全功率风机变流器介绍
金风直驱变流器SWICTH、VERTECO、FREQCON区别
全功率变流器(金风直驱1500全功率变流器)金风1500风力发电机组拥有SWICTH、VERTECO、FREQCON三种变流器,其中VERTECO变流器在金风1500装机中占有比重最大。
FREQCON变流器在2008年国产化项目组在原有设计(德国Vensys公司)的基础上,进行了重新设计、选型改造等技术工作。
SWITCH变流器主电路原理图VERTECO变流器主电路原理图以上是SWITCH变流器和VERTECO变流器原理图,可以看出两种变流器原理和控制方式(SVPWM空间矢量控制)基本相同,整个电路可分为两个部分:整流和逆变。
通过整流将发电机发出的不稳定的交流电(电机转速0~17.3rpm,电机电压0~690Vac,电压频率0~12.7Hz)变换成相对稳定的直流电;再通过逆变单元,把直流电逆变成与电网电压、频率、相位相匹配的交流电送入电网。
U1为网侧逆变功率模块,2U1和3U1为发电机侧整流功率模块,4U1为DC CHOPPER制动功率模块,3H1是预充电整流模块,电抗器2L1、电容器2C1(如果在处理故障中将机侧电容器断开,由于转速不稳定,定子发电波纹就不稳定,会产生很多电压尖峰,会烧毁功率单元,使母线电压偏高,所以不建议断开,可以选择性的断开几组)和发电机定子绕组(呈感性)组成LCL滤波器,滤波效果更好,电抗器1L1(网侧滤波电抗器比机侧滤波电抗器容量大)、电容器1C1变压器漏感构成LCL滤波,有效地滤除高次谐波,降低变流器对电网的高次谐波污染。
风机并网前3K11吸合,通过整流模块3H1整流后对直流母线进行充电,防止风机并网时对母线和功率单元有电流冲击,损坏元器件,发电机定子两路绕组出来连接两组整流模块2U1、3U1,采用双绕组发电机选用两组整流器(采用主动整流方式,整流部分采用可控的IGBT整流),相对来说减少单个功率单元和其他元件的容量,虽然双PWM背靠背方案全控器件数量较多,控制电路复杂,成本较高,但具有较高的效率,电流通过PWM控制逆变器1U1以后其实是脉宽波,再经过1L1、1C1滤波以后电流为正弦波,送入电网。
全功率风能发电机
全功率风力发电机组用变流器
全功率风机变流器是全功率风力发电机组的重要组成部分,通过与系统的协调工作,实现风电
机组输出功率的变换和并网。
其主要优点如下:
·通过全功率风机变流器的控制作用,将不断变化的风能转化为频率、电压恒定的交流电馈入电
网,保证风力发电机组稳定可靠地并网运行;
·通过对发电机输出转矩的控制,实现最大功率输出;
·与电机直接并网的风力发电系统相比,全功率风机变流器实现了发电机组与电网间的隔离,转速与电网频率之间的耦合问题得以解决,避免了因电网波动对发电机组稳定运行所带来的不利影
响。
[型号说明]
示例型号为WG2000KFP的2兆瓦全功率风力发电机组用变流器
[性能特点]
·采用大功率IPM模块;
·四象限运行技术;
·采用光纤隔离技术;
·双DSP控制;
·采用矢量变换控制技术;
·具备CAN总线接口;
·具备各种保护功能;
·适配发电机组功率等级850KW、1.5KW、2KW。
全功率变流器风电机组的工作原理及控制策略
全功率变流器风电机组的工作原理及控制策略CATALOGUE 目录•全功率变流器风电机组概述•全功率变流器风电机组的工作原理•全功率变流器风电机组的控制策略•全功率变流器风电机组的性能评估与优化•全功率变流器风电机组的发展趋势与挑战CHAPTER全功率变流器风电机组概述风能发电简介风能是一种清洁、可再生的能源,具有广泛的应用前景。
风力发电技术经过多年的发展,已经逐渐成熟并被广泛应用于电力领域。
风能发电的基本原理是利用风能驱动风力发电机转动,进而驱动发电机产生电能。
全功率变流器是风电机组中重要的组成部分,主要作用是将风力发电机产生的电能进行变换和调节,以满足电网的需求。
全功率变流器具有高效率、高可靠性、高灵活性等特点,能够有效提升风电机组的整体性能。
全功率变流器的作用风电机组与电网的交互风电机组需要与电网进行良好的配合,以保证电能的质量和稳定性。
风电机组需要适应电网的运行要求,如电压、频率、相位等参数,以保证风电场的稳定运行。
风电机组与电网的交互是实现风能发电的重要环节之一。
CHAPTER全功率变流器风电机组的工作原理风轮齿轮箱将风轮的转速提升,并将其传递给发电机。
齿轮箱通常位于风轮和发电机之间。
齿轮箱发电机01020303开关全功率变流器的电力电子器件01整流器02逆变器最大风能追踪电力控制全功率变流器的控制原理CHAPTER全功率变流器风电机组的控制策略最大风能追踪控制变速恒频控制1直交轴电流控制23直交轴电流控制是一种用于抑制风电机组运行过程中产生的谐波电流的控制策略。
该控制策略通过实时监测发电机电流,将其中谐波电流分量消除或减弱,以减小谐波对电网的污染。
直交轴电流控制通常采用PWM整流器来实现,通过控制PWM的占空比和相位,实现谐波电流的抑制和功率因数的优化。
矢量控制策略CHAPTER全功率变流器风电机组的性能评估与优化性能评估方法发电效率评估01电网稳定性评估02抗干扰能力评估03控制策略优化最大风能追踪控制滑模变结构控制电力电子器件的优化与保护电力电子器件的选型与配置全功率变流器风电机组需要选择适当的电力电子器件,如IGBT、IGCT等,并配置相应的保护电路,以确保其在高电压、大电流等极端环境下能够安全、可靠地运行。
全功率变流器介绍
43
l 车载振动试验 l 正弦振动试验 l 随机振动试验
振动测试
44
电磁兼容测试
静电放电枪
l 静电放电 l 电快速瞬变脉冲群
l 射频电磁场辐射抗扰度试验
l 射频场感应传导抗扰度试验
接收机(人工电源网络)
45
综合测试仪
综合测试
l 浪涌(冲击)抗扰度试验 l 电压跌落试验 l电快速瞬变脉冲群抗扰度试验 l 电压跌落试验
盐雾环境 • 适应严酷的风场运行
30
采用先进的控制技术
双PWM控制, 四象限运行, 确保低风速时 多发电
自适应无速度传 感器控制方法, 精确检测发电机 转速,实现磁场 定向
复合矢量控制技 术,快速实现 MPPT控制,提 高发电效率
自动软并网、软 解列控制,对电 网冲击小
31
完善的保护功能
具有完善的保护功能 配置有源撬棒,支持LVRT功能。
40
通过了电科院实地检测和用户报告
41
测试项目
外观结构
功能测试
电磁兼容 (EMS)
性能测试
变流器 测试项目
安规检查 环境试验
运输振动
防护
42
高低温交变湿热试验箱(21m3 ) 高低温湿热试验箱(1m3 )
环境测试
l 恒温试验 l 高低温交变试验 l 恒定湿热试验 l 交变湿热试验 l 盐雾试验
WT1600 数字功率计
46
内容导航
阳光风电简介 WG2000KFP变流器
测: 六鳌位于福建省漳州市,是大陆的边缘地带即半岛地形, 岛上环境优美、风力资源丰富,发展潜力巨大。
产品应用: 我公司2MW全功率水冷 风机变流器,在风场运 行稳定,并通过电科院 测试。
全功率变流器风电机组的工作原理及控制策略
全功率变流器风电机组的工作原理及控制策略全功率变流器是一种将风力发电机产生的交流电能转换为电网所需的直流电能的电子装置。
它的主要功能是实现风电机组的功率调节、保护以及与电网的连接。
全功率变流器由三个主要的模块组成:整流器、逆变器和控制单元。
整流器模块将风电机组产生的交流电能转换为直流电能,通过控制交流电能的整流部件(如晶闸管或IGBT)的导通角度,可以实现对输出直流电压的控制。
整流器的输出直流电压通过一个滤波电容进行平滑,以减小输出的脉动。
逆变器模块将整流器输出的直流电能转换回交流电能,通过控制逆变部件(如IGBT)的开关状态和频率,可以实现对输出交流电压和频率的控制。
逆变器的输出交流电能经过一个输出滤波器进行滤波,以去除输出的高次谐波。
控制单元对整个全功率变流器进行监测和控制。
它通过读取风电机组和电网的各种参数,如转速、电压、电流等,来实现对整流器和逆变器的控制。
控制单元采用先进的控制算法,如PID控制算法,来实现对全功率变流器的稳定运行和动态响应。
调频控制方式是通过控制风电机组的转速来实现对输出功率的控制。
该控制方式根据电网的需要,调节风电机组的转速,以使输出功率与电网的需求匹配。
调频控制可以使风电机组在不同的风速下运行在最佳转速范围内,提高风电机组的发电效率。
功率控制方式是通过控制全功率变流器的输出功率来实现对风电机组的控制。
该控制方式通过调节变流器的导通角度或输出电压,以控制风电机组的输出功率。
功率控制可以使风电机组根据电网的需求进行平稳的功率输出,提高电网的稳定性。
此外,全功率变流器还具有多种保护功能,如过电流保护、过电压保护、过温保护等,以确保风电机组和电网的安全运行。
控制单元还可以实现对功率输出的统计和调度,以优化风电机组的运行效果。
总之,全功率变流器通过整流器和逆变器的转换作用,将风力发电机产生的交流电能转换为电网需要的直流电能,并通过控制单元的监测和控制实现对全功率变流器的稳定运行和动态响应。
风电机组变流器介绍
17
二、变流器运行维护-1/3
2.4 防雷与接地
1. 检查防雷器表面是否有烧灼的痕迹。 2. 检查防雷器的连接导线是否有绝缘破损、热熔及烧灼的
痕迹 3. 检查防雷器的接线端子是否松动 4. 上电后,观察防雷器运行指示灯是否点亮。 5. 检查各接地铜排与线缆连接有无松动。确保接地阻值在
✓ 索引:当前的故障数据组,目前一共25组; ✓ Bit0~7:相应的故障标志位;0—无故障,1—有故障; ✓ 目前一共有:25*8=200个故障; ✓ 故障上传的最长延时时间为:25*20ms=500ms
10
一、变流器概述-1/3
1.4 故障系统
举例:#1单元故障字1:变流器故障、安全链断开
11
3
一、变流器概述-1/3
1.1 变流器结构
4
一、变流器概述-1/3
1.2 变流器网络拓扑图
5
一、变流器概述-1/3
1.2.1 变流器PLC控制
3G1 : 220VAC~24VDC PS电源 3U1 : CPU317-2DP 3U2 : CP 343-1 8U1 : DI32XDC24V 8U2 : D016XRel.AC120V/230V 8U3 : AI8X12Bit
测、开关量信号监测、保护信号输出
✓ MCU实现与DSP数据交互、数据存储、开关量信号监测保护信号输
出、MCU之间的通讯、与主控系统的通讯
7
一、变流器概述-1/3
1.3 后台监控系统
✓ 故障文件、故障数据
✓ 调试、监控控制器
8
一、变流器概述-1/3
1.4 故障系统
风能变流器
全功率变流器风电机组的工作原理及控制策略
全功率变流器风电机组的发展趋势
要点一
控制策略的不断优化
要点二
集群控制和智能运维
随着电力电子技术和计算机控制技术 的发展,全功率变流器风电机组的控 制策略将不断优化,以实现更高的运 行效率和更强的抗干扰能力。
未来全功率变流器风电机组将实现集 群控制和智能运维,通过集中控制和 智能化管理,提高风电场的效率和可 靠性。
要点三
与储能系统结合
全功率变流器风电机组将与储能系统 结合,以实现能量的就地消纳和存储 ,提高风电场的稳定性和经济性。
THANKS
感谢观看
风轮
捕获风能并转换为机械能。
发电机
将机械能转换为电能。
变速器/齿轮箱
将风轮的慢速旋转转化为发电机所 需的高速旋转。
塔筒
支撑风轮和发电机等设备。
风力发电系统的运行原理
当风吹过风轮时, 风能转化为机械能 。
发电机产生的电能 通过电缆传输到电 网。
风轮带动发电机旋 转,产生电能。
风力发电系统的优缺点
优点
矢量控制优点
矢量控制能够实现精确的磁场控制,同时可以优化转矩控制,从而提高风电机组 的效率和稳定性。
直接功率控制策略
直接功率控制原理
直接功率控制是一种基于功率滞环比较器的控制方法,将实 际功率与参考功率进行比较,通过调节变流器开关管的占空 比来控制输出功率。
直接功率控制优点
直接功率控制具有简单易行、响应速度快、抗干扰能力强等 优点,适用于高速运行的风电机组。
全功率变流器在风电机组中的作用
提高风电机组的效率和可靠性 ,降低维护成本。
控制风电机组的运行状态,使 其在各种风速条件下都能保持
最佳性能。
实现最大风能追踪功能,提高 风电机组的发电量。
全功率变流器风电机组的工作原理及控制策略
,发电机除了向电网发出有功功率外,还向电网发出感性无功功率。欠励时,电枢反 压U
超前于端电压 U ,发电机除了向电网发出有功功率外,还向电网 应为增磁作用,定子电流 I
发出容性无功功率。 5.1.3 永磁同步风力发电机结构及特点 (1)直驱式外转子永磁风力发电机结构 外转子电机的特点是定子在靠轴中间不动,转子在外围旋转。在下图中展示了内定子 的构造,内定子由硅钢片叠成,与常见的外定子相反,其线圈槽是开在铁芯圆周的外侧。
把右定子固定在右端盖中,左右端盖扣紧固定,发电机就组装好了,下图为发电机外观 图。
下图为中间转子盘式永磁发电机的剖面图
下图为侧视的剖面图。
5.1.4 电励磁同步风力发电机结构及特点 电励磁同步发电机(Electrically Excited Synchronous Generator,EESG),通常在转子侧进 行直流励磁。使用 EESG 相比使用 PMSG 的优势在于,转子励磁电流可控,可以控制磁链 在不同功率段获得 最小损耗;而且不需要使用成本较高的永磁材料,也避免了永磁体失磁 的风险,Enercon 公司主要经营这类产品。但是 EESG 需要为励磁绕组提供空间,会使电机 尺寸更大,转子绕组直流励磁需要滑环和电刷。 永磁同步电机的数学模型 定子电压方程为
功功率
PM mUI cos
其中, m 为发电机的相数。 经推导,有功功率表达式为
PM UI cos
UE0 sin Xc
对于并联于无限大电网上的同步发电机,发电机的端电压 U 即为电网电压,保持不变, 在恒定励磁电流条件下, 根据上式可知, 隐极式同步发电机输出的电磁功率与攻角 的正弦 成正比。 这可以通过下图所示的攻角特性曲线描述。当 U 和 E 0 不变时,由 PM f ( ) 画出的曲线 称为攻角特性曲线。当 90 °时,隐极发电机输出的电功率最大。
风力发电变流器
应调整桨距角,减小叶尖速比值,让风力发电系 统运行于安全功率区域。 哈尔滨九洲电气拥有该产品技术自主知识产权, 在此领域处于国内领先水平,是国内率先实现 1.5MW
可以根据电网需求进行无功补偿。 5.零冲击并网,自动软并网和软解列控制。 6.随机风速下的电功率平滑控制。 7.在阵风时采用阵风控制,降低了风机载荷。
8.功率因数控制。 9.标准通讯接口,如、、RS485接口等,具有远 程控制功能。 10.具有过流、过压、过温等故障检测与保护功 能和显示功能。 11.电网电
; 海拔高度: 100000h; 18.绝缘标准:GB3859/93。 19.整机可利用率:99.5%; 20.最大过载能力要求: 超过额定功率5%
,可运行1小时; 超过额定功率10%,可运行3分钟; 超过额定功率50%,可运行10秒钟; 21.环境方面参数: 存储温度:-45°C----60°C;
1.1产品原理: 永磁直接驱风力风力发电发电系统是采用永磁同 步电机无齿轮箱直接驱动型的风力风力发电发电 机组。兆瓦级风力发电用全功率风电变流器 1500A在发
电机输出端并上无功补偿电容,提高发电机的功 率因数和利用效率。采用六相不可控整流桥对其 进行12脉波整流。在整流输出端并上电容进行支 撑稳压,减小直流脉动,之后由IG
压异常保护、风机电压异常保护、孤岛保护、防 雷击保护。 12.符合工业现场运行要求。 1.4产品技术指标: 1.装置容量:1500KW; 2.输入输出电压
:690VAC; 3.效率:97; 4.电流畸变率: 100000h; 18.绝缘标准:GB3859/93。 19.整机可利用率:99.5%; 20
风电变流器产品介绍
风电变流器产品介绍一、概述风电变流器是一种将风能转换为电能的设备,它将风电机组产生的交流电能转换为适应电网要求的交流电能。
风电变流器在风电系统中具有重要的地位和作用,它不仅可以调节风能发电机的转速,使其在最佳转速范围内工作,还可以提高风能转换效率并实现对电网的并网。
二、工作原理风电变流器主要由整流单元、逆变单元和控制单元组成。
整流单元将风能发电机产生的交流电信号转换为直流电信号,而逆变单元则将这个直流电信号再转换为适应电网要求的交流电信号。
控制单元对整个变流系统进行监视和控制,以确保变流器的可靠性和稳定性。
三、产品特点1.高效率:风电变流器具有高效率的特点,可将风能转换为电能的损耗降低到最低。
通过先进的功率电子器件和优化设计的拓扑结构,可以将损耗降至最小,提高系统的整体效率。
2.大功率密度:风电变流器具有较高的功率密度,可以实现在更小的体积内输出更大的功率。
这对于风电场有限的场地资源来说尤为重要,可以提高整个风电系统的发电效率。
3.高可靠性:风电变流器具有高可靠性的特点,采用了多种保护措施和故障诊断技术,可以有效保护设备的安全运行。
同时,严格的生产工艺和质量控制体系也能够保证产品的稳定性和可靠性。
4.广泛适应性:风电变流器可以适应不同类型的风能发电机并具有较强的适应能力。
无论是永磁同步发电机、感应发电机还是异步发电机,风电变流器都能够进行有效的控制和调节,提高发电系统的性能并实现对电网的并网。
5.高性价比:风电变流器具有较高的性价比,可以在满足性能需求的前提下,以较低的成本实现风能转换。
同时,长期稳定的运行和较低的维护成本也能够降低系统的运营成本。
四、应用领域五、市场前景随着对可再生能源的需求不断增加,风电的发展前景越来越被看好。
而作为风电系统中的关键设备,风电变流器的市场也将迎来新的机遇。
随着技术的不断进步和成本的不断降低,风电变流器将更加普及和广泛应用。
六、结语风电变流器作为风电系统中的核心设备,具有高效率、大功率密度、高可靠性、广泛适应性和高性价比等优点,将为风能转换和电网并网提供可靠的保障。
风电机组变流器系统介绍
双馈型变流器拓扑图
网侧口 电流测量
690V 电网
框架断路器
定子 电流测量
并网接触器
DFIG
网侧电压 测量
定子电压 测量
滤波器
预充电电阻
主控690V 400V控制电源 供电
电网电压 测量
变流器 网侧电流测量
变流器
转子电流测量
滤波器
Crowbar
预充电:电网侧变流器启动时,先闭合预充电回路
网侧入口 电流测量
在放电过程中,开关断开(三极管截止) 时,电感开始给电容充电,电容两端电压升高, 升压完毕。
直接控制发电机转矩,动态响应好, 发电机端电流THD小。
发电机转矩不直接控制,直流侧斩波环 节可采用多重化,动态响应慢,定子电
流谐波大。
全功率变流器电气组成:1、电网侧变流器回路
2、电机侧变流器回路 3、直流侧卸荷单元
定子 DFIG
转子
S1 双馈电 机转子
转子
转子
变流器 电流测量
Crowbar
滤波器
网侧LC滤波单元与箱式变压器漏感构成LCL拓扑结构,有效 地滤除高次谐波,降低变流器对电网的高次谐波污染。
机侧通过由LCR所组成的du/dt网络,有效降低发电机终端的 电压尖峰,减少对发电机绝缘的损坏,提高发电机使用寿命。
电网电压 测量
变流器 网侧电流测量
变流器
转子电流测量
滤波器
Crowbar
双馈型变流器控制原理
由交流异步发电机的原理可得下面关系式:
f1
fr
fs
np 60
fs
其中f1为定子电流频率,n为转速,p为电机极对 数,fs为转子励磁电流频率,由该公式可知,当发 电机 转速变化时,若控制转子供电频率fs相应变化 ,可使f1保持不变,与电网电压保持一致,这就是 交流励磁发电机变速恒频运行的基本原理。
全功率风机变流器介绍
全功率风机变流器介绍一、全功率变流器控制原理全功率风力发电系统主体电路结构,如图1所示。
发电机的输出端连接变流器的机侧,变流器的网侧输出经升压变器后,连接电网。
图1全功率风力发电系统主体电路结构。
随着风速的变化,发电机的转速也变化,因此发电机输出的电压幅值和频率是变化的,而电网的电压幅值和频率是恒定的。
为了将发电机输出的频率和幅值变化的交流电送入到电网,变流器起到中间纽带环节的作用。
首先将发电机输出的交流电经机侧变流器部分整流成直流电,再经由网侧变流器部分逆变成交流电送入电网。
图2为全功率风力发电功率控制原理图,风机总控依据当前的风况,通过变桨和偏航控制叶片吸收的机械能,获得发电机的转矩量。
然后将转矩量值下发给变流器。
变流器根据总控下发的转矩指令,控制对发电机电能的抽取,从而控制并网电流大小。
总控依据当前风况,下发发电机转矩指令。
变流器响应转矩指令,控制并网功率。
图2 功率控制原理图对于机侧的变流器部分,在无速度传感器控制技术的基础上,采用基于定子电流定向的复合矢量控制技术,实现最大转矩电流比矢量控制的控制性能。
图3为发电机的控制矢量图。
图3 发电机控制矢量图对于网侧的变流器部分,采用电流解耦控制技术及并网电流对称控制技术。
通过对并网电流的解耦,将并网电流分解为有功电流、无功电流单独控制,实现有功功率和无功功率的控制。
同时为实现三相并网电流的对称控制,将负序的有功电流和无功电流控制为零。
控制结构框图如图4所示。
*dc图4 网侧变流器控制框图根据机侧变流器主体电路及控制策略,进行建模分析。
图5为机侧变流器的主体电路结构,图6为转换为数学模型的机侧控制框图。
V图5 机侧变流器主体电路结构图6机侧变流器控制数学模型框图根据网侧变流器主体电路及控制策略,进行建模分析。
图7为网侧变流器的主体电路机构,图8为为转换为数学模型的网侧控制框图。
V0图7 网侧变流器主体电路结构图8 网侧变流器控制数学模型框图全功率风机变流器网侧、机侧协同控制策略如图9所示。
全功率变流器工作原理
全功率变流器工作原理
全功率变流器工作原理是将输入电源的直流电压变换为需要的交流电压,实现直流电到交流电的转换。
主要由输入滤波电路、整流电路、逆变电路和输出滤波电路等组成。
1. 输入滤波电路:用于对输入电源的直流电进行滤波,去除其中的纹波,保证后续电路的供电稳定。
2. 整流电路:将滤波后的直流电压经过整流电路,将交流电压转换为直流电压。
常用的整流电路有单相或三相的整流桥电路。
3. 逆变电路:逆变电路实际上是将直流电再次转换为交流电。
逆变电路主要包括逆变器桥电路和开关管电路。
逆变桥电路可以将直流电反向供电给输出负载,同时通过控制开关管的通断来控制输出交流电的频率和幅值。
4. 输出滤波电路:逆变电路输出的交流电可能会有纹波,需要经过输出滤波电路进行滤波,去除纹波,保证输出的交流电的稳定性。
总体来说,全功率变流器通过滤波、整流、逆变和滤波等过程,实现输入直流电到输出交流电的转换。
通过控制输入直流电的大小和逆变器桥电路的开关状态,可以实现输出交流电的频率和幅值的精确控制。
风电变流器产品介绍
1 WINGREEN风电变流器产品系列
2
系列产品图片及选型表
3
产品特点介绍
4
全系列测试实验
5
第三方认证报告
双馈系列
功率
1500kW
双馈系列选型表 2000kW
2500kW
Ua
电网电压
0
Ub
-500
Uc
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
功率 型号 机型 工作海拔 存储环境温度 工作环境温度 冷却方式 盐雾测试标准 效率 功率因数 防护等级 尺寸 网侧变流器 电压范围 频率范围 容量 额定电流 最大电流 机侧变流器 额定电流 最大电流 du/dt 故障穿越标准 通讯接口 电压范围 频率范围
690Vac+10%/-20% 47.5Hz~52.5Hz
1000A 1200A(1min)
1897A 2400A(1min)
<1000V/us E.on 2003 CANOpen、Profibus、Interbus、Hotline、TCP/IP 0~759V 0~20Hz
3
产品特点介绍
4
全系列测试实验
5
第三方认证报告
风电变流器产品系列
产品系列 功率范围 馈电方式 冷却方式 应用地域
产品特点
全功率等级 1MW-5.5MW
双馈 /
全功率
风冷
/ 液冷
平原型
PCS6000风电变流器高达12MW的中压全功率变流器
PCS6000风电变流器高达12 MW的中压全功率变流器2 PCS6000 中压全功率变流器 l ABB风电变流器德国Global Tech I 风电场(照片 © Global Tech I / Henthorn )ABB 风电变流器 I PCS6000 中压全功率变流器 3PCS 6000中压风电变流器适用于大型风电机组的中压变流器伴随着风电需求的不断增长,可再生能源日益重要。
如今,风电机组达到如此之高的功率定额,这将使中压系统成为更佳选择。
可以通过降低电力传动系统的损耗来增加发电量,并通过消除昂贵的电缆线路有效降低安装成本。
与大型风电机组相匹配ABB 中压风电变流器与可与大型海上风电机组相匹配。
其功率最高达12 MW ,可匹配永磁发电机和感应发电机。
该变流器设计紧凑,占地面积很小,支持机舱安装或塔筒安装。
确保更低发电成本PCS6000有助于可靠、经济、充分地利用风能的全部潜力。
通过实现更大可用性、高效率、符合高级电网导则及轻松维护,PCS6000可降低度电成本(LCoE )。
在全球各地经过验证的成熟技术PCS6000风电变流器基于在全球各地成千上万的应用中所安装的ABB 中压变频器。
该变流器拥有在恶劣环境下可靠运行的良好声誉,广泛用于工业和推进传动系统、铁路电网、静止无功补偿、电池储能、潮汐发电及其他许多要求颇高的应用场合。
第一台PCS6000于2006年交付。
ABB 之道—不只是提供产品从风电机组的早期评估到在风电场的最终运行,ABB 都能提供一流的客户咨询、技术支持、培训及维护服务。
ABB 变流器专业人员是电气系统不同领域的专家,全面涵盖从发电到并网等整个链条。
在生命周期管理方面,ABB 有一个高素质的服务团队,他们可以通过提供支持的软件工具实现远程监控。
他们通过保持无故障运行和确保更大可用性来更大限度地实现设备的价值。
PCS6000特性– 高达12MW 的全功率风电变流器– 中压技术带来更高的效率– 由于元器件数量少、寿命长,确保高可用性– 生命周期成本低– 模块化设计确保轻松定制– 高级支持和远程服务工具确保提高可靠性、可用性和性能PCS6000平台被广泛用于各种应用场合,如铁路电网和潮汐发电(照片©Atlantis Resources )以成熟技术实现大型风电机组的高效运行和更低的度电成本4 PCS6000 中压全功率变流器 l ABB 风电变流器PCS6000变流器拓扑PCS 6000具备多种特性,确保风电机组高效、可靠运行并符合电网导则。
全功率变流器风电机组的工作原理及控制策略
全功率变流器风电机组的工作原理及控制策略
一、工作原理:
1.风能转换:当风能发电机接收到风能时,风轮叶片被风推动旋转,驱动风能转换机械将机械能转换成电能。
2.三相桥式整流:风能转换后的电能为三相交流电能,需要经过三相桥式整流电路进行整流,将交流电能转换成直流电能。
3.全功率变流:直流电能通过全功率变流器进行变流,将直流电能转换成与电网频率相同的交流电能。
4.电网连接:变流器输出的交流电能与电网的相电压相同,可以直接连接到电网。
二、控制策略:
1.风能最大化控制策略:风能最大化控制策略的目标是使风电机组能够最大化地利用风能并输出到电网。
该策略通过控制风能转换机械和全功率变流器的工作状态,以及叶片的角度等参数,实现不同风速下的最大功率输出。
2.无功功率控制策略:无功功率控制策略是为了确保电网的稳定运行而采取的控制策略。
根据电网的需求,风电机组通过控制全功率变流器的无功功率输出来调节电网的功率因数。
总结:
全功率变流器风电机组的工作原理是通过风能转换、整流和变流等步骤将风能转换成交流电能输出到电网。
其控制策略包括风能最大化控制策
略和无功功率控制策略,通过优化和调整控制策略,可以提高风电机组的发电量和电网的稳定性。
WG1500KFP全功率风能变流器
WG1500KFP双PWM控制技术,四象限运行,确保低风速下仍保持较高的能量转换效率额定功率时能量转换效率>97%高功率密度配置撬棒,支持低电压穿越独立温控单元,水冷加热控制逻辑,适应较宽温度范围可选配励磁电源,适用于多种发电机组丰富的对外接口,多种通讯方案热流仿真设计、三维模块化设计,系统稳定、易于安装维护长期风场运行考验,适应严酷的工作环境德国新一代功率模块,高效率,高可靠性,寿命长采用德国品牌机柜,优质美观,尺寸兼容性好性能特点匹配附件LVRT模块监控软件励磁单元以太网通讯模块GPRS通讯模块RS485-232转换器多模光纤转换器温度检测系统水冷系统交流参数直流参数系统性能参数通讯总线机械参数3AC 690V±10%50Hz +3% -5%3AC 690V±10%50Hz +3% -5%1600kVA1340A1400A3ph 690V±10%0~100Hz1650kVA1350A1400A<1000V/us1070Vdc1100Vdc>97%(额定功率)<15ms<82dB>85℃(散热器温度)-30~+50℃-40~+70℃0~2000米(超过1000米时需降容使用)<90%水冷IP54电网电压异常保护、电机电压异常保护、防雷保护、过欠速保护、直流过欠压保护、短路保护、电机过流保护、接地故障保护、过湿保护、通讯故障保护、过载保护、过热保护CANopenModbus TCP/IP, Device Net, Profibus-DP, EtherNET2620mm×2080mm×600mm3000kg电网参数电网电压电网频率网侧变流器参数网侧变流器电压范围网侧变流器频率范围网侧变流器容量网侧变流器额定电流网侧变流器最大电流机侧变流器参数机侧变流器额定电压机侧变流器频率机侧变流器容量机侧变流器额定电流机侧变流器最大电流输出电压du/dt变化率直流侧额定电压最大可连续操作直流电压效率转矩上升时间噪声跳闸保护温度运行温度存储温度海拔湿度冷却方式防护等级保护功能标准通讯方式可选通讯方式尺寸(宽×高×深)重量技术参数WG1500KFP 2010~2011 版本6.1。
全功率风电变流器拓扑选择与控制技术概述
朿方f秦2。
2。
.9.25第34卷Vol.34总第135期至功率面电娈彌羞筘祁迭柽与控制技T it腳述吴小田蒲晓珉边晓光蒋林东方电气集团科学技术研究院有限公司,成都611731摘要:变流器是风力发电机组中负责电能变换的核心装置,负责将发电机发出的电压、频率变化的电能变换为电压、频率恒定 的电能并入电网。
本文介绍了基于不同功率开关器件的风电变流器拓扑结构,对风电变流器控制中发电机控制、并网控制和 电网故障穿越控制等控制技术进行了概述,最后对风电变流器发展趋势进行了展望。
关键词:风力发电;风电变流器;永磁直驱;并网控制;电机控制中图分类号:TM614 文献标识码:A文章编号:1001-9006 (2020)03 -0005-06Topology Selection and Control Technologyof Full Power Wind Power ConverterWU Xiaotian,P U Xiaomin,BIAN Xiaoguang,JIANG Lin(Dec Academy of Science and Technology Co. , Ltd. , 611731, Chengdu, China)Abstract: Converter is the core equipment of wind turbine, which is responsible for the transformation of electric energy. It is responsible for transforming the electric energy of voltage and frequency changes from the generator into the electric energy of constant voltage and frequency into the grid. The topology structure of wind power converter based on different power switching devices is introduced in this paper. The control techniques of generator control, grid connected control and grid fault ride through control are summarized. Finally, the development trend of wind power converter is prospected. Key words: wind power generation; wind power converter; permanent magnetic direct driven; grid - connected control; motor control风能是一种清洁高效的可再生能源,为了保护 环境和可持续发展,全球各国都在积极发展风力发 电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全功率风机变流器介绍
一、全功率变流器控制原理
全功率风力发电系统主体电路结构,如图1所示。
发电机的输出端连接变流器的机侧,变流器的网侧输出经升压变器后,连接电网。
图1全功率风力发电系统主体电路结构。
随着风速的变化,发电机的转速也变化,因此发电机输出的电压幅值和频率是变化的,而电网的电压幅值和频率是恒定的。
为了将发电机输出的频率和幅值变化的交流电送入到电网,变流器起到中间纽带环节的作用。
首先将发电机输出的交流电经机侧变流器部分整流成直流电,再经由网侧变流器部分逆变成交流电送入电网。
图2为全功率风力发电功率控制原理图,风机总控依据当前的风况,通过变桨和偏航控制叶片吸收的机械能,获得发电机的转矩量。
然后将转矩量值下发给变流器。
变流器根据总控下发的转矩指令,控制对发电机电能的抽取,从而控制并网电流大小。
总控依据当前风况,下发发电机转矩指令。
变流器响应转矩指令,控制并网
功率。
图2 功率控制原理图
对于机侧的变流器部分,在无速度传感器控制技术的基础上,采用基于定子电流定向的复合矢量控制技术,实现最大转矩电流比矢量控制的控制性能。
图3为发电机的控制矢量图。
图3 发电机控制矢量图
对于网侧的变流器部分,采用电流解耦控制技术及并网电流对称控制技术。
通过对并网电流的解耦,将并网电流分解为有功电流、无功电流单独控制,实现有功功率和无功功率的控制。
同时为实现三相并网电流的对称控制,将负序的有功电流和无功电流控制为零。
控制结构框图如图4所示。
*
dc
图4 网侧变流器控制框图
根据机侧变流器主体电路及控制策略,进行建模分析。
图5为机侧变流器的主体电路结构,图6为转换为数学模型的机侧控制框图。
V
图5 机侧变流器主体电路结构
图6机侧变流器控制数学模型框图
根据网侧变流器主体电路及控制策略,进行建模分析。
图7为网侧变流器的主体电路机构,图8为为转换为数学模型的网侧控制框图。
V0
图7 网侧变流器主体电路结构
图8 网侧变流器控制数学模型框图
全功率风机变流器网侧、机侧协同控制策略如图9所示。
图中,DDSRF-SPLL (Decoupled Double Synchronous Reference Frame SPLL)为双同步坐标系软件
锁相环,实时检测电网电压的正负序分量角度p s θ和n
s θ。
在正常情况的直驱机组发电运行时,机侧变流器实现功率外环和电流内环控制,在实时跟踪给定发电功率控制的前提下,实现无速度传感器矢量控制和定子电流的最优控制;网侧变流器实现直流电压外环和桥臂并网电流的内环控制,在恒定直流支撑电压等于设定
值的前提下,实现桥臂d 、q 轴正序电流p d i 、p q i 和负序电流n d i 、n q i 的解耦控制和
电网电压的前馈控制,实时保证并网电流三相对称控制。
*dc
图9 全功率风机变流器网侧、机侧协同控制策略
二、SVG 退出运行时,全功率风机变流器运行情况
当高压无功功率补偿器退出运行时,全功率变流器是能够正常运行的,前提是总控工作正常,电网运行在合适的设定范围,满足变流器设计的工作范围内,即高压侧不能超过760VAC ,低压正常运行时,不低于690×0.8=552V 。
LVRT 时除外。
三、全功率风机变流器的无功控制原理
全功率风机变流器的网侧部分能够起到并网无功功率调节作用。
图10为三相电压型PWM变换电路,对此进行工作模式分析。
通过对网侧电流控制可以实现四象限运行。
图10 三相电压型PWM变换器
上图中,Ua表示A相交流电源电动势矢量,Va表示交流侧电压(即桥臂中点
对电网中点的电压)矢量,Ia表示交流侧电流矢量,ULa表示交流侧电感电压矢
量。
以电网电动势矢量为参考时,通过控制交流电流矢量即可实现PWM变换器的
四象限运行。
PWM变换器四象限运行规律如图11所示。
图11 PWM变换器交流侧矢量关系
(1)电压矢量Va端点在圆轨迹AB上运动,如图11(a)所示。
PWM 变换器运行于整流状态。
从电网吸收有功及感性无功功率。
在A点运行时,PWM变换器从电网只吸收感性无功功率。
(2)电压矢量Va端点在圆轨迹BC上运动,如图11(b)所示。
PWM 变换器运行于整流状态。
从电网吸收有功及容性无功功率。
当PWM 变换器运行在B点时,则实现单位功率因数整流控制;
(3)电压矢量Va端点在圆轨迹CD上运动,如图11(c)所示。
PWM 变换器运行于有源逆变状态。
向电网传输有功及容性无功功率。
当PWM 变换器运行至C 点时,PWM 变换器从电网吸收容性无功功率。
(3)电压矢量Va端点在圆轨迹DA 上运动,如图11(d)所示PWM 变换器运行于有源逆变状态。
向电网传输有功及感性无功功率。
PWM 变换器运行至D点时,便可实现单位功率因数有源逆变控制。
通过控制交流侧电流矢量Ia,来控制变流器的运行状态。
对于机侧的变流器,主要在圆轨迹ABC上运动,工作于整流模式,将发电机输出的电压整流成直流电。
对于网侧的变流器,主要在圆轨迹CDA 上运动,工作于有源逆变模式,
将直流电逆变成交流电,送入电网,同时能够实现无功功率调节。
对于交流侧电流矢量的控制,采用解耦控制,将交流侧电流矢量分解成有功电流、无功电流单独控制,实现有功功率和无功功率的控制,控制原理如图4所示。
变流器可实现感性和容性无功调节,在正常运行时,提供的无功功率可达到
额定功率的40%。
无功功率的调节特性由总控决定,根据当前的电网电压值,可
实现单台机组调节或统一调度调节。
四、风力发电机组在低电压穿越时功率输出特性。
直驱风力发电系统中,电网电压的瞬间跌落会导致网侧变流器输出功率的减
小,如果机侧变流器仍旧实时响应总控转矩信号,能量的不匹配将导致直流母线
电压,这就势必会威胁到网侧与机侧变流器功率器件如开关管、直流支撑电容的
寿命和运行可靠性,因此为瞬间释放发电机馈送到电网的能量,需要网侧、机侧
变流器协调控制撬棒卸荷电路动作,保证系统的平稳投切和稳定运行。
同时依据
要求提供一部分的无功功率支持。
在发生低电压穿越时,变流器输出的功率与电网电压跌落的深度和总控下发
转矩值有关。
由于变流器功率器件的过载能力有限,并网电流大小受到限制,当
电网电压跌落时,电流维持一定值时,跌落深度越深,并网功率越小。
变流器并
入电网的有功功率由机侧决定,总控下发转矩越小,并入电网的功率越小。
同时,考虑到无功功率支持的要求,在发生低电压穿越时,除了正常的有功
电流送入电网外,还需要送入电网一部分无功电流,以变流器额定电流为限制条
件,在发生低电压穿越时,无功电流满足
I≤及投入电网的视在电流
_
q ref
值不超过变流器的额定电流值。