【初中】数学 优质课大赛 平行线的判定教学设计

合集下载

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案市公开课一等奖教案省赛课金奖教案

平行线的判定教案一、教学目标1. 知识目标:掌握平行线的判定方法,包括同位角相等、内错角互补、对顶角相等以及平行线的特性,为解决与平行线相关的几何问题打下基础。

2. 技能目标:培养学生观察、分析和推理的能力,提升解决几何问题的能力。

3. 情感目标:通过合作学习和解决实际问题的过程,培养学生的团队合作精神,增强自信心。

二、教学重点和难点1. 教学重点:学习平行线判定的方法和技巧,掌握平行线的基本特性。

2. 教学难点:理解平行线的概念及其判定方法,运用所学知识解决实际问题。

三、教学准备黑板、白板、书籍、平行尺、草纸、教学案例等。

四、教学过程Step 1 引入新知1. 引导学生思考:你们对“平行线”有什么了解?该如何判定两条线是否平行?2. 出示两条线段 AB 和 CD,让学生观察并比较。

引导学生表示平行的概念。

3. 引导学生讨论并总结两条线段平行的条件,如同位角相等、内错角互补、对顶角相等等。

Step 2 学习平行线判定方法1. 同位角相等:绘制两条平行线,引导学生观察同位角的性质和关系,并通过示例教案演示同位角相等的判定方法。

2. 内错角互补:绘制两条交叉的线段,引导学生观察内错角的性质和关系,并通过示例教案演示内错角互补的判定方法。

3. 对顶角相等:绘制两条平行线与第三条交叉线,引导学生观察对顶角的性质和关系,并通过示例教案演示对顶角相等的判定方法。

4. 引导学生总结并记忆平行线的判定方法,培养学生观察、分析和推理的能力。

Step 3 拓展知识与应用1. 引导学生运用所学知识解决实际问题。

例如:已知直线 AB 和直线 CD,点 P 为两直线之间的一个点,如何判定直线 PA 和直线 PB 是否平行?2. 给学生分组讨论并解决教师提供的实际问题,加深对平行线判定方法的理解和掌握。

Step 4 总结归纳1. 通过学生的合作探究和问题解决,教师对平行线的判定方法进行总结,并与学生一起归纳出判定平行线的要点和方法。

七年级数学下册《平行线的判定》教案、教学设计

七年级数学下册《平行线的判定》教案、教学设计
(二)过程与方法
1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。

人教版初中数学教案(最新6篇)

人教版初中数学教案(最新6篇)

人教版初中数学教案(最新6篇)平行线的判定教案篇一一、教学目标1、了解推理、证明的格式,理解判定定理的证法。

2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

二、学法引导1、教师教法:启发式引导发现法。

2、学生学法:积极参与、主动发现、发展思维。

三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答。

(二)难点使用符号语言进行推理。

(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点。

2、通过教师指导,学生自行完成推理过程,解决难点及疑点。

四、课时安排1课时《·》五、教具学具准备三角板、投影仪、自制胶片。

六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课。

2、通过教师指导,学生探索新知,练习巩固,完成新授。

3、通过学生自己总结完成小结。

七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。

(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。

初中平行线的判定教案

初中平行线的判定教案

初中平行线的判定教案教学目标:知识与技能目标:理解平行线的定义,掌握平行线的判定方法,能够运用判定定理进行证明。

过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

教学重点:平行线的定义,平行线的判定方法。

教学难点:平行线的判定定理的理解和应用。

教学准备:三角板、直尺、橡皮擦、多媒体教学设备。

教学过程:一、导入新课1. 利用多媒体展示生活中含有平行线的图片,如教室的黑板、自行车的轮胎等,引导学生观察并说出平行线的特点。

2. 教师总结平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

二、探究平行线的判定方法1. 教师提出问题:如何判断两条直线是否平行?2. 学生分组讨论,教师巡回指导。

3. 各小组汇报讨论成果,教师总结并给出平行线的判定方法:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

三、例题讲解1. 教师出示例题,引导学生运用判定方法进行解答。

2. 学生独立思考,教师巡回指导。

3. 学生汇报解题过程,教师点评并总结。

四、练习巩固1. 教师出示练习题,学生独立完成。

2. 教师选取部分学生的作业进行点评,指出错误并讲解。

五、课堂小结1. 教师引导学生总结本节课所学内容,巩固平行线的定义和判定方法。

2. 学生分享学习收获,教师给予鼓励和评价。

六、课后作业1. 完成课后练习题。

2. 观察生活中的平行线,拍摄照片,下节课分享。

教学反思:本节课通过观察生活中的平行线,引导学生发现平行线的特点,从而引入平行线的定义。

在探究平行线的判定方法时,鼓励学生分组讨论,培养学生的合作意识。

在例题讲解和练习巩固环节,注重培养学生的逻辑思维能力和空间想象能力。

通过课堂小结和课后作业,使学生巩固所学知识,提高运用所学知识解决实际问题的能力。

整体来说,本节课教学目标明确,教学方法得当,学生参与度高,达到了预期的教学效果。

(初中数学教案)平行线的判定初中数学教案

(初中数学教案)平行线的判定初中数学教案

平行线的判定学校数学教案教学建议1、教材分析(1)学问结构:由平行线的画法,引出平行线的判定公理〔同位角相等,两直线平行〕.由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是推断两直线平行的依据,也为下一节,学习平行线的性质打下了根底.本节内容的难点是:理解由判定公理推出判定定理的证明过程.同学刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可识别出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使同学初步理解证明的步骤和根本方法,能依据所学学问在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分表达一条主线索:“充分试验—认真观看—形成猜想—实践检验—明确条件和结论.〞老师可演示教材中所示的教具,还可以让每个同学都用三角板和直尺画出平行线.在此过程中,留意角的变化状况.事实充分,同学可以理解,假犹如位角相等,那么两直线肯定会平行.平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行〞.老师可组织同学按所给图形进行争辩.如何利用和几何的公理、定理来证明这个明显成立的事实.也可多叫几个同学进行重复.逐步使同学观赏到数学证明的严谨性.另一个定理的发觉与证明过程也与此类似.教学设计例如1一、教学目标1.了解推理、证明的格式,把握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简洁的推理论证.3.通过模型演示,即“运动—变化〞的数学思想方法的运用,培育同学的“观看—分析〞和“归纳—总结〞的力量.二、学法引导1.老师教法:启发式引导发觉法.2.同学学法:独立思考,主动发觉.三、重点·难点及解决方法〔一〕重点在观看试验的根底上进行公理的概括与定理的推导.〔二〕难点判定定理的形成过程中规律推理及书写格式.〔三〕解决方法1.通过观看试验,奇妙设问,解决重点.2.通过引导正确思维,严格呈现推理书写格式,明确方法来解决难点、疑点.四、课时支配l课时五、教具学具预备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过试验观看,引导思维,概括出公理及定理的推导,并以练习进行稳固.3.通过老师提问,同学答复完成归纳小结.七、教学步骤〔-〕明确目标教学建议1、教材分析(1)学问结构:由平行线的画法,引出平行线的判定公理〔同位角相等,两直线平行〕.由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.(2)重点、难点分析:本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是推断两直线平行的依据,也为下一节,学习平行线的性质打下了根底.本节内容的难点是:理解由判定公理推出判定定理的证明过程.同学刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可识别出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使同学初步理解证明的步骤和根本方法,能依据所学学问在括号内填上恰当的公理或定理.2、教学建议在平行线判定公理的教学中,应充分表达一条主线索:“充分试验—认真观看—形成猜想—实践检验—明确条件和结论.〞老师可演示教材中所示的教具,还可以让每个同学都用三角板和直尺画出平行线.在此过程中,留意角的变化状况.事实充分,同学可以理解,假犹如位角相等,那么两直线肯定会平行.平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行〞.老师可组织同学按所给图形进行争辩.如何利用和几何的公理、定理来证明这个明显成立的事实.也可多叫几个同学进行重复.逐步使同学观赏到数学证明的严谨性.另一个定理的发觉与证明过程也与此类似.教学设计例如1一、教学目标1.了解推理、证明的格式,把握平行线判定公理和第一个判定定理.2.会用判定公理及第一个判定定理进行简洁的推理论证.3.通过模型演示,即“运动—变化〞的数学思想方法的运用,培育同学的“观看—分析〞和“归纳—总结〞的力量.二、学法引导1.老师教法:启发式引导发觉法.2.同学学法:独立思考,主动发觉.三、重点·难点及解决方法〔一〕重点在观看试验的根底上进行公理的概括与定理的推导.〔二〕难点判定定理的形成过程中规律推理及书写格式.〔三〕解决方法1.通过观看试验,奇妙设问,解决重点.2.通过引导正确思维,严格呈现推理书写格式,明确方法来解决难点、疑点.四、课时支配l课时五、教具学具预备三角板、投影胶片、投影仪、计算机.六、师生互动活动设计1.通过两组题,复习旧知,引入新知.2.通过试验观看,引导思维,概括出公理及定理的推导,并以练习进行稳固.3.通过老师提问,同学答复完成归纳小结.七、教学步骤〔-〕明确目标把握平行线判定公理和第一个判定定理及运用其进行简洁的推理论证.〔二〕整体感知以情境设计,引出课题,以模型演示,引导同学观看,、分析、总结,讲授新知,以变式训练稳固新知,在整节课中,较充分地表达了规律推理.〔三〕教学过程创设情境,引出课题师:上节课我们学习了平行线、平行公理及推论,请同学们推断以下语句是否正确,并说明理由〔出示投影〕.1.两条直线不相交,就叫平行线.2.与一条直线平行的直线只有一条.3.假如直线、都和平行,那么、就平行.同学活动:同学口答上述三个问题.【教法说明】通过三个推断题,使同学回忆上节所学学问,第1题在于强化平行线定义的前提条件“在同一平面内〞,第2题不仅回忆平行公理,同时使同学生疏学习几何,语言肯定要精确、标准,同一问题在不同条件下,就有不同的结论,第3题复习稳固平行公理推论的同时提示同学,它也是判定两条直线平行的方法.师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗依据什么同学:能判定垂直,依据垂直的定义.师:在同一平面内不相交的两条直线是平行线,你有方法测定两条直线是平行线吗同学活动:同学思考,如何测定两条直线是否平行老师在同学思考未得结论的状况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必需找其他可以测定的方法,有什么方法呢同学活动:同学思考,在前面复习平行公理推论的状况下,有的同学会提出,再作一条直线,让。

(最新)数学七年级下册第5章第2节《平行线的判定》省优质课一等奖教案

(最新)数学七年级下册第5章第2节《平行线的判定》省优质课一等奖教案

《平行线的判定》教学设计(第1课时)教学目标1. 理解并掌握两直线平行的条件──同位角相等,两直线平行.2. 理解用三角板和直尺过直线外一点画已知直线的平行线的依据.3. 会判断内错角、同旁内角.4. 掌握直线平行的第二种方法和第三种方法及其应用.5. 经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理的表达能力.教学重点判定两条直线平行的第二种和第三种方法.教学难点综合运用平行线的判定和性质解决问题.一、导入新课装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、新课教学以前我们学过用直尺和三角尺画平行线,如教材P12图5.2-5,在三角板移动的过程中,什么没有变?三角板经过点P的边与靠在直尺上的边所成的角没有变.简化图5.2-5,得下图.可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2相等的∠1,而∠2和∠1正是直线AB,CD被直线EF截得的同位角.这说明,如果同位角相等,那么AB∥CD.一般地,有如下利用同位角判定两条直线平行的方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.符号语言:∵∠1=∠2,∴AB∥CD.如下图,你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线.思考:如图,(1)如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=180°,能得出a∥b吗?(1)∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2(等量代换).∴a∥b(同位角相等,两条直线平行).你能用文字语言概括上面的结论吗?判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.符号语言:∵∠2=∠3,∴a∥b.(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)∴∠2=∠1(同角的补角相等)∴a∥b.(同位角相等,两条直线平行)你能用文字语言概括上面的结论吗?判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单地说:同旁内角互补,两直线平行.符号语言:∵∠4+∠2=180°,∴a∥b.四、课堂练习教材P14练习1,补充(3)由∠A+∠AB C=180°可以判断哪两条直线平行?依据是什么?五、课堂小结怎样判断两条直线平行?六、布置作业教材P15习题5.2第1、2、4题.教学反思:。

七年级数学上册《平行线的判定》教案、教学设计

七年级数学上册《平行线的判定》教案、教学设计
(2)选做课本第chapter页的拓展题,提高学生运用平行线性质解决问题的能力。
2.实践应用:
(1)观察生活中有哪些平行线的例子,用手机或相机拍照,并简要说明其中的平行线判定方法。
(2)结合实际情境,设计一道平行线相关的问题,并给出解答。
3.小组合作:
以小组为单位,共同完成以下任务:
(1)讨论平行线在实际生活中的应用,形成一份调查报告。
1.注重学生的认知规律,从简单到复杂,由易到难,逐步引导学生掌握平行线的判定方法。
2.考虑到学生的个体差异,因材施教,给予不同层次的学生适当的关注和指导。
3.激发学生的学习兴趣,通过生动有趣的生活实例,提高学生参与课堂的积极性和主动性。
4.培养学生的合作意识,组织学生进行小组讨论,使学生在互动交流中共同提高。
四、教学内容与过程
(一)导入新课
1.教学活动设计
利用多媒体展示生活中常见的平行线现象,如铁轨、电线、书本的边缘等,引导学生观察并思考这些现象背后的数学原理。
2.提出问题
提问:“同学们,你们在生活中还见到过哪些平行线的例子?这些平行线有什么共同的特点?”通过问题引导学生关注平行线的概念。
3.引入新课
在学生回答问题的基础上,教师总结:“平行线在我们的生活中无处不在,今天我们就来学习如何判定两条直线是否平行。”
作业评价:
1.作业完成情况将作为学生课堂表现评价的一部分,鼓励学生认真完成作业,提高自身能力。
2.教师将对作业进行批改,并及时给予反馈,帮助学生查漏补缺,提高学习效果。
3.对于表现优秀的学生,教师将给予表扬和奖励,激发学生的学习积极性。
请同学们认真对待本次作业,通过作业的完成,提高自己的数学素养,为今后的学习打下坚实基础。

2019-2020年初中数学优质课大赛平行线的判定教学设计

2019-2020年初中数学优质课大赛平行线的判定教学设计
【活动 2】探究本节课的问 题,从画平行线开始入手 .
引导学生总结回顾本节知识点,培养学 生的概括表达能力并巩固知识、 灵活应用 . 通
过补充作业题,满足部分学生的需求 .
教学过程设计
师生行为
设计意图
教师请一名学生帮助演
活动 1 来源于生活实际,
示木工用角尺在木板上画平
用角尺演示木工画图过程容
行线 . 学生观察、思考,引出 易激发学生的学习兴趣; 教材
活动 2:探究判定方法 1
从用直尺和三角尺画平行线开始,设计 问题串, 引导学生探究并认可 “同位角相等, 两直线平行” .
活动 3:应用判定方法 1 解决(实际)问题
首先明确判定 1 是画法的依据,进而解 决引课中的 问题,并通过一个直接应用问题 巩固判定方法 1. 让学生熟悉和应用判定 1.
活动 4:在解决问题中探究判定方法
是从“说理”过渡到“简单推理” . 在判定 2、3 的学习中用说理的方式展示推理的过程,强
调让学生经历推理的过程,感受推理论证的作用,使说理、推理作为观察、实验、探究得出
结论的自然延续 . 尽管只是入门阶段, 但对学生来说是一个难点, 因此教师要有规范的示范,
同时注意循序渐进、因材施教,不能作统一要求或要求过高
方法 .
3.情感态度与价值观
让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,
培养
学生勇于实践,大胆猜想、合情推理的科学态度
.
三、学生学情分析
从认知结构的角度, 七年级的学生已经具备一定的生活经验和数学活动经验,
并且对基
本的几何图形有一定的认识 . 学生已经学习了平行线的定义、画法、平行公理等知识,具备
2和 3

初中平行线的判定市公开课获奖教案省名师优质课赛课一等奖教案

初中平行线的判定市公开课获奖教案省名师优质课赛课一等奖教案

初中平行线的判定教案一、教学目标1. 理解平行线的定义和特征;2. 能够使用直线与直线的性质来判定平行线;3. 能够应用所学知识解决与平行线相关的问题。

二、教学准备1. 教师准备:教材、黑板、粉笔、教具箱;2. 学生准备:学生书包中的教材和文具。

三、教学过程1. 导入(5分钟)教师简要复习平行线的定义,并提问学生是否了解如何判定直线之间是否平行。

2. 理论讲解(20分钟)教师分步骤地讲解判定平行线的方法,包括以下几种情况:情况一:两条直线的斜率相等时,这两条直线平行;情况二:两条直线的斜率不存在时,这两条直线平行;情况三:当两条直线的斜率乘积为-1时,这两条直线互相垂直,则这两条直线平行于$x$轴和$y$轴;情况四:当两条直线被同一平行于$x$轴或$y$轴的直线截割时,这两条直线平行。

3. 案例演练(20分钟)教师通过几个典型的案例,让学生观察和分析直线的倾斜程度,从而学会使用斜率来判定直线是否平行。

学生通过解题的方式,熟练掌握判定平行线的方法。

4. 小组合作(15分钟)将学生分成小组,让他们合作解决一些与平行线相关的问题。

教师在小组合作的过程中引导学生,帮助他们互相合作、交流和分享解题思路。

5. 总结归纳(10分钟)教师与学生一起总结判定平行线的方法,并强调学生在实际应用中的重要性。

教师对学生表现良好的小组进行表扬。

6. 课堂练习(20分钟)教师让学生独立完成一些练习题,以检验他们对于平行线判定方法的掌握程度。

7. 作业布置(5分钟)教师布置适量的练习题和探究题,要求学生在课后完成,并在下节课开始前交上。

四、课堂评价教师可以通过观察学生的课堂表现、听写测试和布置的作业来评价学生的学习情况。

通过学生的表现,可以检测出学生对平行线判定方法的熟练掌握程度。

五、教学拓展为进一步拓展学生的知识,教师可引导学生通过实际生活中的例子来感受平行线的重要性,并和学生一起思考平行线在工程、建筑和设计等领域的应用。

最新平行线的判定教学设计一等奖(通用8篇)

最新平行线的判定教学设计一等奖(通用8篇)

最新平行线的判定教学设计一等奖(通用8篇)平行线的判定教学设计一等奖篇一1、对于平行线的判定(2)的引入,在上课时平行线判定(1)的基础上,导入得当,衔接自然,达到预期设想目标。

2、把本课时一分为二,重点在于对例2的讲解上,添加辅助线的.导入也十分顺畅,学生掌握较好。

3、对于少部分同学同位角、内错角是哪两条直线被哪一条直线所截构成的还不是很清楚,要引起足够的重视。

平行线的判定教学设计一等奖篇二《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的'判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。

1、教学目标和重难点基于学生的学习情况,确定了本节课的教学目标和教学重难点。

教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。

教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。

2、具体内容安排如下:首先安排的是自主学习部分,以填空的形式。

再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。

接着安排的是巩固提高练习。

在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。

该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。

进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。

再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。

最后是测评反馈,目的是通过本节课学习,了解学生对该部分知识的掌握情况。

1、导学案内容设计上,测评反馈较简单,起不到测评效果;3、小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;4、解决问题的方法总结上不到位;5、驾驭课堂能力差,学生学习热情不能很好地调动;6、教学语言不够简练,教学心理紧张。

平行线的判定 公开课获奖教案 公开课获奖教案

平行线的判定  公开课获奖教案  公开课获奖教案

7.3平行线的判定1.了解并掌握平行线的判定公理和定理;(重点)2.了解证明的一般步骤.(重点)一、情境导入我们知道,光线从空气中进入水中会发生折射现象,光线从水中进入空气中,同样也会发生折射现象.如图为光线从空气中进入水中,再从水中进入空气中的示意图.由于折射率相同,因此有∠1=∠4,∠2=∠3,那么你能说明光线c与d平行吗?二、合作探究探究点一:平行线的判定【类型一】平行线的判定公理如图,直线l1、l2、l3、l4两两相交,且∠1=∠2=∠3.求证:l1∥l2,l3∥l4.解析:∠1和∠2是直线l1、l2被直线l3所截得的同位角,∠2和∠3是直线l3、l4被直线l2所截得的同位角,所以由∠1=∠2可以判定l1∥l2,由∠2=∠3可以判定l3∥l4.证明:∵∠1=∠2(已知),∴l1∥l2(同位角相等,两直线平行).∵∠2=∠3(已知),∴l3∥l4(同位角相等,两直线平行).方法总结:利用平行线的判定公理进行推理证明的关键是分清同位角是哪两条直线被第三条直线所截构成的.【类型二】平行线的判定定理1如图,已知AB,CD与直线EF分别相交于点B,C,且∠ABE=∠DCF.求证:AB∥CD.解析:由等角的补角相等可知∠ABC=∠BCD.再由平行线的判定定理1即可得到结论.证明:因为∠ABC+∠ABE=∠DCB+∠DCF=180°(邻补角的定义),∠ABE=∠DCF(已知),所以∠ABC=∠DCB(等角的补角相等),所以AB∥CD(内错角相等,两直线平行).方法总结:要证明两条直线平行,主要是指出图形中两条直线被第三条直线所截的角,观察是否有同位角相等、内错角相等、同旁内角互补或由角的数量关系推得同位角相等、内错角相等、同旁内角互补.【类型三】 平行线的判定定理2如图,直线AE ,CD 相交于点O ,如果∠A=110°,∠1=70°,就可以说明AB∥CD,这是为什么?解析:由题意可知∠1=∠AOD =70°,又因为∠A =110°,所以∠A +∠AOD =180°,故AB∥CD.解:因为∠1=∠AOD(对顶角相等),∠1=70°,所以∠AOD=70°.又因为∠A=110°,所以∠A +∠AOD=180°(等式的性质),所以AB∥CD(同旁内角互补,两直线平行).方法总结:(1)本题运用数形结合思想,平行线的判定是由角之间的数量关系到“形”的判定.要判定两直线平行,可围绕截线找同位角、内错角或同旁内角,若同位角相等、内错角相等或同旁内角互补,则两直线平行.(2)若题中的结论能用同位角相等、内错角相等或同旁内角互补中的一个方法说明两直线平行时,一般都要通过结合对顶角、互补角等知识来说明.探究点二:平行线的判定公理、定理的综合应用如图,已知DE ,BF 分别平分∠ADC 和∠ABC,∠1=∠2,∠ADC =∠ABC,因此可推出图中哪些线段平行?为什么?解析:结合图形以及已知条件,能证明DE∥BF ,DF ∥BE 和AD∥BC. 解:DE∥BF,DF ∥BE ,AD ∥BC.理由如下:(1)DE∥BF.∵∠1=∠2(已知),∴DE ∥BF(同位角相等,两直线平行).(2)DF∥BE.∵DE 平分∠ADC,BF 平分∠ABC(已知),∴∠3=12∠ADC ,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF ∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE 平分∠ADC(已知),∴∠ADE =∠3(角平分线定义),∠ADE =∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC =180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD ∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)⎩⎪⎨⎪⎧判定公理:同位角相等,两直线平行判定定理⎩⎪⎨⎪⎧内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知x 3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y=kx+b,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

最新-初中数学平行线教案优秀6篇

最新-初中数学平行线教案优秀6篇

初中数学平行线教案优秀6篇在日复一日的学习、工作或生活中,大家都写过作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。

你知道作文怎样写才规范吗?学而不思则罔,思而不学则殆,下面是勤劳的小编帮助大家收集整理的初中数学平行线教案优秀6篇。

初中数学平行线教案篇一教学目标:1、学会平行线的识别的方法,能在实际生活和数学图形中识别平行线;能根据图形中的已知条件,通过简单的说理,得出欲求结果。

2、通过说理渗透合情推理的思想,培养学生逻辑推理能力。

3、通过探索平行线的三个识别方法,让学生在学习活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。

教学重难点:重点:学会平行线识别的。

方法,能在实际生活和数学图形中识别平行线。

难点:能根据图形中的已知条件,学会用数学语言简单的说理。

教学准备:三角板、直尺、硬纸片(角的形状)教学过程:一、创设问题情景1、组织学生进行如下活动:(1)用硬纸片制作一个角;(2)这个角放在白纸上,描出∠AOB;(如图)(3)再把角的两边反向延长得OD、OC,把角的一边靠在延长线OD上,再把这个角画出来得∠OPE;(4)探索这个过程,你能得到什么结论?为什么?2、在上述操作过程中,角的位置移到了另一个位置,这样的移动称为平移。

在平移前后的相同位置构成了一对同位角,其大小始终不变,因此,只要保持同位角相等,画出的直线就平行于已知直线。

请同学们根据这样的一个事实用一句话来叙述。

3、学生分组交流二、探索结论1、同位角相等,两直线平行。

2、如图,直线a、b被直线c所截,如果∠1=∠2,那么a∠b。

如果∠1=∠3,可得a∠b吗?同样,你能用语言来叙述吗?得出结论:内错角相等,两直线平行。

3、如果∠1+∠4=,能识别两直线a∠b吗?让学生分组交流得出结论:同旁内角互补,两直线平行。

4、组织学生分组讨论,归纳总结平行线的识别方法。

(略)三、识别方法的应用例1、按课本讲,但注意书写格式:∠∠1=∠2,根据“内错角相等,两直线平行”,∠a∠b。

平行线的判定方法初中数学教案

平行线的判定方法初中数学教案

平行线的判定方法初中数学教案初中数学教案一、教学目标通过本节课的学习,学生应该能够:1.理解什么是平行线,能够正确地判断两条线段是否平行2.掌握三种平行线的判定方法,并能够熟练地应用它们进行题目的解答二、教学内容1.平行线概念的引入引导学生通过观察图形,发现其中存在着平行线的现象,并引入平行线的概念。

给出平行线的定义:“在同一平面内,如果两条直线没有交点,那么这两条直线就是平行线。

”通过示例图形加深学生的理解。

2.平行线的简单判定方法判定两条直线是否平行有以下两种方法:(1)选两个角度相同的角作为判断基准,如果这两个角对应的两个边在同一直线上,则这两条直线平行。

(2)如果两条直线交叉之后,所成的相邻角互补,则这两条直线平行。

3.平行线的重要判定定理介绍重要的平行线判定定理——夹角定理。

给出定理:“在同一平面内,如果一条直线与另一条直线构成的夹角等于另一条直线与第三条直线构成的夹角,并且这两个夹角都是内角或都是外角,则这两条直线是平行的。

”通过配合练习题目,固化这个定理的应用。

4.平行线的应用题通过实例分析,让学生了解到平行线的重要性。

介绍平行线的应用。

在实际应用中平行线有很多用途。

如在矩形中定位中心,在制图时用作标高线等。

三、教学方法1.引领式教学通过引领方法,让学生通过观察图形自然发现“平行线”的现象,进而引入平行线的定义。

此种方法能够激发学生兴趣,让他们对平行线有更深入的理解。

2.合作式学习平行线的判定涉及到多种方法和技巧,运用合作式学习,让学生互相讨论和交流,共同解决难题是非常必要的,可以更好的提高学生的有效逻辑思考能力和高效合作能力,进而促进学生理解和获取知识。

四、教学评估1.课堂练习-由教师提供,并由学生在课堂上完成2.课后练习-由教师提供给学生带回家完成五、教学反思在教学过程中,我发现学生在开始学习时对于平行线的一些基本概念还不太清晰,所以在引入概念时,需要通过示例来加深他们的理解。

(最新)数学七年级下册第5章第2节《平行线的判定》省优质课一等奖教案

(最新)数学七年级下册第5章第2节《平行线的判定》省优质课一等奖教案

《平行线的判定》教学设计【讲课内容】:人教版义务教育课程标准实验教科书七年级下册【所属专业】:中学数学【课程】:中学七年级数学【适用对象】:七年级【教学内容分析】"平行线的判定"是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。

本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。

【学生情况分析】目前,虽然我校学生的数学水平参差不齐,但作为聋生,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。

本学期学生初步接触推理证明,逐步养成言之有据的习惯。

一、教学目标1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。

2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。

二、教学重难点教学重点:探索并掌握直线平行的判定方法。

教学难点:直线平行的判定方法的应用。

三、教学方法利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。

在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。

四、教学过程(一)复习巩固:1、平行线的定义:2、平行公理:(二)探索新知平行线的判定方法1问题1:如右图,在用直尺和三角板画平行线的过程中,三角板起着什么样的作用?F EDC BA结论结果:三角板的作用是使∠PHF 和∠BGF 相等。

初中平行线的判定教案

初中平行线的判定教案

教案初中平行线的判定教学目标:1. 学生能够理解平行线的定义及性质。

2. 学生能够运用平行线的判定方法解决实际问题。

3. 培养学生的观察、分析、推理能力。

教学重点:1. 平行线的定义及性质。

2. 平行线的判定方法。

教学难点:1. 理解平行线的判定方法。

2. 运用平行线判定方法解决实际问题。

教学准备:1. 教学课件或黑板。

2. 直尺、圆规等绘图工具。

3. 练习题。

教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的平行线。

2. 学生分享观察到的平行线,并简单描述其特点。

二、新课导入1. 教师引导学生回顾平行线的定义及性质。

2. 学生分享平行线的定义及性质。

三、探究活动1. 教师出示探究活动一:如何判定两条直线是否平行?2. 学生分组讨论,探究平行线的判定方法。

四、实际应用1. 教师出示实际应用题目,引导学生运用平行线的判定方法解决问题。

2. 学生独立完成题目,教师巡回指导。

五、课堂小结2. 学生分享学习心得。

六、课后作业(布置作业)1. 教师布置相关练习题,巩固平行线的判定方法。

2. 学生完成课后作业。

教学反思:本节课通过观察、探究、实际应用等环节,让学生深入理解平行线的判定方法。

在教学过程中,教师要注意引导学生的观察、分析、推理能力,鼓励学生积极参与讨论,培养学生的合作意识。

同时,教师要及时点评学生的表现,给予鼓励和指导,提高学生的学习兴趣和自信心。

教案探索分数的基本性质教学目标:1. 学生能够理解分数的基本性质。

2. 学生能够运用分数的基本性质解决实际问题。

3. 培养学生的观察、分析、推理能力。

教学重点:1. 分数的基本性质。

2. 分数的基本性质在实际问题中的应用。

教学难点:1. 理解分数的基本性质。

2. 运用分数的基本性质解决实际问题。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的分数。

2. 学生分享观察到的分数,并简单描述其特点。

(最新)数学七年级下册第5章第2节《平行线的判定》省优质课一等奖教案

(最新)数学七年级下册第5章第2节《平行线的判定》省优质课一等奖教案

5.2.2 直线平行的条件【教学目标】:(1)熟练运用平行线识别的方法,结合图形中的已知条件,初步学会用数学语言进行简单的说理;(2)使学生能根据判定公理及定理进行简单的说理和表达,培养几何运算能力,通过“转化”及“运动—变化”、“平移”等数学思想方法的运用,培养学生“观察—分析”和“归纳—概括”的能力;(3)结合实例和技能训练,让学生认识到平行线与生活的密切联系,在学生活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。

【教学重点】:利用平行线的三个识别方法解决问题【教学难点】:运用平行线的识别方法进行简单的推理【教学突破点】:平行线的识别方法中条件与结论关系的理解【教法、学法设计】:【教学过程设计】:补充练习:4D CBA 32154FEC BA3211、 如图7,如果∠1=∠2,则( )A 、∠3=∠4B 、AD ∥BC C 、AB ∥CD D 、∠C=∠D图7 图8 图92、如图8,直线AB 、CD 被直线EF 所截,∠1=75°,下列说法正确的是( ) A 、若∠4=75°,则AB ∥CD B 、若∠4=105°,则AB ∥CD C 、若∠2=75°,则AB ∥CD D 、若∠5=155°,则AB ∥CD3、如图9,下面说法正确的是( )A .若∠A+∠D=180°,则AD ∥BC ;B .若∠C+∠D=180°,则AB ∥CDC .若∠A+∠D=180°,则AB ∥CD ; D .若∠A=∠C ,则AB ∥CD 4、如图10,下列推理正确的是( ) A .因为∠B=∠BEF ,所以AB ∥CD B .因为∠B=∠DCE ,所以AB ∥CD C .因为∠B+∠BEC=180°,,所以AB ∥CD D .因为AB ∥CD ,CD ∥EF ,所以AB ∥EFFED C BA c ba87654321F E DCBA321FE DCBA21EDCBAEDC BA1图10 图11 图12 5、如图11,直线b a ,被直线c 所截,现给出下列条件:(1)∠1=∠5;(2)∠1=∠7;(3)∠2+∠3=180°;(4)∠4+∠7=180°;(5)∠1=∠3;(6)∠2+∠7=180°。

七年级数学下册---《平行线的判定》课堂设计

七年级数学下册---《平行线的判定》课堂设计

七年级数学下册---《平行线的判定》课堂设计教学基本信息教学目标及教学重点、难点本节课的主要内容是平行线的3个判定方法.方法1作为扩大了的公理通过探究获得,再由方法1经过简单推理得出方法2和方法3.本节课对推理证明的要求到了“简单推理”的层次,体现了数学核心素养中的“逻辑推理”素养。

教学过程(表格描述)教学环节主要教学活动设置意图引入一、复习引入先来回顾一下本章的一些知识,我们知道在同一平面内,不重合的两条直线有相交和平行两种位置关系,垂直是相交的一种特殊情况,关于平行,我们已经学习了平行线的定义,平行线的画法,平行公理以及它的推论.回顾以往学习知识及经验.新课二、新知探究1.问题:图中的直线a与b互相平行吗?2.还有什么方法能判断两条直线是否平行?如图:已知直线AB和直线CD,如何判断它们是否平行?3.类比垂直的判定提出:可否由数量关系判定两条直线平行?为解决这个问题我们回顾一下平行线定义的探究过程:通过视觉误差的图形提起学生对本节课的兴趣.一系列探究的设置重在让学生理解面对新问ab观察直线a 与直线c 的夹角α,它的度数随着直线a 的转动而发生改变.由此得到,猜想:可以由角的数量关系判定两条直线平行.4.回顾平行线的画法,得出平行线的判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 推理过程: 因为∠1=∠2 所以a ∥b三、再探新知1.思考:有没有其他的判定方法?我们知道两条直线被三条直线所截, 同时得到同位角、内错角、同旁内角,能否利用内错角和同旁内角的数量关系判定两条直线互相平行?2.猜想:如图,如果∠2=∠3,则a ∥b .分析:先提出问题,然后得到猜想,最后推理得出猜想的结论是正确的,从而利用判定方法1得到了判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3.如图,∠2和∠4满足怎样的数量关系时,能得到a ∥b ?写出推理过程.分析:先提出问题,同旁内角满足怎样的数量关系能判定两条直线平行,然后提出猜想,最后利用判定方法1和判定方21c ba1b a2341ba 23法2得到了判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.数学转化思想.例题问题1 如图,你能说出木工用图中的角尺画平行线的道理吗?解答:用角尺画平行线实际上是画出了两个直角,根据“同位角相等(也可以根据内错角相等,同旁内角互补),两直线平行”这样画出的就是平行线.问题2 如图,为了加固房屋,要在屋架上加一根横梁DE,使DE∥BC.如果∠ABC=31°,∠ADE应为多少度?答:∠ADE=31°.巩固本节课所得出的三个判定方法.简单应用判定方法解决问题.总结总结本节课的探究过程,梳理解决问题的经验.A作业1如图,这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?作业2通过本节课的学习,你觉得最大的收获是什么?遇到新问题时我们可以如何解决呢?巩固本节课所学知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定教学设计一、教学内容解析本节课是人教版七年级下册第五章(相交线与平行线)中第二节(平行线及其判定)的第二小节(平行线的判定)的第一课时.主要内容是平行线的判定方法,这是本章的重点内容之一.本节首先通过平行线的画法等实例让学生在画图、观察、实验、归纳的基础上发现并认可“同位角相等,两直线平行”的判定方法.在此基础上再通过探索并证明得到“内错角相等(或同旁内角互补),两直线平行”的判定方法.这部分内容是继“同位角、内错角、同旁内角”即三线八角内容之后学习的又一个重要知识,同时它又是空间与图形领域的基础知识,学好它会为后面继续学习平行线的性质、三角形、四边形等知识打下坚实的基础.平行线还是学习其它有关学科,如物理等的重要数学基础.是人们在日常生活中经常接触到的一种图形,能使人们更好的认识与平行线有关的实际事物.在本节的学习中,还渗透了在解决问题以及推理论证中最常用的“转化”的数学思想方法,即由未知转化为已知,转化为已解决的问题.同时在探究的过程中也体现了“由特殊到一般”的数学思想方法.以上都说明这部分内容在本节、本章乃至整个初中数学中都有着十分重要的地位和作用.教学重点:平行线的三个判定方法.教学难点:本节课的教学难点有两个,一个是判定方法1的得出;另一个是得出判定方法2、3的“简单推理”的过程.二、教学目标设置1.知识与技能(1)掌握“两条直线被第三条直线所截,如果同位角相等,那么两直线平行”这一基本事实;探索并证明“两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行”;(2)会用平行线的判定方法判定两条直线平行,初步学会用文字语言及符号语言进行简单的推理和表述.2.过程与方法在探索图形的过程中,通过观察、操作、交流、说理等方式,有条理的思考和表达自己的探索过程和结果,体会发现和得到几何结论的一般方法,从而进一步培养学生动手操作、主动探究、合作交流以及语言表达的能力.同时体会“转化”及“特殊到一般”的数学思想方法.3.情感态度与价值观让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、合情推理的科学态度.三、学生学情分析从认知结构的角度,七年级的学生已经具备一定的生活经验和数学活动经验,并且对基本的几何图形有一定的认识.学生已经学习了平行线的定义、画法、平行公理等知识,具备了探究平行线的判定方法的条件和基础.特别是已经知道平移三角尺画平行线的方法以及“平移”过去是平行的事实.但在逻辑思维、几何语言以及合作交流的意识等方面发展不够均衡,同时通过“说理”、“简单推理”等言之有据的解答问题的习惯和能力还很薄弱.四、教学策略分析1.在本节内容的呈现上注意充分体现学生的认知过程,给学生提供充足的探索与交流的时间和空间.特别是在判定方法1的得出过程中,要让学生通过画图、观察、交流、猜想、验证等去主动发现结论,并承认结论的正确性,同时培养他们的直觉思维和创造性思维,体现“实验几何”的特点.2.注意突出本节课的重点内容.因为本节课有三个判定方法,内容较多,所以在教学中,还应重点突出判定方法1的教学,课堂活动也主要围绕着它进行,这也是因为判定2、3都是在判定1的基础上得到的,所以要给学生充足的思考、探究的时间.但实际上先有哪个判定方法都可以得到另外两个,这一点如果学生想到并提出的话要予以适当说明.3.因为本章的教学是“推理”的入门阶段,所以在识图、画图、几何语言的训练上只是从“说理”过渡到“简单推理”.在判定2、3的学习中用说理的方式展示推理的过程,强调让学生经历推理的过程,感受推理论证的作用,使说理、推理作为观察、实验、探究得出结论的自然延续.尽管只是入门阶段,但对学生来说是一个难点,因此教师要有规范的示范,同时注意循序渐进、因材施教,不能作统一要求或要求过高.4.为了体现通过“做数学”来学习数学这一特点,本节通过生活中的实例,及学生画图、观察、交流、验证、归纳等活动,探索发现平行线的三个判定方法,然后再对它们进行说明、解释或论证,也体现了由“实验几何”到“论证几何”的过渡.在发现问题、探究结论、解决问题的过程中,呈现具体----抽象----具体的过程.5.本节课的教法主要是引导----操作法、观察法、讨论法、多媒体电化教学法相结合.学法主要是学生动手实践、自主探索与合作交流相结合.五、教学过程教学流程安排活动流程活动内容和目的活动1:通过实例引出新课活动2:探究判定方法1活动3:应用判定方法1解决(实际)问题活动4:在解决问题中探究判定方法2和3 活动5:巩固练习(例题)活动6:小结,布置作业介绍角尺、演示木工用角尺画平行线的过程,引起学生兴趣、为后面出现的应用问题做铺垫.从用直尺和三角尺画平行线开始,设计问题串,引导学生探究并认可“同位角相等,两直线平行” .首先明确判定1是画法的依据,进而解决引课中的问题,并通过一个直接应用问题巩固判定方法1.让学生熟悉和应用判定1.通过“小明的画板问题”探究得到判定方法2,并经过简单推理予以证明.再让学生类比以上过程独立说明判定方法3的正确性.通过解决问题巩固和加深对三个判定方法的理解和掌握.引导学生总结回顾本节知识点,培养学生的概括表达能力并巩固知识、灵活应用.通过补充作业题,满足部分学生的需求.问题与情境师生行为设计意图【活动1】同学们看过木工师傅工作吗?展示和介绍角尺的结构、用途,并演示画图.教师请一名学生帮助演示木工用角尺在木板上画平行线.学生观察、思考,引出本节课题.活动1来源于生活实际,用角尺演示木工画图过程容易激发学生的学习兴趣;教材中提到了这个实例,但学生很少见到角尺的实物,为了“启后”,故在此展示;这个实例又可以作为判定方法1的直接应用.【活动2】探究本节课的问题,从画平行线开始入手.如何在图形中反映出画图的过程?∠1和∠2有着怎样的数量关系?多少度?又有着怎样的位置关系?在画图中,三角板起着怎样的作用?可以用一个角代替三角板吗?用量角器能实现这一过程吗?师生一起用直尺和三角板画平行线.教师演示课件,引导学生得到上面两个图形,并让学生把自己的画图过程也如此反映出来.通过问题串引导学生发现“画法中画的就是一对相等的同位角”这一事实.引导学生理解和承认结论的正确性,从而得到判定方法1,并明确其用法.一方面是复习,更重要的是利用此画法探究得到判定方法1.这个过程比较重要,学生画图只可以看到两条平行线,没有这个图形是较难发现结论的.层层递进的问题串体现了思维和探究过程的连续性,学生在教师的引导下发现自己确实是利用三角板画了两个相等的同位角.用任意角代替三角板画平行线是对一般情况的证明,学生是可以理解的,可以发展学生的逻辑思维能力和想象力等.用量角器画平行线,既是对结论正确性的一种补充,同时为后续的“数学活动”提供了一种画平行线的方法.以上让学生经历发现、探究结论的全过程,在操作、思考中学生的体验会更加深刻,过程中也渗透了由特殊到一般的思维过程和研究问题的方法.【活动3】用直尺和三角板画平行线的依据是什么呢?木工用角尺画平行线的数学道理是什么?如图,已知∠1=52°,当教师再次提出这两个实际问题,学生思考并解答问题.引导学生说出这两种画法的依据正是判定方法1;利用这两个实际问题去发现、得到判定方法1,再反过来应用其解决实际问题,明确依据,体现数学学习中的具体----抽象----具体这一过程.∠2=时,AB∥CD,理由是. 此问题让学生思考、回答,引导学生明确截线与被截线,准确说明理由.应用和熟悉判定方法1,说明问题时要有理有据.【活动4】小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段;小明身边只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,让我们来看看他是怎样做的.如何说明结论的正确性?同桌小丽还有另外一种度量方法,也可以吗?请大家仿照判定方法2,画图进行说明.以“小明的小画板问题”提出问题,让学生思考、交流其方法正确与否,并说明理由.为说明结论成立的一般性,引导学生一起画图,明确条件和结论,教师讲解和示范规范的推理过程,得到判定方法2.通过小丽的方法说明正确的理由后,让学生仿照判定方法2独立完成画图,明确条件、结论以及说理的过程,得到判定方法3.这时,教师及时对三个判定方法及其探究过程进行总结,向学生说明其中的数学思想方法等.此问题由教材习题5.2的第5题改编,应该比较吸引学生,引起学生思考和解决问题的愿望.通过问题引出判定方法2和3是对教材的引出方式的一个改变,可以起到更好的效果,在学生解决问题的过程中,很自然的得到了另外两个判定方法.通过对这两个判定方法的推理论证,让学生知道数学中的结论是需要证明其正确性的,而不仅仅是通过实验、探究得出.两个判定方法的不同处理既给学生起到了示范,同时又让学生得到了训练,当然这时还不易要求过高.【活动5】例1 如图所示:(1)如果已知∠1=∠3,则可判定_____∥_____,其理由是_________________;(2)如果已知∠4+∠5=180°,则可判定_____∥_____,其理由是_________________;(3)如果已知∠1=∠6,则可判定_____∥_____,其理由是_________________;(4)如果已知∠5+∠2=180°,那么根据对顶角相等,有∠2=_____,因此可知∠4+∠5=______,所教师用大屏幕依次展示例1、例2,学生思考、回答,同时进行适当的引导,反复、准确的应用判定方法的条件和结论,同时纠正学生在表述中出现的问题.注意关注学生能否准确的思考和表述,逻辑性是否正确.特别是例2的三种方法,是否准确的说清楚理由.例3要求学生能准确书写推理过程,关注学生对图形的处理以及理由是否书写正确,通过前两个问题,让学生正确应用判定方法,熟悉判定方法的内容,能够准确表述,培养分析、思考、解决问题的能力.以填空的形式出现,符合学生现有的认知水平,重点培养学生的理解和应用能力、准确表述思维过程的能力.根据教学过程的进程,例3可以作为备选内容,如果本节课处理,目的是让学生初步掌握“简单推理”过程,严谨、准确的解答问题.时间不允许以可判定_____∥_____,其理由是_________________.例2 在铺设铁轨时,两条直轨必须是互相平行的.如图,已经知道∠2是直角,那么再度量图中哪个角(图中已标出的),就可以判断两条直轨是否平行?说出你的理由.例3 如图,已知b⊥a,c ⊥a,那么b与c平行吗?为什么?找学生用实物投影展示、说明其解答过程.的情况下,可以放在下一课时解决.例3同时也是判定直线平行的一个方法,无论本节课是否处理,都可以在下一课时一起归纳总结平行线的所有判定方法.【活动6】说说今天你学了哪些平行线的判定方法.你能说一说我们得到这三个判定方法的过程吗?除此之外我们还有哪些收获呢?1.判定直线平行的三个方法:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.2.我们知道了“转化”的数学思想方法.3.我们要学会用“推理”教师引导学生回顾、总结本节课所学内容,学生回答,教师进行适当补充.对本节课所学知识进行及时整理、巩固和提高,培养学生整理、归纳的习惯和能力.的方式解决数学问题.布置作业:教材第16页习题5.2,第1、2、4、7题.补充题:已知:如图,直线AB、CD、EF被MN所截,∠1=∠2,∠3+∠1=180°,试说明CD∥EF.(考虑多种证法)教师布置作业,学生记录作业.补充题有多种证法,属于一题多解,鼓励学有余力的学生积极思考,提高能力,树立信心,调动学生学习的积极性.。

相关文档
最新文档