高一数学函数习题(练习题以及答案.

合集下载

高一数学函数经典练习题(答案)

高一数学函数经典练习题(答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y ⑽ 4y = ⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数与极限分析练习题及答案

高一数学函数与极限分析练习题及答案

高一数学函数与极限分析练习题及答案一、选择题1. 设函数$f(x)=\sqrt{1-x^2}$,其定义域为$[-1,1]$,关于该函数,下列说法正确的是:A. $f(x)$在$[-1,1]$上单调递增B. $f(x)$在$[-1,1]$上单调递减C. $f(x)$在$x=\frac{\pi}{4}$处取得最大值D. $f(x)$在$x=0$处取得最大值答案:D2. 设函数$f(x)=\frac{1}{x}$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:D3. 设函数$f(x)=e^x$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C4. 设函数$f(x)=\sin x$,下列说法正确的是:A. $f(x)$在$x=\frac{\pi}{2}$处连续B. $f(x)$在$x=\frac{\pi}{2}$处可导C. $f(x)$在$x=\frac{\pi}{2}$处极限存在D. $f(x)$在$x=\frac{\pi}{2}$处极限不存在答案:B、C5. 设函数$f(x)=x^3$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C二、填空题1. 函数$f(x)=\sin x$在$x=\frac{\pi}{2}$处的导数为______。

答案:12. 函数$f(x)=\frac{1}{x}$在$x=0$处的极限为______。

答案:无穷大或$+\infty$3. 函数$f(x)=e^x$在$x=0$处的连续性、可导性、极限存在性均为______。

高一数学函数经典题目及答案

高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

高一数学函数试题及答案

高一数学函数试题及答案

高一数学函数试题及答案一、选择题(每题4分,共40分)1. 函数y=f(x)=x^2-4x+3的零点个数是()。

A. 0个B. 1个C. 2个D. 3个2. 函数y=x^3-3x的单调递增区间是()。

A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, 0) ∪ (2, +∞)3. 函数y=f(x)=x^2-6x+8的值域是()。

A. (-∞, +∞)B. [1, +∞)C. (-∞, 1]D. [1, +∞)4. 函数y=f(x)=x^3-3x的极值点是()。

A. x=-1B. x=1C. x=-1, 1D. x=-1, 25. 函数y=f(x)=x^2-4x+3的对称轴是()。

A. x=2B. x=-2C. x=4D. x=-46. 函数y=f(x)=x^3-3x的导数是()。

A. f'(x)=3x^2-3B. f'(x)=x^2-3C. f'(x)=3x^2+3D. f'(x)=x^3-37. 函数y=f(x)=x^2-4x+3在x=2处的切线斜率是()。

A. 0B. -4C. 4D. -18. 函数y=f(x)=x^3-3x的拐点是()。

A. x=-1B. x=1C. x=-1, 1D. x=-1, 29. 函数y=f(x)=x^2-6x+8的最小值是()。

A. 1B. 2C. 3D. 410. 函数y=f(x)=x^3-3x的二阶导数是()。

A. f''(x)=6xB. f''(x)=6x-6C. f''(x)=3x^2D. f''(x)=3x^2-6二、填空题(每题4分,共20分)11. 函数y=f(x)=x^2-4x+3的零点是_________。

12. 函数y=f(x)=x^3-3x的单调递减区间是_________。

13. 函数y=f(x)=x^2-6x+8的对称轴是_________。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.已知函数在处取得最大值,则可能是( )A.B.C.D.【答案】【解析】根据函数解析式的特点,设,则根据正弦和角公式,可知函数,则其最值在处取得,所以.【考点】正余弦特殊值,正弦和角公式,正弦函数最值.2.下列函数在区间是增函数的是A.B.C.D.【答案】D【解析】(A)函数是上的减函数;(B)函数是R上的减函数;(C)的对称轴为,所以该函数是上的增函数;(D)是上的增函数,所以在区间是增函数,故D为正确答案.【考点】函数的单调性.3.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.4.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。

5.方程有唯一解,则实数的取值范围是()A.B.C.或D.或或【答案】D【解析】方程有唯一解,即半圆与直线只有一个公共点。

结合几何图形分析知,实数的取值范围是或或,选D。

【考点】直线与圆的位置关系点评:简单题,利用转化与化归思想,将方程解的个数问题,转化成直线与半圆的公共点个数问题。

6.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

高一数学必修一函数练习题含答案

高一数学必修一函数练习题含答案

高一数学必修一函数练习题含答案1.函数的定义域为_______________。

2.函数$f(x)=x-x^2$,$(x\in[-1,1])$的值域为_______________。

3.函数$f(x)=\begin{cases}x+2.& x\leq -1\\x^2+1.& x>-1\end{cases}$,则$f(f(-2))=$_______________。

4.函数$f(x)=\begin{cases}x。

& (-1<x<2)\\2x。

& (x\geq 2)\end{cases}$,若$f(x)=3$,则$x=$_______________。

5.已知函数$f(x)=x+bx+c$的对称轴为$x=2$,则$f(4),f(2),f(-2)$由小到大的顺序为_______________。

6.已知函数$f(x)=mx+3(m-2)x-1$在区间$(-\infty,3]$上是单调减函数,则实数$m$的取值范围是_______________。

7.已知$f(x)=2x+3$,$g(x+2)=f(x)$,则$g(x)=$_______________。

8.已知$f(x)=x+ax+bx-8$,若$f(-2)=10$,则$f(2)=$_______________。

9.函数$f(x)$为奇函数,当$x\geq 0$时,$f(x)=x(2-x)$,则当$x<0$时,$f(x)$的解析式为_______________。

10.下列函数:①$y=x$与$y=\frac{5}{3}x$;②$y=\sqrt{x}$与$y=x$;③$y=x^2$与$y=x$;④$y=x+1\cdot x-1$与$y=(x+1)(x-1)$中,图象完全相同的一组是(填正确序号)_______________。

11.若函数$f(x)$的图象关于原点对称,且在$(0,+\infty)$上是增函数,$f(-3)=-1$,则不等式$xf(x)<0$的解集是_______________。

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13x C .f (x )→y=23x D .f (x )→y =x 2.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购置了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝ ⎛⎭⎪⎪⎫12等于( ) A .15 B .1 C .3D .309.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.(5分)11.函数y=x+1+12-x的定义域是(用区间表示)________.三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y=x+1x2-4;(2)y=1|x|-2;(3)y=x2+x+1+(x-1)0.(10分×2=20分)13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f(x)的定义域为[ 1,2 ] ,求f (2x-1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题 1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满意⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高一函数练习题及答案

高一函数练习题及答案

高一函数练习题及答案高一函数练习题及答案高一阶段是学习数学的重要时期,其中函数是一个重要的内容。

函数作为数学的一个基础概念,对于学生来说是一个相对抽象的概念。

因此,通过练习题的方式来巩固和提高对函数的理解和运用能力是非常必要的。

本文将为大家提供一些高一函数练习题及答案,希望能够帮助大家更好地掌握函数的知识。

一、选择题1. 设函数f(x) = 2x + 3,那么f(4)的值是多少?A. 7B. 11C. 9D. 8答案:B. 11解析:将x = 4代入函数f(x) = 2x + 3中,得到f(4) = 2 × 4 + 3 = 8 + 3 = 11。

2. 已知函数g(x) = x^2 + 3x - 2,求g(-1)的值是多少?A. -6B. -2C. 2D. 6答案:C. 2解析:将x = -1代入函数g(x) = x^2 + 3x - 2中,得到g(-1) = (-1)^2 + 3 × (-1) - 2 = 1 - 3 - 2 = -4。

3. 函数h(x) = 3x^2 - 2x + 1,求h(2)的值是多少?A. 9B. 11C. 15D. 19答案:A. 9解析:将x = 2代入函数h(x) = 3x^2 - 2x + 1中,得到h(2) = 3 × 2^2 - 2 × 2 + 1 = 3 × 4 - 4 + 1 = 12 - 4 + 1 = 9。

二、填空题1. 设函数f(x) = 2x + 3,求f(-1)的值是多少?答案:1解析:将x = -1代入函数f(x) = 2x + 3中,得到f(-1) = 2 × (-1) + 3 = -2 + 3 = 1。

2. 已知函数g(x) = x^2 + 3x - 2,求g(0)的值是多少?答案:-2解析:将x = 0代入函数g(x) = x^2 + 3x - 2中,得到g(0) = 0^2 + 3 × 0 - 2 = 0 - 2 = -2。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

高一数学函数试题及答案

高一数学函数试题及答案

4.二次函数的图象经过三点 A(1 , 3), B(1,3),C(2,3) ,则这个二次函数的 24
解析式为

5.已知函数
f
(x)

x2
1
(x 0) ,若 f (x) 10 ,则 x

2x (x 0)
三、解答题
1.求函数 y x 1 2x 的值域。 2.利用判别式方法求函数 y 2x2 2x 3 的值域。
A.1 B. 0
C. 0 或1
D.1或 2
3.已知集合 A 1, 2,3, k, B 4,7, a4, a2 3a ,且 a N*, x A, y B
使 B 中元素 y 3x 1 和 A 中的元素 x 对应,则 a, k 的值分别为( )
A. 2,3 B. 3, 4 C. 3,5 D. 2,5
函数及其表示[提高训练 C 组]
一、选择题
1.若集合 S y | y 3x 2, x R,T y | y x2 1, x R ,
则 S T 是( )
A. S
B. T
C.
D.有限集
2.已知函数 y f (x) 的图象关于直线 x 1对称,且当 x (0,) 时,

x2
,
0 x
0
的图象是抛物线,
其中正确的命题个数是____________。
三、解答题
1.判断一次函数 y kx b, 反比例函数 y k ,二次函数 y ax2 bx c 的 x
单调性。
2.已知函数 f (x) 的定义域为 1,1 ,且同时满足下列条件:(1) f (x) 是奇函数;
二、填空题
1.函数 f (x) (a 2)x2 2(a 2)x 4 的定义域为 R ,值域为 ,0 ,

(word完整版)高一数学必修一函数练习习题及答案

(word完整版)高一数学必修一函数练习习题及答案

高中数学必修一函数试题(一)一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4)(1)(2)(3)(4)7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。

A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.函数在上的单调性为()A.减函数B.增函数.C.先增后减.D.先减后增【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。

由定义法或利用结论x的系数为正,一次函数是增函数,故选B。

2.函数的单调增区间为()A.B.C.D.【答案】A【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

函数图象开口向下,对称轴x=0,所以函数的单调增区间为,选A。

3.函数,当时是增函数,当时是减函数,则等于()A.-3B.13C.7D.由m而定的常数【答案】B【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

解:因为函数,当时是增函数,当时是减函数,所以函数对称轴为=-2,=-8,所以=13,故选B。

4.函数的定义域是[-2,0],则f(x)的单调递减区间是____.【答案】[-1,1].【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

解:令t=x+1,∵-2≤x≤0,∴-1≤t≤1,∴f(t)=(t-1)2-2(t-1)+1=t2-4t+4,即f(x)=x2-4x+4=(x-2)2在区间[-1,1]上是减函数.5.如果函数在区间上是增函数,那么的取值范围是__________________.【答案】;【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

解:因为函数在区间上是增函数,函数图象开口向上,所以在对称轴的右侧,即,解得,从而11。

6.函数的奇偶性是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数【答案】C【解析】主要考查函数奇偶性的概念与判定方法。

由于定义域不关于原点对称,所以函数是非奇非偶函数。

故选C。

7.已知是定义在R上的奇函数,且为周期函数,若它的最小正周期为T,则A.0B.C.D.【答案】A【解析】主要考查函数奇偶性的概念、性质及周期函数的概念。

由已知,所以,即,0.故选A。

8.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则A.f(sin)<f(cos)B.f(sin1)>f(cos1)C.f(cos)<f(sin)D.f(cos2)>f(sin2)【答案】D【解析】主要考查函数奇偶性的概念、性质及函数单调性判定方法。

高一数学函数与方程练习题及答案

高一数学函数与方程练习题及答案

高一数学函数与方程练习题及答案1. 题目:已知函数f(x) = 2x - 3,求f(4)的值。

解答:将x = 4代入函数f(x),得到f(4) = 2(4) - 3 = 8 - 3 = 5。

答案:f(4) = 5。

2. 题目:已知函数g(x) = x^2 - 4x + 3,求g(2)的值。

解答:将x = 2代入函数g(x),得到g(2) = (2)^2 - 4(2) + 3 = 4 - 8 + 3 = -1。

答案:g(2) = -1。

3. 题目:已知函数h(x) = 3x + 2,求满足h(x) = 10的x的值。

解答:将h(x) = 10转化为方程3x + 2 = 10,然后解方程得到x = (10 - 2) / 3 = 8 / 3。

答案:x = 8 / 3。

4. 题目:已知函数k(x) = x^2 - 6x + 8,求满足k(x) = 0的x的值。

解答:将k(x) = 0转化为方程x^2 - 6x + 8 = 0,然后解方程得到x = 2 或 x = 4。

答案:x = 2或 x = 4。

5. 题目:已知函数m(x) = 2x^2 - 3x + 1,求m(3)的值。

解答:将x = 3代入函数m(x),得到m(3) = 2(3)^2 - 3(3) + 1 = 18 - 9 + 1 = 10。

答案:m(3) = 10。

通过以上练习题的解答,我们巩固了高一数学中关于函数与方程的知识。

在解题过程中,我们学会了如何代入特定的x值来求函数的值,以及如何解方程来求满足特定条件的x值。

这些知识将在数学学习中起到重要的作用,为我们解决实际问题提供了基础。

通过不断的练习和实践,我们将更加熟练地运用这些知识。

高一数学函数选择题112道及答案.docx

高一数学函数选择题112道及答案.docx

高-敬学碱选择题112道及答案1、已知映射f : A r B ,其中A=B=R,对应法则f-.y = -x2+2x,对于实数keB,在集合A中不存在原象,则左的取值范围是(A )A.k>lB. MC. k<lD. kWl 2、今有一组实验数据如下:r2-lA.v = log2tB. v = log t tC. v =—-—D. v = 2t -22 23、函数y =1*1(1-*)在区间A上是增函数,那么A的区间是(B )A. ( — 8, 0)B. [0,1]C. [0, +°°)D. (1,+00)4、已知定义域为R的偶函数f (x)在[0, +8)是增函数,且/(I) =0,贝I]不等式/(log4x) > 0的解集是(C )A. {x I x > 2}B.C. I 0 < x < ;或x > 2;D. {x I ? < x < 1或x > 2}5、函数f{x) = -x\x + a\+b的奇函数的充要条件是(D )A. b=0B. a=0C. ab=0D. a~+b~=06、函数/(x) = (|)W -4(|)w(x e R)的值域是A. ( 一°°, 0)B. [-3, 0]C. [-4,0) 7、设0<a<l,实数x,y满足x+log a y=0,则y关于x轴的函数图像大致形状是(D ) D. [-3,0)A.在区间(一1,0)上是增函数B. 在区间(0,1)上是增函数C.在区间(一2,0)上是减函数D. 在区间(0,2)上是减函数9、已知定义在实数R 上的函数y = f(x)不恒为零,同时满足/(x + y) = /(x)/(y),且当尤>0时, f(x)>l,那么当x<0时,一定有(D )B. -l</(x)<0C. /(x) > 1D. 0 </(%)<!集合 M = {(x,^) I y = A /1-^2,x,y G R),N = {(x,y) I x = 1,^ G 7?),则 A/p|N= ( A )已知 /(x) = 7T{X G R),贝Ij/(X 2)=如果 X= {xlx 2—x=0}, Y= {xlx 2+x=O),那么 XCl Y 等于14、已知a<b<0,奇函数/I*)的定义域为[Q , ~a ],在区间[一。

高一函数练习题及答案

高一函数练习题及答案

高一函数练习题及答案1. 定义域问题给定函数 \( f(x) = \frac{1}{x} \),求其定义域。

2. 函数值问题已知 \( g(x) = 3x - 2 \),求 \( g(5) \)。

3. 函数的奇偶性判断函数 \( h(x) = x^3 - 2x \) 的奇偶性。

4. 函数的单调性分析函数 \( k(x) = x^2 + 3x + 2 \) 在 \( (-\infty, -1.5) \) 和 \( (-1.5, +\infty) \) 上的单调性。

5. 复合函数已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求 \( f(g(x)) \)。

6. 反函数问题求函数 \( m(x) = 2x + 1 \) 的反函数。

7. 函数的图像变换若 \( n(x) = x^2 \),求 \( n(2x - 1) \) 的图像与 \( n(x) \) 的图像之间的关系。

8. 函数的极值问题求函数 \( p(x) = -x^3 + 3x^2 - 2x \) 的极值点。

9. 函数的连续性判断函数 \( q(x) = \frac{x^2 - 1}{x - 1} \) 在 \( x = 1 \) 处是否连续。

10. 函数的应用问题某工厂生产的产品数量与成本之间的关系由函数 \( r(x) = 100x + 500 \) 给出,其中 \( x \) 代表产品数量,求当产品数量为 50 时的成本。

答案1. 定义域为 \( x \neq 0 \) 的所有实数。

2. \( g(5) = 3 \times 5 - 2 = 13 \)。

3. 函数 \( h(x) \) 是奇函数,因为 \( h(-x) = (-x)^3 - 2(-x) = -x^3 + 2x = -h(x) \)。

4. 函数 \( k(x) \) 在 \( (-\infty, -1.5) \) 上单调递减,在\( (-1.5, +\infty) \) 上单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、
求函数的定义域
1、求下列函数的定义域:
⑴33y x =
+-
⑵y =
⑶01
(21)111
y x x =+-++
-
2、设函数f x ()的定义域为[]01,,则函数f x ()2
的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1
(2)f x
+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,
且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域
5、求下列函数的值域:
⑴2
23y x x =+- ()x R ∈ ⑵2
23y x x =+- [1,2]x ∈ ⑶311x y x -=
+ ⑷31
1
x y x -=+ (5)x ≥ ⑸
y = ⑹ 22
5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼
y ⑽
4y =
⑾y x =-
6、已知函数22
2()1
x ax b
f x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式
1、 已知函数2
(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2
(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,
()(1f x x =+
,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1
()()1
f x
g x x +=-,求()f x 与()g x 的解析表达式
四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 2
23y x x =++ ⑵y = ⑶ 261y x x =--
7、函数()f x 在[0,)+∞上是单调递减函数,则2
(1)f x -的单调递增区间是
8、函数236
x
y x -=
+的递减区间是 ;函数y =的递减区间是
五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3
)
5)(3(1+-+=
x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;
⑶x x f =)(, 2)(x x g =
; ⑷x x f =)(, ()g x =; ⑸2
1)52()(-=x x f , 52)(2-=x x f 。

A 、⑴、⑵
B 、 ⑵、⑶
C 、 ⑷
D 、 ⑶、⑸
10、若函数()f x = 3
44
2++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 4
3
)
11、若函数()f x =的定义域为R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2
(2)10x a x a +-+->恒成立的x 的取值范围是( )
(A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<<
13、函数()f x = ) A 、[2,2]-
B 、(2,2)-
C 、(,2)
(2,)-∞-+∞ D 、{2,2}-
14、函数1
()(0)f x x x x
=+
≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数
15、函数2
2(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x =
16、已知函数f x ()的定义域是(]01,
,则g xf x a f x a a ()()()()=+⋅--<≤1
2
0的定义域为 。

17、已知函数2
1mx n
y x +=
+的最大值为4,最小值为 —1 ,则m = ,n = 18、把函数1
1
y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的解析式为
19、求函数12)(2
--=ax x x f 在区间[ 0 , 2 ]上的最值.
23、定义在R 上的函数(),(0)0y f x f =≠且,当0x >时,()1f x >,且对任意,a b R ∈,()()()f a b f a f b +=。

⑴求(0)f ; ⑵求证:对任意,()0x R f x ∈>有;⑶求证:()f x 在R 上是增函数; ⑷若2
()(2)1f x f x x ->,
求x 的取值范围。

函 数 练 习 题 答 案
一、函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1
{|220,,1}2
x x x x x -≤≤≠≠
≠且 2、[1,1]-; [4,9] 3、5
[0,];2 11(,][,)32
-∞-+∞ 4、11m -≤≤ 二、函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7[,3)3
y ∈
(5)[3,2)y ∈- (6)1{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±= 三、函数解析式:
1、2
()23f x x x =-- ; 2
(21)
44f x x +=- 2、2()21f x x x =-- 3、4
()33
f x x =+
4
、()(1f x x =-
;(10)
()(10)
x x f x x x ⎧≥⎪=⎨<⎪⎩ 5、21()1f x x =- 2()1x g x x =-
四、单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3] (3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-
7、[0,1]
8、(,2),(2,)-∞--+∞ (2,2]- 五、综合题:
C D B B D B
14
15、(,1]a a -+ 16、4m =± 3n = 17、1
2
y x =
- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- , max ()(2)34f x f a ==-
(2)01a <≤时,2
min ()()1f x f a a ==-- ,max ()(2)34f x f a ==- (3)12a <≤时,2
min ()()1f x f a a ==-- ,max ()(0)1f x f ==-
(4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-
19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪
=<<⎨⎪-+≥⎩
(,0]t ∈-∞时,2
()1g t t =+为减函数
在[3,2]--上,2
()1g t t =+也为减函数
min ()(2)5g t g =-=, max ()(3)10
g t g =-=。

相关文档
最新文档