3-1一维单原子链振动解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强烈地影响着物质的热学性质、电学性质、光学性质、超导电性、 磁性、结构相变等物理性质。
杜隆-珀替经验规律
能量均分原理, 趋于热平衡时,每个自由度的平均(动能)能量为kBT/2。 简谐振子的平均能量为kBT[平均动能+平均势能](从运动方程得出) 对N个原子,共有3N个简正模式,在温度T平衡时,晶格振动贡献 的内能为 E 3Nk BT 1 mol晶体的定容比热 CV ,m 3Nk B 3N 0 k B 但实际上,低温下比热随温度的降低而降低。
绝热近似 用一个均匀分布的负电荷产生的常量势场来描述电子对离子运动的 影响。 —— 将电子的运动和离子的运动分开
晶格具有周期性,晶格的振动具有波的形式 —— 格波
格波的研究 —— 先计算原子之间的相互作用力
—— 根据牛顿定律写出原子运动方程,最后求解方程
3
一维单原子链运动
一维单原子链晶格周期为a,原子质量m,相对各自平衡位置的 位移分别为un 平衡位置时,两个原子间的互作用势能 U(a) 发生相对位移 = un–un-1后,相互作用势能U(r)= U(a+)
w/(4/m)
1 2 sin aq m 2
1.0
First Brillouin
0.8
1/2
0.6 0.4 0.2 0.0
解得色散关系——波的频率-波矢关系 真空中光波 = cq,空气中声波 = vq 而格波的色散关系是非线性的。
-/a
0
q
/a
2/a
6
格波物理意义
格波 i t naq u Ae 简谐近似下,格波是简谐平面波 n 格波意义: 1. 对于确定的n:第n个原子的位移随时间作简谐振动 2. 对于确定时刻t:不同的原子有不同的振动位相
a
n-2 n-1
a
n
势能展式中保留到二阶——简谐近似
n+1
n+2
d 2U 2 dr a
:力常数
dU ? f dr 4
一维单原子链运动
只考虑最近邻原子间的相互作用:
第n个原子受力
n-2
n-1
n
n+1
n+2
f n n1 n1 2n
2 l a
l为整数,则 q 和 q' 描述同一晶格振动状态 例如 波长
2 5 2 2 q1 , q2 , q2 q1 2a 1 2a 2 a
1 4a, 2 a
5
4
格波1(Red)相邻原子位相差
aq1 / 2 格波2(Green)相邻原子位相差 aq2 2 / 2
格波的波形图(格波意义2)
向上的箭头代表原子沿X轴正向振动
向下的箭头代表原子沿X轴负向振动
q的物理意义: 波的传播方向(即沿q的方向)上, naq表示相位差
7
格波物理意义
格波 ——格波解 晶体中所有原子共同参与的一种频率相同、振幅相等的振动,不 同原子间存在位相差,每一确定q的解代表波长为2/|q|的集体运 动,这种振动以波的形式在整个晶体中传播,称为格波。 格波波长: 2 / q 格波波矢: q 2 n
un Ae
i t naq
波矢表示波数,方向表示波的传播方向。q取不同的值,相邻两原 子间的振动位相差不同,则晶格振动状态不同 不同原子间位相差: n ' aq naq (n ' n)aq 相邻原子的位相差: (n 1)aq naq aq
8
不同波长的格波
如果
q q
——其它区域不能提供新的物理内容
1 2 sin aq m 2
-/a
2 dU 1 d U 2 U (r ) U (a ) 2 High items 2 dr a dr a
考虑到平衡条件
n-2
n-1
n
n+1
n+2
dU U (a) constant , 0 dr a
1 d 2U 2 1 2 U 2 2 dr a 2
23 23 3 6.02 10 1.38 10 24.9 热膨胀、传导和晶格振动的非谐效应密切相关。
2
绝热Байду номын сангаас似
讨论晶体结构时,我们把晶体内的原子看作是处于自己的平衡位置 上固定不动的,但实际上,物质是在不断运动的,量子力学告诉我 们,即使达到绝对零度,仍具有零点能的振动。 它强烈地影响着物质的比热、热导、热膨胀、光反射等物理性质。
第n个原子的运动方程
2 un m 2 n 1 n 1 2n t
a
n-2 n-1
a
n
n+1
n+2
:力常数
—— 每一个原子运动方程类似 —— 方程的数目和原子数相同
5
运动方程的解
试解(格波方程) 带入运动方程
m Ae
2
un Ae naq — 第n个原子振动位相因子
§3 晶格振动和热学性质
3 Crystal Vibrations and Thermal Properites
一维单原子链
一维双原子链
简正坐标
三维晶格振动 晶格比热 晶体的热力学函数
本章研究内容
晶格振动的研究 —— 晶体的热学性质,热运动是晶体宏观性质的 表现 。研究固体宏观性质和微观过程的重要基础,
i t naq
i t naq
Ae
2 un m 2 n 1 n 1 2n t
i t naq iaq
Ae
i t naq iaq
2 Ae
i t naq
化简得到
m 2 eiaq eiaq 2 2 cos aq 1
9
第一Brillouin区
/(4m)
1/2
——两种波矢的格波中,原子的振动完全相同。 相邻原子的位相差取 aq
q
1.0
波矢取
First Brillouin
0.8 0.6 0.4 0.2 0.0
a a ——第一Brillouin区
q1
q2
——只研究第一Brillouin晶格振动问题 色散关系: