge polarity—Defines whether an edge is rising or falling. A rising edge is characterized by an increase in grayscale values as you cross the edge. A falling edge is characterized by a decrease in grayscale values as you cross the edge. The polarity of an edge is linked to the search direction.The following figure shows examples of edge polarities.Edge Detection MethodsNI Vision offers two ways to perform edge detection. Both methods compute the edge strength at each pixel along the 1D profile. An edge occurs when the edge strength is greater than a minimum strength. Additional checks find the correct location of the edge. You can specify the minimum strength by using the Minimum Edge Strength or Threshold Levelparameter in the software.Simple Edge DetectionThe software uses the pixel value at any point along the pixel profile to define the edge strength at that point. To locate an edge point, the software scans the pixel profile pixel by pixel from the beginning to the end. A rising edge is detected at the first point at which the pixel value is greater than a threshold value plus a hysteresis value. Set this threshold value to define the minimum edge strength required for qualifying edges. Use the hysteresis value to declare different edge strengths for the rising and falling edges. When a rising edge is detected, the software looks for a falling edge. A falling edge is detected when the pixel value falls below the specified threshold value. This process is repeated until the end of the pixel profile. The first edge along the profile can be either a rising or falling edge. The following figure illustrates the simple edge model.The simple edge detection method works well when there is little noise in the imageand when there is a distinct demarcation between the object and the background.Gray LevelIntensitiesPixels1 Grayscale Profile2 Threshold Value3 Hysteresis4 Rising Edge Location5 Falling Edge LocationAdvanced Edge Detection The edge detection algorithm uses a kernel operator to compute the edge strength. The kernel operator is a local approximation of a Fourier transform of the first derivative. The kernel is applied to each point in the search region where edges are to be located. For example, for a kernel size of 5, the operator is a ramp function that has 5 entries in the kernel. The entries are {–2, –1, 0, 1, 2}. The width of the kernel size is user-specified and should be based on the expected sharpness, or slope, of the edges to be located. The following figure shows the pixel data along a search line and the equivalent edge magnitudes computed using a kernel of size 5.Peaks in the edge magnitude profile above a user-specified threshold are the edge points detected by the algorithm.Pixel IntensitiesEdge Magnitudes1 Edge Location2 Minimum Edge ThresholdTo reduce the effect of noise in image, the edge detection algorithm can be configured to extract image data along a search region that is wider than the pixels in the image. The thickness of the search region is specified by the search width parameter. The data in the extracted region is averaged in a direction perpendicular to the search region before the edge magnitudes and edge locations are detected. A search width greater than 1 also can be used to find a “best” or “average”edge location or a poorly formed object. The following figure shows how the search width is defined.1 Search Width2 Search LineSubpixel AccuracyWhen the resolution of the image is high enough, most measurement applications make accurate measurements using pixel accuracy only. However, it is sometimes difficult to obtain the minimum image resolution needed by a machine vision application because of limits on the size of the sensors available or the price. In these cases, you need to find edge positions with subpixel accuracy.Subpixel analysis is a software method that estimates the pixel values that a higher resolution imaging system would have provided. In the edge detection algorithm, the subpixel location of an edge is calculated using a parabolic fit to the edge-detected data points. At each edge position of interest, the peak or maximum value is found along with the value of one pixel on each side of the peak. The peak position represents the location of the edge to the nearest whole pixel. Using the three data points and the coefficients a, b, and c, a parabola is fitted to the data points using the expression ax2 + bx2 + c.The procedure for determining the coefficients a, b, and c in the expression is as follows: Let the three points which include the whole pixel peak location and one neighbor on each side be represented by (x0, y0), (x1, y1), and (x2, y2). We will let x0 = –1, x1 = 0, and x2 = 1 without loss of generality. We now substitute these points in the equation for a parabola and solve for a, b, and c. The result isc = y1, which is not needed and can be ignored.The maximum of the function is computed by taking the first derivative of the parabolic function and setting the result equal to 0. Solving for x yieldsThis provides the subpixel offset from the whole pixel location where the estimate of the true edge location lies.The following illustrates how a parabolic function is fitted to the detected edge pixel location using the magnitude at the peak location and the neighboring pixels. The subpixel location of an edge point is estimated from the parabolic fit.1 Interpolated Peak Location3 Interpolating Function2 Neighboring PixelWith the imaging system components and software tools currently available, you can reliably estimate 1/25 subpixel accuracy. However, results from an estimation depend heavily on the imaging setup, such as lighting conditions, and the camera lens. Before resorting to subpixel information, try to improve the image resolution. Refer to system setup and calibration for more information about improving images.Signal-to-Noise RatioThe edge detection algorithm computes the signal-to-noise ratio for each detected edge point. The signal-to-noise ratio can be used to differentiate between a true, reliable, edge and a noisy, unreliable, edge. A high signal-to-noise ratio signifies a reliable edge, while a lowsignal-to-noise ratio implies the detected edge point is unreliable.In the edge detection algorithm, the signal-to-noise ratio is computed differently depending on the type of edges you want to search for in the image.When looking for the first, first and last, or all edges along search lines, the noise level associated with a detected edge point is the strength of the edge that lies immediately before the detected edge and whose strength is less than the user-specified minimum edge threshold, as shown in the following figure.1 Edge 1 Magnitude2 Edge 2 Magnitude3 Threshold Level4 Edge 2 Noise5 Edge 1 Noise When looking for the best edge, the noise level is the strength of the second strongest edge before or after the detected edge, as shown in the following figure.1 Best Edge Magnitude2 Best Edge Noise3 Threshold Level Calibration Support for Edge Detection The edge detection algorithm uses calibration information in the edge detection process if the original image is calibrated. For simple calibration, edge detection is performed directly onthe image and the detected edge point locations are transformed into real-world coordinates. For perspective and non-linear distortion calibration, edge detection is performed on a corrected image. However, instead of correcting the entire image, only the area corresponding to the search region used for edge detection is corrected. Figure A and Figure B illustrate the edge detection process for calibrated images. Figure A shows an uncalibrated distorted image. Figure B shows the same image in a corrected image space.1 Search Line2 Search Width3 Corrected AreaInformation about the detected edge points is returned in both pixels and real-world units. Refer to system setup and calibration for more information about calibrating images.Extending Edge Detection to 2D Search Regions The edge detection tool in NI Vision works on a 1D profile. The rake, spoke, and concentric rake tools extend the use of edge detection to two dimensions. In these edge detection variations, the 2D search area is covered by a number of search lines over which the edge detection is performed. You can control the number of the search lines used in the search region by defining the separation between the lines. RakeA Rake works on a rectangular search region, along search lines that are drawn parallel to the orientation of the rectangle. Control the number of lines in the area by specifying the search direction as left to right or right to left for a horizontally oriented rectangle. Specify the search direction as top to bottom or bottom to top for a vertically oriented rectangle. The following figure illustrates the basics of the rake function.1 Search Area2 Search Line3 Search Direction4 Edge PointsSpokeA Spoke works on an annular search region, along search lines that are drawn from the center of the region to the outer boundary and that fall within the search area. Control the number of lines in the region by specifying the angle between each line. Specify the search direction as either from the center outward or from the outer boundary to the center. The following figure illustrates the basics of the spoke function.1 Search Area2 Search Line3 Search Direction4 Edge PointsConcentric RakeA Concentric Rake works on an annular search region. It is an adaptation of the rake to an annular region. The following illustrates the basics of the concentric rake. Edge detection is performed along search lines that occur in the search region and that are concentric to the outer circular boundary. Control the number of concentric search lines that are used for the edge detection by specifying the radial distance between the concentric lines in pixels. Specify the direction of the search as either clockwise or anti-clockwise.1 Search Area2 Search Line3 Search Direction4 Edge PointsFinding Straight EdgesFinding straight edges is another extension of edge detection to 2D search regions. Finding straight edges involves finding straight edges, or lines, in an image within a 2D search region. Straight edges are located by first locating 1D edge points in the search region and then computing the straight lines that best fit the detected edge points. Straight edge methods can be broadly classified into two distinct groups based on how the 1D edge points are detected in the image. Rake-Based MethodsA Rake is used to detect edge points within a rectangular search region. Straight lines are then fit to the edge points. Three different options are available to determine the edge points through which the straight lines are fit.First EdgesA straight line is fit through the first edge point detected along each search line in the Rake. The method used to fit the straight line is described in dimensional measurements. The following figure shows an example of the straight edge detected on an object using the first dark to bright edges in the Rake along with the computed edge magnitudes along one search line in the Rake. Search DirectionBest EdgesA straight line is fit through the best edge point along each search line in the Rake. The method used to fit the straight line us described in dimensional measurements. The following figure showsan example of the straight edge detected on an object using the best dark to bright edges in the Rake along with the computed edge magnitudes along one search line in the Rake.Search DirectionHough-Based MethodsIn this method, a Hough transform is used to detect the straight edges, or lines, in an image. The Hough transform is a standard technique used in image analysis to find curves that can be parameterized, such as straight lines, polynomials, and circles. For detecting straight lines in an image, NI Vision uses the parameterized form of the lineρ = xcosθ + ysinθwhere, ρ is the perpendicular distance from the origin to the line and θ is the angle of the normal from the origin to the line. Using this parameterization, a point (x, y) in the image is transformed into a sinusoidal curve in the (ρ, θ), or Hough space. The following figure illustrates the sinusoidal curves formed by three image points in the Hough space. The curves associated with colinear points in the image, intersect at a unique point in the Hough space. The coordinates (ρ, θ) of the intersection are used to define an equation for the corresponding line in the image. For example, the intersection point of the curves formed by points 1 and 2 represent the equation for Line1 in the image.The following figure illustrates how NI Vision uses the Hough transform to detect straight edges in an image. The location (x, y) of each detected edge point is mapped to a sinusoidal curve in the (ρ, θ) space. The Hough space is implemented as a two-dimensional histogram where the axes represent the quantized values for ρ and θ. The range forρ is determined by the size of the search region, while the range for θ is determined by the angle range for straight lines to be detected in the image. Each edge location in the image maps to multiple locations in the Hough histogram, and the count at each location in the histogram is incremented by one. Locations in the histogram with a count of two or more correspond to intersection points between curves in the (ρ, θ) space. Figure B shows a two-dimensional image of the Hough histogram. The intensity of each pixel corresponds to the value of the histogram at that location. Locations where multiple curves intersect appear darker than other locations in the histogram. Darker pixels indicate stronger evidence for the presence of a straight edge in the original image because more points lie on the line. The following figure also shows the line formed by four edge points detected in the image and the corresponding intersection point in the Hough histogram.1 Edge Point2 Straight Edge3 Search Region4 Search LineStraight edges in the image are detected by identifying local maxima, or peaks in the Hough histogram. The local maxima are sorted in descending order based on the histogram count. To improve the computational speed of the straight edge detection process, only a few of the strongest peaks are considered as candidates for detected straight edges. For each candidate, a score is computed in the original image for the line that corresponds to the candidate. The line with the best score is returned as the straight edge. The Hough-based method also can be used to detect multiplestraight edges in the original image. In this case, the straight edges are returned based on their scores.Projection-Based Methods The projection-based method for detecting straight edges is an extension of the 1D edge detection process discussed in the advanced edge detection section. The following figure illustrates the projection-based straight edge detection process. The algorithm takes in a search region, search direction, and an angle range. The algorithm first either sums or finds the medians of the data in a direction perpendicular to the search direction. NI Vision then detects the edge position on the summed profile using the 1D edge detection function. The location of the edge peak is used to determine the location of the detected straight edge in the original image.To detect the best straight edge within an angle range, the same process is repeated by rotating the search ROI through a specified angle range and using the strongest edge found to determine the location and angle of the straight edge.Search DirectionSumPixels1 Projection Axis2 Best Edge Peak and Corresponding Line in the ImageThe projection-based method is very effective for locating noisy and low-contrast straight edges.The projection-based method also can detect multiple straight edges in the search region. For multiple straight edge detection, the strongest edge peak is computed for each point along the projection axis. This is done by rotating the search region through a specified angle range and computing the edge magnitudes at every angle for each point along the projection axis. The resulting peaks along the projection axis correspond to straight edges in the original image. Straight Edge ScoreNI Vision returns an edge detection score for each straight edge detected in an image. The score ranges from 0 to 1000 and indicates the strength of the detected straight edge.The edge detection score is defined as。
《图像边缘检测》课件
一种基于图像的梯度计算方法,可用于检测图像中的边缘。
2 Prewitt算子
另一种基于图像梯度的边缘检测算法,与Sbel算子类似。3 Canny算子
一种更复杂的边缘检测算法,能够检测到更细微的边缘。
边缘检测的应用
物体识别
边缘检测可以帮助识别图像中的物体,从而实现自动目标识别和分类。
图像增强
通过突出边缘,可以增强图像的清晰度和对比度,使图像更加生动。
计算机视觉
边缘检测是计算机视觉中基础且关键的技术,用于解决人机交互、图像分析等问题。
图像处理中的挑战
在图像处理中,边缘检测面临一些挑战,如噪声干扰、光照变化和边缘连接性等问题。需要采用合适的算法和 技术来克服这些挑战。
结论和要点
《图像边缘检测》PPT课 件
图像边缘检测是一种通过识别图像中物体边缘的技术。本课件将介绍边缘检 测的定义、常用的边缘检测算法以及边缘检测的应用。
图像边缘检测的定义
图像边缘检测是一种分析图像中不同区域之间的边界或过渡区域的技术。它对于物体检测、图像分割和目标识 别等任务非常重要。
常用的边缘检测算法
通过本课件的学习,你应该对图像边缘检测有了更深入的了解。边缘检测是图像处理中的重要步骤,它可以帮 助我们更好地理解和分析图像。
sobel算子图像边缘检测研究外文翻译
Real-time FPGA Based Implementation of ColorImage Edge DetectionAbstract—Color Image edge detection is very basic and important step for many applications such as image segmentation, image analysis, facial analysis, objects identifications/tracking and many others. The main challenge for real-time implementation of color image edge detection is because of high volume of data to be processed (3 times as compared to gray images). This paper describes the real-time implementation of Sobel operator based color image edge detection using FPGA. Sobel operator is chosen for edge detection due to its property to counteract the noise sensitivity of the simple gradient operator. In order to achieve real-time performance, a parallel architecture is designed, which uses three processing elements to compute edge maps of R, G, and B color components. The architecture is codedusing VHDL, simulated in ModelSim, synthesized using Xilinx ISE 10.1 and implemented on Xilinx ML510 (Virtex-5 FX130T) FPGA platform. The complete system is working at 27 MHz clock frequency. The measured performance of our system for standard PAL (720x576) size images is 50 fps (frames per second) and CIF (352x288) size images is 200 fps.Index Terms—Real-time Color Image Edge Detection, Sobel Operator, FPGA Implementation, VLSI Architecture, Color Edge Detection ProcessorI. INTRODUCTIONHigh speed industrial applications require very accurate and real-time edge detection. Edge detection in gray images does not give very accurate results due to loss of color information during color to gray scale image conversion. Therefore, to achieve desired accuracy, detection of edges in color images is necessary. The main challenge for real-time implementation of color image edge detection is in processing of high volume of data (3 times as compared to gray images) within real-time constraints. Therefore, it is hard to achieve real-time performance of edge detection for PAL sizes color images with serial processors. Due to inherent parallelism property, FPGAs can deliver real-time time performance for such applications. Furthermore, FPGAs provide the possibility to perform algorithm modifications in later stages of the system development [1].The main focus of most of the existing FPGA based implementations for edge detection using Sobel operator has been on achieving real-time performance for gray scale images by using various architectures and different design methodologies. As edge detection is low-level image processing operation, Single Instruction Multiple Data (SIMD) type architectures [2] are very suitable for edge detection to achieve real-time performance. These architectures use multiple data processing elements and therefore, require more FPGA resources. The architecture clockfrequency can be improved by using pipelining. A pipelined architecture for real-time gray image edge detection is presented in [3]. Some computation optimized architectures are presented in [4, 5]. Few more architectures for real-time gray image edge detection are available in [6 - 11]. In [12, 13], the architectures are designed using MA TLAB-Simulink based design methodology.In this paper, we show that real-time Sobel operator based color image edge detection can be achieved by using a FPGA based parallel architecture. For each color component in RGB space, one specific edge computation processor is developed. As Sobel operator is sliding window operator, smart buffer based Memory architecture is used to move the incoming pixels in computing window. The specific datapaths are designed and controller is developed to perform the complete task. The design and simulation is done using VHDL. The design is targeted to Xilinx ML 510 (Virtex –5 FX130T) FPGA platform. The implementation is tested for real world scenario. It can robustly detect the edges in color images.The rest of the paper is organized in the following way . In section 2 we describe the original Sobel operator based edge detection algorithm. We show, in section 3, the customized architecture for algorithm implementation and how each stage works. In section 4, practical tests are evaluated and synthesis results are shown taking into account system performance. Finally conclusions anddiscussions are presented in section 5.II. EDGE DETECTION SCHEMEIn this section the used algorithm is briefly described, for a more detailed description we refer to [14, 15]. The Sobel operator is widely used for edge detection in images. It is based on computing an approximation of thegradient of the image intensity function. The Sobel filter uses two 3x3 spatial masks which are convolved with the original image to calculate the approximations of thegradient. The Sobel operator uses two filters Hx and Hy.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101202101X H (1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1211001-2-1-y H (2)These filters compute the gradient components across the neighboring lines or columns, respectively. The smoothing is performed over three lines or columns before computing the respective gradients. In this Sobel operator, the higher weights are assigned in smoothing part to current center line and column as compared to simple gradient operators. The local edge strength is defined as the gradient magnitude given by equation 3.()22,Hy Hx y x GM += (3)This equation 3 is computationally costly because of square and square root operations for every pixel. It is more suitable computationally to approximate the square and square root operations by absolute values.()Hy Hx y x GM +=, (4)This expression is much easy to compute and still preserves the relative changes in intensity (edges in images).This above mentioned scheme is for gray scale images. For color images (RGB color space) this scheme is applied separately for each color component. Final color edge map of color image is computed by using the edge maps of each color component [16].)(B Edge or G Edge or EdgeR ColorEdge (5)III. PROPOSED ARCHITECTURETo detect edges in real-time in PAL (720x576) size color images, dedicated hardware architecture is implemented for Sobel operator based edge detection scheme. Fig. 1 shows the conceptual block diagram of complete system. The hardware setup includes a video camera, a video daughter card, and FPGA board. The video output of camera connects to Digilent VDEC1 Video Decoder Board which is interfaced with Xilinx ML510 (V irtex –5 FX130T) board using Interface PCB. Display Monitor is connected to the board using DVI connector. The video signals are decoded in Camera Interface Module. The output RGB data of camera interface module is applied to edge detection block. The edge detected output from the Edge Detection Block is displayed on the display monitor using DVI controller. The camera interface module also generates video timing signals which are necessary for proper functioning of edge detection block and DVI controller. A more detailed description of this Camera Interface Design can be found in[17].Figure 1. Complete System Block DiagramFig. 2 shows the basic block level data flow diagram for computation of edges in color images using Sobel operator. The goal is to perform edge detection three times, once each for red, green, and blue, and then the output is fused to form one edge map [16]. There are mainly four stages. First stage is Buffer Memory stage. In this stage, the three color components are separated andstored in three different memories. The second stage is gradient computation stage. In this stage the gradient is computed for each color component by adding absolute values of horizontal and vertical gradients. In third stage, the edge map is computed for each color component by comparing the gradient values with threshold. Final edge map is computed by combining the edge maps of each color components in stage four.Figure 2. Edge Detection in Color Images using Sobel OperatorThe streaming data processing cannot be used because the edge detection using Sobel operator algorithm is window based operation. Therefore, input data from camera is stored in on-chip memory (BRAM and Registers) before processing it on FPGA. The Sobel edge detection logic can begin processing as soon as two rows arrived in Buffer Memory. The Smart Buffer based Buffer Memory architecture [18] is used in the proposed Sobel operator based color edge detection implementation for data buffering. This approach (Fig. 3) works if one image pixel is coming from camera interface module in one clock cycle. The pixels are coming row by row. When buffers are filled, this architecture provides the access to the entire pixel neighborhood every clock cycle. The architecture places the highest demand on internal memory bandwidth. Because modern FPGA devices contain large amount of embedded memory, this approach does not cause problems [19]. The length of the shift registers depends on the width of input image. ForPAL (720x576) size images the length of FIFOs is 717 (i.e. 720 - 3). For CIF (352x288) size images, it is 349 (i.e. 352 – 3).Figure 3. Sliding Window Memory Buffer ArchitectureThe absolute values of gradient Hx and Hy for pixel data P2,2 is given by following expressions.())())*21333123,21,13,1,,,((P P P P P P Hx -+-+-= (6)())())*23,1332,12,31,11,3P P P P P P Hy -+-+-=,(( (7)The processing modules architectures for computing these horizontal and vertical gradients for each color components are shown in Fig. 4. Both the architectures are same except the inputs applied to them at a particular time. Each processing module performs additions, subtractions, and multiplication. The multiplication is costly in digital hardware but multiplication by 2 is easily achieved by shift operation.The complete architecture (Fig. 5) uses three processing elements in parallel (each for R, G , and B color components). The data coming from camera interface module is 24-bit RGB data. Incoming data is separated in three color components R, G , and B. Each color component data is of 8-bit (i.e. any value from 0 to 255). Three smart buffer based Sliding Window Memories are used to store two rows of the three color components. Each memory uses two First-in First-out (FIFO) shift-registers and 9 registers. The width of FIFOs and registers is 8-bit. Therefore, in total 6 FIFOs and 27 registers are required for designing Sliding Window Buffer Memory for RGB color image edge detection architecture. The designing of FIFOs using available registers in FPGA occupies large area in FPGA. Therefore, available Block RAMs on FPGA are used for designing the FIFOs. This resulted in efficient utilization of FPGA resources.Figure 4. Gradient Hx and Hy Computation Module ArchitecturesFor detecting edge in PAL (720x576) size color images, it takes 1440 (720x2) clock cycles to fill the two rows of image data in buffer memory. After this, in every clock cycle, each color component (R, G , and B) of new pixel is moved in their respective computing window (consists of 9 registers). The available 9 pixels in computing window (P1,1, P1,2, P1,3, P2,1, P2,2, P2,3, P3,1, P3,2, P3,3) are used for computing the Hx and Hy gradient values. These are computed according to equations 6 and 7 by using the processing module architectures shown in Fig 4. The approximate magnitude of the gradient is computed along each color component by adding the absolute values of Hx and Hy. After this, the approximate gradient of each color component is compared with a user defined threshold value. If the approximate value of gradient is more than the user defined threshold, the comparator output for that color component is 1 else it is 0. Theoutputs of all three comparators (R, G, and B) are finally fused to find the final edge map. The final edge map is computed by ORing the Edge Map outputs of each color component. It requires one three input OR gate. If the final edge map output is one, the each color component value is set to 11111111 else it is set to 00000000. These values are used by DVI controller to display the result on display Monitor.Figure 5. Complete Architecture for Color Image Edge Detection using Sobel OperatorIV. RESULTSThe proposed architecture is designed using VHDL and simulated in ModelSim. Synthesis is carried out using Xilinx ISE 10.3. Final design is implemented on Xilinx ML510 (Virtex–5 FX130T) FPGA board. It utilizes 294 Slice Registers, 592 Slice LUTs, 206 FPGA Slices, 642 LUT Flip Flop Pairs, 116 Route-thrus and 3 Block RAMS. The synthesis results (Table I) reveal that the FPGA resources utilized by proposed architecture are approximately 1% of total available resources. The FPGA resource utilization table is only for proposed color image edge detection architecture (i.e. buffer memory, gradient computation, edge map computation) and excludes the resources utilized by camera interface and display logic. The measured performance of our system at 27 MHz operating frequency for PAL (720x576) size images is 50 fps (frames per second), CIF (352x288) size images is 200 fps and QCIF (176x144) size images is 800 fps. PAL and CIF images are most commonly used video formats. Therefore, implemented system can easily detect edges in color images in real-time.TABLE I. SYNTHESIS RESULTSFigure 6. Input Color Image and Output Edge Detected ImageFigure 7. Input Color Image and Output Edge Detected ImageFigure 8. Input Color Image and Output Edge Detected ImageFigure 9. Complete SystemIn Fig. 6-8, the input PAL (720x576) size color test images taken from camera and respective output edge detected images produced by proposed architectures are shown. Fig. 9 shows the complete system. The images are captured by using Sony EVI D70P analog camera, processed by designed VLSI architecture running on FPGA, and displayed on monitor.V. CONCLUSIONIn this paper, the hardware architecture for Sobel operator based color image edge detection scheme has been presented. The architecture used approximately 1% of total FPGA resources and maintained real-time constraints of video processing. The system is tested for various real world situations and it robustly detects the edge in real-time with a frame rate of 50 fps for standard PAL video (60 fps for NTSC video) in color scale. The speed could be further improved by adding pipelining stages in gradient computation modules at the expense of increasing FPGA resources usage. The Xilinx ML510 (Virtex-5 FX130T) FPGA board is chosen for this implementation due to availability of large number of FPGA resources, Block RAMs, and PowerPC processor (for hardware-software co-design) so that same board can be used to implement other complex computer vision algorithms which make use of edge detection architecture. The proposed architecture is very suitable for high frame rate industrial applications. The future work will look at the use of this architecture for finding the focused areas in a scene for surveillance applications.A CKNOWLEDGMENTThe authors express their deep sense of gratitude to Director, Dr. Chandra Shekhar, forencouraging research and development. Also the authors would like to express their sincerethanks to Dr. AS Mandal and Group Leader, Raj Singh,for their precious suggestions in refining the research work. Authors specially thank Mr. Sanjeev Kumar, Technical Officer, for tool related support. We thank to reviewers, whose constructive suggestions have improved the quality of this research paper.REFERENCES[1] H. Jiang, H. Ardo, and V. Owall (2009), A Hardware Architecture for Real-Time Video Segmentation Utilizing Memory Reduction Techniques, IEEE Transactions on Circuits and Systems for V ideo Technology, vol. 19, no. 2, pp. 226–236.[2] R.L. Rosas, A.D. Luca, and F.B. Santillan (2005), SIMD Architecture for Image Segmentation using Sobel Operators Implemented in FPGA Technology, In Proceedings of 2nd International Conference on Electrical and Electronics Engineering, pp. 77-80.[3] T.A. Abbasi and M.U. Abbasi (2007), A Novel FPGA-based Architecture for Sobel Edge Detection Operator, International Journal of Electronics, vol. 94, no. 9, pp. 889-896, 2007.[4] Z.E.M. Osman, F.A. Hussin, And N.B.Z. Ali (2010a), Hardware Implementation of an Optimized Processor Architecture for Sobel Image Edge Detection Operator, In Proceeding of International Conference on Intelligent and Advanced Systems (ICIAS), pp. 1-4.[5] Z.E.M. Osman, F.A. Hussin, And N.B.Z. Ali (2010b), Optimization of Processor Architecture for Image Edge Detection Filter, In Proceeding of International Conference on Computer Modeling and Simulation, pp. 648-652[6] I. Y asri, N.H. Hamid, And V.V. Y ap (2008), Performance Analysis of FPGA based Sobel Edge Detection Operator, In Proceedings of International Conference on Electronic Design, pp. 1-4. [7] V. Sanduja and R. Patial (2012), Sobel Edge Detection using Parallel Architecture based on FPGA, International Journal of Applied Information Systems, vol. 3, no. 4, pp. 20-24.[8] G. Anusha, T.J. Prasad, and D.S. Narayana (2012), Implementation of SOBEL Edge Detection on FPGA, International Journal of Computer Trends and Technology, vol. 3, no. 3, pp. 472-475. [9] L.P. Latha (2012), Design of Edge Detection Technique Using FPGA(Field Programmable Gate Array) and DSP (Digital Signal Processor), VSRD International Journal of Electrical, Electronics & Communication Engineering, vol. 2, no. 6, pp. 346-352.[10] A.R. Ibrahim, N.A. Wahed, N. Shinwari, and M.A. Nasser (2011), Hardware Implementation of Real Time Video Edge Detection With Adjustable Threshold Level (Edge Sharpness) Using Xilinx Spartan-3A FPGA, Report.[11] P.S. Chikkali and K. Prabhushetty (2011), FPGA based Image Edge Detection and Segmentation, International Journal of Advanced Engineering Sciences and Technologies, V ol. 9, Issue 2, pp. 187-192.[12] R. Harinarayan, R. Pannerselvam, M.M. Ali, And D.K. Tripathi (2011), Feature extraction of Digital Aerial Images by FPGA based implementation of edge detection algorithms, In Proceedings of International Conference on Emerging Trends in Electrical and Computer Technology, pp. 631-635.[13] K.C. Sudeep and J. Majumdar (2011), A Novel Architecture for Real Time Implementation of Edge Detectors on FPGA, International Journal of Computer Science Issues, vol. 8, no. 1, pp. 193-202.[14] W. Burger and M.J. Burge (2008), Digital Image Processing: An Algorithmic Introduction Using Java, New Y ork: Springer, 120-123.中文翻译:基于FPGA的实时彩色实现图像边缘检测Sanjay Singh Saini *,阿尼尔库马尔,拉维赛尼IC设计组CSIR中央电子工程研究所,拉贾斯坦,印度333031个学位-。
数字图像处理__Canny边缘检测
摘要边缘检测是数字图像处理中的重要内容,边缘是图像最基本的特性。
在图像边缘检测中,微分算子可以提取出图像的细节信息,景物边缘是细节信息中最具有描述景物特征的部分,也是图像分析中的一个不可或缺的部分。
本文详细地分析了目前常用的几种算法,即:Roberts交叉微分算子、Sobel微分算子、Priwitt微分算子和Laplacian微分算子以及Canny算子,用C语言编程实现各算子的边缘检测,并根据边缘检测的有效性和定位的可靠性,得出Canny算子具备有最优边缘检测所需的特性。
关键词:图像处理,微分算子,Canny算子,边缘检测AbstractEdge detection is the important contents of digital image processing ,and the edge is the most basic characteristics of the image.In the image edge detection ,differential operator can be used to extract the details of the images,features’edge is the most detailed information describing the characteristics of the features of the image analysis, and is also an integral part of the image.This article gives the detailed analysis of several algorithms which is commonly used at present,such as Roberts cross-differential operator、Sobel differential operator、Priwitt differential operator、Laplacian differential operator and Canny operator,and we complete with the C language procedure to come ture edge detection.According to the effectiveness of the image detection and the reliability of the orientation,we can deduced that the Canny operator have the characteristics which the image edge has.Keywords: Image processing, Canny operator, differential operator, edge detection目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 引言 (1)1.2 数字图像技术的概述 (2)1.3 边缘检测 (3)1.4 论文各章节的安排 (4)第二章微分算子边缘检测 (5)2.1 Roberts算子 (5)2.2 Sobel算子 (5)2.3 Priwitt算子 (6)2.4 Laplacian算子 (6)第三章Canny边缘检测 (8)3.1 Canny指标 (8)3.2 Canny算子的实现 (9)第四章程序设计与实验 (12)4.1各微分算子的程序设计 (12)4.2 实验结果及比较 (14)第五章结论与展望 (17)5.1 结论 (17)5.2 展望 (17)致谢 ..................................................................................................... 错误!未定义书签。
边缘检测-中英文翻译
Digital Image Processing and Edge DetectionDigital Image ProcessingInterest in digital image processing methods stems from two principal application areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for autonomous machine perception.An image may be defined as a two-dimensional function, f(x,y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we call the image a digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture elements, image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image.Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However, unlike humans, who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that humans are not accustomed to associating with images. These include ultrasound, electron microscopy, and computer generated images. Thus, digital image processing encompasses a wide and varied field of applications.There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vision, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition,even the trivial task of computing the average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computers to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs. This area itself is a branch of artificial intelligence(AI) whose objective is to emulate human intelligence. The field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in between image processing and computer vision.There are no clearcut boundaries in the continuum from image processing at one end to computer vision at the other. However, one useful paradigm is to consider three types of computerized processes in this continuum: low, mid, and highlevel processes. Low-level processes involve primitive operations such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its inputs and outputs are images. Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual objects. A midlevel process is characterized by the fact that its inputs generally are images, but its outputs are attributes extracted from those images (e.g., edges, contours, and the identity of individual objects). Finally, higherlevel processing involves “making sense” of an ensemble of recognize d objects, as in image analysis, and, at the far end of the continuum, performing the cognitive functions normally associated with vision.Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text, preprocessing that image, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making sense.” As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad range of areas of exceptional social and economic value.The areas of application of digital image processing are so varied that some formof organization is desirable in attempting to capture the breadth of this field. One of the simplest ways to develop a basic understanding of the extent of image processing applications is to categorize images according to their source (e.g., visual, X-ray, and so on). The principal energy source for images in use today is the electromagnetic energy spectrum. Other important sources of energy include acoustic, ultrasonic, and electronic (in the form of electron beams used in electron microscopy). Synthetic images, used for modeling and visualization, are generated by computer. In this section we discuss briefly how images are generated in these various categories and the areas in which they are applied.Images based on radiation from the EM spectrum are the most familiar, especially images in the X-ray and visual bands of the spectrum. Electromagnetic waves can be conceptualized as propagating sinusoidal waves of varying wavelengths, or they can be thought of as a stream of massless particles, each traveling in a wavelike pattern and moving at the speed of light. Each massless particle contains a certain amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral bands are grouped according to energy per photon, we obtain the spectrum shown in fig. below, ranging from gamma rays (highest energy) at one end to radio waves (lowest energy) at the other. The bands are shown shaded to convey the fact that bands of the EM spectrum are not distinct but rather transition smoothly from one to the other.Fig1Image acquisition is the first process. Note that acquisition could be as simple as being given an image that is already in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling.Image enhancement is among the simplest and most appealing areas of digital image processing. Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to highlight certain features of interest in an image.A familiar example of enhancement is when we increase the contrast of an image because “it looks better.” It is important to keep in mind that enhancement is a verysubjective area of image processing. Image restoration is an area that also deals with improving the appearance of an image. However, unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabilistic models of image degradation. Enhancement, on the other hand, is based on human subjective preferences regarding what constitutes a “good” en hancement result.Color image processing is an area that has been gaining in importance because of the significant increase in the use of digital images over the Internet. It covers a number of fundamental concepts in color models and basic color processing in a digital domain. Color is used also in later chapters as the basis for extracting features of interest in an image.Wavelets are the foundation for representing images in various degrees of resolution. In particular, this material is used in this book for image data compression and for pyramidal representation, in which images are subdivided successively into smaller regions.F i g2Compression, as the name implies, deals with techniques for reducing the storage required to save an image, or the bandwidth required to transmi it.Although storage technology has improved significantly over the past decade, the same cannot be said for transmission capacity. This is true particularly in uses of the Internet, which arecharacterized by significant pictorial content. Image compression is familiar (perhaps inadvertently) to most users of computers in the form of image file extensions, such as the jpg file extension used in the JPEG (Joint Photographic Experts Group) image compression standard.Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape. The material in this chapter begins a transition from processes that output images to processes that output image attributes.Segmentation procedures partition an image into its constituent parts or objects. In general, autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged segmentation procedure brings the process a long way toward successful solution of imaging problems that require objects to be identified individually. On the other hand, weak or erratic segmentation algorithms almost always guarantee eventual failure. In general, the more accurate the segmentation, the more likely recognition is to succeed.Representation and description almost always follow the output of a segmentation stage, which usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating one image region from another) or all the points in the region itself. In either case, converting the data to a form suitable for computer processing is necessary. The first decision that must be made is whether the data should be represented as a boundary or as a complete region. Boundary representation is appropriate when the focus is on external shape characteristics, such as corners and inflections. Regional representation is appropriate when the focus is on internal properties, such as texture or skeletal shape. In some applications, these representations complement each other. Choosing a representation is only part of the solution for transforming raw data into a form suitable for subsequent computer processing. A method must also be specified for describing the data so that features of interest are highlighted. Description, also called feature selection, deals with extracting attributes that result in some quantitative information of interest or are basic for differentiating one class of objects from another.Recognition is the pro cess that assigns a label (e.g., “vehicle”) to an object based on its descriptors. As detailed before, we conclude our coverage of digital image processing with the development of methods for recognition of individual objects.So far we have said nothing about the need for prior knowledge or about theinteraction between the knowledge base and the processing modules in Fig2 above. Knowledge about a problem domain is coded into an image processing system in the form of a knowledge database. This knowledge may be as simple as detailing regions of an image where the information of interest is known to be located, thus limiting the search that has to be conducted in seeking that information. The knowledge base also can be quite complex, such as an interrelated list of all major possible defects in a materials inspection problem or an image database containing high-resolution satellite images of a region in connection with change-detection applications. In addition to guiding the operation of each processing module, the knowledge base also controls the interaction between modules. This distinction is made in Fig2 above by the use of double-headed arrows between the processing modules and the knowledge base, as opposed to single-headed arrows linking the processing modules.Edge detectionEdge detection is a terminology in image processing and computer vision, particularly in the areas of feature detection and feature extraction, to refer to algorithms which aim at identifying points in a digital image at which the image brightness changes sharply or more formally has discontinuities.Although point and line detection certainly are important in any discussion on segmentation,edge dectection is by far the most common approach for detecting meaningful discounties in gray level.Although certain literature has considered the detection of ideal step edges, the edges obtained from natural images are usually not at all ideal step edges. Instead they are normally affected by one or several of the following effects:1.focal blur caused by a finite depth-of-field and finite point spread function; 2.penumbral blur caused by shadows created by light sources of non-zero radius; 3.shading at a smooth object edge; 4.local specularities or interreflections in the vicinity of object edges.A typical edge might for instance be the border between a block of red color and a block of yellow. In contrast a line (as can be extracted by a ridge detector) can be a small number of pixels of a different color on an otherwise unchanging background. For a line, there may therefore usually be one edge on each side of the line.To illustrate why edge detection is not a trivial task, let us consider the problem of detecting edges in the following one-dimensional signal. Here, we may intuitively say that there should be an edge between the 4th and 5th pixels.If the intensity difference were smaller between the 4th and the 5th pixels and if the intensity differences between the adjacent neighbouring pixels were higher, it would not be as easy to say that there should be an edge in the corresponding region. Moreover, one could argue that this case is one in which there are several edges.Hence, to firmly state a specific threshold on how large the intensity change between two neighbouring pixels must be for us to say that there should be an edge between these pixels is not always a simple problem. Indeed, this is one of the reasons why edge detection may be a non-trivial problem unless the objects in the scene are particularly simple and the illumination conditions can be well controlled.There are many methods for edge detection, but most of them can be grouped into two categories,search-based and zero-crossing based. The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction. The zero-crossing based methods search for zero crossings in a second-order derivative expression computed from the image in order to find edges, usually the zero-crossings of the Laplacian or the zero-crossings of a non-linear differential expression, as will be described in the section on differential edge detection following below. As a pre-processing step to edge detection, a smoothing stage, typically Gaussian smoothing, is almost always applied (see also noise reduction).The edge detection methods that have been published mainly differ in the types of smoothing filters that are applied and the way the measures of edge strength are computed. As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions.Once we have computed a measure of edge strength (typically the gradient magnitude), the next stage is to apply a threshold, to decide whether edges are present or not at an image point. The lower the threshold, the more edges will be detected, and the result will be increasingly susceptible to noise, and also to picking out irrelevant features from the image. Conversely a high threshold may miss subtle edges, or result in fragmented edges.If the edge thresholding is applied to just the gradient magnitude image, the resulting edges will in general be thick and some type of edge thinning post-processing is necessary. For edges detected with non-maximum suppression however, the edge curves are thin by definition and the edge pixels can be linked into edge polygon by an edge linking (edge tracking) procedure. On a discrete grid, the non-maximum suppression stage can be implemented by estimating the gradient direction using first-order derivatives, then rounding off the gradient direction to multiples of 45 degrees, and finally comparing the values of the gradient magnitude in the estimated gradient direction.A commonly used approach to handle the problem of appropriate thresholds for thresholding is by using thresholding with hysteresis. This method uses multiple thresholds to find edges. We begin by using the upper threshold to find the start of an edge. Once we have a start point, we then trace the path of the edge through the image pixel by pixel, marking an edge whenever we are above the lower threshold. We stop marking our edge only when the value falls below our lower threshold. This approach makes the assumption that edges are likely to be in continuous curves, and allows us to follow a faint section of an edge we have previously seen, without meaning that every noisy pixel in the image is marked down as an edge. Still, however, we have the problem of choosing appropriate thresholding parameters, and suitable thresholding values may vary over the image.Some edge-detection operators are instead based upon second-order derivatives of the intensity. This essentially captures the rate of change in the intensity gradient. Thus, in the ideal continuous case, detection of zero-crossings in the second derivative captures local maxima in the gradient.We can come to a conclusion that,to be classified as a meaningful edge point,the transition in gray level associated with that point has to be significantly stronger than the background at that point.Since we are dealing with local computations,the method of choice to determine whether a value is “significant” or not id to use a threshold.Thus we define a point in an image as being as being an edge point if its two-dimensional first-order derivative is greater than a specified criterion of connectedness is by definition an edge.The term edge segment generally is used if the edge is short in relation to the dimensions of the image.A key problem in segmentation is to assemble edge segments into longer edges.An alternate definition if we elect to use the second-derivative is simply to define the edge ponits in an imageas the zero crossings of its second derivative.The definition of an edge in this case is the same as above.It is important to note that these definitions do not guarantee success in finding edge in an image.They simply give us a formalism to look for them.First-order derivatives in an image are computed using the gradient.Second-order derivatives are obtained using the Laplacian.数字图像处理与边缘检测数字图像处理数字图像处理方法的研究源于两个主要应用领域:其一是改进图像信息以便于人们分析;其二是为使机器自动理解而对图像数据进行存储、传输及显示。
边缘检测外文翻译--一个索贝尔图像边缘检测算法描述
译文一:1一个索贝尔图像边缘检测算法描述[1]摘要:图像边缘检测是一个确定图像边缘的过程,在输入的灰度图中的各个点寻找绝对梯度近似级对于边缘检测是非常重要的。
为边缘获得适当的绝对梯度幅度主要在与使用的方法。
Sobel算子就是在图像上进行2-D的空间梯度测量。
转换2-D像素列阵到性能统计数据集提高了数据冗余消除,因此,作为代表的数字图像,数据量的减少是需要的。
Sobel边缘检测器采用一对3×3的卷积模板,一块估计x-方向的梯度,另一块估计y-方向的梯度。
Sobel检测器对于图像中的噪音很敏感,它能有效地突出边缘。
因此,Sobel算子被建议用在数据传输中的大量数据通信。
关键词:图像处理,边缘检测,Sobel算子,通信数据,绝对梯度幅度。
引言图像处理在现代数据储存和数据传输方面十分重要,特别是图像的渐进传输,视频编码(电话会议),数字图书馆,图像数据库以及遥感。
它与处理靠算法产生所需的图像有关(Milan et al., 2003)。
数字图像处理(DSP)提高了在极不利条件下所拍摄的图像的质量,具体方法有:调整亮度与对比度,边缘检测,降噪,调整重点,减少运动模糊等(Gonzalez, 2002)。
图像处理允许更广泛的范围被应用到输入数据,以避免如噪声和信号失真集结在加工过程中存在的问题(Baker & Nayar, 1996)。
在19世纪60年代的Jet Propulsion实验室,美国麻省理工学院(MIT),贝尔实验室以及一些其他的地方,数字图像处理技术不断发展。
但是,因为当时的计算设备关系,处理的成本却很高。
随着20世纪快速计算机和信号处理器的应用,数字图像处理变成了图像处理最通用的形式,因为它不只是最多功能的,还是最便宜的。
图像处理过程中允许一些更复杂算法的使用,从而可以在简单任务中提供更先进的性能,同时可以实现模拟手段不能实现的方法(Micheal, 2003)。
因此,计算机搜集位表示像素或者点形成的图片元素,以此储存在电脑中(Vincent, 2006)。
外文文献资料(Canny-算子)
外文文献资料Canny edge detector1.Cannyedge detectorIntroductionThe Cannyedge detection operator wasdeveloped by J ohn F.Cannyin1986 anduses amulti—stage algorithmto detect a widerange of edgesin images.Mostimportantly,Canny also produced a computational theoryofedge detection explaining why the technique works.2。
Developmentof theCanny algorithmCanny's aim was to discover the optimaledge detection alg orithm。
Inthissituation,an"optimal" edge detector means:●gooddetection – the algorithm shouldmark as manyrealedges in the imageas possible.●goodlocalization – edges markedshould beasclose as possibleto the edgein the real image.●minimal response – a given edgein theimageshould only be markedonce,and where possible, imagenoise shouldnot createfalseedges.To satisfy these requirements Canny usedthe calculus ofvariations– a techniquewhich finds the function which optimizes a given functional. The optimal function in Canny's d etector isdescribedby the sum of four exponential terms,but canbe approximatedby the firstderivative of a Gaussian。
图像处理中的边缘检测算法及其应用
图像处理中的边缘检测算法及其应用一、引言图像处理是指利用计算机对数字图像进行编辑、处理和分析的过程,具有广泛的应用领域。
在图像处理中,边缘检测是一项最为基础的任务,其目的是通过识别图像区域中像素强度突变处的变化来提取出图像中的边缘信息。
本文将介绍边缘检测算法的基本原理及其应用。
二、基本原理边缘是图像中像素值发生跳变的位置,例如黑色区域与白色区域的交界处就可以看作是一条边缘。
边缘检测的主要任务是将这些边缘信息提取出来。
边缘检测算法一般可以分为基于梯度的算法和基于二阶导数的算法。
其中基于梯度的算法主要包括Sobel算子、Prewitt算子和Canny算子;而基于二阶导数的算法主要包括Laplacian算子、LoG(Laplacian of Gaussian)算子和DoG(Difference of Gaussian)算子。
1.Sobel算子Sobel算子是一种常用的边缘检测算法,是一种基于梯度的算法。
该算法在x方向和y方向上都使用了3x3的卷积核,它们分别是:Kx = |-2 0 2|-1 0 1-1 -2 -1Ky = | 0 0 0|1 2 1Sobel算子的实现可以通过以下步骤:①将输入图像转为灰度图像;②根据以上卷积核计算x方向和y方向的梯度;③根据以下公式计算梯度幅值和方向:G = sqrt(Gx^2 + Gy^2) (梯度幅值)θ = atan(Gy/Gx) (梯度方向)其中Gx和Gy分别为x方向和y方向上的梯度。
可以看到,Sobel算子比较简单,对噪声具有一定的抑制作用,但是在边缘细节处理上不够精细。
2.Prewitt算子Prewitt算子也是一种基于梯度的边缘检测算法。
其卷积核如下: -1 0 1-1 0 1-1 -1 -1Ky = | 0 0 0|1 1 1实现方法与Sobel算子类似。
3.Canny算子Canny算子是一种基于梯度的边缘检测算法,是目前应用最广泛的边缘检测算法之一。
图像处理中的边缘检测与特征提取
图像处理中的边缘检测与特征提取边缘检测与特征提取在图像处理中扮演着至关重要的角色。
边缘是图像中灰度或颜色变化较为明显的区域,而特征则是对图像中的某个目标或者结构进行描述的量化指标。
本文将介绍边缘检测和特征提取的基本概念、应用场景以及常用方法。
一、边缘检测边缘检测是图像处理中一个基本的步骤,它可以帮助我们找到图像中物体边界的信息。
边缘检测的结果通常是一幅二值图像,其中边缘的位置被表示为像素值为1的点,其他区域的像素值为0。
1. Sobel算子Sobel算子是一种基于差分的边缘检测算法,它通过计算图像中每个像素点的梯度值来确定边缘的位置。
Sobel算子分别使用水平和垂直两个方向的差分模板来计算梯度值,然后将两个方向的梯度值进行综合来得到最终的边缘检测结果。
2. Canny算法Canny算法是一种广泛应用的边缘检测算法,它通过多个步骤来实现边缘检测的目标。
首先,Canny算法使用高斯滤波器对图像进行平滑处理,然后计算图像中每个像素点的梯度和方向。
接下来,通过非极大值抑制来消除梯度方向上的非极大值点,最后使用双阈值算法来进一步确定边缘的强度和连通性。
二、特征提取特征提取是对图像中感兴趣的区域或者目标进行描述和量化的过程。
通过提取图像中的各种特征,我们可以实现图像分类、目标检测、图像匹配等应用。
1. 颜色特征颜色是图像中最直观的特征之一,可以通过提取图像的颜色直方图来描述图像中不同颜色的分布情况。
另外,HSV(色调、饱和度、亮度)颜色空间也被广泛应用于颜色特征的提取。
2. 纹理特征纹理是图像中重要的一种特征,可以帮助我们区分物体的表面特征。
纹理特征可以通过统计图像中像素灰度或颜色的空间分布来描述,常用的方法包括灰度共生矩阵、小波变换等。
3. 形状特征形状是物体最基本的几何属性,可以通过提取物体轮廓的特征来描述。
常用的形状特征包括傅里叶描述子、轮廓矩等。
三、应用场景边缘检测和特征提取在图像处理中被广泛应用于各种场景。
拉普拉斯边缘检测
拉普拉斯边缘检测(Laplacian for Edge Detection):当图像像素的灰度值发生剧烈变化的时候,梯度算子是个很有效的方法,但是当灰度值变化很缓慢的时候,梯度的效果并不是很好如图一所示,红色曲线表示像素灰度值的变化,绿色曲线是用梯度处理后的结果,蓝色曲线是拉普拉斯算子处理后的结果。
所以,此时考虑用拉普拉斯算子是非常有效的,拉普拉斯算子是图像在x,y方向上二阶偏导的和。
计算公式如下:图一如图二,左边的源图像,然后用2个不同的拉普拉斯算子进行卷积,得到下面的结果:图二实验结果图:拉普拉斯边缘检测高斯模糊(Gaussian Blur):也称高斯平滑,即对图像用高斯函数进行处理,来消除图像的噪声,和高频成分,同时,图像的细节信息也会失去一些,所以它是一个低通滤波器。
高斯函数在一维中的方程是:二维中的方程是:在图像处理中,往往用一个高斯模板跟图像进行卷积,来形成高斯模糊后的图像,模板的选择有3*3,5*5,7*7,……,下图显示了大小为7*7、sigma为0.84的高斯模板:可以看出,模板中心的数值最大,是0.22508352,随着离中心越远,数值就越来越小。
实验结果图:高斯模糊高斯拉普拉斯算子(Laplacian of Gaussian (LoG)):因为拉普拉斯算子在检测边缘的同时,对噪声也很敏感,所以我们在做拉普拉斯之前,先对图像进行高斯模糊,然后再做拉普拉斯边缘检测,这个方法就是Laplacian of Gaussian (LoG)。
实验结果图:LOG高斯差分(Difference of Gaussian (DoG)):这是对LOG的近似,在LOG中,要对图像做拉普拉斯检测,涉及到对图像的二阶偏导,计算量很大,所以为了减少计算量,我们提出了LOG的近似--DOG.先对源图像用sigma1的高斯模糊,形成图像1,然后在对源图像做sigma2的高斯模糊,形成图像2,最后用图像1减去图像2就形成了DOG图像。
图像的边缘检测
另外Hough变换也可用来检测曲线。
边沿检测算子
几种常用旳边沿检测算子
梯度算子 Roberts算子 Prewitt算子 Sobel算子 Kirsch算子 Laplacian算子 Marr算子
梯度算子
函数f(x,y)在(x,y)处旳梯度为一种向量: f = [f / x , f / y]
计算这个向量旳大小为: G = [(f / x)2 +(f / y)2]1/2 近似为: G |fx| + |fy|
Hough变换
相应一条直线
(ρ,θ)
ρ
Hough变换检测法
基本思想
Hough变换检测法
算法实现:
使用交点累加器,或交点统计直方图, 找出相交线段最多旳参数空间旳点,然 后找出该点相应旳xy平面旳直线线段。
算法环节:
1.在ρ、θ旳极值范围内对其分别进行m,n等分,设一 种二维数组旳下标与ρi、θj旳取值相应;
模板: -1 0 1
-1 -1 -1
-1 0 1
000
特点: -1 0 1
111
在检测边沿旳同步,能抑止噪声旳影响
Sobel算子
公式
fx f (x 1, y 1) 2 f (x 1, y) f (x 1, y 1) f (x 1, y 1) 2 f (x 1, y) f (x 1, y 1)
对于直角坐标系中旳一条直线l,可用ρ、θ来表达该 直线,且直线方程为: x cos y sin
其中,ρ为原点到该直线旳垂直距离,θ为垂线与x轴 旳夹角,这条直线是唯一旳。
构造一种参数ρθ旳平面,从而有如下结论:
直角坐标系中旳共线点
图像边缘检测与提取算法的比较和实现毕业设计论文
第
数字图像边缘检测技术起源于20世纪20年代,当时受条件的限制一直没有取得较大进展,直到20世纪60年代后期电子技术、计算机技术有了相当的发展,数字图像边缘检测处理技术才开始进入了高速发展时期。经过几十年的发展,数字图像边缘检测处理技术目前己经广泛应用于工业、微生物领域、医学、航空航天以及国防等许多重要领域,多年来一直得到世界各科技强国的广泛关注。
1.1
所谓图像边缘(Edlge)是指图像局部特性的不连续性,例如,灰度级的突变,颜色的突变,纹理结构的突变等。边缘广泛存在于目标与目标、物体与背景、区域与区域(含不同色彩)之间,它是图像分割所依赖的重要特征。本为主要讨论几种典型的图像灰度值突变的边缘检测方法,其原理也是用于其他特性突变的边缘检测。
图像的边线通常与图像灰度的一阶导数的不连续性有关。图像灰度的不连续性可分为两类:阶跃不连续,即图像灰度再不连续出的两边的像素的灰度只有明显的差异,如图1.1所示,线条不连续,即图像灰度突然从一个值变化到另一个值,保持一个较小的行程又返回到原来的值。在实际中,阶跃和线条边缘图像是较少见的,由于空间分辨率(尺度空间)、图像传感器等原因会使阶跃边缘变成斜坡形边缘,线条边缘变成房顶形边缘。它们的灰度变化不是瞬间的而是跨越一定距离的。
(保密论文在解密后遵守此规定)
作者签名:
二〇一〇年九月二十日
摘要
图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。边缘作为图像的一种基本特征,在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用。图像边缘提取的手段多种多样,其中基于亮度的算法,是研究时间最久,理论发展最成熟的方法,它主要是通过一些差分算子,由图像的亮度计算其梯度的变化,从而检测出边缘,主要有Robert,Prewitt, Sobel, Laplacian Canny, Log等算子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附:英文资料翻译图像的边缘检测To image edge examination algorithm research academic reportAbstractDigital image processing took a relative quite young discipline, is following the computer technology rapid development, day by day obtains the widespread application.The edge took the image one kind of basic characteristic, in the pattern recognition, the image division, the image intensification as well as the image compression and so on in the domain has a more widespread application.Image edge detection method many and varied, in which based on brightness algorithm, is studies the time to be most long, the theory develops the maturest method, it mainly is through some difference operator, calculates its gradient based on image brightness the change, thus examines the edge, mainly has Robert, Laplacian, Sobel, Canny, operators and so on LOG. First as a whole introduced digital image processing and the edge detection survey, has enumerated several kind of at present commonly used edge detection technology and the algorithm, and selects two kinds to use Visual the C language programming realization, through withdraws the image result to two algorithms the comparison, the research discusses their good and bad points.对图像边缘检测算法的研究学术报告摘要数字图像处理作为一门相对比较年轻的学科, 伴随着计算机技术的飞速发展, 日益得到广泛的应用. 边缘作为图像的一种基本特征, 在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用.图像边缘提取的手段多种多样,其中基于亮度的算法,是研究时间最久,理论发展最成熟的方法, 它主要是通过一些差分算子, 由图像的亮度计算其梯度的变化, 从而检测出边缘, 主要有 Robert, Laplacian, Sobel, Canny, LOG 等算子. 首先从总体上介绍了数字图像处理及边缘提取的概况, 列举了几种目前常用的边缘提取技术和算法,并选取其中两种使用 Visual C++语言编程实现,通过对两种算法所提取图像结果的比较,研究探讨它们的优缺点.First chapter introduction§1.1 image edge examination introductionThe image edge is one of image most basic characteristics, often is carrying image majority of informations.But the edge exists in the image irregular structure and in not the steady phenomenon, also namely exists in the signal point of discontinuity place, these spots have given the image outline position, these outlines are frequently we when the imagery processing needs the extremely important some representative condition, this needs us to examine and to withdraw its edge to an image. But the edge examination algorithm is in the imagery processing question one of classical technical difficult problems, its solution carries on the high level regarding us the characteristic description, the recognition and the understanding and so on has the significant influence; Also because the edge examination all has in many aspects the extremely important use value, therefore how the people are devoting continuously in study and solve the structure to leave have the good nature and the good effect edge examination operator question.In the usual situation, we may the signal in singular point and the point of discontinuity thought is in the image peripheral point, its nearby gradation change situation may reflect from its neighboring picture element gradation distribution gradient. According to this characteristic, we proposed many kinds of edge examination operator: If Robert operator, Sobel operator, Prewitt operator, Laplace operator and so on.These methods many are wait for the processing picture element to carry on the gradation analysis for the central neighborhood achievement the foundation, realized and has already obtained the good processing effect to the image edge extraction. . But this kind of method simultaneously also exists has the edge picture element width, the noise jamming is serious and so on the shortcomings, even if uses some auxiliary methods to perform the denoising, also corresponding can bring the flaw which the edge fuzzy and so on overcomes with difficulty.Along with the wavelet analysis appearance, its good time frequency partial characteristic by the widespread application in the imagery processing and in the pattern recognition domain, becomes in the signal processing the commonly used method and the powerful tool.Through the wavelet analysis, may interweave decomposes in the same place each kind of composite signal the different frequency the block signal, but carries on the edge examination through the wavelet transformation, may use its multi-criteria and the multi-resolution nature fully , real effective expresses the image the edge characteristic.When the wavelet transformation criterion reduces, is more sensitive to the image detail; But when the criterion increases, the image detail is filtered out, the examination edge will be only the thickoutline.This characteristic is extremely useful in the pattern recognition, we may be called this thick outline the image the main edge.If will be able an image main edge clear integrity extraction, this to the goal division, the recognition and so on following processing to bring the enormous convenience.Generally speaking, the above method all is the work which does based on the image luminance information. In the multitudinous scientific research worker under, has obtained the very good effect diligently.But, because the image edge receives physical condition and so on the illumination influences quite to be big above, often enables many to have a common shortcoming based on brightness edge detection method, that is the edge is not continual, does not seal up.Considered the phase information in the image importance as well as its stable characteristic, causes using the phase information to carry on the imagery processing into new research topic. In this paper soon introduces one kind based on the phase image characteristic examination method - - phase uniform method.It is not uses the image the luminance information, but is its phase characteristic, namely supposition image Fourier component phase most consistent spot achievement characteristic point.Not only it can examine brightness characteristics and so on step characteristic, line characteristic, moreover can examine Mach belt phenomenon which produces as a result of the human vision sensation characteristic.Because the phase uniformity does not need to carry on any supposition to the image characteristic type, therefore it has the very strong versatility.第一章绪论§1.1 图像边缘检测概论图像边缘是图像最基本的特征之一, 往往携带着一幅图像的大部分信息. 而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像处理时所需要的非常重要的一些特征条件, 这就需要我们对一幅图像检测并提取出它的边缘. 而边缘检测算法则是图像处理问题中经典技术难题之一, 它的解决对于我们进行高层次的特征描述, 识别和理解等有着重大的影响; 又由于边缘检测在许多方面都有着非常重要的使用价值, 所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题.在通常情况下,我们可以将信号中的奇异点和突变点认为是图像中的边缘点,其附近灰度的变化情况可从它相邻像素灰度分布的梯度来反映.根据这一特点,我们提出了多种边缘检测算子:如 Robert 算子,Sobel 算子,Prewitt 算子, Laplace 算子等.这些方法多是以待处理像素为中心的邻域作为进行灰度分析的基础,实现对图像边缘的提取并已经取得了较好的处理效果. 但这类方法同时也存在有边缘像素宽,噪声干扰较严重等缺点,即使采用一些辅助的方法加以去噪,也相应的会带来边缘模糊等难以克服的缺陷.随着小波分析的出现, 其良好的时频局部特性被广泛的应用在图像处理和模式识别领域中, 成为信号处理中常用的手段和有力的工具. 通过小波分析, 可以将交织在一起的各种混合信号分解成不同频率的块信号,而通过小波变换进行边缘检测,可以充分利用其多尺度和多分辨率的性质,真实有效的表达图像的边缘特征.当小波变换的尺度减小时,对图像的细节更加敏感;而当尺度增大时,图像的细节将被滤掉,检测的边缘只是粗轮廓.该特性在模式识别中非常有用,我们可以将此粗轮廓称为图像的主要边缘.如果能将一个图像的主要边缘清晰完整的提取出来,这将对目标分割,识别等后续处理带来极大的便利.总的说来,以上方法都是基于图像的亮度信息来作的工作. 在众多科研工作者的努力下,取得了很好的效果.但是,由于图像边缘受到光照等物理条件的影响比较大, 往往使得以上诸多基于亮度的边缘提取方法有着一个共同的缺点, 那就是边缘不连续, 不封闭. 考虑到相位信息在图像中的重要性以及其稳定的特点, 使得利用相位信息进行图像处理成为新的研究课题. 在本文中即将介绍一种基于相位的图像特征检测方法——相位一致性方法. 它并不是利用图像的亮度信息,而是其相位特点,即假设图像的傅立叶分量相位最一致的点作为特征点.它不但能检测到阶跃特征, 线特征等亮度特征, 而且能够检测到由于人类视觉感知特性而产生的的马赫带现象. 由于相位一致性不需要对图像的特征类型进行任何假设,所以它具有很强的通用性.§1.2 image edge definitionThe image majority main information all exists in the image edge, the main performance for the image partial characteristic discontinuity, is in the image the gradation change quite fierce place, also is the signal which we usually said has the strange change place. The strange signal the gradation change which moves towards along the edge is fierce, usually we divide the edge for the step shape and the roof shape two kind of types (as shown in Figure 1-1).In the step edge two side grey levels have the obvious change; But the roof shape edge is located the gradation increase and the reduced intersection point.May portray the peripheral point in mathematics using the gradation derivative the change, to the step edge, the roof shape edge asks its step, the second time derivative separately. To an edge, has the possibility simultaneously to have the step and the line edge characteristic. For example on a surface, changes from a plane to the normal direction different another plane can produce the step edge; If this surface has the edges and corners which the regular reflection characteristic also two planes form quite to be smooth, then works as when edges and corners smooth surface normal after mirror surface reflection angle, as a result of the regular reflection component, can produce the bright light strip on the edges and corners smooth surface, such edge looked like has likely superimposed a line edge in the step edge. Because edge possible and in scene object important characteristic correspondence, therefore it is the very important image characteristic.For instance, an object outline usually produces the step edge, because the object image intensity is different with the background image intensity.§1.3 paper selected topic theory significanceThe paper selected topic originates in holds the important status and the function practical application topic in the image project.The so-called image project discipline is refers foundation discipline and so on mathematics, optics principles, the discipline which in the image application unifies which accumulates the technical background develops.The image project content is extremely rich, and so on divides into three levels differently according to the abstract degree and the research technique: Imagery processing, image analysis and image understanding.As shown in Figure 1-2, in the chart the image division is in between the image analysis and the imagery processing, its meaning is, the image division is from the imagery processing to the image analysis essential step, also is further understands the image the foundation. The image division has the important influence to the characteristic.The image division and based on the division goal expression, the characteristic extraction and the parameter survey and so on transforms the primitive image as a more abstract more compact form, causes the high-level image analysis and possibly understands into.But the edge examination is the image division core content, therefore the edge examination holds the important status and the function in the image project.Therefore the edge examination research always is in the image engineering research the hot spot and the focal point, moreover the people enhance unceasingly to its attention and the investment.§1.2 图像边缘的定义图像的大部分主要信息都存在于图像的边缘中, 主要表现为图像局部特征的不连续性, 是图像中灰度变化比较剧烈的地方, 也即我们通常所说的信号发生奇异变化的地方. 奇异信号沿边缘走向的灰度变化剧烈,通常我们将边缘划分为阶跃状和屋顶状两种类型(如图 1-1 所示).阶跃边缘中两边的灰度值有明显的变化; 而屋顶状边缘位于灰度增加与减少的交界处. 在数学上可利用灰度的导数来刻画边缘点的变化,对阶跃边缘,屋顶状边缘分别求其一阶,二阶导数. 对一个边缘来说,有可能同时具有阶跃和线条边缘特性.例如在一个表面上,由一个平面变化到法线方向不同的另一个平面就会产生阶跃边缘; 如果这一表面具有镜面反射特性且两平面形成的棱角比较圆滑,则当棱角圆滑表面的法线经过镜面反射角时,由于镜面反射分量,在棱角圆滑表面上会产生明亮光条, 这样的边缘看起来象在阶跃边缘上叠加了一个线条边缘. 由于边缘可能与场景中物体的重要特征对应,所以它是很重要的图像特征.比如,一个物体的轮廓通常产生阶跃边缘, 因为物体的图像强度不同于背景的图像强度.§1.3 论文选题的理论意义论文选题来源于在图像工程中占有重要的地位和作用的实际应用课题.所谓图像工程学科是指将数学,光学等基础学科的原理,结合在图像应用中积累的技术经验而发展起来的学科.图像工程的内容非常丰富,根据抽象程度和研究方法等的不同分为三个层次:图像处理,图像分析和图像理解.如图 1-2 所示,在图中,图像分割处于图像分析与图像处理之间,其含义是,图像分割是从图像处理进到图像分析的关键步骤,也是进一步理解图像的基础.图像分割对特征有重要影响. 图像分割及基于分割的目标表达, 特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能. 而边缘检测是图像分割的核心内容, 所以边缘检测在图像工程中占有重要的地位和作用. 因此边缘检测的研究一直是图像技术研究中热点和焦点,而且人们对其的关注和投入不断提高.欢迎您的下载,资料仅供参考!。