学而思小升初综合讲义

合集下载

学而思小升初整除综合之整除判别方法

学而思小升初整除综合之整除判别方法

【例2】(★★) 已知九位数 2007□12□2既是9的倍数,又是11的 倍数;那么,这个九位数是多少?
【例3】(★★☆) 77 一个19位数 77 9个 内的数字。
444 44能被13整除,求□
9个
5 ab5ab 5 ab ,如果此数能被91整除, 【拓展】多位数:
4
【例1】(★) 23487,3568,8875,6765,5880,7538,198954, 6512,93625,864,407。在这些数中: ⑴哪些数能被4整除?哪些数能被8整除? ⑵哪些数能被25整除?哪些数能被125整除?
1
【例1】(★) 23487,3568,8875,6765,5880,7538,198954, 6512,93625,864,407。在这些数中: ⑶哪些数能被3整除?哪些数能被9整除?
2009 个 5 ab
那么,三位数 5ab 是多少?
2
【例4】(★★) 如果六位数1992□□能被105整除,那么它的最后 两位数是多少?
【拓展】 在六位数11□□11中的两个方框内各填入一个数 字,使此数能被17和19整除,那么,3,4,5,7,8这六个数字所组成的六位数 中,能被11整除的最大的数是多少?
【今日讲题】 例3,例4,例5 【讲题心得】 _______________________________________________ ______________________________________。 【家长评价】 _______________________________________________ _______________________________________________ __________________________________。

学而思小升初余数综合之余数问题解题技巧

学而思小升初余数综合之余数问题解题技巧

【例6】(★★★) 一个大于1的数去除290,235,200时,得余数分别为a, a+2,a+5,则这个自然数是多少?
3
知识要点屋 韩信点兵 1. 减同余、加同补. 如果A满足被K整除,加上n个K,仍然被K整除. 2. 逐级满足法. 按照难易程度,逐一满足.
【小练习】一个数除以5余数是4,这个数除以7余数是5, 那么100以内这样的数有:_______________.
【例7】(★★★) 某数除以11余8,除以13余10,除以17余12,那么 这个数的最小可能值是_______。
知识大总结 1. 带余除法 ⑴ 一般地,A÷B=c…d ⑵ 变整除:A-d,可以被B,或c整除. 2. 余数的三大性质 ⑴ 余数的和、差、积. ⑵ 大数变小数,转化求解. 3. 同余问题 ⑴ A、B对C同余,则A、B差值可以被C整除 ⑵ C为差值的约数.(检验)
【拓展】(★★★) 有48本书分给两组小朋友,已知第二组比第一组多5人。 如果把书全部分给第一组,那么每人4本,有剩余;每人 5本,书不够。如果把书全分给第二组,那么每人3本, 有剩余;每人4本,书不够。问:第二组有多少人?
【例3】(★★) 今天是星期四,101000天之后将是星期几?
2
知识要点屋 4、同余问题: 若a,b除以c的余数相同,那么, (a-b)能被c整除 称a,b对于模c同余 用“同余式”表示为a≡b(modc) 例如,23、13除以5的余数都是3 那么,(23-13)可以被5整除.
5
【小练习】 1013除以一个两位数,余数是12003年全国小学数学奥林匹克试题(★) 有两个自然数相除,商是17,余数是13,已知被除 数、除数、商与余数之和为2113,则被除数是多少?
【例2】(★★) 有一列数排成一行,其中第一个数是3,第二个数 是10,从第三个数开始,每个数恰好是前两个数的 和,那么第1997个数被3除所得的余数是多少?

学而思讲义

学而思讲义

枚举组数1.用6、7、8、9四个数可以组成许多个没有重复数字的4位数,把它们从小到大排列起来,9768排在第()个。

2.用数字1、2、3、4组成各位数字都不相同的两位数,并按从小到大的顺序排列,第10个数比第7个数大()3.智慧爷爷今年已经有一百多岁了,如果把他的年龄的各位数字相加,和是9,如果把各位数字相乘,积等于16,那么今年智慧爷爷()岁。

有一个四位数,它的各位数字和为9,积为24,那么组成这个数的四个数字中,奇数是()。

横式数字谜4.“小朋友真厉害”这六个汉字分别表示1、2、3、4、6、7这6个数字,根据下面的算式,可以得到小=(),朋=(),友=(),真=(),厉=(),害=()小+友+真=9小+朋=8友—真=4厉—害=小5.“万事如意”这四个汉字分别表示一个10以内不同的双数,根据下面的算式可以得到万=(),事=(),如=(),意=()万—事如+意=9万—事如—意=1意—(万—事)如=3日历中的数学6.牛牛暑假跟着爸妈去海南旅游,他们一起连续玩了4天,这4天的日期数相加的和是70(不含月份),那么他们是从()日玩到()日的。

7.2015年1月和2月是寒假,乐乐寒假在奶奶家连续住了5天,这5天的日期数相加的和是67(不含月份),那么乐乐从()月()日开始住在奶奶家。

8.牛牛同学在某月的日历上圈出2 2个数(如图),正方形方框内的4个数的和是28,那么A=(),B=(),C=(),D=()。

9.西西同学在日历上圈出5个数,呈十字框型(如图),他们的和是65,则正中间的C=()10.某月有5个星期日,这5个星期日的日期之和为80(不含月份),则这个月中第一个星期日的日期数是()。

11.某年的6月有4个星期一和5个星期日,那么这月的第一天是星期()12.某年的10月有4个星期日和5个星期一,那么这个月的第一天是星期()和差倍问题1.小林在课桌上摆了一排棋子,数一数,黑、白棋子共有56颗,其中白棋子的颗数正好是黑棋子的6倍,黑白棋子各有多少颗?2.果园里一共种有34棵桃树和杏树,其中桃树的颗数比杏树的3倍多6棵,两种树各种了多少棵?3.两筐水果共重50千克,其中第一筐比第二筐的2倍少13千克,请问两筐水果各重多少千克?4.甲、乙两桶共有油168千克,从甲桶倒出27千克后,甲桶剩下的油是乙桶的两倍,求甲乙两桶原来各有油多少千克?5.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的长和宽各是多少厘米?6.一个数除以另一个数,商是10,这两个数的和再加上商,和是87,被除数是(),除数是()。

学而思小升初暑假讲义

学而思小升初暑假讲义

学而思小升初暑假讲义学而思小升初暑假讲义一、引言在中国的教育体制中,小学毕业后的升初中考试是一道重要的关卡。

许多家长为了确保孩子进入理想的初中,常常会选择参加各种暑期培训班,其中学而思小升初暑假讲义备受家长们的关注。

本文将通过全面评估这份讲义,探讨其深度和广度,帮助读者更好地了解其价值所在。

二、深度探讨学而思小升初暑假讲义的深度体现在其所涵盖的内容广度较大的基础上。

讲义中包含了小升初考试所涉及的各个学科知识点,涵盖了数学、语文、英语等主要科目。

每个科目都按照学习难度和知识点的重要性进行了详细划分,使学生能够有条理地进行学习。

讲义中还提供了大量的例题和习题,帮助学生巩固所学知识,并进行有针对性的练习。

学而思小升初暑假讲义的深度还表现在其对知识点的详细解释和深入分析上。

讲义内容中,每个知识点都有专门的讲解,其中包括概念解释、示范操作和解题思路等。

这样的设计使学生能够更好地理解学习内容,将概念转化为实际操作,培养解题思维能力。

讲义还提供了大量的案例分析和解题技巧,帮助学生理解知识的应用场景,提升解题能力。

三、广度探讨学而思小升初暑假讲义的广度主要体现在其对不同学科和教育需求的全面覆盖上。

讲义中的学科涵盖了小升初考试的所有主要科目,包括数学、语文、英语等。

这样的设计使学生能够在一个资源中进行全面学习,避免了因为资源分散而造成的学习冗余。

讲义中还设置了不同版本的讲义,满足了不同学生的教育需求。

无论是扎实基础的学生,还是有较大进步空间的学生,都能够找到适合自己的学习材料。

学而思小升初暑假讲义的广度还表现在其对教育理念和方法的探索上。

讲义中融入了一些现代教育理念,如启发式教学、情境教学等,帮助学生更好地理解和应用所学知识。

讲义中还提供了一些学习方法和技巧,如记忆法、解题技巧等,帮助学生提升学习效果和解题能力。

四、个人观点作为一位写手,我对学而思小升初暑假讲义的评价是积极的。

它在知识点的选择和解释上做得非常出色,能够帮助学生全面理解所学知识,提高解题能力。

学而思小升初语文之拼音、汉字

学而思小升初语文之拼音、汉字

拼音篇汉语拼音 拼读音节:汉语中一个汉字就是一个音节,每个音节由声母、韵母和声调三个部分组成。

特殊的“零声母”:“安”— ān 。

声母 23 个韵母 24 个单韵母 6个 a o e I u ü复韵母 8个 ai ei ui ao ou iu ie üe特殊韵母 1个 er前鼻韵母 5个 an en in un ün后鼻韵母 4个 ang eng ing ong声母 23 个b p m f d t n l g k h j q xz c s zh ch sh r y w双唇用力b p m ,唇齿用力f f f ;舌尖用力d 和t ,鼻音边音n 和l ;舌根用力ɡ k h ,舌面发音j q x ;舌尖平放z c s ,舌尖翘起zh ch sh r;嘴角向后y y y ,嘴巴小圆w w w 。

”韵母 24 个1.单韵母 6个ɑ o e i u ü按口型由大到小排列:嘴巴张大ɑɑɑ,嘴巴圆圆o o o ,嘴巴扁扁e e e ,牙齿对齐i i i ,嘴巴突出u u u ,像吹笛子üüü。

2.复韵母 8个ɑi ei uiɑo ou iuie üe3.特殊韵母 1个er4.前鼻韵母 5个ɑn en in un ün5.后鼻韵母 4个ɑng eng ing ong前鼻韵母和后鼻韵母的区别:ɑn — ɑngen — engin — ing《鼻韵母发音歌》:“单韵母,连鼻音,前后鼻音要区分:前鼻韵母舌前伸,后鼻韵母抬舌根”。

【基础】基础知识(一):拼音、汉字音节包括:二拼音节、三拼音节和整体认读音节。

其中整体认读音节16个:zi ci si zhi chi shi riyi wu yu ye yue yuanyin yun ying拼读规则:二拼音节:前音轻短后音重,两音相连猛一碰。

qǐ lì q—i—qǐ起立三拼音节:声轻介快韵母响,三音连读很顺当。

学而思小升初培优六:数论综合-学生版

学而思小升初培优六:数论综合-学生版

小升初培优(六):数论综合专题回顾练习:1加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?2甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?例题解析枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。

运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。

正确的分类有助于暴露问题的本质,降低问题的难度。

数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。

【例1】 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。

【分析】三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。

设这个三位数的百位、十位、个位的数字分别为x ,y ,z 。

由于任何数除以11所得余数都不大于10,所以222x y z ++10≤。

从而13x ≤≤,03y ≤≤,03z ≤≤。

所求三位数必在以下数中:100101102103110111112120121122130200201202211212220221300301310 不难验证只有100,101两个数符合要求。

枚举法【例2】 写出12个都是合数的连续自然数。

【分析】(法一)在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。

我们把筛选法继续运用下去,把考查的范围扩大一些就行了。

用筛选法可以求得在113与127之间共有13个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126。

(法二)如果设这12个数分别是a ,1a +,2a +,,11a +,如果2a -能被2到13中任意一个数整除,那么a ,1a +,2a +,,11a +,能分别被2、3、4,,13整除,所以,只要取13!a =即可得到符合条件的12个数。

学而思小升初立体几何常用技巧

学而思小升初立体几何常用技巧

【拓展】北京市第十二届迎春杯 从一个棱长为10厘米的正方形木块中挖去一个长10厘 米、宽2厘米、高2厘米的小长方体,剩下部分的表面 积是多少?(写出符合要求的全部答案)
【例3】(★★★☆) 如图所示,一个5×5×5的立方体,在一个方向上开有 1×1×5的孔,在另一个方向上开有2×1×5的孔,在 第三个方向上开有3×1×5的孔,剩余部分的体积是多 少?表面积为多少?

2. 由小立方体堆砌而成的立体图形,其表面积可用三视 图法求解: S (正视图面积+俯视图面积 +侧视图面积 +凹槽数 ) 2 3. 水中浸物问题的水面高度公式: V V铁块 完全没过时:h水 = 水 ; S容器 V水 部分没过时:h水 = ; S容器 S铁块
水溢出时: h水 =h容器
一轮复习——立体几何常用技巧
本讲主线 1、三视图法,平移法 2、标数法,切片法 3、水中浸物问题
【知识要点-讲解】 1.立体几何基本公式: 2 ⑴ 表面积:S长方体 2( ab bc ca ); S正方体 6a , 3 ⑵ 体积:V长方体 abc。 V正方体 a 。 提示,所有柱体,体积=底面积×高. ⑶ 圆柱、圆锥 1 V r 2 h、 V r 2 h。 3
4
【例1】 2010年第8届走美6年级第9题(★★) 21个棱长为1厘米的小正方体组成一个立体如下图, 它的表面积是______平方厘米。
1
【例2】(★★★) 下图是一个棱长为2厘米的正方体,在正方体上表面 的正中,向下挖一个棱长为1厘米的正方体小洞, 1 接着在小洞的底面正中向下挖一个棱长为 厘米 2 正方形小洞,第三个正方形小洞的挖法和前两个 1 同为 厘米,那么最后得到的立体图形的表面积 4 多少平方厘米?

学而思小升初数学总复习资料归纳讲解学习

学而思小升初数学总复习资料归纳讲解学习

小升初数学总复习资料归纳常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b: 宽h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积a:底h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2 s=(a+b)×h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数13、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)14、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)15、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间16、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量17、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用单位换算长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。

学而思 小升初第1讲_计算

学而思 小升初第1讲_计算

小升初名校真题专项测试-----计算测试时间:15分钟 姓名_________ 测试成绩_________1、计算:39×148149+148×86149+48×74149=____________________.(06年清华附中入学测试题) 【解】原式=(39+86)×149148+48×74149=125×149148+48×74149=250×74149+48×74149=298×74149=1482、计算514131211++++(03年三帆中学入学测试题)【解】原式=2153711++=54211+=1871+=1871。

3、计算211⨯+3212⨯⨯+43213⨯⨯⨯+……+10 (219)⨯⨯⨯的值为 。

(01年同方杯、资源杯试题)【解】原式=211⨯+32113⨯⨯-+432114⨯⨯⨯-+......+109. (3211)10⨯⨯⨯⨯- =211⨯+211⨯-3211⨯⨯……+98...3211⨯⨯⨯⨯-109 (3211)⨯⨯⨯⨯=1-109...3211⨯⨯⨯⨯=362879936288004、1111212312341+++...+++++++1+2+3+...+19=_______________________. (06年清华附中入学测试题)【解】原式=2/[(1+2)×2]+2/[(1+3)×3]…2/[(1+19)×19] =2×(1/2-1/3+1/3-1/4……+1/19-1/20) =2×9/20 =9/105、一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 . (06年西城实验中学入学测试题) 【解】 分母为3的有2个,为5的有4个,…;所以2+4+6+……90=2070,2+4+6+……88=1980,所以分母是第45个数,所以分母为3+(45-1)×2=91,而前面44个分母总共占了1980个分数,这样正好缺20个,所以答案是9120。

学而思 小升初 讲座

学而思 小升初 讲座

二、怎么样面试?(方式)
方式
• 面孩子
关键词
• 1、取得成绩的过程很重要 • 2、优缺点突出,情商比拼
二、怎么样面试?(方式)
方式
• 面家长
关键词
1、客观大胆敢说 2、家庭能力很重要
二、怎么样面试?(方式)
足够的经济保证 稳定的时间
父母职业
父母性格
性格良好不急躁 对待孩子态度适中 能够引导纾解孩子的压力
一、什么是面试?
•所谓“面试”,各个学校理解形式都不一样。 •很多学校理解成对数学、英语、语文的综合能力的考察 •也有一些学校理解成对学生各种艺术能力的考察。 •考察综合素质。
一、什么是面试? 二、怎么样面试?(方式)
三、面试面什么?(题型)
四、一些建议
目录
Contents
二、怎么样面试?(方式)
平时的接送 孩子身体的身体素质
生活上的照顾
家庭对孩子 的影响
学习上的帮助
能够陪伴孩子学习 进行一定的辅导
正面、向上 培养并引导孩子坚韧
豁达的性格
精神上的教育
品德上的言传 身教
言传身教传统美德 尊师重教 与人相处和善,不孤僻
二、怎么样面试?(方式)
只面家长 家长会
➢西南位育中学 ➢校长讲话40分钟
座谈形式
笔试:语法和阅读 (完卷时间短)
面试:
1、表达能力:自我介绍、谈谈家庭、学校,
看图说话等。What do you think about …? 2、语音语调D:o朗yo读u一ag段re课e文…、.? 读W绕hy口…令? 。
What day is it today? 3、模仿能力…:…模仿读单词或句子。
实为笔试

学而思讲义

学而思讲义

真题精讲
1. 如图⑴,线段 MN 将长方形纸分成面积相等的两部分.沿 MN 将这张长方形纸对折后得到图⑵, 3 将图⑵沿对称轴对折,得到图⑶,已知图⑶所覆盖的面积占长方形纸面积的 ,阴影部分面积 10 为 6 平方厘米.则长方形的面积是多少平方厘米?
⑴ ⑵ ⑶ 【分析】根据折叠的过程可知,图⑶中阴影部分是 2 层,空白部分是 4 层,如果将阴影部分缩小一半,即 1 变为 3 平方厘米,那么阴影部分也变成 4 层,此时覆盖的面积占长方形纸片面积的 ,即缩小的 4 3 1 3 1 3 平方厘米相当于长方形纸片面积的 ( ) ,所以长方形纸片面积为 3 ( ) 60 平方厘米. 10 4 10 4
中,根据勾股定理,有: 4 x 32 x 2 ,
2
25 25 7 9 , FD 4 ,那么 HE 3 , FH 4 BE FD 4 2 FD , 8 8 8 4 15 15 再由勾股定理,得 EF .即折痕的长度为 . 4 4
则x
[巩固]如右图,长方形的长为 8 ,宽为 4 ,将长方形沿一条对角线折起压平,求重叠部分(阴影部分)的 面积.
|六年级 第八讲 人大附分班考试班·教师版| 1
3.
已知 ABC 中, AB AC 12cm , ABC 的面积是 42cm 2 , P 是 BC 上任意一点, P 到 AB , AC 的距离分别是 x 厘米、 y 厘米,那么 x y .
A
B
P
C
【分析】如图所示,连接 AP . 三角形 ABC 的面积等于三角形 APB 与三角形 APC 的面积之和, 而这两个三角形的底 AB 、AC 相 1 等,高分别为 x 和 y ,所以 12 x y 42 ,可得 x y 7 . 2 1 本题也可运用特殊值法,设 P 在 B 点,则此时 x 0 ,那么 SABC AC y 42 ,得到 y 7 , 2 x y 7. 4. 右图中, 正方形 ABCD 的边长为 8 厘米,E 为 AD 的中点,F 为 CE 的中点,G 为 BF 的中点,H 为 AG 的中点.四边形 FGHI 的面积比三角形 DIE 的面积大 平方厘米.

学而思讲义

学而思讲义

小学阶段的几何知识主要包括直线型面积、曲线型面积、立体图形的表面积和体积等.初中阶段的几何知识以全等三角形、相似三角形及其性质定理和判定定理的应用为重点.分班考试的命题重在考查学生对这两部分知识关联性和数学思想转换的理解和应用.作为各类竞赛和考试的重点,几何问题一直是学生的一个难点,所以在本次分班考试课中,我们安排了两讲几何内容,通过对解决几何问题常用数学方法的分类学习,梳理小学和初中的几何知识,以期融会贯通之效.上一讲我们以“割补法”为主线,将小学阶段的直线型面积和初中阶段的平面几何融合在一起,初步探知全等三角形和相似三角形,涉及“平移”、“旋转”、“勾股定理”等知识.这一讲以立体几何为主,在探究趣味新题目的同时,学习折叠、全等三角形和相似三角形的基础知识 以及简单的物理常识,培养空间思维能力.真题演练1.折叠后,原平行四边形面积是折叠后图形面积的1.5 倍.已知阴影部分面积之和为1 ,则重叠部分(即空白部分)的面积是多少?【分析】折叠后图形的面积为原来图形面积的 2 ,所以由于重叠而消失的面积等于原来面积的1 - 2 = 1,3 即右图中空白三角形的面积为原来图形面积的 1313 3,所以未重叠的阴影部分面积之和也等于原来图形面积的 3,即与重叠部分面积相等,所以重叠部分(即空白部分)的面积是1 .2.将一正方形的纸对折 2 次后,还是正方形,用同样的方法,可把某种形状的纸对折 3 次后,成为三角形.已知可把 4 种形状的纸对折 3 次后,折成如图的三角形,请画出这 4 种形状.【分析】此题虽然不难,但需要用逆向思维解决.从小三角形开始,向外展开,分别讨论不同展开方向下变成的形状,可得如下 4 种:第 8 讲人大附分班考试真题与模拟专题之几何(二)HIFGHIFG3.已知∆ABC 中,AB =AC =12cm ,∆ABC 的面积是42cm2 ,P 是BC 上任意一点,P 到AB ,AC的距离分别是x 厘米、y 厘米,那么x +y = .AP C【分析】如图所示,连接AP .三角形ABC 的面积等于三角形APB 与三角形APC 的面积之和,而这两个三角形的底AB 、AC 相等,高分别为x 和y ,所以12 ⨯(x +y )⨯1 = 42 ,可得x +y = 7 .2本题也可运用特殊值法,设P 在B 点,则此时x = 0 ,那么S x +y = 7 .∆ABC=1AC ⨯y = 42 ,得到y = 7 ,24.右图中,正方形ABCD 的边长为8 厘米,E 为AD 的中点,F 为CE 的中点,G 为BF 的中点,H为AG 的中点.四边形FGHI 的面积比三角形DIE 的面积大平方厘米.A E D A E DB C B C【分析】如图,连接EG 、EH 、EB .根据差不变原理,要求四边形FGHI 与三角形DIE 的面积差,相当于求四边形EFGA 与三角形DAH 的面积差.而三角形DAH 的面积等于三角形EAH 的面积的2 倍,三角形EAG 的面积也等于三角形EAH 的面积的2 倍,所以四边形EFGA 与三角形DAH 的面积差就等于∆EFG 的面积.根据题意,∆EFG 的面积等于∆EFB 的面积的一半,∆EFB 的面积等于∆ECB 的面积的一半,∆ECB的面积等于正方形ABCD 面积的一半,所以∆EFG 的面积等于正方形ABCD 面积的1⨯1⨯1=1,2 2 2 8为82 ⨯1= 8 平方厘米,所以四边形FGHI 的面积比三角形DIE 的面积大8 平方厘米.85.如图所示,铁板A 中有个半径为3.2cm 的圆形孔,孔内有96 个齿.还有一个半径为1.2cm ,且外侧有36 个齿的齿轮B .其中在距齿轮B 的中心为0.6cm 的地方打了一个圆孔C ,圆孔C 内插有一枝圆珠笔.现转动笔让齿轮B 与A 相啮合并沿A 齿轮的齿作旋转.问此时圆珠笔所画出的图形是下图哪一个?ABCDEF【分析】 先要确定齿轮 B 沿铁板 A 的内孔旋转多少周,圆珠笔才能回到初始位置.由于 A 齿轮有96 个齿,B 齿轮有36 个齿,由于(96,36) = 12 ,而96 = 12 ⨯ 8 , 36 = 12 ⨯ 3 ,因此,考虑到在12 ⨯ 8 ⨯ 3 = 288 个齿咬合之后,则绕 A 孔旋转了 288 ÷ 96 = 3 圈,而齿轮 B 则旋转 288 ÷ 36 = 8 圈.这就是说,当齿轮 B 绕着 A 孔转了8 圈后便返回到原来所在的位置.由此可知,圆珠笔应该有8 次离 A 孔的距离最近.此后,圆珠笔则重复原来已画出的曲线,不会显出新图形.所以圆珠笔画出的图形应该有 8 个顶点, A 、 B 、 E 、 F 均不合题意.另外,而在绕 A 孔旋转一圈的过程里,齿轮 B 自身所转的圈数为 3 圈,而 D 图中的图形只转了 1 圈,不合题意,所以正确的图形应该是C 图.[拓展]如果齿轮 B 的半径是1.6cm , B 圆周上的点C 画出来的轨迹是什么图形?[分析]此时齿轮 B 的半径等于 A 的圆形孔的半径的一半,点C 画出来的轨迹是圆形孔的一条直径.真题精讲1.如图⑴,线段 MN 将长方形纸分成面积相等的两部分.沿 MN 将这张长方形纸对折后得到图⑵,将图⑵沿对称轴对折,得到图⑶,已知图⑶所覆盖的面积占长方形纸面积的 310,阴影部分面积为 6 平方厘米.则长方形的面积是多少平方厘米?⑴ ⑵ ⑶【分析】根据折叠的过程可知,图⑶中阴影部分是 2 层,空白部分是 4 层,如果将阴影部分缩小一半,即变为 3 平方厘米,那么阴影部分也变成 4 层,此时覆盖的面积占长方形纸片面积的 1,即缩小的43 平方厘米相当于长方形纸片面积的( 3 - 1 ) ,所以长方形纸片面积为3 ÷ ( 3 - 1) = 60 平方厘米.10 4 10 4OOD EDBDE2.在长方形纸片 ABCD 中, AD = 4 , AB = 3 ,现在将它折叠,使得 C 与 A 重合,则折痕的长度是 . AFD ABCH F DEC【分析】如右图所示,连接 FC ,过 E 作 AD 的垂线 EH .由于折痕 EF 过 AC 的中点,且与 AC 垂直,设 AF = CF = x ,则 FD = 4 - x ,在直角三角形 FDC中,根据勾股定理,有: (4 - x )2+ 32 = x 2 ,则 x = 25 , FD = 4 - 25 = 7 ,那么 HE = 3 , FH = 4 - BE - FD = 4 - 2FD = 9 ,8 8 8 4再由勾股定理,得 EF = 15 .即折痕的长度为15.4 4[巩固]如右图,长方形的长为8 ,宽为 4 ,将长方形沿一条对角线折起压平,求重叠部分(阴影部分)的面积.8D[分析]如右上图,因为∠EDB = ∠EBD ,所以 BE = DE ,AE = CE .设 BE = DE = x ,则 AE = CE = 8 - x .由勾股定理得(8 - x )2+ 42 = x 2 ,解得 x = 5 .所以 S = 1 ⋅ BE ⋅ CD = 1⨯ 5 ⨯ 4 = 10 ,所以重叠部分(灰2 2色三角形)的面积为10 .3.如图,直角梯形 ABCD 中, AD ∥ BC , AB ⊥ BC , AD = 2 , BC = 3 ,将腰CD 以 D 为中心逆时针旋转90︒ 至 ED ,连接 AE 、CE ,则∆ADE 的面积是 .FEAABCBHC【分析】如图所示,将∆ADE 以 D 为中心顺时针旋转90︒ ,到∆FDC 的位置.延长 FD 与 BC 交于H . 由于 ABCD 是直角梯形, AD 与 FD 垂直,则四边形 ADHB 是长方形,则 BH = AD .由于∆ADE 与 ∆FDC 面积相等,而∆FDC 的底边 FD = AD = 2 ,高CH = BC - BH = 3 - 2 = 1 ,所以∆FDC 的面积为2 ⨯1 ÷ 2 = 1 ,那么∆ADE 的面积也为 1.4. 如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点 P 为中心转动一个正方形.当BAB = 5 厘米, BC = 13 厘米, CA = 12 厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).【分析】右图由左图旋转而得,则右图中的 8 个空白小三角形都是完全相同的,右图中重叠部分的面积等于正方形面积减去 4 个小三角形的面积,从右图中可以看出正方形的边长为5 + 13 + 12 = 30 厘米, 所以重叠部分的面积为: 302 - 4 ⨯ (5 ⨯12 ÷ 2) = 780 (平方厘米).5.有 2 个大小不同的正方形 A 和 B .如下左图所示的那样,在将 B 正方形的对角线的交点与 A 正方形的一个顶点相重叠时,相重叠部分的面积为 A 正方形面积的 1.求 9A 与B 的边长之比.如果当按下右图那样,将 A 和 B 反向重叠的话,所重叠部分的面积是 B 的几分之几?左图 右图【分析】以 B 正方形为中心,将整体图形放大后,如右上图所示.图中,由于 A 和 B 均为正方形,所以可认为画阴影的两个三角形是以 B 的对角线的交点为中心转过90︒ 所形成的.因此,所求的 A 与 B 所重合部分的面积,只要让 B 的对角线的交点与 A 的一个顶点相重合,则不管什么情况下,该面积均为 B 正方形面积的 1 .这样, A 4 的面积的 1 9 与 B 的面积的 1相等,故 A 与 B 的面积之比为49 : 4 .因为二者均为正方形,所以其边长之比为3 : 2 .如果 A 的对角线的交点与 B 的一个顶点相重合的话,所重合部分的面积仍为 A 的面积的 1.但是4由于 B 的面积是 A 的面积的 4 ,所以重合部分的面积应为 B 的面积的 1 ÷ 4 = 9.9 4 9 166.往容器里倒啤酒时,啤酒会分成液体部分和泡沫部分.过一会儿后泡沫会变成液体的啤酒,这时,1体积会缩小到 3(也就是说泡沫的体积是相应液体的3 倍).另外,因倒入方法的不同而使液体与泡沫的比例不同.即使是往相同的容器里倒入的啤酒量,也会因倒入的方法不同而不同.如图, 往深度为30 厘米的圆柱形的容器里倒入500 毫升的啤酒,从容器的底部到以上15 厘米高处的部 分是液体,再往上一直到容器的顶端,全都是泡沫(第一次).然后,往相同的容器里倒入700 毫升的啤酒,从容器的底部到以上 x 高处的部分是液体,再往上一直到容器的顶端,全都是泡沫(第二次).求 x 的值.P第二次【分析】第一次泡沫全部变成液体时,高度是15 + 15 ÷ 3 = 20 (厘米),因此高度1 厘米的液体是25 毫升;第二次泡沫全部变成液体时,高度是700 ÷ 25 = 28 (厘米),高度是1 厘米的液体成为泡沫时变为 高3 厘米,高度增加2 厘米,有(30 - 28) ÷ 2 = 1 厘米,即由泡沫变成的液体有 1 厘米,那么原有的 液体为 x = 28 -1 = 27 (厘米). 7.右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2 倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的 倍.【分析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼ ⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套. 对于左图来说,相当于由一个正方体切去 4 个角后得到(如下左图,切去 ABDA 1 、 CBDC 1 、D 1 A 1C 1D 、 B 1 A 1C 1B );而对于右图来说,相当于由一个正方体切去 2 个角后得到(如下右图,切去 BACB 1 、 DACD 1 ).⑵ ⑶⑴ ⑷⑸ ⑺⑻ ⑹⑾⑼ ⑽B1DB1DB HB C AB CA C1C1A1 D1 A1 D1假设左图中的立方体的棱长为 a ,右图中的立方体的棱长为b ,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:a3 -1a2 ⨯a ⨯1⨯ 4 =1a3 ,2 3 3以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为b3 -1b2 ⨯b ⨯1⨯ 2 =2b3 .2 3 3由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4 个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2 倍,即b = 2a .那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:1a3 :2b3 =1a3 :2⨯(2a)3 =1:16,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立3 3 3 3体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16 倍.8.如图所示的立体ABCD -EFGH 是长1 米、宽1 米、高2 米的长方体的箱子,在这个箱子里有一根直棒,棒的一端在顶点G 处,另一端在棱AE 的中点I 处.在不考虑棒的粗细的情况下,请问:⑴在点 F 处有一亮着的灯泡,请画出棒IG 在面AEHD 和面DHGC 上形成的阴影;⑵在EF 边的中点J 处有一亮着的灯泡,请画出棒IG 在面AEHD 和面DHGC 上形成的阴影.D C CAIG GE F【分析】⑴棒IG 在面AEHD 和面DHGC 上形成的阴影是两条直线段,而且它们与∆IFG 在同一个平面上.连结IF ,过点I 作IK ∥FG 交DH 于K (实际上K 就是DH 的中点),连结KG 即可.KBHABIHEJFDCADDCAIIKKGEF EHHGDCA D D CGIMEHHG⑵连结GJ 延长与 HE 的延长线交于点 M ,连结 MI 并延长与 DH 交于点 D ,连结 DG 即可. 点评:本题涉及两个重要的知识点: ①光线的传播路径是直线;②公理:直线和不在这条直线上的一点共面.在本题的应用就是光源、棒 IG 、光线的传播路径、在面上形成的阴影共面.[拓展]如图,一个边长为5 厘米的正方体,这个正方体由边长为1 厘米的小正方体组成.A 、B 、C 、D 、E 、F 、G 、H 分别是大正方体的各个顶点, P 是 ABCD 面上 AC 与 BD 的交点,请问:A G⑴如右上图所示,用一个 E 、P 、F 三点所在的平面将大正方体切开,这时切开的面是什么形状? ⑵经过⑴切开后剩下部分(包括 E 、 F 、G 、 H 面)的体积是多少?⑶再分别用 F 、P 、G 三点所在的平面, G 、P 、H 三点所在的平面, H 、P 、E 三点所在的平面进一步切割剩余部分,最后剩余的是一个包括 E 、 F 、G 、 H 面的立体图形,请写出这个立体图形的名称(即是哪种形状的立体图形).⑷在最后剩下的立体图形中,包括几个完整的边长为1 厘米的小正方体?[分析]⑴切开的面是四边形,两组对边分别平行且相等,但相邻两边长度均不相等, 4 个角都是直角,所以是长方形.HGHG⑵切下部分的体积正好是原体积的 1 ,所以剩下部分的体积是5 ⨯ 5 ⨯ 5 ⨯ 3= 93.75 立方厘米.4 4D CPPPABHGEF E F EF⑶如上图,在 ABCD 面中最后剩下 P 点,底面 EFGH 完好,连结 PE 、PF 、PG 、PH ,所以剩下的立体图形是底面为正方形的正四棱锥,如右上图.⑷切完后,从正面、侧面看均如下图所示,从下往上数,第一层是 3 ⨯ 3 = 9 (个),第二层是 3 ⨯ 3 = 9 (个),第三层是1 个,第四层是1 个,共9 + 9 + 1 + 1 = 20 个边长为 1 厘米的小正方体.真题模拟1.右图为一个正八边形,它的每条边长都是10 厘米,每个内角都相等,求图中阴影部分与非阴影部分的面积之差.【分析】如右上图,延长正八边形的两组对边,并连接竖直方向的两条对角线.图中标有 1,2,3,4 的4 个等腰直角三角形合起来为一个边长为 10 厘米的正方形,所以它们的面积之和为10 ⨯10 = 100 平方厘米.而中间标有 5 的空白小正方形的面积也为10 ⨯10 = 100 平方厘米,所以这个空白小正方形的面积等于四个角上的小三角形的面积之和.至于剩下的部分,容易看出标有 6,7 的两个空白长方形与标有 8,9 的两个阴影长方形的面积相等,所以图中阴影部分与非阴影部分的面积相等,它们的面积差为零.2.将边长分别为 4、8、12、16、20 的正方形并排在一起(如图),一条与正方形的边平行的直线CD 将该图形分为面积相等的两个部分,那么 AB 的长是多少?182657 394BBA BA 16 4CD81220A164CD81220【分析】如图所示,作出边长为 12 的正方形的上面的边所在的直线,这条直线也将整个图形分成两部分.整个图形的面积为42 + 82 + 122 + 162 + 202 = 42 ⨯ (12 + 22 + 32 + 42 + 52 ) = 16 ⨯ 1⨯ 5 ⨯ 6 ⨯11 = 880 ,所6以直线CD 所分成的两部分的面积都为880 ÷ 2 = 440 .图中虚线所分成的两部分,上面的部分的面积为: 42 + (20 + 16)⨯ (20 - 12) = 304 ,所以这条直线与 直 线 CD 之 间 的 图 形 的 面 积 为 440 - 304 = 136 . 这 个 图 形 是 一 个 长 方 形 , 它 的 长 为12 + 20 + 16 = 48 ,所以它的宽为:136 ÷ 48 = 2 5.6那么 AB 的长为: 20 - 12 + 2 5 = 10 5.6 63.如图,在相距9cm 的平行线 a 和b 之间有一个直角三角形 A 和长方形 B .直角三角形沿直线a 以1cm/s 、长方形 B 沿直线b 以3cm/s 的速度同时朝箭头所指方向开始运动.问 A 和 B 开始运动后从多少秒到多少秒 A 与 B 所重合部分的面积是一个定值(即保持不变).a6cm b 12cm A 12cm B 20cma 6cmb图⑴aabb图⑵ 图⑶【分析】先考虑在长方形 B 的左上角顶点与直角三角形 A 接触时,位于直角三角形斜边的哪个位置.由于长方形 B 的高为6cm ,即上边离b 直线之距离为6cm ,所以上边到直线a 的距离是3cm .另外, 由于直角三角形 A 下边的顶点到直线a 的距离为6cm ,所以当直角三角形与长方形相交时,则长方形的上侧边通过直角三角形斜边的中点.这样,在重合之前的状态(图⑴),各横向长度如图所示.在图⑴中,由于三角形上侧的边长为12cm ,而过斜边的中点的虚线长度6cm ,即是该直角三角形的切口长度,这个长度正好等于上侧边长的一半.A 与B 两图形重合时的面积保持定值是指从图⑵的重合状态到图⑶的重合状态,将该状态与图⑴ 时的状态相比较,可知,直角三角形与长方形所移动的长度之和分别是:到图⑵状态为20cm , 到图⑶状态则为26cm .由于直角三角形的速度是1cm/s 、长方形的速度是3cm/s ,相加便知二者A BAB以每秒4cm 相互接近.所以到达图⑵状态时,需要20 ÷ 4 = 5(s) ;到达图⑶状态需要26 ÷ 4 = 6.5(s) , 也就是说,从5s ∼ 6.5s 之间重合的面积是定值.4.如图所示,圆紧贴着全长为30 厘米、有直角拐弯的折线从一端滚动到另一端(没有离开也没有滑动),在圆周上设一个定点 P ,点 P 从圆开始滚动时是接触折线的,当圆停止滚动时也接触到折线,然而在圆滚动的全部过程中 P 点是不接触折线的.请问:圆的半径是多少厘米?( π = 3.14 , 保留两位小数).⑴caba⑵⑶【分析】设半径为a 厘米,首先考虑一下圆在直线上滚动过的角度是90︒ 时转了 1 圈,如图⑴所示.图中 14 4圆的弧长和圆滚动过的距离相等,即 PQ = 2a ⨯ 3.14 ÷ 4 = 1.57a 厘米.由于本题中在圆滚动的全部 过程中 P 点是不接触折线的,于是圆滚动到拐角时滚动过的角度有以下两种情况:①滚动到拐角时不满270︒ :此时圆恰好转了270︒ ,即 3圈,而图⑵中的b + c 是圆滚动过的距离,4因此b + c = 1.57a ⨯ 3 , b + a + a + c = 1.57a ⨯ 3 + a + a = 16 + 14 ,得到a ≈ 4.47 厘米;②滚动到拐角时滚动过的角度不小于270︒ 也不大于360︒ :此时圆共转动了270︒ + 360︒ = 630︒ ,即圆恰好转 7圈,而图⑶中的d + e 是圆滚动过的距离,因此d + a + a + e = 1.57a ⨯ 7 + a + a = 16 + 14 ,4得到a ≈ 2.31 厘米.检验是否满足条件: d = 16 - 2.31 = 13.69 厘米;圆周 = 2.31⨯ 2 ⨯ 3.14 ≈ 14.51 > d > e .所以在开始滚动和结束滚动以外,点 P 没有接触到折线,所以a = 2.31 厘米也满足条件.P14P16 O a P1.57 Qead aEF真题巩固1.以长方形 ABCD 的边 AB 和CD 为斜边向长方形内作等腰直角三角形 ABE 和CDF ,已知三角形 ABE 的面积为16 ,长方形的周长为 44 ,则三角形 BED 的面积是 . A DB C【分析】由于三角形 ABE 是等腰直角三角形,所以四个这样的三角形可以拼成一个边长为 AB 的正方形,故16 = 1⨯ AB 2 ,得到 AB = 8 .由周长为 44 可知 BC = 44 ÷ 2 - 8 = 14 ,4则 S ∆BED = S ∆ABD - S ∆ABE - S ∆AED = 14 ⨯ 8 ÷ 2 - 16 -14 ⨯ 4 ÷ 2 = 12 . 2.如图,将边长为 1 的正三角形Ⅰ放在一条直线上,让三角形绕顶点C 顺时针转动到达Ⅱ,再继续这样转动到达Ⅲ,则 A 点走过的路程的长为 .AC【分析】图中圆弧即为 A 点走过的路程,分为两段,均为圆心角为120︒ 、半径为 1 的扇形的圆弧.所以,两个扇形圆弧长之和= 2 ⨯ π ⨯1⨯ 120 ⨯ 2 = 4π ,即 A 点走过的路程的长是 4π.360 3 33.如右图,面积为 l 的 ∆ABC 中,BD : DE : EC = 1: 2 :1 ,CF : FG : GA = 1: 2 :1 ,AH : HI : IB = 1: 2 :1 ,求阴影部分面积.A ABCC【分析】设 IG 交 HF 于 M , IG 交 HD 于 N ,如果能求出 IM 和 IG 以及 IN 和 IG 的长度之比,根据面积比例模型就可以求出∆HMN 的面积,进而求出阴影部分的面积.而要求 IM 和 IG 以及 IN 和 IG 的长度之比,只需要求 IM 和 MG 以及 IN 和 NG 的长度之比,为此连接 DI 、 DG 、 IF 、GH .由于 S= 2 S= 2 ⨯ 1 ⨯ 3 S= 1 , S = ⎛1 - 1 ⨯ 1 - 3 ⨯ 3 - 1 ⨯ 3 ⎫S = 3 ,∆HID 3 ∆HBD 3 4 4 ∆ABC 8∆HGD 4 4 4 4 4 4 ⎪∆ABC 16 ⎝ ⎭(如果对线段的平行关系较为熟悉,可以看出 HG ∥ BC ,GD ∥ AB ,所以 BDGH 是平行四边形,那么 S ∆HGD = S ∆BDH = 1 ⨯ 3 S 4 4 ∆ABC = 3 ) 16HGMIF NHGI FB Ⅰ ⅡⅢ根据蝴蝶定理, IN : NG = S∆HID : S ∆HGD = 1 : 3 8 16 = 2 : 3 ,所以 IN = 2IG ;5由于 S ∆HIF = 2 S 3 ∆AIF = 2 ⨯ 3 ⨯ 3 S 3 4 4 ∆ABC = 3 , S 8 ∆HGF = 2 S 3 ∆HAF = 2 ⨯ 1 ⨯ 3 S 3 4 4 ∆ABC = 1,根据蝴蝶定理, 8IM : MG = S : S= 3 : 1 = 3 :1 ,所以 IM = 3IG ; ∆HIF ∆HGF8 8 4(同样地,有 HG ∥ BC , IF ∥ BC ,所以 HG ∥ IF ,且 HG = 1 BC , IF = 3BC ,根据相似三角4 4形性质,有 IM : MG = IF : HG = 3 :1 )所 以 MN = IM - IN = 3 IG - 2 IG = 7IG ,4 5 20那么 S ∆HMN = 7 S 20 ∆HGI = 7 ⨯ 2 S 20 3 ∆AGI = 7 ⨯ 2 ⨯ 1 ⨯ 3 S 20 3 4 4 ∆ABC = 7 . 160同理可得其他 5 个阴影小三角形的面积均为 7 ,所以阴影部分的面积为 7 ⨯ 6 = 21.160 160 804. 四个面积为1 的正六边形如图摆放,求阴影三角形的面积.【分析】如图,将原图扩展成一个大正三角形 DEF ,则∆AGF 与∆CEH 都是正三角形.假设正六边形的边长为为a ,则∆AGF 与∆CEH 的边长都是4a ,所以大正三角形 DEF 的边长为 4 ⨯ 2 - 1 = 7 ,那么它的面积为单位小正三角形面积的 49 倍.而一个正六边形是由 6 个单位小正三角形组成的,所以一个单位小正三角形的面积为 1 ,三角形 DEF 的面积为 49.6 6由于 FA = 4a , FB = 3a ,所以∆AFB 与三角形 DEF 的面积之比为 4 ⨯ 3 = 12.7 7 49同理可知∆BDC 、∆AEC 与三角形 DEF 的面积之比都为 12,所以∆ABC 的面积占三角形 DEF 面49积的1 - 12 ⨯ 3 = 13 ,所以∆ABC 的面积的面积为 49 ⨯ 13 = 13.49 49 6 49 65.有同样大小的立方体 27 个,把它们竖 3 个,横 3 个,高 3 个,紧密地没有缝隙地搭成一个大的立方体.如果有 1 根很直的细铁丝穿过这个大立方体,最多可以穿透几个小的立方体?【分析】假设铁丝穿过3 ⨯ 3 ⨯ 3 的立方体每穿过一个小立方体就被小立方体的面给切断,那么本题可以先考虑铁丝最多可以被切成几段.由于3 ⨯ 3 ⨯ 3 的立方体内部有 6 个截面(每个方向 2 个),铁丝穿过时 不可能与其中的某个截面有 2 个或 2 个以上的交点,也就是说与每个截面最多有 1 个交点,那么 与 6 个截面最多有 6 个交点,铁丝最多被切成 7 段.由于每一段铁丝对应一个小立方体,所以最 多可以穿过 7 个小立方体.。

学而思小升初工程问题精讲

学而思小升初工程问题精讲

知识大总结 1、基本公式,工总=工效×工时。 ⑴ 工总,设为单位“1” 设为时间的最小公倍数 ⑵ 列出各自工效、合作工效。 2、关于合作、交替做。 交替做,周期问题。注意是谁结尾。 3、基本公式的熟练程度.
【今日讲题】 例3,例5,例6, 【讲题心得】 _________________________________________________ ____________________________________. 【家长评价】 ________________________________________________ ________________________________________________ ________________________________.
【例4】 (★★★) 甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲 工作要12天,二队完成乙工程要15天;在雨天,一队的工作效 率要下降40%,二队的工作效率要下降10%。结果两队同时完 成工作,问工作时间内下了多少天雨?
2
【例5】 2009年第七届“希望杯”六年级第2试试题 ★★★★ 甲、乙两人合作清理400米环形跑道上的积雪, 1 两人同时从同一地点背向而行各自进行工作,最 初, 3 甲清理的速度比乙快 ,中途乙曾用10分钟去换 工具,而后工作效率比原来提高了一倍,结果从 开始算起,经过1小时,就完成了清理积雪的工 作,并且两人清理的跑道一样长,问乙换了工具 后又工作了多少分钟?
【知识要点-讲解】 3、合作与交替做
【例7】 ( ★★★★) 规定两人轮流做一个工程,要求第一个人先做1个小时,第二个 人接着做1个小时,然后再由第一个人做1个小时,然后又由第 二个人做1个小时,如此反复,做完为止。如果甲、乙轮流做一 个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时, 那乙单独做这个工程需要多少小时?

学而思 2013小升初基础知识全攻略(一)——拼音、汉字

学而思 2013小升初基础知识全攻略(一)——拼音、汉字

第一讲 小升初基础知识全攻略(一)——拼音、汉字——知识全梳理 一、整体认读音节(16个)zhi chi shi ri zi ci si yi wu yu ye yue yin ying yuan yun二、声调的分类及标法1.声调的分类普通话主要有四种声调,简称四声。

名称调号举例 阴平(一声) ˉ 妈:mā 阳平(二声) ˊ 麻:má 上声(三声) ˇ 马:mǎ 去声(四声) ˋ骂:mà2.声调的标法⑴声调只能标在音节中的元音上,即:a ,o ,e ,i ,u ,ü。

拼音教主传功⑵标调规则:________________________________________________三、隔音符号(’)的用法当“a ,o ,e ”既做音节开头又连接在其他音节后面时,在a ,o ,e 之前就用隔音符号(’)把容易误读的音节隔开。

如:dī’àn (堤岸)。

注意隔音符号应放在两个音节之间的正上方。

四、上声变调A .两个上声相连,第一个变为阳平。

B .三个上声相连,前两个变为阳平。

五、大写规则①每句话开头或每行诗开头的第一个要大写。

②姓的第一个字母和名的第一个字母要大写。

③专有名词的第一个字母要大写。

④地名中的专名和通名分写,每一部分的第一个字母都要大写 ⑤书刊名称、文章标题、商标和商店的名字一般每个字母都大写。

六、儿化带儿化韵的音节一般用两个汉字来表示。

如:“zhèr ”写作“这儿”。

儿化的作用主要有: ①区别词性。

②区别词义。

③表示亲切或喜爱的感情色彩。

④表示细、小、轻、微的性状。

七、停顿停顿:停顿是指说话、朗读时,段落、语句间和后面所出现的间歇。

如“我看见他笑了”这句话,若想说“他”笑了,就要在“ ________”后稍停顿一下;若想说“我”笑了,就应在“_________”后稍作停顿。

——点击考点考点1——汉语拼音字母排序例1:按照拼音字母表顺序,给下列字母重新排序,再写出相应的大写字母。

学而思小升初讲座

学而思小升初讲座

16年小升初招生时间表6月10日前各区完成小升初公办学校电脑派位和对口直升资料等核对工作15日各区教育行政部门完成市属公办外国语学校初中招生指标分配工作19日公办小学派发录取通知单20日至21日举行小学毕业考试22日上午市属公办外国语学校初中招生进行电脑派位和抽签22日下午市属公办外国语学校初中进行招生录取24日公办学校初中开始并完成招生,当天将录取结果通知学生及其家长25日公办小学新生注册27日至28日民办初中学校网上报名29日民办初中学校开始招生,3天内完成30日起学生及其家长可登录网上报名系统查询公办小学录取结果7月4日至8日民办小学进行第一次补录9日至10日民办小学接收新生注册报到,并将名单上报区教育行政部门5日至7日民办初中学校进行第一次补录18日前民办初中学校与公办学校同步完成学籍建立工作公办初中电脑派位后由于部分学生被民办初中录取所剩余的学位,各区下旬可招收符合来穗人员随迁子女积分入学条件的学生,具体由各区结合本区实际实施先公后民,家长必须搞清楚的事情1.是否真的可以先参与公办学校的录取?2.假如报考民校失败,是否还有入读公办初中的机会,是入读原来派到的公办初中,还是由教育局重新统筹?广州初中名校的总体介绍广州初中名校的梯度划分第一梯队:华附第二梯队:四大公校重点班二中火箭班(信息班)、执信重点班、广大附奥班、省实重点班第三梯队:一线民校&两大外国语学校六中课改、二中应元、荔湾广雅、育才实验、中大附中;天外、广外第四梯队:准一线民校省实天河、白云广雅、二中苏元第五梯队:二线民校&其他公办外国语学校华附新世界、四中聚贤、番禺育实、白云广附、黄埔广附;海珠实验、西外、侨外、秀外、第二外国语各大公办名校深度解读1.执信学而思综合排名前100名(越秀区学籍)综测前50华杯二等奖、希望杯、走美杯特长生招生项目:体育特长生招生项目:田径、游泳、篮球、羽毛球、乒乓球招生人数:18人招生范围:越秀区艺术特长生项目:管弦乐、声乐、舞蹈、语言艺术、美术、书法招生人数:92人招生范围:越秀区、海珠区、荔湾区2. 省实广东省实验中学公办地址:中山二路中素质教育、轻松;重视艺术节、运动会很多“条子生”高端学院水平和厉害、有2-3个重点班由越秀区小学推荐尖子生3.二中地点:纪念堂派位+特长生二中火箭班(数学+信息技术编程)5-6年纪暑假报名,考语文、数学、英语、编程4.广大附中(越秀校区、大学城校区)重点班(奥数基地班(大学城,15、16班;课改实验班,黄华路,7-8班))招生方式:密考、密考再密考不需要报读“坑班”广大附中学位很多,考试机会很多考英语(简单)、数学,不靠语文初中奥班不差华附,初中2+4培养模式,2年学完初中内容哦,4年学完高中内容慎重!选择它的初中就选了高中公办外国语学校(不完全派位,也有选拔)指标+抽签摇号1.广外:面对全广州市有各区公办学校推荐成绩靠前学生,然后随机抽取。

小学学而思奥数36个精彩讲座总汇

小学学而思奥数36个精彩讲座总汇

第1讲计算综合(一)繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级[第1讲循环小数与分数].1.计算:711471826213581333416⨯+⨯-÷【分析与解】原式=7123723174612241488128131233+⨯=⨯=-2.计算:【分析与解】注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×0.5.具体过程如下:原式=5919(3 5.22)19930.41.6910()52719950.5199519(6 5.22)950+-⨯÷+⨯-+=5191.3219930.440.40.59()519950.419950.5191.329-⨯⨯⨯÷+⨯⨯-=199320.41()19950.5+÷⨯=0.410.5÷=1143.计算:1111111987-+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x等于多少?【分析与解】方法一:1118x68114x112x7111+11148x62+214x1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25.方法二:有11131118821x4+==+++,所以18222133x4+==++;所以13x42+=,那么x=1.25.5.求944,43,443,...,44 (43)个这10个数的和.【分析与解】方法一:944+43+443...44...43++个=1044(441)(4441)...(44...41)+-+-++-个=104444444...44...49++++-个=1094(999999...999...9)99⨯++++-个 =1004[(101)(1001)(10001)...(1000...01)]99⨯-+-+-++--个 =914111.1009=49382715919⨯-个.方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=; 再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=; 再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=; 再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=; 再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=; 再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=; 再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=; 再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4. 所以,这10个数的和为4938271591.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?【分析与解】因为每个端点均有三条线段通过,所以这6条线段的长度之和为:1173(0.60.875)1+0.75+1.8+2.625=6.175=63440⨯+++=7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9.请计算:23155(0.625)(0.4)333841235(0.3)( 2.25)3104⨯+【分析与解】原式1550.6255155725384218384122562.253⨯=⨯÷=+8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少?【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1? 【分析与解】因为1116124+=,所以12,14,16,112的和为l,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929.那么在所有这种数中。

学而思小升初培优六:数论综合 学生版

学而思小升初培优六:数论综合 学生版

小升初培优(六):数论综合专题回顾练习:1加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?2甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?例题解析枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。

运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。

正确的分类有助于暴露问题的本质,降低问题的难度。

数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。

【例1】 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。

【分析】三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。

设这个三位数的百位、十位、个位的数字分别为x ,y ,z 。

由于任何数除以11所得余数都不大于10,所以222x y z ++10≤。

从而13x ≤≤,03y ≤≤,03z ≤≤。

所求三位数必在以下数中:100101102103110111112120121122130200201202211212220221300301310 不难验证只有100,101两个数符合要求。

【例2】 写出12个都是合数的连续自然数。

【分析】(法一)在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。

我们把筛选法继续运用下去,把考查的范围扩大一些就行了。

用筛选法可以求得在113与127之间共有13个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126。

(法二)如果设这12个数分别是a ,1a +,2a +, ,11a +,如果2a -能被2到13中任意一个数整除,那么a ,1a +,2a +, ,11a +,能分别被2、3、4, ,13整除,所以,只要取13!a =即可得到符合条件的12个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档