高考正弦定理和余弦定理练习题及答案定稿版
第04讲 正弦定理和余弦定理 (精练)(含答案解析)
第04讲正弦定理和余弦定理(精练)-2023年高考数学一轮复习讲练测(新教材新高考)第04讲正弦定理和余弦定理(精练)一、单选题(2022·全国·高三专题练习)1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若222a b c +<,则ABC 是()A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形(2022·江苏·高一课时练习)2.已知正三角形的边长为2,则该三角形的面积()A .4BC D .1(2022·江苏·高一课时练习)3.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,45,30,6A C c === ,则a 等于()A .B .C .D .(2022·河南·高二阶段练习(文))4.如图,在直角梯形ABCD 中,//AB CD ,90ABC ∠=︒,2AB =,5CD =,6BC =,则CAD ∠=()A .30︒B .45︒C .60︒D .75︒(2022·江苏·南京市第九中学高一期中)5.图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成一个大的正方形.某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若BD =1,且三个全等三角形的面积和与小正三角形的面积之比为94,则△ABC 的面积为()A .94B C .134D .4(2022·江苏·盐城市伍佑中学高一期中)6.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin cos c A C =,c =,18ab =,则a b +的值是()A .B .C .9D .11(2022·重庆八中高一期中)7.如图,四边形ABCD 四点共圆,其中BD 为直径,4AB =,3BC =,60ABC ∠=︒,则ACD 的面积为()A .6B .2C .6D .6(2022·河南·唐河县第一高级中学高一阶段练习)8.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a b ⨯ .可知a b ⨯是一个向量,它的模为||||||sin a b a b θ⨯=⋅.已知在ABC 中,角,,A B C 所对的边分别为,,,3a b c A π=,)22||896BA BC b a ⨯=- ,则cos B =()A B .C .7-D 二、多选题(2022·山东淄博·高一期中)9.在ABC 中,如下判断正确的是()A .若sin 2sin 2AB =,则ABC 为等腰三角形B .若A B >,则sin sin A B >C .若ABC 为锐角三角形,则sin cos A B >D .若sin sin A B >,则A B>10.在ABC 中,内角、、A B C 所对的边分别为a 、b 、c ,则下列说法正确的是()A .sin sin sin +=+a b cA B CB .若A B >,则sin 2sin 2A B >C .cos cos c a B b A =+D .若0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为等边三角形(2022·山东菏泽·高一期中)11.在ABC 中,D 在线段AB 上,且AD =5,BD =3,若CB =2CD,cos CDB ∠=则()A.sin CDB ∠B .△DBC 的面积为3C .ABC的周长为8+D .ABC 为钝角三角形三、填空题(2022·江西·上高二中高二阶段练习(文))12.已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,D 为边BC 上一点,且AD 为BAC ∠的角平分线,若3BAC π∠=,AD =,则4b c +最小值为___________.(2022·全国·高三专题练习)13.一艘渔船航行到A 处看灯塔B 在A 的北偏东75°,距离为C 在A 的北偏西45°,距离为海里,该船由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东45°方向,则CD =______海里.四、解答题(2022·山东·肥城市教学研究中心模拟预测)14.如图,在ABC 中,内角,,A B C 所对的边分别为,,a b c ,2cos 2b A c a =-.(1)求角B ;(2)若2sin sinC sin A B ⋅=,2AD CD ==,求四边形ABCD 面积的最大值.(2022·宁夏·平罗中学三模(文))15.已知函数()f x m n =⋅ ,向量()sin cos n x x x =+ ,()cos sin ,2sin m x x x =- ,在锐角ABC 中内角,,A B C 的对边分别为,,a b c ,(1)若()1f A =,求角A 的大小;(2)在(1)的条件下,a cb +的最大值.(2022·安徽·安庆一中高三阶段练习(理))16.在锐角ABC 中,角,,A B C所对的边分别为,,,4,sin 4a b c a b A ===.(1)求sin C 的值;(2)点,D E 分别在边,AB AC 上,ABC 的面积是ADE V 面积的2倍.求DE 的最小值.参考答案:1.D【分析】根据余弦定理,得到cos 0C <,求得(,)2C ππ∈,即可求解.【详解】因为222a b c +<,由余弦定理可得222cos 02a b c C ab+-=<,又由(0,)C π∈,所以(,)2C ππ∈,所以ABC 是钝角三角形.故选:D.2.B【分析】由三角形面积公式可求出.【详解】根据三角形面积公式可得该三角形的面积为122sin 602⨯⨯⨯︒=故选:B.3.B【分析】根据正弦定理即可求解﹒【详解】由正弦定理得sin sin a c A C =,∴66sin4521sin302a===故选:B ﹒4.B【分析】先求出22,AC AD ,再利用余弦定理求解.【详解】因为2226240AC =+=,2226(52)45AD =+-=,在ACD 中,由余弦定理得222cos 22AD AC CD CAD AD AC +-∠==⋅,又因为0180CAD ︒<∠<︒,所以45CAD ∠=︒.故选:B.5.D【分析】设小正三角形边长为x ,由面积比求得x ,再计算出小正三角形面积可得大正三角形面积.【详解】设DE x =,则211sin 1(1)sin12013224ABD DEFBD AD ADB x S x S x ⋅∠⨯⨯+︒+==!!,解得2x =(23-舍去),所以224DEF S ==!,94ABCS ==!故选:D .6.C【分析】由条件sin cos c A C =结合正弦定理可求C ,再结合余弦定理求a b +.【详解】∵sin cos c A C =,∴sin sin cos C A A C =,又(0,)A π∈,sin 0A ≠,∴tan C =(0,)C π∈,∴3C π=,又2222cos c a b ab C =+-,c =18ab =,∴222718a b =+-,∴222()281a b a b ab +=++=,∴9a b +=,故选:C.7.C【分析】先在ABC 利用余弦定理求出边AC ,再利用正弦定理求出直径BD ,进而利用直角三角形求出AD 、CD ,再利用三角形的面积公式进行求解.【详解】在ABC 中,因为4AB =,3BC =,60ABC ∠=︒,所以由余弦定理,得AC =由正弦定理,得=sin sin 603AC BD ABC ==∠;在Rt △ABD 和Rt BCD中,3AD ===3CD ===,又180120ADC ABC ∠=-∠= ,所以ACD 的面积为123326S =⨯⨯⨯=.故选:C.8.B【分析】根据新定义及三角的面积公式可化为()22182129sin b a bc A -=,再由余弦定理转化为关于,b c 的方程,得出3b c =,再由余弦定理求出cos B 即可.【详解】因为()22||896BA BC b a ⨯=-,所以)221sin 289ac b a B -=,即)2289△ABC S b a -=,)221829sin b a A -=,由余弦定理,2222cos a b c bc A =+-,即222a b c bc =+-,代入上式得,22289()b b c bc ⎤-+-=⎦,化简得22690-+=b bc c ,即2(3)0-=b c ,3b c ∴=,此时.a ==22214cos 2a c b B ac +-∴-==.故选:B 9.BCD【分析】选项A.由题意可得22A B =或22A B π+=,从而可判断;选项B.若A B >,则a b >,由正弦定理可判断;选项C.若ABC 为锐角三角形,则2A B π+>,即所以022A B ππ>>->,由正弦函数的单调性可判断;选项D.在ABC 中,若sin sin A B >,由正弦定理可得22a bR R>,从而可判断.【详解】选项A.在ABC 中,若sin 2sin 2A B =,则22A B =或22A B π+=所以A B =或2A B π+=,所以ABC 为等腰或直角三角形.故A 不正确.选项B.在ABC 中,若A B >,则a b >,由正弦定理可得2sin 2sin R A R B >,即sin sin A B >,故B 正确.选项C.若ABC 为锐角三角形,则2A B π+>所以022A B ππ>>->,所以sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,故C 正确.选项D.在ABC 中,若sin sin A B >,由正弦定理可得22a bR R>,即a b >,所以A B >,故D 正确.故选:BCD 10.ACD【解析】利用正弦定理以及边角互化可判断A 、B 、C ,利用向量数量积可判断D.【详解】对于A ,由sin sin sin sin sin a b c b cA B C B C+===+,故A 正确;对于B ,若A B >,当120A =o ,30B = 时,则sin 2sin 2A B <,故B 不正确;对于C ,()cos cos sin sin cos sin cos sin sin c a B b A C A B B A A B C =+⇒=+=+=,故C 正确;对于D ,由0AB AC BC AB AC⎛⎫⎪+⋅= ⎪⎝⎭,可得BAC ∠的角平分线与BC 垂直,所以ABC 为等腰三角形又12AB AC AB AC ⋅=,可得3BAC π∠=,所以ABC 为等边三角形,故D 正确;故选:ACD 11.ABD【分析】由同角的三角函数关系即可判断A ,设CD a =,利用余弦定理及面积公式即可判断B ,利用余弦定理求得AC ,进而判断C ,利用余弦定理可判断D.【详解】因为cos CDB ∠=sin CDB ∠,故A 正确;设CD a =,则2BC a =,在BCD △中,2222cos BC CD BD BD CD CDB =+-⋅⋅∠,解得a =,所以112sin 33225DBC S BD CD CDB =⋅⋅∠=⨯⨯= ,故B 正确;因为ADC CDB π∠=-∠,所以()cos cos cos 5ADC CDB CDB π∠=-∠=-∠=,在ADC △中,2222cos AC AD CD AD DC ADC =+-⋅⋅∠,解得AC =所以ABC 的周长为()3584AB AC BC ++=+++,故C 错误;因为8AB =为最大边,所以2223cos 025BC AC AB C BC AC +-==-<⋅,即C 为钝角,所以ABC 为钝角三角形,故D 正确.故选:ABD.12.9【分析】第一步利用等面积法求出,b c 的关系式,再利用基本不等式求解即可.【详解】由题意画图如下:因为AD 为BAC ∠的角平分线,3BAC π∠=,ABC ABD ADC S S S =+ 所以111sin 60sin 30sin 30222AB AC AB AD AD AC ⋅︒=⋅︒+⋅︒化简得11111,,1222c c b bc b c b c⋅==++=利用基本不等式“1的代换”得()()1145+449154b c b c b c c b b c b c ⎛⎫++=+⨯=+=+≥+ ⎪⎝⎭故答案为:9.13.【分析】利用方位角求出B 的大小,利用正弦定理直接求解AD 的距离,直接利用余弦定理求出CD 的距离即可.【详解】如图,在△ABD 中,因为在A 处看灯塔B 在货轮的北偏东75°的方向上,距离为海里,货轮由A 处向正北航行到D 处时,再看灯塔B 在南偏东45°方向上,所以B =180°−75°−45°=60°由正弦定理sin sin AD ABB ADB=∠,所以sin 6s in AB BAD ADB==∠海里;在△ACD 中,AD =6,AC=CAD =45°,由余弦定理可得:(222222cos 4563263182CD AD AC AD AC ︒=+-⋅⋅=+-⨯⨯=,所以CD=故答案为:14.(1)π3B =(2)【分析】(1)根据正弦定理化边为角,然后利用两角和的正弦公式即可求解.(2)由余弦定理得到ABC 为等边三角形,在ADC △中,利用余弦定理表达出2=88cos x θ-,然后根据三角形面积公式即可求解.(1)由正弦定理得:2sin cos 2sin sin B A=C A ⋅-,所以()2sin cos sin 2sin 2sin cos 2cos sin B A+A=A B A B A B⋅+=+即sin 2sin cos A=A B⋅()10,π,sin 0cos 2A AB ∈∴≠⇒= ,()π0,π3B B ∈∴=(2)由2sin sin sin A C =B ⋅2b =ac∴由余弦定理得222222222cos b a c ac B a c ac a c b =+-=+-=+-,222+2a c =b ∴()222222+2+20a c =a c ac =a cb =∴---a c∴=ABC ∴ 为等边三角形,设=AC =x ADC θ∠,,在ADC △中,24+4cos 222x =θ-⨯⨯,解得2=88cos x θ-2++2sin 88cos +2sin ABC ACD ABCD S =S S ==θθθ- 四边形)π4sin3=θ-()当ππ=32θ-,即5π6=θ时,S 有最大值15.(1)3A π=(2)【分析】(1)利用平面向量数量积运算法则和恒等变换公式化简函数()f x 的解析式,然后求解即可,要注意角A 的取值范围;(2)利用余弦定理和基本不等式求解即可.(1)由题()22cos sin cos 2sin 26f x m n x x x x x π⎛⎫=⋅=-+=+ ⎪⎝⎭所以()2sin 216f A A π⎛⎫=+= ⎪⎝⎭,即1sin 262A π⎛⎫+= ⎪⎝⎭又因为0,2A π⎛⎫∈ ⎪⎝⎭,所以5266A ππ+=,3A π=.(2)由余弦定理2222cos a b c bc A =+-,代入数据得:223b c bc =+-,整理得到()()()2222133324b c b c bc b c b c 骣+琪=+-³+-´=+琪桫解得b c +≤b c ==等号成立.故c b +的最大值为16.(1)4(2)【分析】(1)根据题意1cos 4A =,进而结合正弦定理得sin B =cos B =()sin sin C A B =+求解即可;(2)结合(1)得4c b ==,进而根据面积关系得8AD AE ⋅=,最后结合基本不等式与余弦定理得212DE ≥,进而得答案.(1)解:ABC是锐角三角形,1sin cos 44A A =∴=.在ABC中,4a b ==,由正弦定理得4sin sin b A B a ==,cos 4B ∴=.()C A B =π-+ ,()1sin sin sin cos cos sin 4C A B A B A B ∴=+=+=⨯(2)解:由(1)知,sin sin ,4B C c b =∴==.由题意得1sin 1622,81sin 2ABC ADE bc A S AD AE S AD AE AD AE A ==∴⋅=⋅⋅⋅ .由余弦定理得,222132cos 21222DE AD AE AD AE A AD AE AD AE AD AE =+-⋅≥⋅-⋅=⋅=,当且仅当AD AE ==“=”成立.所以DE的最小值为。
高考正弦定理和余弦定理练习题及答案
高考正弦定理和余弦定理练习题及答案一、选择题1. 已知△ABC中,a=c=2,A=30°,则b=A. 错误!B. 2错误!C. 3错误!D. 错误!+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2错误!.2. △ABC中,a=错误!,b=错误!,sin B=错误!,则符合条件的三角形有A. 1个B. 2个C. 3个D. 0个答案:B解析:∵a sin B=错误!,∴a sin B<b=错误!<a=错误!,∴符合条件的三角形有2个.3.2010·天津卷在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=错误! bc,sin C=2错误!sin B,则A=A.30° B.60°C.120° D.150°答案:A解析:利用正弦定理,sin C=2错误!sin B可化为c=2错误!b.又∵a2-b2=错误!bc,∴a2-b2=错误!b×2错误!b=6b2,即a2=7b2,a=错误!b.在△ABC中,cos A=错误!=错误!=错误!,∴A=30°.4.2010·湖南卷在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案:A解析:由正弦定理,得错误!=错误!,∴sin A=错误!=错误!>错误!.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A. 错误!B. 错误!C. 错误!D. 错误!答案:D解析:方法一:设三角形的底边长为a,则周长为5a,∴腰长为2a,由余弦定理知cosα=错误!=错误!.方法二:如图,过点A作AD⊥BC于点D,则AC=2a,CD=错误!,∴sin错误!=错误!,∴cosα=1-2sin2错误!=1-2×错误!=错误!.6. 2010·泉州模拟△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积等于A. 错误!B. 错误!C. 错误!或错误!D. 错误!或错误!答案:D解析:∵错误!=错误!,∴sin C=错误!·sin30°=错误!.∴C=60°或C=120°.当C=60°时,A=90°,S△ABC=错误!×1×错误!=错误!,当C=120°时,A=30°,S△ABC=错误!×1×错误!sin30°=错误!.即△ABC的面积为错误!或错误!.二、填空题7.在△ABC中,若b=1,c=错误!,∠C=错误!,则a=________.答案:1解析:由正弦定理错误!=错误!,即错误!=错误!,sin B=错误!.又b<c,∴B=错误!,∴A=错误!.∴a=1.8.2010·山东卷在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b =2,sin B+cos B=错误!,则角A的大小为________.答案:错误!解析:∵sin B+cos B=错误!,∴sin B+错误!=1.又0<B<π,∴B=错误!.由正弦定理,知错误!=错误!,∴sin A=错误!.又a<b,∴A<B,∴A=错误!.9. 2010·课标全国卷在△ABC中,D为边BC上一点,BD=错误!DC,∠ADB=120°,AD=2.若△ADC的面积为3-错误!,则∠BAC=________.答案:60°解析:S△ADC=错误!×2×DC×错误!=3-错误!,解得DC=2错误!-1,∴BD=错误!-1,BC=3错误!-1.在△ABD中,AB2=4+错误!-12-2×2×错误!-1×cos120°=6,∴AB=错误!.在△ACD中,AC2=4+2错误!-12-2×2×2错误!-1×cos60°=24-12错误!,∴AC=错误!错误!-1,则cos∠BAC=错误!=错误!=错误!,∴∠BAC=60°.三、解答题10. 如图,△OAB是等边三角形,∠AOC=45°,OC=错误!,A、B、C三点共线.1求sin∠BOC的值;2求线段BC的长.解:1∵△AOB是等边三角形,∠AOC=45°,∴∠BOC=45°+60°,∴sin∠BOC=sin45°+60°=sin45°cos60°+cos45°sin60°=错误!.2在△OBC中,错误!=错误!,∴BC=sin∠BOC×错误!=错误!×错误!=1+错误!.11. 2010·全国Ⅱ卷△ABC中,D为边BC上的一点,BD=33,sin B=错误!,cos ∠ADC=错误!,求AD.解:由cos∠ADC=错误!>0知B<错误!,由已知得cos B=错误!,sin∠ADC=错误!,从而sin∠BAD=sin∠ADC-B=sin∠ADC cos B-cos∠ADC sin B=错误!×错误!-错误!×错误!=错误!.由正弦定理得错误!=错误!,AD=错误!=错误!=25.12. 2010·安徽卷设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin错误!sin错误!+sin2B.1求角A的值;2若错误!·错误!=12,a=2错误!,求b,c其中b<c.解:1因为sin2A=错误!错误!+sin2B=错误!cos2B-错误!sin2B+sin2B=错误!,所以sin A=±错误!.又A为锐角,所以A=错误!.2由错误!·错误!=12,可得cb cos A=12.①由1知A=错误!,所以cb=24.②由余弦定理知a2=c2+b2-2cb cos A,将a=2错误!及①代入,得c2+b2=52,③③+②×2,得c+b2=100,所以c+b=10.因此c,b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6,b=4.。
高三复习数学34_正弦定理和余弦定理(有答案)
3.4 正弦定理和余弦定理一、解答题。
1. 三角形的有关性质(1)在△ABC中,A+B+C=________;(2)a+b________c,a−b<c;非直角三角形有tan A+tan B+tan C=tan A tan B tan C(3)a>b⇔sin A________sin B⇔A________B;(4)三角形面积公式:S△ABC=12aℎ=12ab sin C=12ac sin B=________;(5)在三角形中有:sin2A=sin2B⇔A=B或________⇔三角形为等腰或直角三角形;sin(A+B)=sin C,sin A+B2=cos C2.2. 正弦定理和余弦定理3. 在△ABC中,a=√3,b=√2,B=45∘,求角A、C和边c;4. 在△ABC中,a=8,B=60∘,C=75∘,求边b和c.5. 在△ABC中,角A,B,C的对边分别是a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2A6. 在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C =−b2a+c.求角B的大小;若b=√13,a+c=4,求△ABC的面积.7. △ABC的内角A,B,C的对边分别是a,b,c,已知2cos A(b cos C+c cos B)=a.求角A;若a=√7,b+c=5,求△ABC的面积.8. △ABC在内角A、B、C的对边分别为a,b,c,已知a=b cos C+c sin B.求B;若b=2,求△ABC面积的最大值.9. 已知a,b,c分别是△ABC内角A,B,C的对边,且满足(a+b+c)(sin B+sin C−sin A)=b sin C.(1)求角A的大小;(2)设a=√3,S为△ABC的面积,求S+√3cos B cos C的最大值.10. 小结与反思___________________________________________________________________________ ___________________________________________________________________________ ________________________________________________________________11. 在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定12. 在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为()A.√32B.√22C.12D.−1213. 在△ABC 中,sin 2A2=c−b 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形14. 在△ABC 中,若A =60∘,BC =4√3,AC =4√2,则角B 的大小为( ) A.30∘ B.45∘ C.135∘ D.45∘或135∘15. 在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120∘,c =√2a ,则( ) A.a >b B.a <bC.a =bD.a 与b 的大小关系不能确定16. 设△ABC 的内角A ,B ,C ,所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A:sin B:sin C 为( ) A.4:3:2 B.5:6:7 C.5:4:3 D.6:5:417. 在△ABC 中,B =60∘,b 2=ac ,则△ABC 的形状为________.18. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c =________.19. 在锐角△ABC 中,AD ⊥BC ,垂足为D ,且BD:DC:AD =2:3:6,则∠BAC 的大小为________.20. 已知,a ,b ,c 分别为△ABC 三个内角A 、B 、C 的对边,c =√3a sin C −c cos A . 求A ;若a =2,△ABC 的面积为√3,求b ,c .21. 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b −c )sin B +(2c−b)sin C.求角A的大小;若sin B+sin C=√3,试判断△ABC的形状.22. 设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2−3a2=4√2bc.求sin A的值;求2sin(A+π4)sin(B+C+π4)1−cos2A的值.参考答案与试题解析3.4 正弦定理和余弦定理一、解答题。
高考正弦定理和余弦定理练习题及答案演示教学
解: 由 cos∠ ADC =35>0 知 B<π2,
由已知得 cosB=12, sin ∠ADC =4,
13
5
精品文档
精品文档
从而 sin∠ BAD= sin( ∠ADC - B) = sin∠ ADC cosB- cos∠ ADCsinB
= 45×1123- 35× 153=3635.
由正弦定理得 sAinDB=sin∠BDBAD,
答案: 60°
解析:
S△
ADC
=
1× 2
2×DC ×
3= 3- 2
3,
解得 DC = 2( 3-1) ,
∴ BD= 3- 1, BC= 3( 3-1).
在△ ABD 中, AB2= 4+ ( 3- 1)2- 2× 2× ( 3-1) ×cos120°= 6,
∴ AB= 6.
精品文档
精品文档
在△ ACD 中, AC2= 4+ [2( 3- 1)] 2- 2× 2×2( 3- 1)×cos60°= 24- 12 3,
∴腰长为 2a,由余弦定理知
cosα=
2a 2+ 2× 2
2a a×
2- 2a
a2 =
7 8
.
方法二:如图,过点 A 作 AD⊥ BC 于点 D,
则 AC= 2a, CD = a,∴ sinα= 1,
2
24
∴
cosα=
1
-
2sin2α 2
=
1-
2×
116=
7 8.
6. (2010 泉·州模拟 )△ ABC 中, AB= 3,AC= 1,∠ B= 30°,则△ ABC 的面积等于 ( )
B . 60° D .150 °
2024全国高考真题数学汇编:正弦定理与余弦定理
2024全国高考真题数学汇编正弦定理与余弦定理一、单选题1.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A B C D 二、解答题2.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.3.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .4.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.5.(2024北京高考真题)在ABC 中,,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.参考答案1.C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,由正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.2.(1)4(3)5764【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.(2)法一:因为B 为三角形内角,所以sin 16B =,再根据正弦定理得sin sin a b A B =,即4sin A =sin 4A =,法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin 4A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭,由(2)法一知sin B =因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()9157cos 2cos cos 2sin sin 216816864B A B A B A -=+=⨯+⨯=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭,因为B 为三角形内角,所以sin 16B ===,所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=⨯=3.(1)π3B =(2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===因为()0,πC ∈,所以sin 0C >,从而sin 2C =,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ===,由三角形面积公式可知,ABC的面积可表示为21113sin 222228ABC S ab C c c ==⋅= ,由已知ABC的面积为32338c =所以c =4.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A得到:224cos 30(2cos 0A A A -+=⇔=,解得cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211t t A A t t-+==+++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412bc==,解得b c ==故ABC的周长为2+5.(1)2π3A =;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角,则cos 0B ≠,则2sin 7B =,则7sin sin sin b a BA A ==,解得sin 2A =,因为A 为钝角,则2π3A =.(2)选择①7b =,则sin 7B ==2π3A =,则B 为锐角,则3B π=,此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin B ,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B⎛⎫=+=+=+ ⎪⎝⎭131142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C,解得sin 14C =,因为C为三角形内角,则11cos 14C ==,则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭111142⎛⎫=+-⨯ ⎪⎝⎭,则11sin 7522ABC S ac B ==⨯⨯=△。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
(完整word)正弦定理和余弦定理练习题
正弦定理和余弦定理练习题一选择题1。
已知8:7:5::=c b a ,则=B cos( )A .21B .72C .5641 D .2072。
在三角形ABC 中,如果内角C B A ,,成等差数列,SinB 则的值等于 ( ) A .21B .21-C .23D .23-3。
在ABC ∆中,c b a ,,分别为角C B A ,,的对边,若︒===120,6,2B b c ,则=a ( )A .6B .2C .3D .24. 在ABC ∆中,若ac B b c a 3tan )(222=⋅-+,则=B( )A . 6π或65πB .3πC . 6πD .3π或32π5。
在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形6。
在ABC ∆中,若︒=∠60B ,32,4==AC AB ,则ABC ∆的面积是 ( )A .32B .52C .3D .5 7、设a ,b ,c 分别是ABC ∆中角A 、B 、C 所对边的边长,则直线sin 0A x ay c •++=与sin sin 0bx B y C -•+=的位置关系是( )A 、平行B 、重合C 、垂直D 、相交但不垂直8。
在ABC ∆中,若222a bc c b =-+,且31=b a ,则角C 的值为 ( ) A .︒45B .︒60C . ︒90D .︒1209.在ABC ∆中,若CcB b A a cos cos cos ==,则ABC ∆是 ( )A .等腰三角形B .等边三角形C .顶角为︒120的等腰三角形D .以上均不正确 二填空题9。
在ABC ∆中,若3=AB ,︒=∠75ABC ,︒=∠60ACB ,则=BC _____________。
10。
有一长为1千米的斜坡,它的坡度为20︒,现要将坡度改为10︒,则坡底要伸长( ) 11。
高考复习 第4篇 第6讲 正弦定理和余弦定理知识点+例题+练习 含答案
第6讲正弦定理和余弦定理知识梳理1.正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,则正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos Ab2=a2+c2-2ac cos Bc2=a2+b2-2ab cos C常见变形(1)a=2R sin A,b=2R sinB,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sinB∶sin Ccos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab解决的问题(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边和其他两角(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角2.在△ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ab sin C=12ac sin B.(3)S=12r(a+b+c)(r为△ABC内切圆半径).辨析感悟1.三角形中关系的判断(1)在△ABC中,sin A>sin B的充分不必要条件是A>B.(×)(2)(教材练习改编)在△ABC中,a=3,b=2,B=45°,则A=60°或120°.(√) 2.解三角形(3)(2013·北京卷改编)在△ABC中,a=3,b=5,sin A=13,则sin B=59.(√)(4)(教材习题改编)在△ABC中,a=5,c=4,cos A=916,则b=6.(√)3.三角形形状的判断(5)在△ABC中,若sin A sin B<cos A cos B,则此三角形是钝角三角形.(√)(6)在△ABC中,若b2+c2>a2,则此三角形是锐角三角形.(×)[感悟·提升]一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B,如(1).判断三角形形状的两种途径一是化边为角;二是化角为边,并常用正弦(余弦)定理实施边、角转换.考点一利用正弦、余弦定理解三角形【例1】(1)(2013·湖南卷改编)在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3b,则角A等于______.(2)(2014·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,c=42,B=45°,则sin C=________.解析(1)在△ABC中,由正弦定理及已知得2sin A·sin B=3sin B,∵B 为△ABC 的内角,∴sin B ≠0. ∴sin A =32.又∵△ABC 为锐角三角形, ∴A ∈⎝ ⎛⎭⎪⎫0,π2,∴A =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B =1+32-82×22=25,即b =5. ∴sin C =C sin B b =42×225=45. 答案 (1)π3 (2)45规律方法 已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【训练1】 (1)在△ABC 中,a =23,c =22,A =60°,则C =________. (2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =________.解析 (1)由正弦定理,得23sin 60°=22sin C ,解得:sin C =22,又c <a ,所以C <60°,所以C =45°. (2)∵sin C =23sin B ,由正弦定理,得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,又A 为三角形的内角,∴A =30°.答案 (1)45° (2)30°考点二 判断三角形的形状【例2】 (2014·临沂一模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°. 由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,B =60°.∴A =B =C =60°,△ABC 为等边三角形.规律方法 解决判断三角形的形状问题,一般将条件化为只含角的三角函数的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.【训练2】 (1)(2013·山东省实验中学诊断)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c 2=2a 2+2b 2+ab ,则△ABC 的形状是________三角形.(填“直角”、“钝角”或“锐角”等)(2)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状是________三角形.(填“锐角”、“直角”、“等腰”或“等腰或直角”)解析 (1)由2c 2=2a 2+2b 2+ab ,得a 2+b 2-c 2=-12ab ,所以cos C =a 2+b 2-c 22ab =-12ab2ab =-14<0,所以90°<C <180°,即△ABC 为钝角三角形. (2)由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B , 即sin 2 B sin A cos B =sin 2 A cos A sin B ,所以sin 2B =sin 2A ,由于A ,B 是三角形的内角, 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形. 答案 (1)钝角 (2)等腰或直角考点三 与三角形面积有关的问题【例3】 (2013·浙江卷)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B =3b . (1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.审题路线 (1)把2a sin B =3b 变形为2a =3b sin B ⇒利用正弦定理a sin A =bsin B ⇒得到sin A =?⇒A 为锐角,得出A =?(2)由(1)知cos A 的值⇒利用余弦定理⇒又b +c =8,求bc 的值⇒利用三角形面积公式S =12bc sin A 求得.解 (1)由2a sin B =3b ,得2a =3bsin B ,又由正弦定理a sin A =b sin B ,得a sin A =2a 3,所以sin A =32,因为A 为锐角,所以A =π3.(2)由(1)及a 2=b 2+c 2-2bc cos A ,得b 2+c 2-bc =(b +c )2-3bc =36,又b +c =8,所以bc =283,由S =12bc sin A ,得△ABC 的面积为733.规律方法 在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来. 【训练3】 (2013·湖北卷)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 解 (1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12 bc sin A =12bc ·32=34bc =53,得bc =20. 又b =5,所以c =4.由余弦定理,得a 2=b 2+c 2-2bc cos A =25+16-20=21, 故a =21.又由正弦定理,得sin B sin C =b a sin A ·ca sin A =bc a 2sin 2A =2021×34=57.1.在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解. 2.正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化.如a 2=b 2+c 2-2bc cos A 可以转化为sin 2 A =sin 2 B +sin 2 C -2sin B sin C cos A ,利用这些变形可进行等式的化简与证明.答题模板6——解三角形问题【典例】 (13分)(2013·重庆卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.[规范解答] (1)由余弦定理, 得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32. 又因为0<A <π,所以A =5π6.(4分) (2)由(1)得sin A =12, 又由正弦定理及a =3,得S =12bc sin A =12·a sin B sin A ·a sin C =3sin B sin C ,(6分) 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )= 3cos(B -C ).(9分)所以,当B =C ,即B =π-A 2=π12时, S +3cos B cos C 取最大值3.(13分)[反思感悟] (1)在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.(2)在本题第(2)问中,不会结合正弦定理表达S 的角的形式是失分的主要原因.答题模板 第一步:定已知.即梳理已知条件,确定三角形中已知的边与角;第二步:选定理.即根据已知的边角关系灵活地选用定理和公式;第三步:代入求值. 【自主体验】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A . (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . 解 (1)由c =3a sin C -c cos A 及正弦定理,得 3sin A sin C -cos A ·sin C -sin C =0, 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,又0<A <π,所以-π6<A -π6<5π6,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8,解得b =c =2.基础巩固题组 (建议用时:40分钟)一、填空题1.(2013·盐城模拟)在△ABC 中,若a 2-c 2+b 2=3ab ,则C =________. 解析 由a 2-c 2+b 2=3ab ,得cos C =a 2+b 2-c 22ab =3ab 2ab =32,所以C =30°. 答案 30°2.(2014·合肥模拟)在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为________.解析 S =12×AB ·AC sin 60°=12×2×32AC =32,所以AC =1,所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,所以BC = 3. 答案33.(2013·新课标全国Ⅱ卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为________. 解析 由正弦定理b sin B =csin C 及已知条件得c =22, 又sin A =sin(B +C )=12×22+32×22=2+64. 从而S △ABC =12bc sin A =12×2×22×2+64=3+1. 答案3+14.(2013·山东卷改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =________.解析 由a sin A =b sin B ,得a sin A =b sin 2A ,所以1sin A =32sin A cos A ,故cos A =32,又A ∈(0,π),所以A =π6,B =π3,C =π2,c =a 2+b 2=12+(3)2=2.答案 25.(2013·陕西卷改编)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为________三角形(填“直角”、“锐角”或“钝角”).解析 由正弦定理及已知条件可知sin B cos C +cos B sin C =sin 2 A ,即sin(B +C )=sin 2 A ,而B +C =π-A ,所以sin(B +C )=sin A ,所以sin 2 A =sin A ,又0<A <π,sin A >0,∴sin A =1,即A =π2. 答案 直角6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由题意知,sin B +cos B =2,所以2sin ⎝ ⎛⎭⎪⎫B +π4=2,所以B =π4,根据正弦定理可知a sin A =b sin B ,可得2sin A =2sin π4,所以sin A =12,又a <b ,故A =π6.答案 π67.(2014·惠州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.解析 由余弦定理,得a 2+c 2-b 22ac =cos B ,结合已知等式得cos B ·tan B =32,∴sin B =32,∴B =π3或2π3. 答案π3或2π38.(2013·烟台一模)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B 等于________.解析 由余弦定理,得c 2=a 2+b 2-2ab cos C =4,即c =2.由cos C =14得sin C =154.由正弦定理b sin B =c sin C ,得sin B =b sin C c =22×154=154(或者因为c =2,所以b =c =2,即三角形为等腰三角形,所以sin B =sin C =154). 答案154二、解答题9.(2014·扬州质检)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且a =12c +b cos C . (1)求角B 的大小;(2)若S △ABC =3,b =13,求a +c 的值. 解 (1)由正弦定理,得sin A =12sin C +sin B cos C , 又因为A =π-(B +C ),所以sin A =sin(B +C ), 可得sin B cos C +cos B sin C =12sin C +sin B cos C , 即cos B =12,又B ∈(0,π),所以B =π3.(2)因为S △ABC =3,所以12ac sin π3=3,所以ac =4,由余弦定理可知b 2=a 2+c 2-ac ,所以(a +c )2=b 2+3ac =13+12=25,即a +c =5.10.(2013·深圳二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =3,b =5,c =7.(1)求角C 的大小;(2)求sin ⎝ ⎛⎭⎪⎫B +π3的值. 解 (1)由余弦定理,得cos C =a 2+b 2-c 22ab =32+52-722×3×5=-12.∵0<C <π,∴C =2π3.(2)由正弦定理b sin B =c sin C ,得sin B =b sin C c =5sin 2π37=5314,∵C =2π3,∴B 为锐角, ∴cos B =1-sin 2 B =1-⎝ ⎛⎭⎪⎫53142=1114. ∴sin ⎝ ⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3 =5314×12+1114×32=437.能力提升题组(建议用时:25分钟)一、填空题1.(2014·温岭中学模拟)在锐角△ABC 中,若BC =2,sin A =223,则A B →·A C →的最大值为________.解析 由余弦定理,得a 2=b 2+c 2-2bc ×13=4,由基本不等式可得4≥43bc ,即bc≤3,又∵sin A=223,∴cos A=13,所以A B→·A C→=bc cos A=13bc≤1.答案 12.(2013·青岛一中调研)在△ABC中,三边长a,b,c满足a3+b3=c3,那么△ABC的形状为________三角形.(填“锐角”、“钝角”或“直角”).解析由题意可知c>a,c>b,即角C最大,所以a3+b3=a·a2+b·b2<ca2+cb2,即c3<ca2+cb2,所以c2<a2+b2.根据余弦定理,得cos C=a2+b2-c22ab>0,所以0<C<π2,即三角形为锐角三角形.答案锐角3.在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________ .解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C-2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C+α),其中tan α=32,α是第一象限角,由于0°<C<120°,且α是第一象限角,因此AB+2BC有最大值27.答案27二、解答题4.(2013·长沙模拟)在△ABC中,边a,b,c分别是角A,B,C的对边,且满足b cos C=(3a-c)cos B.(1)求cos B;(2)若B C →·B A →=4,b =42,求边a ,c 的值. 解 (1)由正弦定理和b cos C =(3a -c )cos B , 得sin B cos C =(3sin A -sin C )cos B ,化简,得sin B cos C +sin C cos B =3sin A cos B , 即sin(B +C )=3sin A cos B ,故sin A =3sin A cos B ,所以cos B =13.(2)因为B C →·B A →=4,所以B C →·B A →=|B C →|·|B A →|· cos B =4,所以|B C →|·|B A →|=12,即ac =12.①又因为cos B =a 2+c 2-b 22ac =13,整理得,a 2+c 2=40.②联立①②⎩⎨⎧ a 2+c 2=40,ac =12,解得⎩⎨⎧ a =2,c =6或⎩⎨⎧ a =6,c =2.。
高中数学:正弦定理和余弦定理练习及答案
高中数学:正弦定理和余弦定理练习一、选择题1.在△ABC 中,已知b =4,c =2,∠A =120°,则a 等于……………….( )A .2B .6C .2或6D .2 2.在△ABC 中,已知三边a 、b 、c 满足(a +b +c )(a +b -c )=3ab ,则∠C 等于…..( )A .15°B .30°C .45°D .60°3.已知在△ABC 中,sin A △sin B △sin C =3△5△7,那么这个三角形的最大角是…( )A .135°B .90°C .120°D .150°4.在△ABC 中,若c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,则△C 等于………………….( )A .90°B .120°C .60°D .120°或60°5.已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为………...( )A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C )B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C )C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sin C cos(A +B )6*.在△ABC 中,AB =5,BC =7,AC =8,则的值为……………………( )A .79B .69C .5D .-5二、填空题7.已知△ABC 中,A =60°,最大边和最小边是方程x 2-9x +8=0的两个正实数根,那么BC 边长是________.8.在△ABC 中,已知a =7,b =8,cos C =,则最大角的余弦值是________.3321213615+⋅14139.在△ABC 中,△C =60°,a 、b 、c 分别为△A 、△B 、△C 的对边,则=________.10*.在△ABC 中,若AB =,AC =5,且cos C =,则BC =________.三、解答题11.已知a =3,c =2,B =150°,求边b 的长及S △.12.在△ABC 中,cos2,c =5,求△ABC 的内切圆半径.13.已知△ABC 的三边长a 、b 、c 和面积S 满足S =a 2-(b -c )2,且b +c =8,求S 的最大值.ca b c b a +++5109310922=+=c c b A14*.已知a 、b 、c 为△ABC 的三边,且a 2-a -2b -2c =0,a +2b -2c +3=0,求这个三角形的最大内角.§1.1.2正弦定理和余弦定理参考答案一、选择题A D C D D D二、填空题7. 8.- 9.1 10.4或5三、解答题11.解:b 2=a 2+c 2-2ac cos B =(3)2+22-2·2·2·(-)=49. △ b =7,S △=ac sin B =×3×2×=.12.解:△ c =5,,△ b =4 又cos 2 △ cos A = 又cos A =△△ b 2+c 2-a 2=2b 2△ a 2+b 2=c 2 5771332321213212331092=+c c b c c b A A 22cos 12+=+=c b bc a c b 2222-+c b bc a c b =-+2222△ △ABC 是以角C 为直角的三角形.a ==3△ △ABC 的内切圆半径r =(b +a -c )=1.13.解:△ S =a 2-(b -c )2 又S =bc sin A △ bc sin A =a 2-(b -c )2△ (4-sin A )△ cos A =(4-sin A )△ sin A =4(1-cos A )△ 2sin △ tan △ sin A=△ c =b =4时,S 最大为 14.解:△ a 2-a -2b -2c =0,a +2b -2c +3=0由上述两式相加,相减可得c =(a 2+3),b =(a -3)(a +1)△ c -b =(a +3)△ a +3>0,△ c >bc -a =(a 2+3)-a =(a 2-4a +3)=(a -3)(a -1)△ b =(a -3)(a +1)>0,△ a >3△ (a -3)(a -1)>0△ c >a△ c 边最大,C 为最大角 22b c -212121412222=-+bc a c b 412sin 82cos 22A A A =2A 41=178)41(14122tan 12tan 222=+⨯=+A A17644)(174174sin 212=+⋅≤==c b S bcA bC S Θ17644141214141414141△ cos C =△ △ABC 的最大角C 为120°ab c b a 2222-+21)1)(3(412)3(161)1()3(16122222-=+-⋅+-+-+=a a a a a a a。
(完整版)正弦定理、余弦定理综合训练题含答案
正弦定理、余弦定理综合训练题1.[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2 B.3 C .2 D .3[解析] D 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D. 2.[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( ) A.310 B.1010 C.55 D.31010[解析] D 作AD ⊥BC 交BC 于点D ,设BC =3,则有AD =BD =1,AB =2,由余弦定理得AC = 5.由正弦定理得5sin π4=3sin A,解得sin A =3×225=31010. 3.[2013·新课标全国卷Ⅰ] 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2 A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5[解析] D 由23cos 2A +cos 2A =0,得25cos 2A =1.因为△ABC 为锐角三角形,所以cos A =15.在△ABC 中,根据余弦定理,得49=b 2+36-12b ·15,即b 2-125b 4.[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[解析] 因为cos A =45,cos C =513,且A ,C 为三角形的内角,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365.又因为a sin A =b sin B ,所以b =a sin B sin A =2113. -13=0,解得b =5或b =-135(舍去). 5.[2015·全国卷Ⅰ] 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C.(1)若a =b ,求cos B;(2)若B =90°,且a =2, 求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,所以可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,所以由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a =2,所以△ABC 的面积为1.6.[2015·全国卷Ⅱ] △ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2D C.(1)求sin ∠B sin ∠C; (2)若∠BAC =60°,求∠B.解:(1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DC sin ∠CAD. 因为AD 平分∠BAC ,BD =2DC ,所以sin ∠B sin ∠C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以sin ∠C =sin(∠BAC +∠B )=32cos ∠B +12sin ∠B. 由(1)知2sin ∠B =sin ∠C ,所以tan ∠B =33,即∠B =30°. 7.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C=13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A=5+4cos C .②由①②得cos C =12,故C =60°,BD =7. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3. 8.[2016·山东卷] △ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π6[解析] C ∵b =c ,a 2=2b 2(1-sin A ),∴2b 2sin A =b 2+c 2-a 2=2bc cos A =2b 2cos A ,∴tan A=1,即A =π4. 9.[2015·广东卷] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .22 C .2 D. 3 [解析] C 由余弦定理得a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32,即b 2-6b +8=0,解得b =2或b =4.因为b <c, 所以b =2.10.[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.[解析] 利用余弦定理可求得最大边7所对角的余弦值为32+52-722×3×5=-12,所以此角的正弦值为32.设三角形外接圆的半径为R ,由正弦定理得2R =732,所以R =733. 11.[2016·北京卷] 在△ABC 中,∠A =2π3,a =3c ,则b c=________.[解析] 由余弦定理a 2=b 2+c 2-2bc cos A 可得,3c 2=b 2+c 2-2bc cos 2π3,整理得b c 2+b c-2=0,解得b c =1或b c=-2(舍去).12.[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值. 解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ). 又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B.(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.。
正弦定理与余弦定理【参考答案】
正弦定理、余弦定理《参考答案》【1】 a = b = c = 2Rsinsin C sin A B【2】 2 2 - 2bc cos Ab + c【3】 b 2 + c 2 - a 22bc【4】 sin C 【5】 -cos C 【6】 - tan C【7】 cosC2【8】 sinC2【9】 60︒ 【10】 tan A ⋅ tan B ⋅ tan C 【11】c【12】 1ab sin C2 【13】 1xv - yu2【14】一解 【15】正弦定理 【16】一解 【17】余弦定理 【18】讨论 【19】正、余弦定理 【20】一解或无解 【21】余弦定理 【22】无解 【23】无解 【24】一解 【25】无解 【26】无解 【27】一解 【28】两解 【29】一解 【30】无解 【31】一解 【32】一解 【33】相等 【34】相反数 【35】边角互换 【第 1 题】【答案】D【解析】5∵tanA =-12<0,A 是△ABC 的内角,π∴2<A <π.∴cosA <0.∵sin A =tanA =- 5 ,cos A12 且 sin 2A +cos 2A =1,12∴cosA =-13. 【第 2 题】【答案】B【解析】∵C >90°,∴A +B <90°, ∴tan (A +B )>0,tanA +tanB >0, ∴1-tanAtanB >0,即 tanA ·tanB <1. 【第 3 题】【答案】B【解析】∵a 、b 、c 成等比数列,∴b 2=ac . 又 c =2a , ∴b 2=2a 2.a 2+c 2-b2∴cosB =2aca 2+4a 2-2a2=4a23=4.【第 4 题】【答案】C【解析】若 a 为最大边,则 b 2+c 2-a 2>0,即a 2<5, ∴a < 5,若 c 为最大边,则 a 2+b 2-c 2>0,即 a 2>3, ∴a > 3,故3<a < 5.另法:【第 5 题】【答案】C 【解析】由正弦定理得a =b ,sin B sin 30° 3∴sinB = 2 , 又∵B 为锐角, ∴B =60°, ∴C =90°,即 C >B > A .【第 6 题】【答案】C 【解析】由 sinB ·sinC =cos 2A2,得2sinB ·sinC =2cos 2A2=1+cosA ,即 2sinB ·sinC =1-cos (B +C )=1-cosBcosC +sinBsinC ,∴sinB ·sinC +cosBcosC =1,即 cos (B -C )=1,又-π<B -C <π. ∴B -C =0,即 B =C .∴△ABC 为等腰三角形.【第 7 题】【答案】A【解析】正弦定理sin A sin 750sin(3045 )sin 30 0cos 45 0cos 30 0sin 451 2 3 2 2 2 2 226 .4由a c ,得C A 75 0 .∴ B30 0 , sin B1 .2又a 6 2 ,由正弦定理得basin Bsin A6212 .26 24故选 A .另法:余弦定理另法:射影定理b a cos Cc cos A .另法:作高,简单【第 8 题】π【答案】3【解析】由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc . b 2+c 2-a 2 1∴2bc=2,1 ∴cosA =2, π∴A =3.【第 9 题】【答案】5 2【解析】1S △ABC =2ac ·sinB1·c ·sin 45°= 2 c , =2 4又因为 S △ABC =2,所以 c =4 2,由余弦定理得b 2=a 2+c 2-2accosB2=1+32-2×1×4 2× 2=25,∴b =5,b所以△ABC 外接圆的直径 2R =sin B=5 2.【第 10 题】【答案】1【解析】由 A C 2B 及 A B C 180 ,得 B 60 .由正弦定理,得13 sin A ,即sin 60sin A1 .2由a b ,得 A B ,∴ A30 , C180 A B180 306090 ,sin Csin 901.【第 11 题】【答案】2【解析】解:(余弦定理) 由b 2 a 2 c 22ac cos B ,得6 a 22 2 2a cos120 , a 22a4 0 .12 2 1 2∴a 2 .另法:(正弦定理)b c, sin Bsin C sin Cc sin Bb2 sin1206 12∵c b ,∴C B , ∴C 是锐角, C 30 , A 30a c2 .【第 12 题】【答案】 2113【解析】 ∵ cos A = 4 ,cos C = 5,且 A , C 为三角形内角,5 13 ∴ sin A = 3 , sin C = 12, 5 13∴ sin B = sin ( A + C )= sin A cos C + cos A sin C= 6563,由正弦定理得, sin b B = sin aA解得 b 21.13【第 13 题】【答案】【解析】证:a 2b 2c 2 a ∵cos C , cos C ,2b2aba 2b 2c 2 a∴.2ab 2b化简后得b 2 2.c∴b c .∴△ABC 是等腰三角形.另证:∵a2b cos C,由正弦定理,得2R sin A22R sin B cos C∴ 2 sin B cos C sin Asin B Csin B cos C cos B sin C.∴ sin B cos C cos B sin C 0 ,即sin B C 0 ,∴ B C k k Z.∵ B,C 是三角形的内角,∴ B C ,即三角形为等腰三角形. 另证:根据射影定理,有a b cos C c cos B ,又∵a 2b cos C,∴ 2b cos C b cos C c cos B ,∴b cos C c cos B ,即b cos B .c cos C又∵b sin B,c sin C∴sin B cos B ,即sin C cos Ctan B tan C,∴ B C k k Z .∵ B,C 是三角形的内角,∴ B C ,即三角形为等腰三角形.欲证△ABC 为等腰三角形,可证明其中有两角相等,因而在已知条件中化去边元素,使只含角的三角函数.【第 14 题】【答案】【解析】解:∵ cos A3,50 A 180 ,∴ sin A4.5∵ sin B5 4sin A ,13 5A, B 为三角形的内角,∴ B A ,∴ B 为锐角,∴ cos B12.13∴ cos A Bcos A cos B sin A sin B3 124 55 13 5 131665.又 cos C cos 180 A B∴cos C cos A B16.65点评:此题要求在利用同角的正、余弦平方关系时,应根据已知的三角函数值确定角的范围,以便对正负进行取舍.【第 15 题】【答案】【解析】解:(1)∵cos C cos 180 A B∴ cos C cos A B 1 . 2∴C 120 .(2)由题设,得a b 2 3 ab 2∴c 2 a 2 b 2 2ab cos 120a 2b 2 ab(a2ab b )(222 3)10 ,即AB 10 .(3)S1ab sin C ABC 221ab sin 1201 322 23.2【第 16 题】【答案】【解析】解:(1)由题设及 A+B+C=π得sin B= 8 sin 2B2= 8 ⋅1 - cos B= 4(1 - cos B) .2上式两边平方,得16(1 - cos B )2 2B= sin2 2B =1 ,又 sin B +cos∴16(1 - cos B )2 2B =1 ,+ cos∴(17 cos B- 15)(cos B- 1) = 0 ,∴cos B= 15 ,或 cos B=1(舍去). 17(2)由(1)可知sin B=8.17∵S△ABC=2,∴1 ac sin B =2,2∴1 ac ⋅ 8 = 2,2 17∴ac =17,2∵cos B=15 ,17∴a 2+ c 2- b2 = 15,2 ac 17∴a 2+ c 2- b2=15,∴( a+c ) 2- 2 ac-b2=15 ,又a + c =6,∴36 - 17 -b2=15 ,∴b =2.。
正弦定理、余弦定理综合训练题含答案
正弦定理、余弦定理综合训练题1.[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( ) A. 2 B.3 C .2 D .3[解析] D 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D. 2.[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( ) A.310 B.1010 C.55 D.31010[解析] D 作AD ⊥BC 交BC 于点D ,设BC =3,则有AD =BD =1,AB =2,由余弦定理得AC = 5.由正弦定理得5sin π4=3sin A,解得sin A =3×225=31010. 3.[2013·新课标全国卷Ⅰ] 已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2 A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5[解析] D 由23cos 2A +cos 2A =0,得25cos 2A =1.因为△ABC 为锐角三角形,所以cos A =15.在△ABC 中,根据余弦定理,得49=b 2+36-12b ·15,即b 2-125b 4.[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[解析] 因为cos A =45,cos C =513,且A ,C 为三角形的内角,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365.又因为a sin A =b sin B ,所以b =a sin B sin A =2113. -13=0,解得b =5或b =-135(舍去). 5.[2015·全国卷Ⅰ] 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C.(1)若a =b ,求cos B;(2)若B =90°,且a =2, 求△ABC 的面积.解:(1)由题设及正弦定理可得b 2=2ac .又a =b ,所以可得b =2c ,a =2c .由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,所以由勾股定理得a 2+c 2=b 2.故a 2+c 2=2ac ,得c =a =2,所以△ABC 的面积为1.6.[2015·全国卷Ⅱ] △ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2D C.(1)求sin ∠B sin ∠C; (2)若∠BAC =60°,求∠B.解:(1)由正弦定理得AD sin ∠B =BD sin ∠BAD ,AD sin ∠C =DC sin ∠CAD. 因为AD 平分∠BAC ,BD =2DC ,所以sin ∠B sin ∠C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°,所以sin ∠C =sin(∠BAC +∠B )=32cos ∠B +12sin ∠B. 由(1)知2sin ∠B =sin ∠C ,所以tan ∠B =33,即∠B =30°. 7.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.解:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C=13-12cos C ,①BD 2=AB 2+DA 2-2AB ·DA cos A=5+4cos C .②由①②得cos C =12,故C =60°,BD =7. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3. 8.[2016·山东卷] △ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π6[解析] C ∵b =c ,a 2=2b 2(1-sin A ),∴2b 2sin A =b 2+c 2-a 2=2bc cos A =2b 2cos A ,∴tan A=1,即A =π4. 9.[2015·广东卷] 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( ) A .3 B .22 C .2 D. 3 [解析] C 由余弦定理得a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32,即b 2-6b +8=0,解得b =2或b =4.因为b <c, 所以b =2.10.[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.[解析] 利用余弦定理可求得最大边7所对角的余弦值为32+52-722×3×5=-12,所以此角的正弦值为32.设三角形外接圆的半径为R ,由正弦定理得2R =732,所以R =733. 11.[2016·北京卷] 在△ABC 中,∠A =2π3,a =3c ,则b c=________.[解析] 由余弦定理a 2=b 2+c 2-2bc cos A 可得,3c 2=b 2+c 2-2bc cos 2π3,整理得b c 2+b c-2=0,解得b c =1或b c=-2(舍去).12.[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值. 解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ). 又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B.(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.。
完整版)正弦定理与余弦定理练习题
完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。
解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。
2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。
解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。
3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。
解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。
代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。
由此可知cosB=(2abc)/(4a^2+2ac-b^2)。
代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。
由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。
由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。
《正弦定理和余弦定理》试题(新人教必修)
题.如图,已知△ABC中,AD为
BAC
的均分线,利用正弦定理证明
AB
BD
AC
.
DC
A
B
π
C
D
AB
BD
答案:证明:由正弦定理得
sin
AC
sin
AB
BD.
DC
AC
DC
sin
π
sin
第9题.在△ABC中,已知sin2
A
sin2B
sin2C,求证:△ABC为直角三角形.
答案:证明:设
a
b
c
k 0,
sin B
x的范围.
cos A
0,
答案:解:
△ABC为锐角三角形,
cos B
,
x 5,
0且1
cosC
0
2
2
x
2
,
,
2
3
0
x
2
2
2
2
,
13
即3
x
2
0
x
2
,
x
2
2
2
,
5
2
3
0
1
x 5.
1
x 5.
5x13.
4 / 7
第14题.在△ABC中.为何说sin A sin B是A
B的充要条件?
答案:因为sin A
sin B
,A
B2180,所以所求B160或
B2
120.
第21题.已知△ABC中,
A
60
,
B
45,且三角形一边的长为
m,解这个三角
形.
答案:依题意,有
2024届全国高考(统考版)理科数学复习历年好题专项(正弦定理和余弦定理、解三角形)练习(附答案)
2024届全国高考(统考版)理科数学复习历年好题专项(正弦定理和余弦定理、解三角形)练习命题范围:正弦定理、余弦定理、三角形面积公式、解三角形.[基础强化]一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3 ,则A =( )A .π6 B .56 π C .π4 D .π4 或34 π2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定3.[2023ꞏ安徽省江南十校一模]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若(2b -3c )ꞏcos A =3 a cos C ,则角A 的大小为( )A .π6B .π4C .π3D .5π124.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .25.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23 ,则b =( )A .14B .6C .14D .66.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.钝角三角形ABC 的面积是12 ,AB =1,BC =2 ,则AC =( ) A .5 B .5 C .2 D .18.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522 m9.[2023ꞏ全国甲卷(理)]已知四棱锥P -ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 二、填空题10.[2021ꞏ全国乙卷]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3 ,B =60°,a 2+c 2=3ac ,则b =____________.11.[2023ꞏ安徽舒城中学模拟]托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为________.12.[2023ꞏ全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.[能力提升]13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A14.[2021ꞏ全国甲卷]2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8 848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B, C三点,且A,B,C在同一水平面上的投影A′,B′,C′满足∠A′C′B′=45°,∠A′B′C′=60°.由C点测得B点的仰角为15°,BB′与CC′的差为100;由B点测得A 点的仰角为45°,则A,C两点到水平面A′B′C′的高度差AA′-CC′约为(3≈1.732)()A. 346 B.373C.446 D.47315.[2022ꞏ全国甲卷(理),16]已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当ACAB取得最小值时,BD=________.16.[2023ꞏ江西省临川模拟]已知在四边形ABCD中,AB=7,BC=13,CD=AD,且cosB=17,∠BAD=2∠BCD.则AD=________.参考答案1.C 由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×33 =22 ,又a <b ,∴A为锐角,∴A =π4 .2.C 由正弦定理bsin B =c sin C ,∴sin B =b sin C c =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.A 由(2b -3c )cos A =3 a cos C 得2b cos A =3 (a cos C +c cos A ),由正弦定理得2sin B cos A =3 (sin A cos C +sin C cos A )=3 sin (A +C )=3 sin B ,又sin B ≠0, 得cos A =3,A =π6 .4.C 由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32 =3 .5.D ∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1, 由余弦定理得b 2=a 2+c 2-2ac ꞏcos B =9+1-2×3×23 =6, ∴b =6 .6.B ∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.B ∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22 ,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ꞏBC ꞏcos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ꞏBC cos 135°=1+2+2×2 ×22 =5,∴AC =5 .8.A 由正弦定理得AC sin B =ABsin C ,∴AB =AC ꞏsin Csin B =50×22sin (180°-45°-105°) =502 .9.C如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ꞏAC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ꞏBC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ꞏBC sin ∠PCB =42 ,故选C.10.22答案解析:由题意得S △ABC =12 ac sin B =34 ac =3 ,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12 =8,则b =22 .11.93答案解析:在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ꞏAD ꞏcos ∠BAD =3a 2,所以BD =3 a , 由托勒密定理可得a (BC +CD )=AC ꞏ3 a , 即BC +CD =3 AC , 又∠ABD =∠ACD =30°, 所以四边形ABCD 的面积S =12 BC ꞏAC sin 30°+12 CD ꞏAC sin 30° =14 (BC +CD )ꞏAC =34 AC 2=93 . 12.2答案解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC =1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin 30°,所以AD =23AC AC +2 =23×(1+3)3+3=2. 方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6ACAC +2.由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC (AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.13.A 由sin B (1+2cos C )=2sin A cos C +cos A sin C ,得sin B +2sin B cos C =sin B +sin A cos C ,∴2sin B cos C =sin A cos C ,∵cos C >0,∴2sin B =sin A ,即a =2b .14.B如图所示,根据题意过C 作CE ∥C ′B ′,交BB ′于E ,过B 作BD ∥A ′B ′,交AA ′于D ,则BE =100,C ′B ′=CE =100tan 15° .在△A ′C ′B ′中,∠C ′A ′B ′=75°,则BD =A ′B ′=C ′B ′×sin 45°sin 75° .又在B 点处测得A 点的仰角为45°,所以AD =BD =C ′B ′×sin 45°sin 75° ,所以高度差AA ′-CC ′=AD +BE =C ′B ′×sin 45°sin 75° +100=100tan 15°×sin 45°sin 75° +100=100sin 45°sin 15° +100=100×222×(32-12)+100=100(3 +1)+100≈373.15.3 -1答案解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC =(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x+2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.7答案解析:在△ABC 中,AC 2=AB 2+BC 2-2AB ꞏBC ꞏcos B ,则AC =49+169-2×7×13×17 =192 =83,cos ∠BCA =AC 2+BC 2-AB 22AC ꞏBC =169+192-492×13×83 =3 , 又在△ABC 中,0<∠BCA <π,所以∠BCA =π6 ,设AD =CD =x ,∠BAC =α,∠BCA =β,∠ACD =θ,则∠CAD =θ,β=π6 , 由∠BAD =2∠BCD 即α+θ=2(β+θ), 则θ=α-2β=α-π3 ,在△ABC 中,cos α=AB 2+AC 2-BC 22AB ꞏAC =49+192-1692×7×83 =9143 =3314 , 又0<α<π,则有sin α=1314 ,所以cos θ=cos (α-π3 )=12 cos α+3 sin α=12 ×3314 +3×1314 =437 , 在△ACD 中,AD 2=AC 2+CD 2-2AC ꞏCD ꞏcos θ, 即x 2=(83 )2+x 2-2×83 ×437 x , 解得x =7,即AD 的长为7.。
正弦定理与余弦定理练习题(5篇模版)
正弦定理与余弦定理练习题(5篇模版)第一篇:正弦定理与余弦定理练习题正弦定理与余弦定理1.△ABC的内角A、B、C的对边分别为a、b、c,若c=2,b=6,B=120°,则a等于2.在△ABC中,角A、B、C的对边分别为a、b、c,若(a+c-b)tanB=3ac,则角B的值为3.下列判断中正确的是A.△ABC中,a=7,b=14,A=30°,有两解B.△ABC中,a=30,b=25,A=150°,有一解C.△ABC中,a=6,b=9,A=45°,有两解D.△ABC中,b=9,c=10,B=60°,无解4.在△ABC中,若2cosBsinA=sinC,则△ABC一定是()()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形5.在△ABC中,A=120°,AB=5,BC=7,则A.85sinB的值为sinC5335()B.458C.D.()6.△ABC中,若a+b+c=2c(a+b),则∠C的度数是A.60°B.45°或135°C.120°D.30°7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=7,c=3,则B=.8.在△ABC中,A=60°,AB=5,BC=7,则△ABC的面积为.9.在△ABC中,角A、B、C所对的边分别为a、b、c.若(b-c)cosA=acosC,则cosA10.在△ABC中,已知a=3,b=2,B=45°,求A、C和c.11.在△ABC中,a、b、c分别是角A,B,C的对边,且cosBb=-.cosC2a+c(1)求角B的大小;(2)若b=,a+c=4,求△ABC的面积.12.在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a+b)sin(A-B)=(a-b)sin(A+B),判断三角形的形状.2213.已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC 的面积为S,且2S=(a+b)-c,求tanC的值.14.已知△ABC的三个内角A、B、C的对边分别为a、b、c,若a、b、c成等差数列,且2cos2B-8cosB+5=0,求角B的大小并判断△ABC的形状.15.在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=7,且4sin(1)求角C的大小;(2)求△ABC的面积.7A+B-cos2C=.22第二篇:正弦定理和余弦定理练习题【正弦定理、余弦定理模拟试题】一.选择题:1.在∆ABC中,a=23,b=22,B=45︒,则A为()A.60︒或120︒B.60︒C.30︒或150︒D.30︒sinAcosB2.在∆AB C中,若=,则∠B=()abB.45︒C.60︒D.90︒A.30︒3.在∆ABC中,a2=b2+c2+bc,则A等于()B.45︒C.120︒D.30︒A.60︒→→→→→→→|AB|=1,|BC|=2,(AB+BC)⋅(AB+BC)=5+23,4.在∆ABC中,则边|AC|等于()A.5B.5-23C.5-23D.5+235.以4、5、6为边长的三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形6.在∆ABC中,bcosA=acosB,则三角形为()A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形7.在∆ABC中,cosAcosB>sinAsinB,则∆ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形8.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为()A.52B.213C.16 D.4二.填空题:9.在∆ABC中,a+b=12,A=60︒,B=45︒,则a=_______,b=________10.在∆ABC中,化简bcosC+ccosB=___________11.在∆ABC中,已知sinA:sinB:sinC=654::,则cosA=___________12.在∆ABC中,A、B均为锐角,且cosA>sinB,则∆ABC是_________三.解答题:13.已知在∆ABC中,∠A=45︒,a=2,c=6,解此三角形。
(完整word)正弦余弦历年高考题及答案
正余弦定理1 在 ABC 中,A B 是 sin A sinB 的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件C2、 已知关于x 的方程x 2 xcosA cosB 2sin 2 0的两根之和等于两根之积的一半,2则 ABC - -定是()(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.3、 已知a,b,c 分别是△ ABC 的三个内角 A,B,C 所对的边,若 a=1,b^. 3, A+C=2B,则sinC=则角A 的大小为 _______________ . 6、在 ABC 中,a, b, c 分别为角A, B, C 的对边,且4sin 2 —C cos2A 72 2(1) 求 A 的度数(2)若a 3 , b c 3,求b 和c 的值7、 在厶ABC 中已知acosB=bcosA,试判断△ ABC 的形状.8、如图,在△ ABC 中,已知a , 3 , b . 2 , B=45求A C 及c .则a=5、在 ABC 中,角A,B,C 所对的边分别为 a ,b ,c ,若acosB.2,c J4、2 2 21、 解:在 ABC 中,A B a b 2Rsi nA 2Rsi nB si nA si nB ,因此,选 C .1 2 C 1 cosC "十2、 【答案】由题意可知: cos A cos B 2 sin ,从而 2 2 2ABC 一定是等腰三角形选3、【命题立意】 本题考察正弦定理在解三角形中的应用4、【命题立意】 本题考查解三角形中的余弦定理。
5、【命题立意】 本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了考生 的推理论证能力和运算求解能力。
【思路点拨】 先根据si nB cosB ,2求出B,再利用正弦定理求出 si nA ,最后求出A. 1解得 sin A ,又 a<b ,所以 A<B=45 o ,所以 A=30o .2cos A cos B 1 cos(AB) 1 cosAcosB sin Asin BcosAcosB sin Asin B 1 , cos(A B) 1 又因为A B 所以A B 0,所以【思路点拨】 由已知条件求出B 、A 的大小,求出C ,从而求出sinC.【规范解答】由 A+C=2B 及 A1B C 180o 得B 60o ,由正弦定理得」sin A1sin A -, 260o ,所以 A 30o , C 180o 90o ,所以 sinC sin 90o1.【思路点拨】 对 C 利用余弦定理,通过解方程可解出【规范解答】由余弦定理或2 (舍)。
正弦定理、余弦定理练习题及答案
正弦定理、余弦定理练习题及答案正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1C.2D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A. B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c 是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 15.B16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1. 2(-1)2 3. 45° 4. 8 5.等腰三角形 6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)1.a=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2, c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。
正弦定理余弦定理练习题及答案(供参考)
正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为B.D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为°°°°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.C.D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是△B.锐角△ C.钝角△ D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=+(-1) C.(+1)10.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为12.在△ABC中,a2=b2+c2+bc,则A等于°°°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.C.+1D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于+cos2B+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A.B.C.D.20.在△ABC中,,则k为D.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C 和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC 的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1.2(-1) 23. 45°4. 85.等腰三角形6.:钝角三角形7.a=b sin A或b<a8.60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13.120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶4=6,b=5,c=48.当θ=时,S四边形OACB最大, 最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考正弦定理和余弦定理练习题及答案
HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
高考正弦定理和余弦定理练习题及答案
一、选择题
1. 已知△ABC中,a=c=2,A=30°,则b=( )
A. 3
B. 23
C. 3 3
D. 3+1
答案:B
解析:∵a=c=2,∴A=C=30°,∴B=120°.
由余弦定理可得b=2 3.
2. △ABC中,a=5,b=3,sin B=
2
2
,则符合条件的三角形有( )
A. 1个
B. 2个
C. 3个
D. 0个答案:B
解析:∵a sin B=10
2
,
∴a sin B<b=3<a=5,
∴符合条件的三角形有2个.
3.(2010·天津卷)在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=3 bc,sin C=23sin B,则A=( )
A.30° B.60°
C.120° D.150°
答案:A
解析:利用正弦定理,sin C=23sin B可化为c=23b.
又∵a2-b2=3bc,
∴a2-b2=3b×23b=6b2,即a2=7b2,a=7b.
在△ABC中,cos A=b2+c2-a2
2bc
=b2+?23b?2-?7b?2
2b×23b
=
3
2
,
∴A=30°.
4.(2010·湖南卷)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=2a,则( )
A.a>b B.a<b
C.a=b D.a与b的大小关系不能确定
答案:A
解析:由正弦定理,得
c
sin120°
=
a
sin A
,
∴sin A=a·
3
2
2a
=
6
4
>
1
2
.
∴A>30°.∴B=180°-120°-A<30°.∴a>b.
5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )
A. 5
18B.
3
4
C.
3
2
D.
7
8
答案:D
解析:方法一:设三角形的底边长为a,则周长为5a,
∴腰长为2a,由余弦定理知cosα=?2a?2+?2a?2-a2
2×2a×2a
=
7
8
.
方法二:如图,过点A作AD⊥BC于点D,
则AC=2a,CD=a
2
,∴sin
α
2
=
1
4
,
∴cosα=1-2sin2α2
=1-2×
1
16
=
7
8
.
6. (2010·泉州模拟)△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积等于( )
A.
32
B.
34
C.
3
2
或 3 D.
32或34
答案:D
解析:∵
sin C 3
=sin B
1,
∴sin C =3·sin30°=3
2
.
∴C =60°或C =120°.
当C =60°时,A =90°,S △ABC =12×1×3=3
2
,
当C =120°时,A =30°,S △ABC =12×1×3sin30°=3
4
.
即△ABC 的面积为
32或3
4
. 二、填空题
7.在△ABC 中,若b =1,c =3,∠C =
2π
3
,则a =________.
答案:1
解析:由正弦定理b sin B =c sin C ,即1
sin B
=
3sin
2π3
,sin B =1
2. 又b <c ,∴B =
π6
,∴A =
π6
.∴a =1.
8.(2010·山东卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.
答案:π
6
解析:∵sin B +cos B =2,
∴sin(B +
π4
)=1.
又0<B <π,∴B =
π4
.
由正弦定理,知2sin A =2sin B ,∴sin A =1
2
.
又a <b ,∴A <B ,∴A =
π
6
. 9. (2010·课标全国卷)在△ABC 中,D 为边BC 上一点,BD =1
2DC ,∠ADB =120°,AD
=2.若△ADC 的面积为3-3,则∠BAC =________.
答案:60°
解析:S△ADC=1
2
×2×DC×
3
2
=3-3,
解得DC=2(3-1),
∴BD=3-1,BC=3(3-1).
在△ABD中,AB2=4+(3-1)2-2×2×(3-1)×cos120°=6,
∴AB= 6.
在△ACD中,AC2=4+[2(3-1)]2-2×2×2(3-1)×cos60°=24-123,∴AC=6(3-1),
则cos∠BAC=AB2+AC2-BC2 2AB·AC
=6+24-123-9?4-23?
2×6×6×?3-1?
=
1
2
,
∴∠BAC=60°.
三、解答题
10. 如图,△OAB是等边三角形,∠AOC=45°,OC=2,A、B、C三点共线.
(1)求sin∠BOC的值;
(2)求线段BC的长.
解:(1)∵△AOB是等边三角形,∠AOC=45°,∴∠BOC=45°+60°,
∴sin∠BOC=sin(45°+60°)
=sin45°cos60°+cos45°sin60°
=2+6 4
.
(2)在△OBC中,
OC
sin∠OBC
=
BC
sin∠BOC
,
∴BC=sin∠BOC×
OC sin∠OBC
=2+6
4
×
2
sin60°
=1+
3
3
.
11. (2010·全国Ⅱ卷)△ABC中,D为边BC上的一点,BD=33,sin B=
5
13
,cos∠ADC
=3
5
,求AD.
解:由cos∠ADC=
3
5
>0知B<
π
2
,
由已知得cos B=
12
13
,sin∠ADC=
4
5
,从而sin∠BAD=sin(∠ADC-B)
=sin ∠ADC cos B -cos ∠ADC sin B
=45×1213-35×513=3365
. 由正弦定理得AD sin B =BD
sin ∠BAD
,
AD =BD ·sin B
sin ∠BAD =33×
51333
65
=25.
12. (2010·安徽卷)设△ABC 是锐角三角形,a ,b ,c 分别是内角A ,B ,C 所对边长,并且sin 2A =sin ⎝ ⎛⎭⎪⎫π3+B sin ⎝ ⎛⎭
⎪⎫
π3-B +sin 2B .
(1)求角A 的值;
(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).
解:(1)因为sin 2A =⎝ ⎛⎭
⎪⎫32cos B +1
2sin B
⎝ ⎛⎭
⎪⎫32cos B -1
2sin B +sin 2B =34cos 2B -14sin 2B +sin 2B =34,
所以sin A =±
3
2
. 又A 为锐角,所以A =
π3
.
(2)由AB→·AC→=12,可得cb cos A=12.①
由(1)知A=π
3
,所以cb=24.②
由余弦定理知a2=c2+b2-2cb cos A,将a=27及①代入,得c2+b2=52,③③+②×2,得(c+b)2=100,
所以c+b=10.
因此c,b是一元二次方程t2-10t+24=0的两个根.
解此方程并由c>b知c=6,b=4.。