高强度螺栓生产加工工艺流程
螺栓加工流程图
螺栓的生产工艺螺丝生产工艺(一)--退火1.作业流程:(一)、入料:将需要处理的产品吊放炉内,注意炉盖应盖紧。
一般一炉可同时处理7卷(约1.2吨/卷)。
(二)、升温:将炉内温度缓慢(约3-4小时)升至规定温度。
(三)、保温:材质1018、1022线材在680℃-715℃下保持4-6h,材质为10B21,1039,CH38F线材在740℃-760℃下保持5.5-7.5 h。
(四)、降温:将炉内温度缓慢(约3-4小时)降至550℃以下,然后随炉冷却至常温。
2.品质控制:1、硬度:材质为1018、1022线材退火后硬度为HV120-170,材质为中碳线材退火后硬度为HV120-180。
2、外观:表面不得有氧化膜及脱碳现象。
螺丝生产工艺(二)--酸洗1,作业流程:(一)、酸洗:将整个盘元分别浸入常温、浓度为20-25%的三个盐酸槽数分钟,其目的是除去线材表面的氧化膜。
(二)、清水:清除线材表面的盐酸腐蚀产物。
(三)、草酸:增加金属的活性,以使下一工序生成的皮膜更为致密。
(四)、皮膜处理:将盘元浸入磷酸盐,钢铁表面与化成处理液接触,钢铁溶解生成不溶性的化合物(如Zn2Fe(Po4)2·4H2o),附着在钢铁表面形成皮膜。
(五)、清水:清除皮膜表面残余物。
(六)、润滑剂:由于磷酸盐皮膜的摩擦系数并不是很低,不能赋予加工时充分的润滑性,但与金属皂(如钠皂)反应形成坚硬的金属皂层,可以增加其润滑性能。
螺丝生产工艺(三)--抽线作业流程盘元经酸洗之后,通过抽线机冷拉至所需线径。
适用于大螺丝、螺帽、牙条所用线材。
螺丝生产工艺(四)--成型一、目的:将线材经冷间锻造(或热间锻造),以达到半成品之形状及长度(或厚度)。
二、作业流程:1、六角螺栓(四模四冲或三模三冲)(1)、切断:通过可动的剪刀单向移动,将卡于剪模内的线材切成所需胚料。
(2)、一冲:后冲模顶住胚料冲模挤压胚料,初步成型,之后后冲模将胚料推出。
(3)、二冲:胚料进入第二打模,二冲模挤压,胚料呈扁圆状,之后后冲模将胚料推出。
8 大六角头高强度螺栓连接施工工艺标准
8 大六角头高强度螺栓连接施工工艺标准8.1 适用范围本工艺标准规定了大六角头高强度螺栓的施工要求、方法和质量标准等,适用于钢结构安装工程,大六角头高强度螺栓连接的施工技术。
8.2 编制依据的标准、规范GB50300-2001 建筑工程施工质量验收统一标准GB50205-2001 钢结构工程施工质量验收规范JGJ82-91 钢结构高强度螺栓连接的设计、施工及验收规程GB/T1228~1231-91 钢结构用高强度大六角头螺栓、大六角螺母、垫圈与技术条件8.3术语和符号高强度螺栓连接副:高强度螺栓和与之配套的螺母、垫圈的总称8.4 施工准备8.4.1 技术准备1.由项目技术负责人组织专业技术人员熟悉图纸,组织好图纸会审,领会设计意图。
2.针对工程作法及结构设计图纸,熟悉施工规范,提前作好技术管理人员的技术培训工作。
3.组织施工人员进行技术、安全交底。
4.编制材料供应计划、按计划供应材料。
5.编制施工过程、材料进场检验计划,按计划施检。
8.4.2 材料准备1. 螺栓、螺母、垫圈均应附有质量证明书,并应符合设计要求和国家标准的规定;大六角头高强度螺栓的规格、尺寸及重量应符合表8.4.2-1的规定。
大六角高强度螺母的规格、尺寸及重量应符合表8.4.2-2的规定。
高强度垫圈的规格、尺寸及重量应符合表8.4.2-3的规定。
2. 不同等级的大六角头高强度螺栓的材料性能必须符合表8.4.2-4的规定。
3.不同规格的高强度螺栓的机械性能、拉力应符合表8.4.2-5的规定。
4.大六角头高强度螺栓的硬度应符合表8.4.2-6的规定。
5.大六角头高强度螺栓的连接副是由一个螺栓、二个垫圈、一个螺母组成,螺栓、螺母和垫圈应按表7规定配套使用。
6.大六角头高强度螺栓验收入库后应按规格分类存放。
应防雨、防潮,遇有螺纹损伤或螺栓、螺母不配套时不得使用。
7.大六角头高强度螺栓存放时间过长,或有锈蚀时,应抽样检查紧固轴力,待满足要求后方可使用。
大六角高强度螺栓连接工艺标准
大六角高强度螺栓连接工艺标准一、工艺流程二、操作工艺1、作业准备:(1)备好扳手、临时螺栓、过冲、钢丝刷等工具,主要应对施工扭矩的校正就是对所用的扭矩扳手,在班前必须校正,扭矩校正后才准使用。
扭矩校正应指定专人负责;(2)大六角头高强度螺栓长度选择,考虑到钢构件加工时采用钢材一般均为正公差,又是材料代用有多是以大代小,以後代薄居多,所以连接总厚度增加3~4mm 的现象很多,因此,应选择好高强度螺栓长度,一般以紧固后长出2~3扣为宜,然后根据要求配好套备用;2、接头组装(1)对摩擦面进行清理,对板不平直的,应在平直达到要求后才能组装。
摩擦面不能有油漆、污泥,孔的周围不应有毛刺,应对待装摩擦面用钢丝刷清理,其刷子方向应与摩擦受力方向垂直;(2)遇到安装孔有问题时,不得用氧-乙炔扩孔,应用扩孔钻床扩孔,扩孔后应重新清理孔周围毛刺;(3)高强度螺栓连接面板应紧密贴实,对因板厚公差、制造偏差或安装偏差产生的接触面间隙应按规定处理;3、安装临时螺栓(1)钢构件组装时应先安装临时螺栓,临时安装螺栓不能用高强度螺栓代替;临时安装螺栓的数量一般应占连接板组孔群中的1/3,不能少于2个;(2)少量孔位不正,位移量又较少时,可以用冲钉打入定位,然后再上安装螺栓;(3)板上空位不正,位移较大时应用绞刀扩孔;(4)个别孔位位移较大时,应补焊后重新打孔;(5)不得用冲子边校正孔位边穿入高强度螺栓;(6)安装螺栓达到30%时,可以将安装螺栓拧紧定位;4、安装高强度螺栓(1)高强度螺栓应自由穿入孔内,严禁用锤子将高强度螺栓强行打入孔内;(2)高强度螺栓的穿入方向应该一致,局部受结构阻碍时可以除外;(3)不得在下雨天安装高强度螺栓;(4)高强度螺栓垫圈位置应该一致,安装时应注意垫圈正、反面方向;(5)高强度螺栓在拴孔内部的受剪,应及时拧紧;5、高强度螺栓的紧固(1)打六角头高强度螺栓全部安装就位后,可以开始紧固。
紧固方法一般分两步进行,即初拧和终拧,应将全部高强度螺栓进行初拧,初拧扭矩应为标准轴力的60%~80%,具体还要根据钢板厚度、螺栓间距等情况适当掌握。
高强螺栓施工工艺要点
路桥华东工程有限公司标准化工艺高强螺栓施工工艺技术质量部编制2006年10月1日目录一、高强螺栓简介 (1)二、引用标准、规范及依据 (2)三、高强螺栓施工 (2)3.1高强度螺栓检验 (2)3.2高强度螺栓的保管、存放 (3)3.3高强螺栓施拧 (3)3.3.1高强度螺栓施拧前的准备 (4)3.3.2高强度螺栓施拧 (5)3.3.3质量检查 (8)3.4腻缝和涂装 (9)四、设备、人员配置 (9)4.1设备配置 (9)4.2人员配置 (10)五、安全防护措施 (10)高强螺栓施工工艺一、高强螺栓简介我国现有两种高强度螺栓连接副:扭剪型高强螺栓连接副和大六角头摩擦形高强螺栓连接副。
这两种高强度螺栓的性能都是可靠的,在设计中通用。
在抗剪连接中,根据受力特性不同,又可分为:(1)、高强度螺栓摩擦型连接:为通过连接的板层间的抗滑力来传递剪力,按板层间出现滑动作为其承载能力的极限状态。
这种螺栓亦可称为摩擦型高强度螺栓,应用于重要结构和承受动力荷载的结构,以及可能出现反向内力的构件的连接。
其孔径比公称直径大1.5㎜~2.0㎜。
(2)、高强度螺栓承压型连接:以连接板层间出现滑动作为正常使用(即在荷载标准值作用下)的极限状态。
而以连接的破坏(螺栓或板件的破坏)作为其承受能力的极限状态。
这种螺栓亦称为承压型高强度螺栓,构造要求与普通螺栓相同,可用于允许产生少量滑移的静载结构或间接承受动力荷载的构件。
当允许在某一方向产生较大滑移时,可以采用长圆孔。
当孔径比螺栓公称直径大1.0㎜~1.5㎜。
这两种螺栓,除了上述在设计计算的考虑和孔径方面有所不同外,其他的材料、预拉力、接触面的处理以及施工要求等方面均无差异。
二、引用标准、规范及依据⑴《钢结构用高强度大六角头螺栓、大六角头螺母、垫圈与技术条件》(GB/T1228~1231-91)。
⑵《公路桥涵施工技术规范》(JTJ041-2000)。
⑶《铁路钢桥高强度螺栓连接施工规定》(TBJ214-92)。
高强螺栓连接施工工艺
高强螺栓连接施工工艺高强螺栓连接是近年发展起来的一种新型连接型式,高强螺栓和螺母均用高强度钢制成。
通过拧紧螺栓,对高强螺栓施加以强大的预拉力,借高强螺栓轴力夹紧经摩擦处理的板束,从而使板面之间产生摩擦力,并以摩擦力传递外力。
这种连接型式具有:传力均匀,受力性能好,承载力高,耐疲劳,安全可靠;施工简便、迅速,易于掌握,可以拆换等优点。
本工艺标准适用于钢结构安装用高强螺栓施工。
一、材料要求1、高强螺栓有大六角头高强螺栓和扭剪型高强螺栓两类。
其力学性能和紧固后的连接性能相同,只外形和操作工艺不同;扭剪型高强螺栓只少一个垫圈。
要求螺栓、螺母、垫因配套,均应附有质量证明书,并应符合设计要求和国家标准的规定。
螺栓、螺母、垫圈不配套,螺纹损伤的不能使用;如有锈蚀应抽样检查紧固轴力,满足要求后方可使用。
2、涂料涂料的品种、性能和色泽均应符合设计要求,并应有质量证明书。
二、主要机具设备1、机械设备砂轮机、喷砂机、电钻等。
2、主要工具电动扭矩扳手、手动扭矩扳手、一般开口扳手、轴力计、钢尺、铰刀、尖头撬律、冲钉、钢钎等。
三、作业条件1、编制高强螺栓安装操作规程,或施工工艺卡,并进行技术交底。
2、备齐操作机具设备,并进行维修、试用,使处于完好状态;钢尺,电动、手动扭矩扳手应经计量部门检定校正,并取得证明。
3、检查安装钢构件的轴线和连接部位的位置、标高是否符合设计要求,如有过大偏差应及时处理。
4、检查连接部位螺栓孔的孔径和孔距、孔边的光滑度是否符合要求,有毛刺的必须去掉。
5、对高强度大六角头螺栓和扭剪型高强螺栓的连接副,应按出厂批号分别复验扭矩系数和预拉力。
前者的平均值和标准差;后者的平均值和变异系数,均应符合国家现行《钢结构高强螺栓连接的设计、施工及验收规程》的规定。
6、对构件的连接部位及垫板的摩擦面,安装前,应逐组复验所附试件的摩擦系数,合格后方可进行安装。
摩擦面严禁被油污、油漆等污染。
7、检查高强螺栓的数量、规格、配套和外现质量,符合要求的,按规格分类装箱存放备用,不合要求的按有关规定处理。
大六角高强度螺栓连接工艺标准(503-1996)
大六角高强度螺栓连接工艺标准(503-1996)范围本工艺标准适用于钢结构安装工程,大六角高强度螺栓连接的施工技术。
施工准备2.1 材料:2.1.1 螺栓、螺母、垫圈均应附有质量证明书,并应符合设计要求和国家标准的规定;2.1.2 大六角头高强度螺栓的规格、尺寸及重量应符合表5-4的规定。
2.1.3 大六角高强度螺母的规格、尺寸及重量应符合表5-5的规定。
2.1.4 高强度垫圈的规格、尺寸及重量应符合表5-6的规定。
2.1.5 不同等级的大六角头高强度螺栓的材料性能必须符合表5-7的规定。
2.1.6 不同规格的高强度螺栓的机械性能、拉力应符合表5-8的规定。
2.1.7 大六角头高强度螺栓的硬度应符合表5-9的规定。
2.1.8 大六角头高强度螺栓的连接副是由一个螺栓、二个垫圈、一个螺母组成,螺栓、螺母和垫圈应按表5-10规定配套使用。
2.1.9 大六角头高强度螺栓验收入库后应按规格分类存放。
应防雨、防潮,遇有螺纹损伤或螺栓、螺母不配套时不得使用。
2.1.10 大六角头高强度螺栓存放时间过长,或有锈蚀时,应抽样检查紧固轴力,待满足要求后方可使用。
螺栓不得粘染泥土、油污,必须清理干净。
2.2 主要机具:电动扭矩扳手及控制箱、手动扭矩扳手、扭矩测量扳手、手工扳手、钢丝刷、冲子、钢结构用大六角头高强度螺栓的规格、尺寸及重量表5-4公称尺寸 12 16 20 (22) 24 (27) 30最大 12.43 16.43 20.52 22.52 24.52 27.84 30.84最小 11.57 15.57 19.48 21.48 23.48 26.16 29.16e (mm) 22.78 29.56 37.29 39.55 45.20 50.85 55.37dw (mm) 19.2 24.9 31.4 33.3 38.0 42.8 46.55 最大 21 27 34 36 41 46 50(mm) 最小 20.16 26.16 33 35 40 45 49h 最大 7.95 10.75 13.40 14.90 15.90 17.90 19.75(mm) 最小 7.05 9.25 11.60 13.10 14.10 16.10 17.65r (mm) 最小 1.0 1.0 1.5 1.5 1.5 2.0 2.0c 最大 0.8 0.8 0.8 0.8 0.8 0.8 0.8(mm) 最小 0.4 0.4 0.4 0.4 0.4 0.4 0.4z (mm) 最大 2.6 3.0 3.8 3.8 4.5 4.5 5.3l0 (mm) 25;30 30;35 35;40 40;45 45;50 50;55 55;60l (mm)公称最小最大35 33.75 36.25 49.440 38.75 41.25 54.245 43.75 46.25 57.8 113.050 48.75 51.25 62.5 121.3 207.355 53.5 56.;5 67.3 127.9 220.3 269.360 58.5 61.5 72.1 136.2 233.3 284.9 357.265 63.5 66.5 76.8 144.5 243.6 300.5 375.7 503.270 68.5 71.5 81.6 152.8 256.5 313.2 394.2 527.1 658.275 73.5 76.5 86.3 161.2 269.5 328.9 409.1 551.0 687.580 78.5 81.5 169.5 282.5 344.5 428.6 570.2 716.885 83.25 86.75 177.8 295.5 360.1 446.1 594.1 740.390 88.25 91.75 186.1 308.5 375.8 464.7 617.9 769.695 93.25 96.75 194.4 321.4 391.4 483.2 641.8 799.0100 98.25 101.75 202.8 334.4 407.0 501.7 665.7 828.3续表110 108.25 111.75 219.4 360.4 438.3 538.8 713.5 886.9120 118.25 121.75 236.1 386.3 469.6 575.9 761.3 945.6130 128 132 252.7 412.3 500.8 612.9 809.1 1004.2140 138 142 438.3 532.1 650.0 856.9 1062.8150 148 152 464.2 563.4 687.1 904.7 1121.5160 156 165 490.2 594.6 724.2 952.4 1180.1170 166 174 625.9 761.2 1000.2 1238.7180 176 184 657.2 798.3 1048.0 1297.4190 186 194 688.4 835.4 1095.8 1356.0200 196 204 719.7 872.4 1143.6 1414.7220 216 224 782.2 946.6 1239.2 1531.9240 230 244 1020.7 1334.7 1649.2260 256 264 1430.3 1766.5注: 1. 括号内的规格,尽可能不采用。
工艺工法QC福建钢结构工程高强螺栓施工专项施工工艺
紧固件安装专项方案施工概述xxxx商业中心位于厦门市思明区鹭江道100号;地上41层, 地下5层, 结构标高192.00米;主体结构为带支撑的钢框架体系。
高强螺栓本工程所用的受力螺栓均为10.9级摩擦型高强螺栓, 摩擦面抗滑移系数μ>=0.45(除特别注明外摩擦面处理方法为喷砂), μ的测定值根据试验进行, 其试验结果须送交监理部门认可, 螺栓产品选用扭剪型高强螺栓及连接副。
高强螺栓的质量标准应符合《钢结构高强螺栓连接的设计、施工及验收规范》(JGJ82-91)、《钢结构用扭剪型高强度螺栓连接副、技术条件》(GB/T3632~GB/T3633)的规定。
工程主要使用高强螺栓型号有M20、M22.M24三种, 广泛用于本工程各节点, 主要为梁梁铰接、梁柱刚接、梁柱铰接的节点上。
普通螺栓本工程普通螺栓主要用作安装螺栓, 高强度螺栓安装前, 构件采用安装螺栓进行临时固定, 待钢结构安装形成独立框架单元时, 拆除安装螺栓, 以高强度螺栓代替。
安装螺栓采用5.6级普通螺栓, 钢号及螺母、垫圈应符合现行国家标准《六角头螺栓-C级》(GB5782)的规定, 孔壁质量为Ⅱ类孔。
普通螺栓主要用于地下室顶板及以下楼层钢梁与混凝土墙E型铰接节点。
螺栓的储运和保管高强螺栓应有制作厂按批配套供货, 并必须有出厂质量保证书。
高强螺栓在运输、保管过程中应轻装、轻卸, 防止损伤螺纹;并按照包装箱上注明的批号、规格分类保管, 室内存放;且对方不宜过高, 防止生锈和沾染赃物。
高强螺栓在安装使用前严禁任意开箱工地安装时, 应按照当天高强螺栓需用数量领取。
当天安装剩余螺栓必须妥善保管, 不得乱扔、乱放。
在安装过程中, 不得碰伤螺纹及沾染赃物, 以防止扭矩系数发生变化。
普通螺栓亦同。
普通螺栓的紧固普通螺栓紧固施工: 操作工人使用普通扳手靠自身的力量拧紧螺母即可。
紧固次序从中间开始向两边对称进行。
高强螺栓的性能检验本工程应对高强螺栓连接副摩擦面的抗滑移系数进行检验:抗滑移系数检验应以钢结构制作批为单位, 由制作厂和安装单位分别进行, 每批三组。
高强度螺栓施工工艺
高强度螺栓施工工艺适用范围:用于工业与民用建筑钢结构工程中的高强度螺栓连接的施工与验收。
一、材料要求(一)高强度螺栓的规格数量应根据设计的直径要求,按长度分别进行统计,根据施工实际需要的数量多少、施工点位的分布情况、构件加工质量和运输损坏情况、现场的储运条件、工程难度等因素,考虑20%~5%的损耗,进行采购。
(下)高强度螺栓连接副必须经过以下试验符合规范要求时方可出厂:1.材料的炉号、制作批号、化学性能与机械性能证明或试验。
2.螺栓的楔负荷试验。
3.螺母的保证荷载试验。
4.螺母及垫圈的硬度试验。
5.连接件的扭矩系数试验(注明试验温度)。
大六角头连接件的扭矩系数平均值和标准偏差;扭剪型连接件的紧固轴力平均值和变异系数。
6紧固轴力系数试验。
7产品规格、数量、出厂日期、装箱单。
二、主要机具(一)高强度螺栓施工最主要的施工机具就是力矩扳子,根据施工对象分别有:1 扭剪型高强度螺栓用扳子。
目前我们在市场上常见的日本产扭剪型高强度螺栓扳子的性能参数见下表。
日本产扭剪型高强度螺栓用板子的性能电动扭矩扳子一般由机体、扭矩控制盒、套筒、反力承管器、漏电保护器组成,常用的电动扭矩扳子性能参见下表。
电动扭矩扳子性能可调扭矩值范围:98-980N·m主视表精度:4.9 N·m副视表精度:0.49 N ·m负荷方向:柄长度:1.4m4.通用机具、手动工具。
为提高施工效率,我们一般还可以选用风动扳手进行初拧,根据风动扳手的标准扭矩调节空气压力即可初步设定扳手的输出扭矩,用于螺栓的初拧,可大大提高施工效率。
其他必备的工具有:检测合格的力矩扳手(其中至少一把应送有关部门进行校准,在施工中一般不用于直接施工,专用于其他施工工具的校准和施工检测)、手动棘轮扳手、橄榄冲子(俗称过眼冲钉,形似橄榄)、力矩倍增计、手锤、钢丝刷等。
三、作业条件(一)高强度螺栓长度的选用。
高强度螺栓紧固后,以丝扣露出2-3扣为宜,一个工程的高强度螺栓,首先按直径分类,统计出钢板束厚度,根据钢板束厚度,按下列公式选择所需长度:螺栓长度=板束厚度+附加长度螺栓长度取整为5mm的倍数,余数2舍3进,对于长度特别长的可以取为10mm的整倍数进行归类。
钢结构工程高强螺栓施工工艺
钢结构工程高强螺栓施工工艺1、施工工艺流程2、高强螺栓进场检验与保管(1)高强螺栓保管要求1)本工程所使用的螺栓均应按设计及规范要求选用其材料和规格,保证其性能符合要求。
2)高强度螺栓连接副应进行扭矩系数复验及摩擦面抗滑移系数试验。
以钢结构制造批为单位进行抗滑移系数试验。
制造批按分部(子分部)工程划分规定的工程量每2000t为一批,不足2000t的视为一批。
每种表面处理工艺单独检验。
每批次三组试件。
抗滑移系数试验采用双摩擦面的二栓拼接的拉力试件,试件由我公司车间进行加工制作,试件与所代表的钢结构构件选同一材质、同批制作、采用同一摩擦面处理工艺和具有相同的表面状态,并采用同一性能等级的高强度螺栓连接副,在同一环境条件下存放。
试件尺寸、试验方法按规范要求确定。
试验用螺栓连接副应在施工现场待安装的螺栓批中随机抽取。
每套连接副只应做一次试验,不得重复使用。
连接副扭矩系数的复验应将螺栓穿入轴力计,在测出螺栓预拉力P的同时,应测定施加于螺母上的施拧扭矩值T,并应按下式计算扭矩系数K:K=T/(P*d)式中 T——施拧扭矩(N*m)d——高强螺栓的公称直径(mm)P——螺栓预拉力(KN)在进行连接副扭矩系数试验时,螺栓的预拉力应控制在一定的范围内,螺栓预拉力的试验控制范围如下表所示:工厂进行;连接副紧固轴力的平均值和变异系数由厂方、施工方参加,在工厂确定。
3、高强螺栓安装(1)技术要求1)本工程高强螺栓主要位于梁柱连接处,采用符合现行标准<<钢结构用扭剪型高强螺栓连接副型式尺寸>>及<<钢结构扭剪型高强螺栓副技术条件>>的10.9级的扭剪型摩擦型高强螺栓。
其具有受力性能好、耐疲劳、抗震性能好、连接刚度高、施工简便的优点。
2)本工程所采用的摩擦型高强螺栓,连接面摩擦系数必须符合设计要求。
吊装前对于摩擦面的油污、尘土、浮锈要进行清除,要求摩擦面保持干燥、整洁,不应有飞边、毛刺、焊接飞溅物、焊疤、氧化铁皮、污垢等。
螺丝生产工艺流程图
公司概况此次去参加实习的单位是京扬紧固件,这个公司成立于2001年,是专业生产、销售京扬系列压铆紧固件、非标件及部分标准件的大型企业。
工厂位于,成立于2004年,如今已发展成为占地面积7000平方米,拥有五百多名员工(包括48名质检员和16名管理者)的企业,其中应用技术工程师20余名,制造技术工程师40余名。
公司至今已发展成为拥有各种进口全自动数控设备百余台,各种辅助设备130余台,月生产量达20000万至32000万件的大型制造商。
2005年这个公司通过了 ISO9001、ISO14001等国际质量体系认证,确保为客户提供高品质的紧固件。
公司主要产品有:压铆螺母、压铆螺柱、压铆螺栓、面板紧固件,塑料镶嵌件、焊接螺母、点焊螺钉、手紧螺钉、皇冠装饰钉、自攻螺钉、涨铆面板紧固件、轨道镶嵌件、抽芯铆钉,以及各种非标准件。
产品广泛运用在电子通讯、钣金、模具、机械器材和仪器、航天等领域。
进料工序端 检验 首检工序检验工序检验发货售后服 工艺流程图材料入厂 检验 切角切槽 入线材库,退火 热处理 T 酸洗 辗牙螺丝生产工艺(一)--退火一、目的:把线材加热到适当的温度,保持一定时间,再慢慢冷却,以调整结晶组织,降低硬度,改良线材常温加工性。
二、作业流程:(一)、入料:将需要处理的产品吊放炉,注意炉盖应盖紧。
一般一炉可同时处理7卷(约1.2吨/卷)。
(二)、升温:将炉温度缓慢(约3-4小时)升至规定温度。
(三)、保温:材质1018、1022线材在680℃-715℃下保持4—6h,材质为10B21, 1039, CH38F 线材在740℃-760℃下保持 5.5-7.5 h。
(四)、降温:将炉温度缓慢(约3-4小时)降至550℃以下,然后随炉冷却至常温。
三、品质控制:1、硬度:材质为1018、1022线材退火后硬度为HV120-170,材质为中碳线材退火后硬度为HV120-180。
2、外观:表面不得有氧化膜及脱碳现象。
螺栓的主要加工工艺__概述说明以及解释
螺栓的主要加工工艺概述说明以及解释1. 引言1.1 概述螺栓是一种常见的机械连接件,广泛应用于各行各业。
它具有可重复拆卸、牢固可靠的特点,使得它成为了许多设备和结构的重要组成部分。
螺栓的制造过程包含多道工艺步骤,其中每一步都扮演着至关重要的角色。
本文将对螺栓的主要加工工艺进行详细说明和解释。
1.2 文章结构本文总共分为五个部分来对螺栓的加工工艺进行阐述。
首先,在引言部分我们将提出文章的目的,并简单介绍全文结构。
接下来,在“2. 螺栓加工工艺”部分,我们将详细介绍原材料准备、冷锻加工和细化热处理这三个主要步骤。
然后,在“3. 加工流程与方法”部分,我们将探讨冷镦切削法、热镦压力法和自由锻造法这三种常用的加工流程与方法。
在“4. 螺栓加工设备与工具”部分,我们将介绍适用于螺栓制造的设备选择原则,以及工具使用与维护技巧。
最后,在“5. 结论与展望”部分,我们将对主要要点进行总结,探讨现有工艺的局限性和改进方向,并展望螺栓加工行业的未来发展趋势。
1.3 目的本文的目的在于全面了解螺栓的主要加工工艺,并深入探讨各个环节中涉及到的原材料准备、工艺步骤和设备选择等关键问题。
通过对这些内容的详细讲解,旨在提供给读者一个全面、系统的螺栓加工知识框架。
同时,本文还将对当前螺栓加工工艺存在的局限性进行评估,并展望未来可能的改进方向,以期为螺栓制造行业带来更高效、更优质的生产方式。
2. 螺栓加工工艺:2.1 原材料准备在螺栓加工的起始阶段,需要准备好合适的原材料。
通常,螺栓制造使用的原材料主要是碳素钢、合金钢和不锈钢等。
这些原材料需要经过优质选材,确保其具备足够的强度和耐腐蚀性能。
2.2 冷锻加工冷锻是制造螺栓最常用的加工方式之一。
在冷锻过程中,先将预热好的金属坯料放入成型模具中,并施加高压力使其变形。
通过冷锻可以快速而准确地形成螺栓头部形状,并提高产品的密度和强度。
2.3 细化热处理细化热处理也是螺栓加工中的重要环节。
高强度螺栓生产加工工艺流程
高强度螺栓生产加工工艺流程高强度螺栓生产主要分为热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理-检验几步!一,钢材设计在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。
如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。
冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。
由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。
在长期生产实践和用户使用调研的基础上,结合GB/T6478-2001《冷镦和冷挤压用钢技术条件》GB/T699-1999《优质碳素结构钢》及目标JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以8.8级,9.8级螺栓螺钉的材料要求为例,各种化学元素的确定。
C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为0.25%-0.55%。
Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。
Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于0.30%。
S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。
B.含硼量最大值均为0.005%,因为硼元素虽然具有显著提高钢材渗透性等作用,但同时会导致钢材脆性增加。
含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。
二,球化(软化)退火沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。
冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。
螺丝生产工艺流程
公司概况此次去参加实习的单位是上海京扬紧固件有限公司,这个公司成立于2001年,是专业生产、销售京扬系列压铆紧固件、非标件及部分标准件的大型企业。
工厂位于上海,成立于2004年,如今已发展成为占地面积7000平方米,拥有五百多名员工(包括48名质检员和16名管理者)的企业,其中应用技术工程师20余名,制造技术工程师40余名。
公司至今已发展成为拥有各种进口全自动数控设备百余台,各种辅助设备130余台,月生产量达20000万至32000万件的大型制造商。
2005年这个公司通过了ISO9001、ISO14001等国际质量体系认证,确保为客户提供高品质的紧固件。
公司主要产品有:压铆螺母、压铆螺柱、压铆螺栓、面板紧固件,塑料镶嵌件、焊接螺母、点焊螺钉、手紧螺钉、皇冠装饰钉、自攻螺钉、涨铆面板紧固件、轨道镶嵌件、抽芯铆钉,以及各种非标准件。
产品广泛运用在电子通讯、钣金、模具、机械器材和仪器、航天等领域。
螺丝生产工艺(一)--退火一、目的:把线材加热到适当的温度,保持一定时间,再慢慢冷却,以调整结晶组织,降低硬度,改良线材常温加工性。
二、作业流程:(一)、入料:将需要处理的产品吊放炉内,注意炉盖应盖紧。
一般一炉可同时处理7卷(约1.2吨/卷)。
(二)、升温:将炉内温度缓慢(约3-4小时)升至规定温度。
(三)、保温:材质1018、1022线材在680℃-715℃下保持4-6h,材质为10B21,1039,CH38F线材在740℃-760℃下保持5.5-7.5 h。
(四)、降温:将炉内温度缓慢(约3-4小时)降至550℃以下,然后随炉冷却至常温。
三、品质控制:1、硬度:材质为1018、1022线材退火后硬度为HV120-170,材质为中碳线材退火后硬度为HV120-180。
2、外观:表面不得有氧化膜及脱碳现象。
螺丝生产工艺(二)--酸洗一、目的:除去线材表面的氧化膜,并且在金属表面形成一层磷酸盐薄膜,以减少线材抽线以及冷墩或成形等加工过程中,对工模具的擦伤。
螺栓加工工艺
螺栓加工工艺为:热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理-检验一,钢材设计在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。
如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。
冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。
由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。
在长期生产实践和用户使用调研的基础上,结合GB/T6478-2001《冷镦和冷挤压用钢技术条件》GB/T699-1999《优质碳素结构钢》及目标JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以8.8级,9.8级螺栓螺钉的材料要求为例,各种化学元素的确定。
C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为0.25%-0.55%。
Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。
Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于0.30%。
S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。
B.含硼量最大值均为0.005%,因为硼元素虽然具有显著提高钢材渗透性等作用,但同时会导致钢材脆性增加。
含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。
二,球化(软化)退火沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。
冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。
高强螺栓连接施工工艺标准
高强螺栓连接施工工艺标准3.6.1 总则3.6.1.1 适用范畴本工艺标准适用与工业与民用建筑钢结构工程中的高强度螺栓连接的施工与验收。
3.6.1.2 编制参考标准及规范本工艺标准的编制参考了以下标准和规范:《钢结构工程施工施工质量验收规范》GB50205-2001《钢结构高强度螺栓连接的设计、施工及验收规范》(JGJ82—91)《钢结构用大六角螺栓》GB1228《钢结构用高强度垫圈型式与尺寸》GB1229《钢结构用大六角螺栓、大六角螺母、垫圈技术条件》GB1231《钢结构用扭剪型高强螺栓连接付形式尺寸》GB3632《钢结构用扭剪型高强螺栓连接付技术条件》GB36333.6.2符号T c—施工扭矩(N·m);K—高强度螺栓连接副的扭矩系数平均值,该值由复验测得的合格的平均扭矩系数代入。
P c—高强度螺栓施工预拉力(KN);d-高强度螺栓螺杆直径(mm)。
3.6.3差不多规定3.6.3.1高强度螺栓应在钢结构吊装完毕、按照设计和施工规范的要求矫正到位、检查合格之后才能够开始施工。
3.6.3.2 高强度螺栓的制孔按表3.6.3.2-1的要求选配,高强度螺栓连接构件制孔承诺偏差见表5.2:表3.6.3.2-1高强螺栓孔径选配表注:承压型连接(如柱或抗剪桁架的压杆连接)中的高强螺栓孔径可按表中值减少0.5~1.0mm。
表3.6.3.2-2 高强度螺栓连接构件制孔承诺偏差3、高强度螺栓的孔距和边距值,见下表3.6.3.2-3表3.6.3.2-3设计有规定时按设计要求采纳。
4、高强螺栓的连接构件的孔距承诺偏差,见下表3.6.3.2-43.6.4施工预备3.6.4.1技术预备1.高强螺栓长度的选用高强螺栓紧固后,以丝扣露出2~3扣为宜,一个工程的高强螺栓,第一按直径分类,统计出钢板束厚度,依照钢板束厚度,按下列公式选择所需长度:螺栓长度=板束厚度+附加长度螺栓长度取整为5㎜的倍数,余数2舍3进,关于长度专门长的能够取为10㎜的整倍数进行归类。
高强螺栓-施工工艺质量控制要点
一、施工准备1.1机械设备及材料扭矩扳手高强螺栓安装螺栓(1)高强度螺栓连接副进场时,其型号、规格、性能等级应符合设计要求并应有质量证明书和出厂检验报告,进场后按规定每批号随机抽取8套进行复试,其复试结果符合设计要求和现行国家产品标准后方可使用。
(2)经复验合格的螺栓,连接副储运时,必须保持螺栓的原出厂状态,否则会引起螺栓连接副的紧固轴力平均值或扭矩系数。
(3)螺栓、螺母、垫圈应保证配套,螺纹不得有损伤,保持清洁、干燥状态并按批号规格分类存放在仓库内,并派专人发放和回收。
1.2作业条件(1)高强螺栓摩擦面的处理:摩擦面应采用喷丸、砂轮打磨等方法进行处理,摩擦面表面不允许有残留氧化铁皮、无锈蚀、干燥平整,孔边无毛刺、飞边。
(2)局部摩擦面需要在现场处理时,现场采用砂轮打磨摩擦面时,打磨范围不小于螺栓直径的4倍,打磨方向应与受力方向垂直。
摩擦面严禁被油污、油漆等污染。
(3)摩擦面抗滑移系数值已通过试验和复试,其结果符合设计要求和规范规定的抗滑移系数值。
(4)检查各安装构件的位置是否正确,接头处应无翘曲和变形,应满足设计和规范规定的精度要求。
(5)检查安装母材的螺栓孔径及孔距尺寸,孔边的光滑度是否符合设计要求,必须彻底去掉毛刺、飞边。
(6)施工部位应有安全防护设施并已准备好操作设备及机具。
二、施工工艺流程、施工方法2.1施工工艺流程2.2 高强螺栓施工所用高强度螺栓系10.9级摩擦型高强螺栓,应符合GB/T 3632-2008的要求,所有连接的构件的接触面采用喷砂抛丸处理。
2.3管理与质量检验2.1.1扭剪型高强螺栓是一种自标量型螺栓,因此其储运与保管必须维持螺栓出厂状态,以保证拧紧后螺栓予拉力能达到设计值。
高强螺栓进场,首先按批次检查是否有质保书。
2.1.2高强螺栓应由专职保管员管理,储存在专用仓库内;并按规格、批号分别码放,填写标牌,以免混淆。
2.1.3按GB50205-2001中高强螺栓复试要求取样复试,合格后方可使用。
★☆☆钢结构高强螺栓现场作业指导书-升版
上海化工区32万吨/年丙烯酸及酯项目二期钢结构大六角高强螺栓现场作业指导书一、总则1、目的钢结构工程施工中,为规范高强度螺栓的采购、储存、使用,制定本指导书。
2、适用范围适用于该项目所有钢结构施工中高强度螺栓连接副的采购、保管、施工与验收。
3、参考标准及规范①《钢结构工程施工质量验收规范》(GB50205-2001);②《建设工程施工质量验收统一标准》(GB50300-2013);③《钢结构工程施工规范》(GB50755-2012);④《钢结构高强度螺栓连接技术规程》(JGJ82-2011);⑤《钢结构用大六角螺栓、大六角螺母、垫圈技术条件》(GB/T1231-2006)。
二、术语Tc—施工扭矩(N·m);K—高强度螺栓连接副的扭矩系数平均值,该值由复验测得的合格的平均扭矩系数代入。
Pc—高强度螺栓施工预拉力(kN);d—高强度螺栓螺杆直径(mm)。
三、高强度螺栓施工程序1、施工准备①高强度螺栓应在钢结构吊装完毕、按照设计和施工规范的要求矫正到位、检查合格之后开始施工。
②高强度螺栓施工最主要的施工机具就是力矩扳手,扳手要求检定并在有效期内。
③高强度螺栓的有关技术参数已按有关规定进行复验合格;连接试板试件抗滑移系数试验合格。
2、材料验收和复试①全数检查钢结构连接用高强度大六角头螺栓连接副的品种、规格、性能等应符合现行国家产品标准和设计要求,高强度大六角头螺栓连接副出厂时应分别随箱带有扭矩系数和紧固轴力预拉力的检验报告。
②高强度螺栓连接副应按包装箱配套供货,包装箱上应标明批号、规格、数量及生产日期,螺栓、螺母、垫圈外观表面应涂油保护,不应出现生锈和沾染赃物,螺纹不应损伤。
③高强度螺栓应由专职保管员管理,储存在专用仓库内,并按规格、批号分别码放,填写标牌,以免混淆;安装时,应按当天需要的数量领取。
当天剩余的必须交还保管员处,并登记保存,不得乱扔、乱放。
当高强度螺栓连接副保管时间超过6个月后使用时,应按相关要求重新进行扭矩系数或紧固轴力试验,合格后方可使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高强度螺栓生产加工工艺流程高强度螺栓生产主要分为热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理-检验几步!一,钢材设计在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。
如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。
冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。
由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。
在长期生产实践和用户使用调研的基础上,结合GB/T6478-2001《冷镦和冷挤压用钢技术条件》GB/T699-1999《优质碳素结构钢》及目标JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以8.8级,9.8级螺栓螺钉的材料要求为例,各种化学元素的确定。
C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为0.25%-0.55%。
Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。
Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于0.30%。
S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。
B.含硼量最大值均为0.005%,因为硼元素虽然具有显著提高钢材渗透性等作用,但同时会导致钢材脆性增加。
含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。
二,球化(软化)退火沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。
冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。
当钢材的化学成分一定时,金相组织就是决定塑性优劣的关键性因素,通常认为粗大片状珠光体不利于冷镦成形,而细小的球状珠光体可显著地提高钢材塑性变形的能力。
对高强度紧固件用量较多的中碳钢和中碳合金钢,在冷镦前进行球化(软化)退火,以便获得均匀细致的球化珠光体,以更好地满足实际生产需要。
对中碳钢盘条软化退火而言,其加热温度多选择在该钢材临界点上下保温,加热温度一般不能太高,否则会产生三次渗碳体沿晶界析出,造成冷镦开裂,而对于中碳合金钢的盘条采用等温球化退火,在AC1+(20-30%)加热后,炉冷到略低于Ar1,温度约700摄氏度等温一段时间,然后炉冷至500摄氏度左右出炉空冷。
钢材的金相组织由粗变细,由片状变球状,冷镦开裂率将大大减少。
35\45\ML35\SWRCH35K 钢软化退火温度一般区域为715-735摄氏度;而SCM435\40Cr\SCR435钢球化退火加热温度一般区域为740-770摄氏度,等温温度680-700摄氏度。
三,剥壳除鳞冷镦钢盘条去除氧化铁板工序为剥亮,除鳞,有机械除鳞和化学酸洗两种方法。
用机械除鳞取代盘条的化学酸洗工序,既提高了生产率,又减少了环境污染。
此除鳞过程包括弯曲法(普遍使用带三角形凹槽的圆轮反覆弯曲盘条),喷九法等,除鳞效果较好,但不能使残余铁鳞去净(氧化铁皮清除率为97%),尤其是氧化铁皮粘附性很强时,因此,机械除鳞受铁皮厚度,结构和应力状态的影响,使用于低强度紧固件(小于等于6.8级)用的碳钢盘条。
高强度紧固件(大于等于8.8级)用盘条在机械除鳞后,为除净所有的氧化铁皮,再经化学酸洗工序即复合除鳞。
对低碳钢盘条而言,机械除鳞残留的铁皮容易造成粒拔模不均匀磨损。
当粒拔模孔由于盘条钢丝摩擦外温时粘附上铁皮,使盘条钢丝表面产生纵向粒痕,盘条钢丝冷镦凸缘螺栓或圆柱头螺钉时,头部出现微裂纹的原因,95%以上是钢丝表面在拉拔过程中产生的划痕所引起。
因此,机械除鳞法不宜用来高速拉拔。
四,拉拔拉拔工序有两个目的,一是改制原材料的尺寸;二是通过变形强化作用使紧固件获得基本的机械性能,对于中碳钢,中碳合金钢还有一个目的,即是使盘条控冷后得到的片状渗碳体在拉拔过程中尽可能的破解,为随后的球化(软化)退火得到粒状渗碳体做好准备,然而,有些厂家为降低成本,任意减少拉拔道次,过大的减面率增加了盘条钢丝的加工硬化倾向,直接影响了盘条钢丝的冷镦性能。
如果各道次的减面率分配不合适,也会使盘条钢丝在拉拔过程中产生扭转裂纹,这种沿钢丝纵向分布,周期一定的裂纹在钢丝冷镦过程中暴露。
此外,拉拔过程中如润滑不好,也可造成冷拔盘条钢丝有规律地出现横裂纹。
盘条钢丝出出粒丝模口上卷同时的切线方向与拉丝模不同心,会造成拉丝模单边孔型的磨损加剧,使内孔失圆,造成钢丝圆周方向的拉拔变形不均匀,使钢丝的圆度超差,在冷镦过程中钢丝横截面应力不均匀而影响冷镦合格率。
盘条钢丝拉拔过程中,过大的部分减面率使钢丝的表面质量恶化,而过低的减面率却不利于片状渗碳体的破碎,难以获得尽可能多的粒状渗碳体,即渗碳体的球化率低,对钢丝的冷镦性能极为不利,采用拉拔方式生产的棒料和盘条钢丝,部分减面率直控制在10%-15%的范围内。
五,冷锻成形通常,螺栓头部的成形采用冷镦塑性加工,同切削加工相比,金属纤维(金属留线)沿产品形状呈连续状,中间无切断,因而提高了产品强度,特别是机械性能优良。
冷镦成形工艺包括切料与成形,分单工位单击,双击冷镦和多工位自动冷镦。
一台自动冷镦机分别在几个成型凹模里进行冲压,镦锻,挤压和缩径等多工位工艺。
单工位或多工位自动冷镦机使用的原始毛坯的加工特点是由材料尺寸长5-6米的棒料或重量为1900-2000KG的盘条钢丝的尺寸决定的,即加工工艺的特点在于冷镦成型不是采用预先切好的单件毛坯,而是采用自动冷镦机本身由棒料和盘条钢丝切取和镦粗的(必要时)毛坯。
在挤压型腔之前,毛坯必须进行整形。
通过整形可得到符合工艺要求的毛坯。
在镦锻,缩径和正挤压之前,毛坯不需整形。
毛坯切断后,送到镦粗整形工位。
该工位可提高毛坯的质量,可使下一个工位的成型力降低15-17%,并能延长模具寿命,制造螺栓可采用多次缩径。
1.用半封闭切料工具切割毛坯,最简单的方法是采用套筒式切料工具;切口的角度不应大于3度;而当采用开口式切料工具时,切口的斜角可达5-7度。
2.短尺寸毛坯在由上一个工位向下一个成型工位传递过程中,应能翻转180度,这样能发挥自动冷镦机的潜力,加工结构复杂的紧固件,提高零件精度。
3.在各个成型工位上都应该装有冲头退料装置,凹模均应带有套筒式顶料装置。
4.成型工位的数量(不包括切断工位)一般应达到3-4个工位(特殊情况下5个以上)。
5.在有效使用期内,主滑块导轨和工艺部件的结构都能保证冲头和凹模的定位精度。
6.在控制选料的挡板上必须安装终端限位开关,必须注意镦锻力的控制。
在自动冷镦机上制造高强度紧固件所使用的冷拨盘条钢丝的不圆度应在直径公差范围内,而较为精密的紧固件,其钢丝的不圆度则应限制在1/2直径公差范围内,如果钢丝直径达不到规定的尺寸,则零件的镦粗部分或头部就会出现裂痕,或形成毛刺,如果直径小于工艺所要求的尺寸,则头部就会不完整,棱角或涨粗部分不清晰。
冷镦成型所能达到的精度还同成型方法的选择和所采用的工序有关。
此外,它还取决于所用的设备的结构特点,工艺特点及其状态,工模具精度,寿命和磨损程度。
冷镦成型和挤压使用的高合金钢,硬质合金模具的工作表面粗糙度不应大Ra=0.2um,这类模具工作表面的粗糙度达到Ra=0.025-0.050um时,具有最高寿命。
六,螺纹加工螺栓螺纹一般采用冷加工,使一定直径范围内的螺纹坯料通过搓(滚)丝板(模),由丝板(滚模)压力使螺纹成形。
可获得螺纹部分的塑性流线不被切断,强度增加,精度高,质量均一的产品,因而被广泛采用。
为了制出最终产品的螺纹外径,所需要的螺纹坯径是不同的,因为它受螺纹精度,材料有无镀层等因素限制。
滚(搓)压螺纹是指利用塑性变形使螺纹牙成形的加工方法。
它是用带有和被加工的螺纹同样螺距和牙形的滚压(搓丝板)模具,一边挤压圆柱形螺坯,一边使螺坯转动,最终将滚压模具上的牙形转移到螺坯上,使螺纹成形。
滚(搓)压螺纹加工的共同点是滚动转数不必太多,如果过多,则效率低,螺纹牙表面容易产生分离现象或者乱扣现象。
反之,如果转数太少,螺纹直径容易失圆,滚压初期压力异常增高,造成模具寿命缩短。
滚压螺纹常见的缺陷:螺纹部分表面裂纹或划伤;乱扣;螺纹部分失圆。
这些缺陷若大量发生,就会在加工阶段被发现。
如果发生的数量较少,生产过程注意不到这些缺陷就会流通到用户,造成麻烦。
因此,应归纳加工条件的关键问题,在生产过程控制这些关键因素。
七,热处理高强度紧固件根据技术要求都要进行调质处理。
热处理调质是为了提高紧固件的综合机械性能,以满足产品规定的抗拉强度值和屈强比。
热处理工艺对高强度紧固件尤其是它的内在质量有着至关重要的影响,因此,要想生产出优质的高强度紧固件,必须要有先进的热处理技术装备。
由于高强度螺栓生产量大,价格低廉,螺纹部分又是比较细微相对精密的结构,因此,要求热处理设备必须具备生产能力大,自动化程度高,热处理质量好的能力。
进入20世纪90年代以来带有保护气氛的连续式热处理生产线已占主导地位,震底式,网带炉尤其适用于中小规格紧固件的热处理调质。
调质线除了炉子密封性能好以外,还具有先进的气氛,温度和工艺参数计算机控制,设备故障报警和显示功能。
高强度紧固件从上料-清洗-加热-淬火-清洗-回火-着色到下线,全部自动控制运行,有效保证了热处理质量。
螺纹的脱碳会导致紧固件在未达到机械性能要求的抗力时先发生脱扣,使螺纹紧固件失效,缩短使用寿命。
由于原料的脱碳,如果退火不当,更会使原材料脱碳层加深。
调质热处理过程中,一般会从炉外带进来一些氧化气体。
棒料钢丝的铁锈或冷拔后盘条钢丝表面上的残留物,入炉加热后也会分解,反应生成一些氧化性气体。
例如,钢丝的表面铁锈,它的成分是碳酸铁及氢氧化物,在加热后将分解成CO2及H2O ,从而加重了脱碳。
研究表明,中碳合金钢的脱碳程度较碳钢严重,而最快的脱碳温度在700-800摄氏度之间。
由于钢丝表面的附着物在一定条件下分解化合成CO2 和H2O 的速度很快,如果连续式网带炉炉气控制不当,也会造成螺丝脱碳超差。
高强度紧固件当采用冷镦成形时,原材料和退火的脱碳层不但仍然存在,而且被挤压到螺纹的顶部,对于需要淬火的紧固件表面,得不到所要求的硬度,其机械性能(特别是强度和耐磨性)降低。
另外,钢丝表面脱碳,表层与内部组织不同而具有不同的膨胀系数,淬火时有可能产生表面裂纹。
为此,在淬火加热时要保护螺纹顶部不脱碳,还要对原材料已脱碳的紧固件进行适度的覆碳,把网带炉中的保护气氛的优势调到和被覆碳的零件原始含碳量基本相等,使已脱碳的紧固件慢慢恢复到原来的含碳量,碳势设定在0.42%-0.48%为宜,覆碳温度与淬火加热相同,不能在高温下进行,以免晶粒粗大,影响机械性能。