函数的基本性质单调性

合集下载

函数五大性质

函数五大性质

函数五大性质函数的五大性质是指函数的基本性质,它们是:平稳性、单调性、有界性、可导性和连续性。

掌握了这五大性质,将有助于我们更好地理解和研究函数,以及求解方程等。

平稳性是指在函数域上,如果一个函数的值有限,那么它的极限为零。

这意味着函数的值不会随着变量的变化而发生显著变化。

例如,在函数 x2 + 2x 上,当 x化时,该函数的值变化不大。

单调性是指在函数域上,如果一个函数的值是递增的(或者函数的值是递减的),那么该函数就是单调的。

这样的函数不会随着变量的变化而发生明显的变化;例如,函数 f (x) = x2 + 2x x限增大时,该函数的值会逐渐增加,因此该函数是单调的。

有界性是指在函数域上,如果函数的值是有限的,那么该函数就是有界的。

例如,函数 f (x) = x2 + 2x有有界性,因为它的值介于 0 ~ 10 之间,不能变得无限大。

可导性是指在函数域上,函数的导数不为零,那么该函数就是可导的。

例如,函数 f (x) = x2 + 2x有可导性,因为它的导数不为零,且为 f x) = 2x + 2。

连续性是指在函数域上,如果函数在相邻的点上具有定义,那么该函数就是连续的。

例如,函数 f (x) = x2 + 2x有连续性,因为它在每个数值处都具有定义。

在数学中,函数具有五大性质。

这些性质有助于我们更好地理解和研究函数,以及求解方程等。

函数的五大性质是平稳性、单调性、有界性、可导性和连续性,在函数域上,如果某种函数具备这五种性质,那么它就是一个理想的定义函数。

五大性质是数学中最重要的几个素材之一,即使在初等数学中也有应用。

比如,运用有界性可以快速解决定积分的问题,而运用连续性可以检验初等函数的连续性。

深入学习函数的五大性质,可以让我们对函数有更深刻的理解,从而更加熟练地操作和使用函数。

因此,了解函数的五大性质,对我们学习数学具有极大的帮助,这些性质可以作为解决各种数学问题的一个重要参考,为我们的学习和研究提供了很大的帮助。

函数的基本性质之单调性

函数的基本性质之单调性

函数的基本性质之单调性1.增函数:y随x的增大而增大的函数,即对任意的x1,x2属于定义域,若x1>x2,有f(x1)>f(x2)2.减函数:y随x的增大而减小的函数,即对任意的x1,x2属于定义域,若x1>x2,有f(x1)<f(x2)3.单调性:如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数f(x)在区间D上具有(严格的)单调性,区间D称为单调区间考点一:用定义证明函数的单调性方法:取值变形例:证明:函数y=x+在(0,上是减函数练:在上例中,若定义域换为(3,),那么函数的单调性如何?且画出在(0,)上的大致图像。

考点二:求单调区间方法:化简函数解析式画出函数图像确定单调区间例:指出函数y=-++3的单调区间练:指出函数y=-+3x+3的单调区间考点三:利用单调性确定参数指导思想:若y=f(x)在区间(a,b)上递增(减)就等价于(a,b)是增区间(减区间)的一个子集例:已知函数f(x)=+2(a-1)x+2在区间(-,上是减函数,求实数a的取值范围练:已知函数f(x)=+2(a-1)x+2的单调递减区间是(-,,求实数a的取值范围4.函数的最大值:一般的,设函数y=f(x)的定义域为I,如果存在M满足,对于任意的x I,都有f(x)M,且存在x0I,使得,f(x0)=M,那么称M是函数y=f(x)的最大值5.函数的最小值:一般的,设函数y=f(x)的定义域为I,如果存在M满足,对于任意的x I,都有f(x)M,且存在x0I,使得,f(x0)=M,那么称M是函数y=f(x)的最小值考点四:利用图像求函数最值例:已知函数f(x)=3-12x+5,当自变量x在下列范围内取值时,求函数的最大值,最小值:(1)x R;(2)x;(3)x考点五:利用单调性求函数最值方法:定义法证明函数单调性求最值例:求函数f(x)=x+在x上的最大值及最小值。

练:求函数f(x)=x+在x上的最值。

函数的基本性质及常用结论

函数的基本性质及常用结论

函数的基本性质及常用结论一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。

定义:(略)定理1:[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数; []1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数. 定理2:(导数法确定单调区间) 若[]b a x ,∈,那么()[]b a x f x f ,)(0在⇔>'上是增函数; ()[]b a x f x f ,)(0在⇔<'上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。

3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数()f x 和()g x ,若它们的定义域分别为I 和J ,且I J ⋂≠∅:(1)当()f x 和()g x 具有相同的增减性时,①1()()()F x f x g x =+的增减性与()f x 相同,②2()()()F x f x g x =⋅、3()()()F x f x g x =-、4()()(()0)()f x F xg x g x =≠的增减性不能确定; (2)当()f x 和()g x 具有相异的增减性时,我们假设()f x 为增函数,()g x 为减函数,那么:①1()()()F x f x g x =+、②2()()()F x f x g x =⋅、4()()(()0)()f x F x g x g x =≠、5()()(()0)()g x F x f x f x =≠的增减性不能确定;③3()()()F x f x g x =-为增函数。

函数的基本性质(单调性、奇偶性、周期性、对称性)(原卷版)

函数的基本性质(单调性、奇偶性、周期性、对称性)(原卷版)

专题04 函数的基本性质(单调性、奇偶性、周期性、对称性)知识点1 函数的单调性 1、单调函数的定义设函数f (x )的定义域为I.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x , 当21x x <时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是单调递增函数。

当21x x <时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是单调递减函数。

2、单调性的图形趋势(从左往右)上升趋势 下降趋势3、函数的单调区间若函数y =f(x)在区间D 上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D 叫做y =f(x)的单调区间. 4、单调性定义的等价形式:(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .5、定义法证明函数单调性的步骤①取值:设1x ,2x 为该区间内任意的两个值,且12x x <②作差变形:做差()()12f x f x -,并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形③定号:确定差值的符号,当符号不确定时,可以分类讨论 ④判断:根据定义做出结论。

函数的单调性课件-高一数学人教A版(2019)必修第一册

函数的单调性课件-高一数学人教A版(2019)必修第一册
3.会利用单调性求参数取值范围.(重点)
学运算素养.
新课引入
问题1:观察下面函数图象,从中你发现了图象的哪些特征?



= 2
=




= >0

升降变化、对称性,最高点或最低点等
今天,我们重点研究图象从左到右升降变化的规律。
随的增大而增大(或减小)——
函数的单调性


= 2
1
y
0
那么就称函数 在
区间D上时减函数
y
1
1 2 x
2
0
1 2
x
特别地,只有当函数 在它的定义域上单调递增(递减)时,
我们才称它是增(减)函数。
合作探究
思考1:−1 < 2时,有 −1 < 2 ,
说函数在区间 −1,2 上单增对吗?并说出你的理由。
不对,如图,虽−1 < 2时,有 −1 < 2 ,
函数值随自变量的增大(或减小)的性质叫做函数的单调性.
图形语言:在 轴右侧,从左到右图象是上升的;
也就是说,在区间 , +∞ 上,随的增大而增大

你能类比说出函数在y轴右侧的符号表示及单调性吗?
符号语言:


∀ , ∈ , +∞ , = , =
当 < 时,有 < 成立.
结论 这时, f (x)=kx +b是减函数。
结论:一次函数 = + ≠ 的单调性由的正负确定。
> 在R上单调递增; < 在R上单调递减.
k
(k为正常数)告诉我们,
例3、 物理学中的玻意耳定律 p =

函数的基本性质单调性的应用

函数的基本性质单调性的应用

函数的基本性质单调性的应用函数的单调性是函数在定义域上的性质,描述了函数图像随着自变量的增减而变化的规律。

应用函数的单调性可以帮助我们分析函数的性质,解决各类数学问题。

下面将对函数的基本性质单调性的应用进行分类总结。

一、判断函数的增减性:1.定义法:根据函数定义,若对于任意x1、x2∈定义域,当x1<x2时,有f(x1)<f(x2),则函数f(x)在该定义域上严格递增。

若f(x1)>f(x2),则函数f(x)在该定义域上是严格递减。

2.导数法:对于可导函数f(x),若在定义域上f'(x)≥0,则函数f(x)在该定义域上是递增的;若f'(x)≤0,则函数f(x)在该定义域上是递减的。

3.不等式法:对于不等式f(x1)≤f(x2),如果我们能够证明当x1<x2时,则不等式成立,那么函数f(x)在该定义域上是递增的;如果我们能够证明当x1<x2时,则不等式反向成立,那么函数f(x)在该定义域上是递减的。

二、判断函数的最大值和最小值:1.极值点:对于可导函数f(x),当f'(x)=0时,x就是函数f(x)的一个极值点。

若在x点的左侧f'(x)>0,右侧f'(x)<0,则x是函数f(x)的一个局部最大值点;若在x点的左侧f'(x)<0,右侧f'(x)>0,则x是函数f(x)的一个局部最小值点。

2.二阶导数:对于二次可导函数f(x),当f''(x)>0时,函数f(x)在该点上是凹的,存在一个局部极小值;当f''(x)<0时,函数f(x)在该点上是凸的,存在一个局部极大值。

通过判断二阶导数的正负,可以得出函数的凹凸性及极值点。

三、求解方程和不等式:1.方程求解:对于严格递增(递减)函数f(x),f(x)=k(k为常数)的方程只有一个解。

2.不等式求解:对于不等式f(x)≤0,f(x)≥0,若函数f(x)在定义域上递减,则不等式解集由定义域内满足f(x)≤0(≥0)的x组成。

函数的基本性质ppt课件

函数的基本性质ppt课件
答案 [-2,+∞)
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.

函数的基本性质

函数的基本性质

函数的基本性质一.函数的单调性:1. 定义:设D 为函数)(x f 定义域的子集。

对任意的D ,21∈x x 且21x x <时,都有⇔>--⇔>--⇔<0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是增加的。

对任意的D ,21∈x x 且21x x <时,都有⇔<--⇔<--⇔>0)](()([0)()()()(1212121221)x x x f x f x x x f x f x f x f 函数)(x f y =在D 上是减少的。

2. 图像特点:自左向右看图像是上升的。

(图像在此区间上是增加的) 自左向右看图像是下降的。

(图像在此区间上是减少的)3.判断函数单调性的方法:(1)图像法:作出函数图像,由图像直观判断求解,只能用于判断。

(数形结合) 解题程序:解析式-----图像-----单调区间(2)性质法:需要先记清基本初等函数的单调性。

高中基本初等函数:一次函数:)0(≠+=k b kx y ,二次函数:)0(2≠++=a c bc ax y 反比例函数:)0(≠=k x k y ,简单幂函数:3,2,21,1,1)(-=∈=αααR x y 指数函数:)10(≠>=a a a y x 且,对数函数:)10(log ≠>=a a x y a 且, “对勾”函数:)0(>+=a x ax y①a x f y +=)(与)(x f y =的单调性相同。

②当0>a 时,函数)(x af y =与)(x f y =的单调性相同;当0<a 时,函数)(x af y =与)(x f y =的单调性相反;③在公共定义域内,增函数)(x f +增函数)(x g 是增函数, 减函数)(x f +减函数)(x g 是减函数;增函数)(x f -减函数)(x g 是增函数,减函数)(x f -增函数)(x g是减函数;④两函数积的单调性:当)(x f ,)(x g 在公共区间上都是增(减)函数。

函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 一些单调性的判断规则:①若f (x)与g(x)在定义域内都是增函数(减函数),那么f (x) + g(x)在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。

②复合函数的单调性规则是“同增异减”。

2.函数的奇偶性的定义:(1)对于函数f (x)的定义域内任意一个x,都有f (-x) = —f (x),则称f (x)为.奇函数的图象关于对称。

(2)对于函数f (x)的定义域内任意一个x,都有f (-x) = f (x),则称f (x)为.偶函数的图象关于对称。

(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

3.奇偶函数图象的对称性(1)若y = f (a + x)是偶函数,则 f (a + x) = f (a - x) o f (2a - x) = f (x) o f (x)的图象关于直线x= a对称;(2)若y = f (b + x)是偶函数,则 f (b - x) = - f (b + x) o f (2b - x) = - f (x) o f (x)的图象关于点(b,0)中心对称;4.若函数满足f Q + a)= f Q),则函数的周期为T=a。

二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+ 8)上单调递减的函数是()A. y = 2|x|B. y = x3C. y = -x2+1D. y=cosx【答案】C【解析】试题分析:偶函数需满足f (-x) = f (x),由此验证可知A,C,D都是偶函数,但要满足在区间(0,+ 8) 上单调递减,验证可知只有C符合.考点:偶函数的判断,函数的单调性.2. f (x) = x2-2x + 4的单调减区间是.【答案】(fl) 【解析】试题分析:将函数进行配方得/(,) =,2—2x + 4 = (x —1)2+3,又称轴为x = l,函数图象开口向上,所 以函数的单调减区间为(-8,1) . 考点:二次函数的单调性.3 .函数y = log (%2 +2% —3)的单调递减区间为()2A. (— °°, —3)B. (— °°, — 1)C. (1, +°°)D. ( — 3, — 1) 【答案】A 【解析】试题分析:由x2 + 2x —3>0,得%<—3或x>l, .♦./(%)的定义域为(―8,—3)U(L+8).y = log (%2 + 2% —3)可看作由 y = log 沈和 M = %2 + 2% — 3 复合而成的,u - X2 +2x-3 = (x +1)2 -4 2 2在(—8,—3)上递减,在(1,+8)上递增,又y = log "在定义域内单调递增,.・.y = log (%2+2%-3)在2 2(—8,—3)上递减,在(1,+8)上递增,所以y = log (%2+ 2% —3)的单调递减区间是(―叫—3),故选A.2考点:复合函数的单调性.4 .已知丁 = %2+2(〃 — 2)% + 5在区间(4,+8)上是增函数,则a 的范围是( )【答案】B 【解析】试题分析:函数y = %2+2(〃-2)% + 5的图像是开口向上以x = 2-a 为对称轴的抛物线,因为函数在区 间(4,+8)上是增函数,所以2 —a V 4,解得“之―2 ,故A 正确。

(整理)函数的基本性质单调性最值

(整理)函数的基本性质单调性最值

(一)函数单调性的定义1. 增函数与减函数一般地,设函数y =f (x )的定义域为I ,增函数:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数。

减函数:如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说f (x )在区间D 上是减函数。

说明:一个函数的两个单调区间是不可以取其并集,比如:xy 1=不能说 )0,(-∞ ),0(+∞是原函数的单调递减区间;注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)或 f (x 1)>f (x 2)。

2. 函数的单调性的定义如果函数y =f (x )在某个区间上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

例1 观察下列函数的其图象,指出其单调性. (1)1y x x=+;(2)11y x=-;例2 指出下列常见函数的单调性: (1)y c =(c 为常数);【析】y 不随x 的增大而改变,无单调性. (2)y ax b =+(0a ≠);【析】0a >,函数在R 上递增;0a <,函数在R 上递减. (3)2y ax bx c =++(0a ≠); 【析】0a >,函数在(,)2b a-∞-上递减,在(,)2ba -+∞上递增;0a <,函数在(,)2b a-∞-上递增,在(,)2ba -+∞上递减.(4)ky x=(0k ≠); 0k >,函数在(,0)-∞上递减,在(0,)+∞上递减; 0k <,函数在(,0)-∞上递增,在(0,)+∞上递增.(5)y x =;函数在(,0)-∞上递减,在(0,)+∞上递增. (6)y x =. 函数在(0,)+∞上递增.3. 判断函数单调性的方法和步骤(1)利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ①任取x 1,x 2∈D ,且x 1<x 2; ②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断差f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性)。

函数的基本性质单调性教案

函数的基本性质单调性教案

函数的基本性质-单调性教案第一章:函数单调性的概念与定义1.1 引入:通过实际例子,让学生感受函数单调性的存在。

1.2 单调性的定义:函数单调递增和单调递减的定义。

1.3 单调性的表示:用符号表示函数的单调性。

1.4 单调性的性质:单调性的一些基本性质,如传递性、复合函数的单调性等。

第二章:函数单调性的判断与证明2.1 单调性的判断方法:通过导数或者图像来判断函数的单调性。

2.2 单调性的证明:利用导数或者定义来证明函数的单调性。

2.3 单调性的应用:利用单调性解决一些实际问题,如最值问题、不等式问题等。

第三章:函数单调性与极值的关系3.1 极值的概念:函数的极大值和极小值的定义。

3.2 极值与单调性的关系:函数在极值点附近的单调性变化。

3.3 利用单调性求极值:通过单调性来确定函数的极值点。

第四章:函数单调性与图像的关系4.1 图像的单调性:函数图像的单调递增和单调递减。

4.2 单调性与图像的交点:函数图像的交点与单调性的关系。

4.3 利用图像判断单调性:通过观察函数图像来判断函数的单调性。

第五章:函数单调性的应用5.1 函数的单调区间:确定函数的单调递增或单调递减区间。

5.2 单调性与函数值的关系:函数值的变化与单调性的关系。

5.3 应用实例:利用单调性解决实际问题,如最大值、最小值问题等。

第六章:单调性在实际问题中的应用6.1 引言:通过实际问题引入单调性的应用。

6.2 单调性在优化问题中的应用:如最短路径问题、最大收益问题等。

6.3 单调性在经济学中的应用:如市场需求、价格调整等。

第七章:函数单调性的进一步探讨7.1 函数的严格单调性:严格单调递增和严格单调递减的定义。

7.2 单调性的不变性:函数单调性在坐标变换下的性质。

7.3 单调性与连续性的关系:连续函数的单调性性质。

第八章:复合函数的单调性8.1 复合函数的定义:两个函数的组合。

8.2 复合函数的单调性:复合函数单调性的判定方法。

函数的基本性质——单调性

函数的基本性质——单调性

3.4 函数的基本性质——单调性【知识解读】1、函数单调性的概念对于给定区间I 上的函数)(x f y =,如果对于任意I x x ∈21,,当21x x <时,都成立 )()(21x f x f <,那么就称)(x f 在区间I 上是单调增函数,区间I 称为函数)(x f 的单调 增区间。

对于给定区间I 上的函数)(x f y =,如果对于任意I x x ∈21,,当21x x <时,都成立 ,那么就称)(x f 在区间I 上是单调减函数,区间I 称为函数)(x f 的 。

2、函数单调性的运算:设)(x f 与)(x g 分别为1I 与2I 上的单调增函数,则)()(x g x f +在21I I I 上单调增 设)(x f 与)(x g 分别为1I 与2I 上的单调减函数,则)()(x g x f +在21I I I 上3、单调性与奇偶性:若奇函数)(x f 在区间],[b a 上单调递增,则它在区间],[a b --上 若偶函数)(x f 在区间],[b a 上单调递增,则它在区间],[a b --上 *4、复合函数单调性:同增异减。

【例题讲解】例1、证明函数()23+=x x f 在区间()+∞∞-,上是增函数。

例2、判别函数24xy =在区间),0(+∞上的单调性,并证明。

例3:判定函数()[]2,4,2-∈=x x x f 的单调性,并求出它的单调区间(不需证明)。

例4、已知函数x x x f +=3)((1)判断并证明)(x f 在R 上的单调性 (2)方程1000)(=x f 有正整数解吗?为什么?例5、写出下列函数的单调区间(不需证明)(1)12)(+=x x f (2)2)1()(-=x x f(3)23)(2+-=x x x f (4)231)(-=x x f例6、已知函数a x a x x f 2)1()(2++-=在区间]1,2[-上单调递减,求实数a 的取值范围。

函数的基本性质要点总结

函数的基本性质要点总结

函数的基本性质要点总结研究一种函数就要研究它的性质,单调性与奇偶性是函数最重要的基本性质。

一、单调性要点1:增函数、减函数定义及图象特征一般地,对于给定区间上的函数f(x),如果对于属于定义域I内某个区间上的任意两个自变量的值,,当<时,都有f()<f(),那么就说f(x)在这个区间上是增函数。

减函数的定义类似。

反映在图象上,若是区间D上的增(减)函数,则图象在D上的部分从左到右是上升(下降)的。

关于函数单调性的理解:(1)函数的单调性是对于函数定义域内的某个子区间而言有些函数在整个定义域内可能是单调的,如一次函数;有些函数在定义域内的部分区间上是增函数,而在另一部分区间上可能是减函数,如二次函数;还有的函数是非单调的,如常数函数y=c,又如函数。

(2)函数在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质。

因此,若要证明在[a,b]上是递增的,就必须证明对于区间[a,b]上任意的两点x1、x2,当x1<x2时都有不等式f (x1)<f (x2)成立。

若要证明在[a,b]上不是单调递增的,只须举出反例就足够了。

即只要找到两个特殊的x1、x2,若a≤x1<x2≤b,有f (x1)≥f (x2)即可。

(3)函数单调性定义中的x1、x2,有三个特征:一是任意性,即“任意取x1、x2”,“任意”二字决不能丢掉。

证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x1<x2;三是同属一个单调区间,三者缺一不可。

要点2:单调性与单调区间如果函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,这一区间就叫做y=f(x)的单调区间。

关于单调区间的书写:函数在其定义域内某一点处的函数值是确定的,讨论函数在某点处的单调性没有意义,书写函数的单调区间时,区间端点的开或闭没有严格规定,习惯上,若函数在区间端点处有定义,则写成闭区间,当然写成开区间也可;若函数在区间端点处没有定义,则必须写成开区间。

函数的基本性质老师版(部分含答案)

函数的基本性质老师版(部分含答案)

函数的基本性质函数的三个基本性质:单调性,奇偶性,周期性一、单调性1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。

2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。

)3.二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a ,当0>a 时函数)(x f 在对称轴a bx 2-=的左侧单调减小,右侧单调增加;当0<a 时函数)(x f 在对称轴a bx 2-=的左侧单调增加,右侧单调减小;例1:讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

练习:讨论函数()2-21f x ax x =+在(-1,1)内的单调性。

4.证明方法和步骤:⑴设元:设21,x x 是给定区间上任意两个值,且21x x <;⑵作差:)()(21x f x f -;⑶变形:(如因式分解、配方等);⑷定号:即0)()(0)()(2121<->-x f x f x f x f 或;⑸根据定义下结论。

例2、判断函数1()x f x x +=在)0,(-∞上的单调性并加以证明.练习: 判断函数2()1x f x x +=-在(-∞,0)上的单调性并加以证明。

[例3] 求证函数f (x )=x +xa (a .,>0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 分析 利用定义证明,证明函数单调性的关键在于作差变形.证明 (1)设0<x 1<x 2≤a ,则f (x 1)-f (x 2)=x 1+1x a -x 2-2x a =(x 1-x 2)⎪⎪⎭⎫ ⎝⎛-211x x a . 因为0<x 1<x 2≤a ,所以x 1-x 2<0,0<x 1x 2<a .,所以\21x x a >1,所以211x x a -<0, 所以f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2).所以f (x )在(0,\r(a .,)]上为减函数.(1) 设a ≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2) ⎪⎪⎭⎫ ⎝⎛-211x x a . 因为x 1-x 2<0,x 1x 2>a .,,所以\21x x a <1, 所以211x x a ->0,所以f (x 1)-f (x 2)<0.5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”。

2.函数的基本性质之单调性

2.函数的基本性质之单调性

函数的基本性质一. 函数的单调性1.复合函数的单调性的判定[例1]函数)(x f 在R 上为增函数,求函数)1(+=x f y 单调递减区间. 解析:令1+=x u ,则u 在(-∞,-1]上递减,又函数)(x f 在R 上为增函数, ∴ 函数)1(+=x f y 单调递减区间为(-∞,-1].【技巧提示】 这是一个求复合函数的单调性的例子,同时又含有抽象函数.只要知道函数1+x 的单调性,)1(+=x f y 与1+x 的单调性和单调区间相同.如果变函数)(x f 在R 上为减函数,那么函数)1(+=x f y 的单调性与函数1+x 的单调性相反,即函数)1(+=x f y 单调递增区间为(-∞,-1].练习 设函数)(x f 在R 上为减函数,求函数)1(xf y =单调区间.2.函数的和函数与差函数的单调性的判定 在函数)(x f 、)(x g 公共定义域内, 增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数.[例2]若ax y =与xb y -=在()+∞,0上都是减函数,则bx ax y +=2的单调性是( ) A. 在()+∞∞-,上是增函数 B. 在()+∞,0上是增函数C. 在()+∞∞-,上是减函数D. 在()0,∞-上是增函数,在()+∞,0上是减函数 解析: 由函数 ax y =在()+∞,0上是减函数,得 a <0,又函数xby -=在()+∞,0上是减函数,得 b <0, 于是,函数2ax ,bx 在()+∞∞-,上都是减函数, ∴ 函数bx ax y +=3在()+∞∞-,上是减函数,故选C .【技巧提示】 熟悉函数ax y =,2ax y =,bx y =,xby =的单调性与a 、b 的符号的关系,就能正确的描述由它们组合而成的函数的单调性. [例3]求函数31)(--+=x x x f 的最大值.解析:由31431)(-++=--+=x x x x x f ,知函数31)(--+=x x x f 在其定义域 [3,+∞ )上是减函数. 所以31)(--+=x x x f 的最大值是2)3(=f .【技巧提示】 显然由31431-++=--+x x x x 使得问题简单化,当然函数定义域是必须考虑的.练习 1. 已知[]1,0∈x ,则函数x x y --+=12的值域是 .解析:∵ x x y --+=12在[]1,0∈x 上单调递增,∴ 函数x x y --+=12的值域是[])1(),0(f f .即[]3,12-.2. 求函数x x y 21++=的值域.解析:∵ x x y 21++= 在定义域⎪⎭⎫⎢⎣⎡+∞-,21上是增函数, ∴ 函数x x y 21++=的值域为 ⎪⎭⎫⎢⎣⎡+∞-,21.3. 抽象函数的单调性例 已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.(1)∵函数f(x)对于任意x ,y ∈R 总有f(x)+f(y)=f(x +y),∴令x =y =0,得f(0)=0.再令y =-x ,得f(-x)=-f(x). 在R 上任取x 1>x 2,则x 1-x 2>0,f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(x 1-x 2).又∵x>0时,f(x)<0,而x 1-x 2>0,∴f(x 1-x 2)<0,即f(x 1)<f(x 2).因此f(x)在R 上是减函数.(2)∵f(x)在R 上是减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.练习 定义在R 上的函数()y f x =,(0)0f ≠,当0x >时,()1f x >,且对任意的a b R ∈、,有()()()f a b f a f b +=⋅. (1)求(0)f 的值;(2)求证:对任意的x R ∈,恒有()0f x >;(3)若2()(2)1f x f x x ⋅->,求x 的取值范围. 解:(1)解:令0a b ==,则2(0)(0).f f = 又(0)0f ≠,(0)1f =. (2)证明:当0x <时,0x ->,∴()1f x -> ∵(0)()()1f f x f x =⋅-=,∴1()0()f x f x =>- 又0x ≥时, ()10f x ≥> ∴对任意的x R ∈,恒有()0f x >. (3)解:设12x x <,则210x x ->. ∴21()1f x x ->. 又1()0f x > ∴ 1212111211()()()[()]()()()f x f x f x f x x x f x f x x f x -=--+=--⋅ =121()[1()]0f x f x x --<∴ 12()()f x f x <.∴ ()f x 是R 上的增函数. 由2()(2)1f x f x x ⋅->,(0)1f =得 2(3)(0)f x x f ->.∴ 230x x ->,∴03x <<∴所求的x 的取值范围为(0,3)二.一个特殊的函数 ---对号函数xb ax x f +=)()0,0(>>b a 被称为对号函数.对号函数是奇函数,其图象是双曲线,y 轴和直线 ax y =是其渐近线. [例4]试判断函数xbax x f +=)()0,0(>>b a 在()0,+∞上的单调性并给出证明.解析:设120x x >> ,()()()12121212ax x bf x f x x x x x --=- 由于120x x -> 故当12,x x ⎫∈∞⎪⎪⎭ 时()()120f x f x ->,此时函数()f x在⎫∞⎪⎪⎭上增函数,同理可证函数()f x在⎛ ⎝上为减函数. 【技巧提示】 xbax x f +=)()0,0(>>b a 是一种重要的函数模型,要引起足够的重视.事实上,函数()()0,0bf x ax a b x =+>>的增函数区间为,⎛-∞ ⎝和⎫∞⎪⎪⎭,减函数区间为⎛ ⎝和⎛⎫⎪ ⎪⎝⎭.但注意本题中不能说()f x在,⎛-∞ ⎝⎫∞⎪⎪⎭上为增函数,在⎛ ⎝⎛⎫⎪ ⎪⎝⎭上为减函数, 在叙述函数的单调区间时不能在多个单调区间之间添加符号“∪”和“或”.练习 求函数2=y 解析:由()u g uu x x x x y =+=+++=++=1414452222,[)+∞∈,2u ,用单调性的定义法易证()u u u g 1+= 在[)+∞,2上是增函数,易求函数2=y 25为所求.再例:已知函数()[)+∞∈++=,1,22x x ax x x f . 若对于x [)+∞∈,1,)(x f >0恒成立,试求a 的取值范围.解析:由)(x f = [)+∞∈++=++,1,222x xax x a x x .当a >0时, ()2++=xa x x f 显然有)(x f >0 在[)∞+.1恒成立;a ≤0时,由()[)+∞∈++=++=,x ,xax x a x x x f 1222知其为增函数,只需)(x f 的最小值)1(f =3+a >0,解之,a >-3. ∴当a >-3时,)(x f >0在[)+∞,1上恒成立.[例5]已知)(x f 是定义在R 上的增函数,对x ∈R 有)(x f >0,且)10(f =1, 设)(x F =)(1)(x f x f +,讨论)(x F 的单调性,并证明你的结论. 解析:在R 上任取1x 、2x ,设1x <2x ,∴)(2x f >)(1x f ,],)()(11)][()([])(1)([])(1)([)()(2112112212x f x f x f x f x f x f x f x f x F x F --=+-+=-∵)(x f 是R 上的增函数,且)10(f =1,∴当x <10时0<)(x f <1,而当x >10时)(x f >1; ① 若1x <2x <10,则0<)(1x f < )(2x f <1, ∴0< )(1x f )(2x f <1,∴)()(1121x f x f -<0,∴)(2x F <)(1x F ;② 2x >1x >10,则)(2x f >)(1x f >1 , ∴)(1x f )(2x f >1,∴)()(121x f x f >0,∴ )(2x >)(1x F ; 综上,)(x F 在(-∞,10)为减函数,在(10,+∞)为增函数.【技巧提示】 该题属于判断抽象函数的单调性问题,用单调性定义解决是关键.课后训练1、函数1()(0)f x x x x=+≠的单调性描述,正确的是( ) A 、在(-∞,+∞)上是增函数; B 、在(-∞,0)∪(0,+∞)上是增函数; C 、在(-∞,-1)∪(1,+∞)上是增函数; D 、在(-∞,-1)和(1,+∞)上是增函数2、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数3、函数()f x 是定义在[0,)+∞上的单调递减函数,则2(1)f x -的单调递增区间是4、函数236xy x -=+的递减区间是 ;函数y =的递减区间是5、设()y f x =是R 上的减函数,则()3y f x =-的单调递减区间为6、对于任意R x ∈,函数()x f 表示3+-x ,2123+x ,342+-x x 中的较大者,则()x f 的最小值是_____________.7、证明函数()x f =2x 在[0,+∞)上是增函数.8、证明函数xx y 14+= 在),21[+∞上是增函数.9、已知函数)(x f 、)(x g 在R 上是增函数,求证:))((x g f 在R 上也是增函数.10、求函数12)(2--=ax x x f 在区间]2,0[上的最值.11、若函数22)(2+-=x x x f 当]1,[+∈t t x 时的最小值为()g t ,求函数()g t 当]2,3[--∈t 时的最值.12、讨论函数()f x =)0(12≠-a x ax,在-1<x <1上的单调性.参考答案1.D 2.略 3.解析:设1x >2x ≥21, 则 )(2x f -)(1x f =2214x x +-(1114x x +) =212112)(4x x x x x x -+-=21211214)(x x x x x x -⋅-, ∵ 012<-x x ,4121>x x , ∴ )(2x f -)(1x f <0 ∴ 函数xx y 14+= 在),21[+∞上是增函数.4.25.证明:设1x >2x ,则)(1x f -)(2x f >0,)(1x g -)(2x g >0, 即 )(1x g >)(2x g于是 ))((1x g f -))((2x g f >0 ∴ ))((x g f 在R 上也是增函数.6.C 7.]1,0[ 8.)2,(--∞和),2(+∞- ]2,2(- 9.),3[+∞10.解析:函数12)(2--=ax x x f )1()(22+--=a a x ,当 0<a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)0(f =-1 )(x f 在区间]2,0[上的最大值为)(max x f =)2(f =a 43-; 当 10<≤a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)1(2+-a )(x f 在区间]2,0[上的最大值为)(max x f =)2(f =a 43-; 当 21<≤a 时,)(x f 在区间]2,0[上的最小值为)(min x f =)1(2+-a )(x f 在区间]2,0[上的最大值为)(max x f =)0(f =-1;当 2≥a 时,)(x f 在区间上的最小值为)(min x f =)2(f =a 43- )(x f 在区间]2,0[上的最大值为)(max x f =)0(f =-1; 11.解析:因为函数22)(2+-=x x x f =1)1(2+-x 当t ≤0时,最小值)(t g =)1(+t f =12+t ; 当0<t ≤1时,最小值)(t g =)1(f =1; 当t >1时,最小值)(t g =)(t f =222+-t t ;∴ ⎪⎩⎪⎨⎧>+-≤<≤+=1,2210,10,1)(22t t t t t t t g ,)(t g 当]2,3[--∈t 时的最大值为)3(-g =10;最小值为)2(-g =5.12.解析:函数)(x f =12-x ax=xx a 1-作函数xx x g 1)(-=, )(x g 为奇函数且在)0,1(-和)1,0(上都是增函数, ∴ 当a <0时,)(x f 在)0,1(-和)1,0(上都是增函数; 当a >0时,)(x f 在)0,1(-和)1,0(上都是减函数.。

函数的基本性质之单调性

函数的基本性质之单调性

函数的基本性质之单调性1、函数的单调性增函数减函数定义一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.函数的单调性与单调区间函数=y )(x f 在区间D 上是增函数或减函数 函数=y )(x f 在这一区间具有(严格性)单调性 区间D 叫做=y )(x f 的单调区间3.对函数单调性的理解(1)定义中的1x ,2x 是指任意的,即不可用两个特殊值代替,且通常规定1x <2x .(2)对于区间端点,由于它的函数值是唯一确定的常数,没有增减的变化,所以不存在单调性问题,因此在写单调区间时,可以包括区间端点,也可以不包括区间端点,但当函数在区间端点处无定义时,单调区间就不能包括这些点.(3)单调函数定义的等价变形:)(x f 在区间D 上是增函数⇔任意1x ,2x D ∈,1x <2x ,都有 )(1x f <)(2x f ⇔0)()(2121>--x x x f x f ⇔[]0)()()(2121>--x x x f x f .(4)一个函数出现两个或两个以上的单调区间时,不能用“⋃”而应该用“和”或“,”来连接.题型一 求函数的单调区间例1:(1)如图所示的是定义在区间[-5,5]上的函数y =f (x )的图象,则函数的单调递减区间是________、________,在区间________、________上是增函数. (2)函数y =1x -1的单调递减区间是________.例2:画出函数y =-x 2+2|x |+3的图象并写出函数的单调区间.变式练习1 作出函数⎩⎨⎧>+-≤--=1,3)2(1,3)(2x x x x x f 的图象,并指出函数的单调区间.题型二 函数单调性的判定与证明利用定义法证明函数单调性的步骤:第一步:取值,即设1x ,2x 是该区间内的任意两个值,且1x <2x ;第二步:作差变形,即作差)()(21x f x f -,并通过因式分解、配方、通分、有理化等方法使其转化为易于判断正负的式子; 第三步:判号,即确定)()(21x f x f -的符号,当符号不确定时,要进行分类讨论; 第四步:定论,即根据定义得出结论.例2 已知函数f (x )=2-xx +1,证明:函数f (x )在(-1,+∞)上为减函数.变式练习1.求证:函数11)(--=xx f 在区间()+∞,0上是单调增函数.(定义法)2.证明函数f (x )=x +x1在(0,1)上是减函数.3.证明函数f (x )=x 2-4x -1在[2,+∞)上是增函数.题型三 函数单调性的简单应用例4:已知函数f(x)=x2+2(a-1)x+2在区间(-∞,6]上是减函数,求实数a 的取值范围.变式练习3 函数f(x)=-x2+2ax+1在(-∞,4)上是增函数,则实数a的取值范围是________.例5:已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),则实数a的取值范围为________.变式练习4 已知f(x)是定义在[-1,1]上的单调递增函数,若f(a)<f(2-3a),则a的取值范围是________.课后作业1.下列函数中,在区间(0,1)上是增函数的是( ) A.y =|x | B.y =3-x C.y =1xD.y =-x 2+42.若函数f (x )=(2a -1)x +b 在R 上是严格单调减函数,则有( ) A.a ≥12 B.a ≤12 C.a >12 D.a <123.定义在R 上的函数f (x ),对任意x 1,x 2∈R (x 1≠x 2),有0)()(1212<--x x x f x f ,则( )A.f (3)<f (2)<f (1)B.f (1)<f (2)<f (3)C.f (2)<f (1)<f (3)D.f (3)<f (1)<f (2)4.若函数f (x )=x 2-2ax +5在(-∞,3)上单调递减,则a 的取值范围是( ) A.a ≥3 B.a >3 C.a ≤3D.a <-35.已知⎩⎨⎧≥+-<+-=1,11,4)13()(x x x a x a x f 是定义在R 上的减函数,那么a 的取值范围是( )A.(-∞,13)B.(17,+∞) C.[17,13) D.(-∞,-17]∪(13,+∞)6.函数y =x |x -1|的单调递增区间是__________________________________.7.已知函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x -1)<f (13)的x 的取值范围是_____.8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为________.9.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.10.若函数⎩⎨⎧≤-+->-+-=0,)2(0,1)12()(2x x b x x b x b x f 在R 上为增函数,则实数b 的取值范围是_____.11.写出下列函数的单调区间.(1)y =x +1________________; (2)y =-x 2+ax ________________;(3)y =12-x ________________; (4)y =-1x +2________________.12.已知函数f (x )=a -2x.(1)若2f (1)=f (2),求a 的值;(2)判断f (x )在(-∞,0)上的单调性并用定义证明.13.函数f (x )对任意的a ,b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )在R 上是增函数;(2)若f (4)=5,解不等式f (3m 2-m -2)<3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明你的结论
回家作业: P36页第3、4题
分析:函数的单调性是对某个区间而言的,对
于单独的一点,由于它的函数值是唯一确定的 常数,因此没有增减变化,所以不存在单调性 问题;另一方面,中学阶段研究的是连续函数 或分段连续函数,对于闭区间的连续函数而言, 只要在开区间单调,则它在闭区间也单调。因 此在考虑它的单调区间时,包括不包括端点都 可以(要注意端点是否在定义域范围内)。
画函数 y = x2 图象.
x -2 -1 0 1 2 y = x2 4 1 0 1 4
描点. 画图.
y y = x2
4
3
2
1
-2 -1 O
x
1
2
函数 y = x2 图象.
问题1:函数y=x2的图象
y y = x2 在y轴右侧的部分是 上升
4
3
在y轴左侧的部分是 下降
2 1
-2 -1 O
问题2:随着x值的变化,y
那么就说 f (x) 在这个区间D上是增函数(increasing function)
y
y = f (x)
y
y = f (x)
f (x1)
f (x2)
f (x1)
f (x2)
O x1
x2 x于定义域 I 内某个区间D上的任意两个自变量
的值 x1,x2 ,
当 x1 < x2 时, 都有 f (x1) > f (x2),
的值怎么变?
当x>0时,y随着x的增大
x 而___增__大__________
1
2
当x<0时,y随着x的增大 而___减__小__________
问题3:怎样用数学语言表示呢?
定义:设函数 f (x) 的定义域为 I :
如果对于定义域 I 内某个区间D上的任意两个自变
量的值 x1,x2 ,
当 x1 < x2 时, 都有 f (x1) < f (x2) ,
(2)在单调区间上的增函数的图象从左向右是 上升的,减函数的图象是下降的.
(3)如果函数在某个区间上又有增,又有减, 那么这个函数在这个区间上不具有单调性.
例 1 下图是定义在闭区间 [-5 ,5] 上的函数
y = f (x) 的图象,根据图象说出 y = f (x) 的单调区
间,以及在每一单调区间上, y = f (x) 是增函数还
是减函数 .
y
3
2
y = f (x)
1
-5 -4
-3 -2
-1 O
-1
-2
1 2 34 5 x
注:要想知道函数在某一区间是否具有单调性, 常常用图象来观察,严格来说,最后应该用单调性 的定义进行证明.
画出反比例函数y 1 的图象, x
(1)这个函数的定义域I是什么? (2)它在定义域I上的单调性是怎样的?
那么就说 f (x) 在这个区间D上是减函数(decreasing function).
单调性和单调区间
定义:如果函数 y = f (x) 在某个区间是增函数或减函 数,那么就说函数 y = f (x) 在这一区间具有(严格 的)单调性,这一区间,叫做 y = f (x) 的单调区间. 注意:
(1)函数是增函数,还是减函数,是对函数定 义域内的某个区间来说的. 函数的增减性,是函数 的局部性质,不是整体性质.
说明:要了解函数在某一区间上是否具有单调 性,从图上进行观察是一种常用而又粗略的方 法。严格地说,它需要根据单调函数的定义进 行证明
相关文档
最新文档