水泵变频运行特性曲线精编
水泵变频运行特性曲线
![水泵变频运行特性曲线](https://img.taocdn.com/s3/m/85a4ff70aa00b52acec7ca26.png)
水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】一、引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
二、水泵变频运行分析的误区1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1)为什么水泵变频运行时频率在30~35Hz以上时才出水2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,后才随着转速的升高而升高2.绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA ,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
3.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌4.以上分析的误区1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
几种泵的特性曲线
![几种泵的特性曲线](https://img.taocdn.com/s3/m/fa682f2f02020740be1e9b7c.png)
111111
四、泵与风机运行工况点变化的影响因素
2、密度变化的影响(设密度下降为原来的一半) 泵的扬程H不变,而
,其工况点变化如 p p H st H z g
左下图所示; 风机的全压p,且pc (p、pc均∝),其工况点变化如 右下图所示。
111111
四、泵与风机运行工况点变化的影响因素
H-qVT
hs hf+hj
径向式
H-q2)H-qV曲线 HT=KHT ,H=HT-hw ,qVT-q =qV
二、功率与流量性能曲线(Psh-qV )
Psh Ph Pm,且Pm与流量无关 2 P g q H / 1000 g q K ( A Bq ) / 1000 A q B q VT T VT VT VT VT h
111111
【解】 由流体力学知道,当考虑了局部阻力的等值长度 后,管道系统的计算长度l0为: l0=l+le=250+350=600(m) 所以,为克服流动阻力而损失的能量为:
qV l0 d 2 / 4 8l0 2 8 600 2 2 hw q 0 . 03 q 19 . 16 q V V V d 2g gd 5 9.806 3.14 0.65
五、泵与风机性能曲线的比较
(四)液环泵的性能曲线特性 液环泵亦称纳什海托(Nash· Hytor)泵,即纳什型泵, 属于离心容积式泵,其性能特性介于离心泵和容积泵之间。 在火力发电厂中,液环泵常作为凝汽器的抽气装置和用于负 压气力除灰系统。
111111
泵与风机的运行工况点
一、管路系统性能曲线 二、泵与风机的运行工况点 三、泵与风机运行工况点的稳定性 四、泵与风机运行工况点变化的影响因素
水泵变频运行特性曲线修订稿
![水泵变频运行特性曲线修订稿](https://img.taocdn.com/s3/m/88bc4033cc22bcd127ff0c17.png)
水泵变频运行特性曲线公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
水泵特性曲线
![水泵特性曲线](https://img.taocdn.com/s3/m/0407484cb307e87101f69635.png)
一、水泵的调速性能水泵在改变转速时,其内部几何尺寸没有改变,所以,据水泵的相似原理可知:当转速变化时,流量与转速成正比,扬程与转速的平方成正比,轴功率与转速的立方成正比,得出:同一台水泵当转速变化时,水泵的主要性能参数将按上述比例定律而变化,并且,在变化过程中可保持效率基本不变,若水泵机组转速可调,我们就可以改变某台水泵的转速以适应当时需水量的变化,这样就可以避免水泵机组在低效率区域运转造成的电动机过载,另一方面,也可以避免供水压力偏高所造成的浪费。
同时,水泵随着转速的变慢而使轴功率大为减少,电动机输入功率也随之减少,这就是调速水泵在供水系统中所起的节能作用。
二、变频恒压供水的节能原理所谓恒压供水方式,就是针对离心泵“流量大时扬程低,流量小时扬程高”的特性,通过自控变频系统,无论流量如何变化,都使水泵运行扬程保持不变,即等于设计扬程。
若采用关阀调节,当流量由Q2→Q1时,则工况点由A2变为A1,浪费扬程△H=H1-H3=△H1+△H2。
若采用变频恒压供水,则自动将转速调至n1,工况点处于B1点(参见图1)。
由于变频调速是无级变速,可以实现流量的连续调节,所以,恒压供水工况点始终处于直线H=H2上,在控制方式上,只需在水泵出口设定一个压力控制值,比较简单易行。
显然,恒压供水节约了H1-H2。
而没有考虑△H2。
因此,它不是最经济的供水调节方式,尤其在管路阻力大,管路特性曲线陡曲的情况下,△H2所占的比重更大,其局限性就显而易见。
图1三、四、减速的基本原理根据交流电动机工作原理中的转速关系,n=60f(1-s)/p,从公式中得出:均匀改变电动机定子绕组的电源频率,就可以平滑地改变电动机的同步转速。
电动机转速变慢,轴功率就相应减少,电动机输入功率也随之减少,这就是水泵调速的节能作用。
水泵特性曲线绘制及并联工况点计算 水泵及泵站设计实验课件
![水泵特性曲线绘制及并联工况点计算 水泵及泵站设计实验课件](https://img.taocdn.com/s3/m/d28a68046f1aff00bfd51e72.png)
管道系统阻力(水头损失)特性曲线: 流体流动带来阻力损失与流量之间的关系
管道系统阻力损失: 沿程阻力损失和局部阻力损失
h hf hl
沿程阻力损失
水流与管内壁摩擦造成的能量损失 材料
影响因素: 粗糙度
流体特征(温度、种类、浓度等) 流速 管径
hf AklQ2
管道系统阻力变化使泵实际工作扬程问题复杂化 例如选泵式,恰好选择流量-扬程完全匹配不可 能
泵运行与外界条件密不可分
水泵装置
水泵 管路系统 外界条件
逆止阀 水锤保护系统 滤网 江河水位 水塔高度 管网压力
泵运行工况决定因素
水泵的固有特性 能力问题
工作环境
流量下所需扬程(能量)
某流量下管路所需扬程与泵能提供的扬程相同,即为工况点
管道系统特性曲线 泵扬程特性曲线
有确定函数???
两种计算法
作图法(工程常用) 数解法(拟合函数法)
运行水泵工作扬程
z1
P1
g
12
2g
H
z2
P2
g
22
2g
2
1
可以认为: 进出管径同:
z1 z2
2 1
这样: H P2 P1
g
作图法(直接法)
将泵特性曲线与管路特性曲线作同一图,估算交点
H
管路 H/~Q
思考题
1、离心泵并联运行与单泵单独运行相比,单泵的工况点有何变 化(流量、扬程、轴功率)?每多增加一台泵并联,流量增加 变化规律如何?为什么? 2、离心泵并联工作后,工况点轴功率比单泵单独运行明显下降, 选择配套电机应以哪项为准?为什么?
局部阻力损失
水泵的性能曲线图分析
![水泵的性能曲线图分析](https://img.taocdn.com/s3/m/6de6ead2760bf78a6529647d27284b73f24236bd.png)
水泵的性能曲线图分析水泵的性能曲线图分析:泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n 值。
水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。
注意其轴功率不应超过电机功率。
1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。
扬程--流量曲线以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。
每一个流量Q都相应于一定的扬程H、轴功率N、效率n 和允许吸上真空高度Hs 。
扬程是随流量的增大而下降的。
Q-H(流量-扬程)是一条不规则的曲线。
相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。
它将是该水泵最经济工作的一个点。
在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。
在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。
因无法上图,请自找一幅水泵性能曲线图对照着看。
主要就这些了。
GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。
其中ft是英尺,表示扬程。
1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米.比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢?转换公式是什么?请大家告诉我一下!谢谢转换公式:高度H=P/(ρg)压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。
水泵特性曲线与管路特性曲线图v3
![水泵特性曲线与管路特性曲线图v3](https://img.taocdn.com/s3/m/b31fb5a3e109581b6bd97f19227916888486b9f3.png)
● A 为原设计工况点:流量Q1,扬程H1,轴功率N1,水泵效率η1。
● 由于系统实际的阻力没有那么大,实测的实际工况点为B ,流量Q2,扬程H2,轴功率
N2,水泵效率η2
● 表明原设计高扬程,实际是低扬程,大流量,低效率,高能耗状况运行;
流量Q(m3/h)
扬程H(m)
H
Q1
Q2
流量Q(m3/h)
扬程H(m)
H 0
Q1
原水泵特性曲线
● 通过对实际运行工况的检测分析,获得系统的管路特性曲线(详见图),曲线上的流量
为设计流量Q2的C 点即为水系统最佳工况(Q2,H3)运行点,系统最佳工况为流量Q2,扬程H3,轴功率N3,水泵效率η3。
● 图面积(O ,H2,B,Q2,O )为原设计运行的能耗,面积(O ,H3,C,Q2,O )为水泵转轮二
次优化设计后运行时的能耗,二者面积差H3,H2,B,C,H3即为可节约的能耗。
流量Q(m3/h)
扬程H(m)
H
Q1Q2
流量Q(m3/h)
扬程H(m)
H
Q1Q2。
水泵基本参数及特性曲线讲解
![水泵基本参数及特性曲线讲解](https://img.taocdn.com/s3/m/368180ff1b37f111f18583d049649b6649d70962.png)
效率
01
效率:指水泵实际输出功率与输入功率的比值,是水泵的重要 性能参数。
02
效率的高低反映了水泵能量利用的完善程度,效率越高,说明
水泵的能量损失越少。
效率通常用百分数表示。
03
转速
01
转速:指水泵叶轮每分钟的旋转次数,是水泵的重要
性能参数。
02
转速的大小决定了水泵的流量、扬程和功率等性能参
数。
Q-n曲线
总结词
流量与转速的关系曲线
详细描述
Q-n曲线表示水泵在不同流量下的转速变化。在一定范围内,随着流量的增加,转速可能会相应增加或保持恒定。
Q-η曲线
总结词
流量与效率的关系曲线
详细描述
Q-η曲线表示水泵在不同流量下的效率变化。在最优工况点附近,水泵的效率最高。随着流量的增加或减 小,效率通常会相应降低。
扬程
01
扬程:指水泵所能够提升的液体的总高度,是水泵 的重要性能参数。
02
扬程的大小取决于泵的转速、叶轮结构、叶片角度 等因素。
03
扬程单位常用米表示。
功率
01 功率:指水泵在单位时间内所做的功,是水泵的 重要性能参数。
02 功率的大小取决于泵的转速、扬程、流量和效率 等因素。
03
功率单位常用千瓦(kW)表示。
定期检查水泵的各个部件,如轴承、密封件、叶轮等,确 保其完好无损。
要点二
清洗与润滑
定期清洗水泵内部,并加注润滑油,以减少摩擦和磨损。
水泵常见故障及处理
流量不足
可能是由于叶轮堵塞、密封件磨 损或管道堵塞等原因造成。应检 查并清洁叶轮和管道,更换密封
件。
扬程不足
可能是由于泵内漏气、叶轮损坏或 转速过低等原因造成。应检查泵内 气体是否泄漏,更换叶轮或调整电 机转速。
水泵变频运行的特性曲线
![水泵变频运行的特性曲线](https://img.taocdn.com/s3/m/86130a0a50e2524de5187edb.png)
水泵变频运行的特性曲线The manuscript was revised on the evening of 2021水泵变频运行的特性曲线(一)1?引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2?水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律H1/H2=(n1/n2)2轴功率比例定律P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz 以下时就不出水了,流量已经降到零。
变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3?以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
水泵基本参数及特性曲线讲解PPT课件
![水泵基本参数及特性曲线讲解PPT课件](https://img.taocdn.com/s3/m/34aec05731126edb6e1a100e.png)
C2
C1
w1
α1
β1
u1
α2
速度三角形
可编辑
35
Cm2 w 2
β2
Cu2
u2
W1
C1
u1
W2
C2
β2
α2
u2
W1 C1
u1
(a) (a)为后弯式(β2<90)
可编辑
b 图2--16 离心泵叶片形状
(b)为径向式(β2=90)
36
W2
C2
β2
W1
C1
α2 u2
小知识
给排水、石油化工、航空航天、水利水电中最常用的泵为叶片泵 叶片泵定义:通过高速旋转的叶轮把机械能传给被抽吸液体的机械。
4
离心泵
5
轴流泵
6
混流泵
7
三、作用和地位
1、作用:输送、加压、混合
水泵及水泵站是给排水工程的主体动力工程 一种医用泵——人体血液体外循环泵,即是泵与给排水工程关
特种泵的设计 低比转速泵、超低比转速泵、渣浆泵(固液两相流)、高温
高扬程泵(锅炉水)、低温高压泵(液态氮、液态二氧化 碳)、电动潜油泵、砂泵、磁力驱动离心泵。其他特种泵如 往复泵(扬程高,流量稳定)
9
四、泵站的研究现状
节能改造措施
近年来,节能改造更换耗能大的老设备;改造设备 包括切割叶轮外径、减少叶轮级数,改用高效率泵 和机电;合理设计选型等,进一步节能的潜力在于 运行中的优化调度。
2、相对运动、牵连运动——实际运动 相对速度——水流在液槽中以速度沿叶片而流动 牵连速度——水流随叶轮以u一起作旋转运动
绝对速度——水流C对固w定 坐u 标而言的绝对速度
变频泵工作曲线
![变频泵工作曲线](https://img.taocdn.com/s3/m/9072d276aa00b52acec7ca6a.png)
变频泵工作曲线水泵的调节方式有两种:1. 一是管路特性曲线的调节,如关阀调节2.水泵特性曲线的调节,如水泵调速、叶轮切削等。
在供水系统中,变频调速一般采用以下两种供水方式:变频恒压变流量供水和变频变压变流量供水。
其中,前者应用得更为广泛,而后者技术上更为合理,但实施难度更大。
变频恒压(变流量)供水:所谓恒压供水方式,就是针对离心泵“流量大时扬程低,流量小时扬程高”的特性,通过自控变频系统,无论流量如何变化,都使水泵运行扬程保持不变,即等于设计扬程。
由于变频调速是无级变速,可以实现流量的连续调节所以,恒压供水工况点始终处于一条直线上。
变频变压(交流量)供水:变压供水方式控制原理和恒压供水相同,只是压力设置不同。
它使水泵扬程不确定,而是沿管路特性曲线移动。
当流量有变化时,自动调解转速。
此时水泵轴功率小于恒压供水水泵轴功率。
变压供水理论上避免了流量减少时扬程的浪费,显然优于恒压供水。
变频调速节能原理:水泵的转速在某一范围内变化时,流量、总扬程、轴功率有如下关系:n n Q Q ''= 2''⎪⎭⎫ ⎝⎛=n n H H 3''⎪⎪⎭⎫ ⎝⎛=n n N N 式中n 一额定转速,n'一运行转速Q 一额定转速时的流量,Q ’一运行转速时的流量H 一额定转速时的扬程,H ’一运行转速时穿下的扬程N 一额定转速时的功率,N ’一运行转速时Q ’下的功率求最小转速:由于C 点和A1点工况相似,根据比例律有:121H H Q Q c c =⎪⎪⎭⎫ ⎝⎛ C 点在曲线20Q S H H ⋅+=上有: 20c c Q S H H ⋅+=其中,c H 、c Q 为未知数,解方程得:()2101Q S H H H H c ⋅-⨯= ()22101⎥⎦⎤⎢⎣⎡⋅-⨯=Q S H H Q Q c根据比例律有: 2)(2100min ⎥⎦⎤⎢⎣⎡⋅-⨯=Q S H H n n在设计工况相同的3个供水系统里(即最大设计工况点均为A 点,均需把流量调为B Q ),水泵型号相同,但管路特性曲线却不相同,分别为:(1) 211Q S H H ⋅+= (10H H =)(2) 222Q S H H ⋅+= (20H H =,21H H >)(3) 23Q S H ⋅= (030==H H )若采用关阀调节,则3个系统满足流量B Q 的工况点均为B 点,对应的轴功率为B N ;若采用调速运行,则3个系统满足流量B Q 的工况点分别为C,D,E 点,其对应的运行转速分别为1n ,2n ,3n ,相应的轴功率分别为C N ,D N ,E N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水泵变频运行特性曲线精编Document number:WTT-LKK-GBB-08921-EIGG-229861 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。
但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。
2 水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=(n1/n2)2轴功率比例定律 P1/P2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ 与流量Q成正比。
采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。
采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。
变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
而比例定律是相似定律作为特例演变而来的。
即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。
(2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。
因此其运行工况与标准工况相同,可以应用比例定律。
但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。
(3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。
(4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。
比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。
图1中工作点A和C就完全适合这种工况,可以使用比例定律。
(5) 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。
在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。
并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力。
水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。
由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。
4 单台水泵变频运行的图解分析(1) 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H0。
水泵的扬程只有大于净扬程时才能出水。
因此管网阻力曲线的起始点就是该净扬程的高度,见图2。
图2 单台水泵变频运行特性曲线图2中,额定工作点仍然为A,理想管网阻力曲线R1与流量成正比。
变频后的特性曲线F2,工作点B。
流量为零时的净扬程H0,变频运行实际工作点HB与净扬程的差△H=HB -H0,为克服管网阻力达到所需流量QB时的附加扬程。
由于管网阻力曲线与图1不同,因此不满足相似定律。
(2) 图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量。
因此R1成为理想的管网阻力曲线。
但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点。
如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载。
因此实际额定工作点应该向A点左上方偏移,见图3。
图3 实际工作点向A点偏移(3) 图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线。
变频器在50 Hz下运行时的实际最大工作点C,实际最大流量QC(比水泵的额定流量QA小),最大流量时的扬程HC(比水泵实际额定扬程HA高)。
实际工作点C的参数只能通过实际测试才能得出。
当在变频器频率为F2时的特性曲线F2,实际工作点B。
实际工作点与净扬程的差△H=HB-H0=K2QB2,为克服实际管网阻力达到所需流量QB时的附加扬程。
工作点B的实际扬程HB=K2QB2+H0。
5 相同性能曲线水泵工频并联运行时的图解分析(1) 两台或两台以上的泵向同一压力管道输送流体时的运行方式称为并联运行。
并联运行的目的是为了增加流体的流量,适用于流量变化较大,采用一台大型泵的运行经济性差的场合。
同时水泵并联运行时可以有备用泵,来保证系统运行的安全可靠性。
(2) 水泵并联运行工况的工作点,由并联运行的总性能曲线和总的管道特性曲线的交点来确定。
并联运行的总性能曲线,是根据并联运行时工作扬程相等,流量相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。
相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。
图4 水泵并联运行特性(3) 图4为两台相同性能泵并联工作的总性能曲线与工作点。
其中A为任意一台泵单泵运行时的工作点,净扬程H 0。
B为两台泵并联运行时单台泵的工作点。
F2为两台泵并联运行时的总的性能曲线,在纵坐标相同的情况下,横坐标为单台泵性能曲线的两倍。
并联运行的工作点C点的流量QC=2QB,扬程HC=HB。
管网阻力曲线不变,只是两台泵并联运行时,流量为两台泵的流量和。
(4) 两台相同性能的水泵并联运行有如下特点:l HC=HB>HA:即两台泵并联运行时扬程相同,且一定大于单台泵运行时的扬程。
l QC=2QB<2QA:即两台并联运行的总输出流量为两台单泵输出流量之和,每台泵的流量一定小于单泵运行时的流量。
因此并联运行时的总流量,不能达到两台单泵的流量和。
l 管网阻力曲线越陡,泵的性能曲线越平坦,并联后的每台泵的流量同单泵运行时的流量比较就越小,并联工作的效果越差。
l 并联运行适合于性能曲线较陡,以及管网阻力曲线较平坦的场合。
6 不同性能水泵并联运行的图解分析关死点扬程(或最大扬程)相同,流量不同的水泵并联运行时的性能曲线图5 扬程不同的水泵并联运行特性曲线(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A 1。
(2) F2为小泵的性能曲线,小泵单独运行时的工作点B 1。
(3) F3为并联水泵的总性能曲线,工作点C,扬程HC,流量QC= QA2+ QB2。
关死点扬程(或最大扬程)相同,流量不同的水泵并联运行的特点(1) HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于每台泵单泵运行时的扬程。
(2) QC=Q A2+QB2<QA1+QB1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量。
因此并联运行时的总流量,不能达到每台泵单泵运行的流量和。
关死点扬程(或最大扬程)不同,流量也不同的水泵并联运行时的性能曲线如图6所示。
图6 扬程不同、流量不同水泵并联特性曲线(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A 1。
(2) F2为小泵的性能曲线,小泵单独运行时的工作点B 1。
(3) F3为并联水泵的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。
关死点扬程(或最大扬程)不同,流量也不同的水泵运行时特点(1) HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于大泵单泵运行时的扬程HA1,更大于小泵单泵运行时的扬程HB1。
(2) QC=QA2+QB2<QA1+QB1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量。
因此并联运行时的总流量,不能达到每台泵单泵运行的流量和。
(3) 两泵并联运行时,扬程低的水泵并联运行时流量减少更快。
(4) 当管网阻力曲线变化时,容易发生工作点在D的位置,该点的扬程高于小泵的最大扬程,造成小泵因扬程不足不出水,严重时会发生汽蚀现象。
7变频泵与工频泵并联运行时的图解分析变频泵与工频泵并联运行时总的性能曲线,与关死点扬程(最大扬程)不同,流量也不同的水泵并联运行时的情况非常类似,可以用相同的方法来分析。
图7中:图7 变频泵与工频泵并联运行特性曲线(1) F1为工频泵的性能曲线,也是变频泵在50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵单泵运行时的工作点A1。
(2) F2为变频泵在频率F2时的性能曲线,变频泵在频率F 2单独运行时的工作点B1。
(3) F3为变频和工频水泵并联运行的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。
变频泵与工频泵并联运行时的特点(1) F2不仅仅是一条曲线,而是F1性能曲线下方偏左的一系列曲线族。
F3也不仅仅是一条曲线,而是在F1性能曲线右方偏上的一系列曲线族。
(2) F2变化时,F3也随着变化。
工作点C也跟着变化。
因此变频泵的扬程HB2,流量QB2,工频泵扬程HA2,流量QA2,以及总的扬程HC=HB2=HA2,和总流量QC= QA2+QB2都会随着频率F2的变化而变化。
(3) 随着变频泵频率F2的降低,变频泵的扬程逐渐降低,变频泵流量QB2快速减少;工作点C的扬程也随着降低,使总的流量QC减少;因此工频泵的扬程也降低,使工频泵流量QA2反而略有增加,此时要警惕工频泵过载。
8水泵运行时的特例变频泵与工频泵并联运行特例之一,是频率F2= F1=50Hz 图8中:图8 变频泵在50Hz时与工频泵并联运行特性曲线(1) F1为工频泵的性能曲线,也是变频泵F2= F1=50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵和变频泵单泵运行时的工作点A1。