统计学答案 第八章 抽样与抽样分布

合集下载

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。

抽样的目的是通过样本来推断总体的特征和性质。

在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。

一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。

这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。

常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。

2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。

这样可能导致样本的代表性不足,从而产生较大的估计误差。

有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。

二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。

统计量可以是样本均值、样本方差等。

抽样分布的性质对于进行统计推断和假设检验非常重要。

2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。

中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。

3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。

这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。

4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。

通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。

为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。

三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。

以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。

通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。

2. 假设检验假设检验是统计学中常用的推断方法之一。

通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记之南宫帮珍创作第七章第八章参数估计一、思考题1.解释估计量和估计值在参数估计中, 用来估计总体参数的统计量称为估计量.估计量也是随机变量.如样本均值, 样本比例、样本方差等.根据一个具体的样本计算出来的估计量的数值称为估计值. 2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值即是被估计的总体参数.(2)有效性:是指估计量的方差尽可能小.对同一总体参数的两个无偏估计量, 有更小方差的估计量更有效.(3)一致性:是指随着样本量的增年夜, 点估计量的值越来越接近被估总体的参数.3.怎样理解置信区间在区间估计中, 由样本统计量所构造的总体参数的估计区间称为置信区间.置信区间的论述是由区间和置信度两部份组成.有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间), 其实不说明置信度, 也不给出被调查的人数, 这是不负责的暗示.因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌.在公布调查结果时给出被调查人数是负责任的暗示.这样则可以由此推算出置信度(由后面给出的公式), 反之亦然.4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率.也就是说, 无穷次重复抽样所获得的所有区间中有95%(的区间)包括参数.不要认为由某一样本数据获得总体参数的某一个95%置信区间, 就以为该区间以0.95的概率覆盖总体参数.5.简述样本量与置信水平、总体方差、估计误差的关系.1.估计总体均值时样本量n为其中:2.样本量n与置信水平1-α、总体方差、估计误差E之间的关系为▪与置信水平成正比, 在其他条件不变的情况下, 置信水平越年夜, 所需要的样本量越年夜;▪与总体方差成正比, 总体的不同越年夜, 所要求的样本量也越年夜;▪与与总体方差成正比, 样本量与估计误差的平方成反比, 即可以接受的估计误差的平方越年夜, 所需的样本量越小.二、练习题1.从一个标准差为5的总体中采纳重复抽样方法抽出一个样本量为40的样本, 样本均值为25.1)样本均值的抽样标准差即是几多?2)在95%的置信水平下, 估计误差是几多?解: 1)已知σ = 5, n = 40, = 25∵∴2)已知∵2.某快餐店想要估计每位顾客午餐的平均花费金额, 在为期3周的时间里选取49名顾客组成了一个简单随机样本.1)假定总体标准差为15元, 求样本均值的抽样标准误差.2)在95%的置信水平下, 求估计误差.3)如果样本均值为120元, 求总体均值µ的95%的置信区间.解:1)已知σ = 15, n = 49∵∴2)已知∵3)已知 = 120∵ 置信区间为±E3.从一个总体中随机抽取n =100的随机样本, 获得 =104560, 假定总体标准差σ = 85414, 试构建总体均值µ的95%的置信区间.解:已知n =100, =104560, σ = 85414, 1-a=95% ,由于是正态总体, 且总体标准差已知.总体均值m在1-a置信水平下的置信区间为104560 ± 1.96×85414÷√1004.从总体中抽取一个n =100的简单随机样本, 获得 =81, s=12.要求:1)构建µ的90%的置信区间.2)构建µ的95%的置信区间.3)构建µ的99%的置信区间.解:由于是正态总体, 但总体标准差未知.总体均值m在1-a置信水平下的置信区间公式为81±×12÷√100 = 81±×????????4)= 25, σ = 3.5, n =60, 置信水平为95%5)=119, s =23.89, n =75, 置信水平为98%6)=3.149, s =0.974, n =32, 置信水平为90%解:∵∴ 1) 1-a=95% ,其置信区间为:25±1.96×3.5÷√602) 1-a=98% , 则a=0.02, a/2=0.01, 1-a/2=0.99,查标准正态分布表,可知:其置信区间为: 119±2.33×23.89÷√753) 1-a=90%,其置信区间为:3.149±1.65×0.974÷√325.利用下面的信息, 构建总体均值µ的置信区间:1)总体服从正态分布, 且已知σ = 500, n = 15, =8900, 置信水平为95%.解:N=15, 为小样本正态分布, 但σ已知.则1-a=95%, .其置信区间公式为∴置信区间为:8900±1.96×500÷√15=(8646.7 , 9153.2)2)总体不服从正态分布, 且已知σ = 500, n = 35, =8900,置信水平为95%.解:为年夜样本总体非正态分布, 但σ已知.则1-a=95%, .其置信区间公式为∴置信区间为:8900±1.96×500÷√35=(8733.9 9066.1)3)总体不服从正态分布, σ未知, n = 35, =8900, s =500, 置信水平为90%.解:为年夜样本总体非正态分布, 且σ未知, 1-a=90%,1.65.其置信区间为:8900±1.65×500÷√35=(8761 9039)4)总体不服从正态分布, σ未知, n = 35, =8900, s =500, 置信水平为99%.解:为年夜样本总体非正态分布, 且σ未知, 1-a=99%,2.58.其置信区间为:8900±2.58×500÷√35=(8681.9 9118.1)6.某年夜学为了解学生每天上网的时间, 在全校7500名学生中采用重复抽样方法随机抽取36人, 调查他们每天上网的时间, 获得下面的数据(单元:小时)(略).求该校年夜学生平均上网时间的置信区间, 置信水平分别为90%解:先求样本均值:= 3.32再求样本标准差:置信区间公式:7.从一个正态总体中随机抽取样本量为8的样本, 各样本值分别为:10, 8, 12, 15, 6, 13, 5, 11.求总体均值µ的95%置信区间.解:本题为一个小样本正态分布, σ未知.先求样本均值:= 80÷8=10再求样本标准差:于是 , 的置信水平为的置信区间是,已知, n = 8, 则,α/2=0.025, 查自由度为n-1 = 7的分布表得临界值所以, 置信区间为:10±2.45×3.4641÷√78.某居民小区为研究职工上班从家里到单元的距离, 抽取了由16个人组成的一个随机样本, 他们到单元的距离分别是:10, 3,14, 8, 6, 9, 12, 11, 7, 5, 10, 15, 9, 16, 13, 2.假设总体服从正态分布, 求职工上班从家里到单元平均距离的95%的置信区间.解:小样本正态分布, σ未知.已知, n = 16, , 则, α/2=0.025, 查自由度为n-1 = 15的分布表得临界值样本均值再求样本标准差:于是 , 的置信水平为的置信区间是?? ??????????????????±??×??÷√??9.从一批零件是随机抽取????个, 测得其平均长度是??????, 标准差是????.1)求确定该种零件平均长度的????August的置信区间.2)在上面估计中, 你使用了统计中的哪一个重要定理?请解释.解:)??这是一个年夜样天职布.已知N??????, ??????????????, S????????, α?? ????, .其置信区间为:149.5±1.96×1.93÷√36 2)中心极限定理论证:如果总体变量存在有限的平均数和方差, 那么, 不论这个总体的分布如何, 随着样本容量的增加, 样本均值的分布便趋近正态分布.在现实生活中, 一个随机变量服从正态分布未必很多, 可是多个随机变量和的分布趋于正态分布则是普遍存在的.样本均值也是一种随机变量和的分布, 因此在样本容量充沛年夜的条件下, 样本均值也趋近于正态分布, 这为抽样误差的概率估计理论提供了理论基础.10.某企业生产的袋装食品采纳自动打包机包装, 每袋标准重量为100克, 现从某天生产的一批产物中按重复抽样随机抽取50包进行检查, 测得每包重量如下:(略)已知食品包重服从正态分布, 要求:1)确定该种食品平均重量的95%的置信区间.2)如果规定食品重量低于100克属于分歧格, 确定该批食品合格率的95%的置信区间.解:1)本题为一个年夜样本正态分布, σ未知.已知N=50, µ=100, 1-α=0.95, .① 每组组中值分别为97、99、101、103、105, 即此50包样本平均值= (97+99+101+103+105)/5 = 101② 样本标准差为:③其置信区间为:101±1.96×1.666÷√502)∵ 分歧格包数(<100克)为2+3=5包, 5/50 = 10%(分歧格率), 即P = 90%.∴ 该批食品合格率的95%置信区间为:11.假设总体服从正态分布, 利用下面的数据构建总体均值μ的99%的置信区间.(略)解:样本均值样本标准差:尽管总体服从正态分布, 可是样本n=25是小样本, 且总体标准差未知, 应该用T统计量估计.1-α=0.99, 则α=0.01, α/2=0.005, 查自由度为n-1 =24的分布表得临界值的置信水平为的置信区间是,12.一家研究机构想估计在网络公司工作的员工每周加班的平均时间, 为此随机抽取了18个员工, 获得他们每周加班的时间数据如下(单元:小时):(略)假定员工每周加班的时间服从正态分布, 估计网络公司员工平均每周加班时间的90%的置信区间.解:① N = 18 < 30, 为小样本正态分布, σ未知.②样本均值样本标准差:=③ 1-α= 90%, α= 0.1, α/2= 0.05, 则查自由度为n-1 = 17的分布表得临界值④的置信水平为的置信区间是,13.利用下面的样本数据构建总体比例丌的置信区间:1)n =44, p = 0.51 , 置信水平为99%2)n =300, p = 0.82 , 置信水平为95%3)n =1150, p = 0.48, 置信水平为90%解: 1) 1-α= 99%, α= 0.01, α/2= 0.005, 1-α/2= 0.995, 查标准正态分布表, 则2)1-a=95%,3)1-a=90%,分别代入14.在一项家电市场调查中, 随机抽取了200个居民户, 调查他们是否拥有某一品牌的电视机, 其中拥有该品牌电视机的家庭占23%.求总体比例的置信区间, 置信水平分别为90%和95%.解: 1)置信水平90%, 1-a=90%, 1.65, N = 200, P = 23%.代入2)置信水平95%, 1-a=95%, , N = 200, P = 23%.代入15.一位银行的管理人员想估计每位顾客在该银行的月平均存款额.他假设所有顾客月存款额的标准差为1000元, 要求的估计误差在200元以内, 置信水平为99%.应选取多年夜的样本?解:已知 1-α = 99%, 则 2.58.E = 200, σ= 1000元.则N = (²×σ²)÷E²= (2.58²×1000²)÷200²≈167(得数应该是166.41, 不论小数后是几多, 都向上进位取整, 因此至少是167人)16.要估计总体比例丌, 计算下列条件下所需的样本量.1)E=0.02, 丌=0.40, 置信水平96%2)E=0.04, 丌未知, 置信水平95%3)E=0.05, 丌=0.55, 置信水平90%解: 1)已知 1-α = 96%, α/2 =0.02 , 则N = {²×丌(1-丌)}÷E²=2.06²×0.4×0.6÷0.02²≈25472)已知 1-α = 95%, α/2 =0.025 , 则丌未知,则取使丌(1-丌)最年夜时的0.5.N = {²×丌(1-丌)}÷E²=1.96²×0.5×0.5÷0.04²≈601 3)置信水平90%, 1-a=90%, 1.65,N = {²×丌(1-丌)}÷E²=1.65²×0.55×0.45÷0.05²≈27017.某居民小区共有居民500户, 小区管理者准备采纳一项新的供水设施, 想了解居民是否赞成.采用重复抽样方法随机抽取了50户, 其中有32户赞同, 18户反对.1)求总体中赞成该项改革的户数比例的置信区间(α=0.05)2)如果小区管理者预计赞成的比例能到达80%, 估计误差不超越10%, 应抽取几多户进行调查(α=0.05)解:1)已知N=50, P=32/50=0.64, α=0.05, α/2 =0.025 , 则置信区间:P±2)已知丌=0.8 , E = 0.1, α=0.05, α/2 =0.025 , 则N= ²丌(1-丌)/E²= 1.96²×0.8×0.2÷0.1²≈6218.根据下面的样本结果, 计算总体标准差σ的90%的置信区间:1)=21, S=2, N=502)=1.3, S=0.02, N=153)=167, S=31, N=22解:1)年夜样本, σ未知, 置信水平90%, 1-a=90%,21±1.65×2÷√502)小样本, σ未知, 置信水平90%, 1-a=90%, 则查自由度为n-1 = 14的分布表得临界值, = 1.3±1.761×0.02÷√153) 年夜样本, σ未知, 置信水平90%, 1-a=90%,167±1.65×31÷√2219.题目(略)1)构建第一种排队方式等候时间标准差的95%的置信区间2)构建第二种排队方式等候时间标准差的95%的置信区间3)根据1)和2)的结果, 你认为哪种排队方式更好?解:本题为小样本正态分布, σ未知, 应用公式,置信水平95%, 1-a=95%, 则查自由度为n-1 = 9的分布表得临界值1)= 7.15,其置信区间为7.15±2.31×0.48÷√102)= √0/9 = 0其置信区间为7.15±04)第二种排队方式更好.(19题是对总体方差的估计, 应该用卡方统计量进行估计, 20题是对两个总体参数的估计, 这二种类型老师未讲, 不是本次考试的内容, 不能用Z统计量像估计总体均值和比例那样去估计, 具体内容见书上P188――P194)第九章假设检验一、思考题1.假设检验和参数估计有什么相同点和分歧点?解:参数估计与假设检验是统计推断的两个组成部份.相同点:它们都是利用样本对总体进行某种推断.分歧点:推断的角度分歧.参数估计讨论的是用样本统计量估计总体参数的方法, 总体参数μ在估计前是未知的.而在假设检验中, 则是先对μ的值提出一个假设, 然后利用样本信息去检验这个假设是否成立.2.什么是假设检验中的显著性水平?统计显著是什么意思?解:显著性水平用α暗示, 在假设检验中, 它的含义是当原假设正确时却被拒绝的概率或风险, 即假设检验中犯弃真毛病的概率.它是由人们根据检验的要求确定的.(我理解的统计学意义, 统计显著是统计上专用的判定标准, 指在一定的概率原则下, 可以供认一种趋势或者合理性到达的水平, 到达为统计上水平显著, 达不到为统计上水平不显著)3.什么是假设检验中的两类毛病?解:弃真毛病(α毛病):当原假设为真时拒绝原假设, 所犯的毛病成为第I类毛病, 又称为弃真毛病.犯第I类毛病的概率常记作α.取伪毛病(β毛病):当原假设为假时没有拒绝原假设, 所犯的毛病称为第II类毛病, 又称取伪毛病.犯第II类毛病概率常记作β.发生第I类毛病的概率也常被用于检验结论的可靠性怀抱.假设检验中犯第I类毛病的概率被称为显著性水平, 记作α.4.两类毛病之间存在什么样的数量关系?在样本容量n一定的情况下, 假设检验不能同时做到犯α和β两类毛病的概率都很小.若减小α毛病, 就会增年夜犯β毛病的机会;若减小β毛病, 也会增年夜犯α毛病的机会.要使α和β同时变小只有增年夜样本容量.但样本容量增加要受人力、经费、时间等很多因素的限制, 无限制增加样本容量就会使抽样调查失去意义.因此假设检验需要慎重考虑对两类毛病进行控制的问题.5.解释假设检验中的P值.解:如果原假设为真, 所获得的样本结果会像实际观测结果那么极端或更极真个概率, 称为P值.也称为观察到的显著性水平.P值是反映实际观测到的数据与原假设H0之间纷歧致水平的一个概率值.P值越小, 说明实际观测到的数据与H0之间纷歧致水平就越年夜.6.显著性水平与P值有何区别?解:α(显著性水平)是一个判断的标准(当原假设为真, 却被拒绝的概率), 而P是实际统计量对应分位点的概率值(当原假设为真时, 所获得的样本观察结果或更极端结果呈现的概率).可以通过α计算置信区间, 然后与统计量进行比力判断, 也可以通过统计量计算对应的p值, 然后与α值比力判断.7.假设检验依据的基来源根基理是什么?解:假设检验利用的是小概率原理, 小概率原理是指发生概率很小的随机事件在一次试验中是几乎不成能发生的.根据这一原理, 可以先假设总体参数的某项取值为真, 也就是假设其发生的可能性很年夜, 然后抽取一个样本进行观察, 如果样本信息显示呈现了与事先假设相反的结果且与原假设分歧很年夜, 则说明原来假定的小概率事件在一次实验中发生了, 这是一个违背小概率原理的分歧理现象, 因此有理由怀疑和拒绝原假设;否则不能拒绝原假设.8. 你认为在单侧检验中原假设和备择假设的方向应该如何确定?解: 假设问题有两种情况, 一种是所考察的数值越年夜越好(左单侧检验或下限检验), 临界值和拒绝域均在左侧;另一种是数值越小越好(右单侧检验或上限检验), 临界值和拒绝域均在右侧.二、 练习题1. 已知某炼铁厂的含碳量服从正态分布N (4.55, 0.108²), 现在测定了9炉铁水, 其平均含碳量为4.484.如果估计方差没有变动, 可否认为现在生产的铁水平均含碳量为4.55(α=0.05)? 解: 已知μ0=4.55, σ²=0.108², N=9, =4.484,这里采纳双侧检验, 小样本, σ已知, 使用Z 统计.假定现在生产的铁水平均含碳量与以前无显著不同.则, α=0.05, α/2 =0.025 , 查表得临界值为计算检验统计量: = (4.484-4.55)/(0.108/√9) 决策:∵Z 值落入接受域, ∴在=0.05的显著性水平上接受H0. nx Z / σ - =μ0结论:有证据标明现在生产的铁水平均含碳量与以前没有显著不同, 可以认为现在生产的铁水平均含碳量为4.55.2. 一种元件, 要求其使用寿命不得低于700小时.现从一批这种元件中随机抽取36件, 测得其平均寿命为680小时.已知该元件寿命服从正态分布, σ=60小时, 试在显著性水平0.05下确定这批元件是否合格.解: 已知N=36, σ=60, =680, μ0=700这里是年夜样本, σ已知, 左侧检验, 采纳Z 统计量计算. 提出假设:假定使用寿命平均不低于700小时H0:μ≥700H1: μ < 700= 0.05, 左检验临界值为负, 查得临界值: -Z0.05=-1.645计算检验统计量: = (680-700)/(60/√36) = -2决策:∵Z 值落入拒绝域, ∴在=0.05的显著性水平上拒绝H0, 接受H1结论:有证据标明这批灯胆的使用寿命低于700小时, 为分歧格产物.3. 某地域小麦的一般生产水平为亩产250公斤, 其标准差是30公斤.现用一种化肥进行试验, 从25个小区抽样, 平均产量为n x Z / σ - = μ0270公斤.这种化肥是否使小麦明显增产(α=0.05)?解:已知μ0 =250, σ = 30, N=25, =270提出假设:假定这种化肥没使小麦明显增产.即 H0:μ≤250H1: μ>250计算统计量:Z = (结论:Z统计量落入拒绝域, 在α =0.05的显著性水平上, 拒绝H0, 接受H1.决策:有证据标明, 这种化肥可以使小麦明显增产.4.糖厂用自动打包机打包, 每包标准重量是100千克.每天开工后需要检验一次打包机工作是否正常.某日开工后测得9包重量(单元:千克)如下:(略)已知包重服从正态分布, 试检验该日打包机工作是否正常.(α =0.05)= 99.98提出假设, 假设打包机工作正常:即 H0:μ= 100H1: μ≠100计算统计量:决策:有证据标明这天的打包机工作正常.5. 某种年夜量生产的袋装食品, 按规定不得少于250克.今从一批该食品中任意抽取50袋, 发现有6袋低于250克.若规定不符合标准的比例超越5%就不得出厂, 问该批食品能否出厂(=0.05)?H0:丌≤5%H1:丌>5%(因为没有找到丌暗示的公式, 这里用P0暗示丌0)结论:因为Z 值落入拒绝域, 所以在=0.05的显著性水平上, 拒绝H0, 而接受H1.决策:有证据标明该批食品合格率不符合标准, 不能出厂. 6. 某厂家在广告中声称, 该厂生产的汽车轮胎在正常行驶条件下超越目前的平均水平25000公里.对一个由15个轮胎组成的随机样本做了试验, 获得样本均值和标准差分别为27000公里和5000公里.假定轮胎寿命服从正态分布, 问该厂家的广告是否真- = ns x t μ0实(=0.05)?解:N=15,H0:μ0 ≤25000H1:μ >25000结论:因为t 值落入接受域, 所以接受H0, 拒绝H1.决策:有证据标明, 该厂家生产的轮胎在正常行驶条件下使用寿命与目前平均水平25000公里无显著性不同, 该厂家广告不真实. 7. 某种电子元件的寿命x (单元:小时)服从正态分布.现测得16只元件的寿命如下:(略).问是否有理由认为元件的平均寿命显著地年夜于225小时(=0.05)? 解:= 241.5,H :μ??> ??创作时间:二零二一年六月三十日 - = ns x t - = ns x tμ0 μ0。

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

统计学抽样与抽样分布

统计学抽样与抽样分布
查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。

统计学第五版课后练答案(7-8章)

统计学第五版课后练答案(7-8章)

第七章 参数估计7.1 (1)x σ==(2)2x z α∆= 1.96=1.54957.2 某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x σ==(2)在95%的置信水平下,求估计误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(115.8,124.2)7.322x z x z αα⎛-+ ⎝=104560±(87818.856,121301.144) 7.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭ 或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝=1.2 (1)构建μ的90%的置信区间。

2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。

2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。

2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.5 (1)2x z α±=25 1.96±=(24.114,25.886)(2)2x z α±119.6 2.326±=(113.184,126.016)(3)2x z α± 3.419 1.645±(3.136,3.702)7.6 (1)2x z α±=8900 1.96±=(8646.965,9153.035)(2)2x z α±8900 1.96±=(8734.35,9065.65)(3)2x z α±8900 1.645±=(8761.395,9038.605)(4)2x z α±8900 2.58±=(8681.95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调解:(1)样本均值x =3.32,样本标准差s=1.611α-=0.9,t=2z α=0.05z =1.645,x z α± 3.32 1.645±=(2.88,3.76)1α-=0.95,t=z α=0.025z =1.96,x z α± 3.32 1.96±(2.79,3.85)1α-=0.99,t=z α=0.005z =2.576,2x z α± 3.32 2.76±(2.63,4.01)7.82x t α±=10 2.365±7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 86 9 12 117 5 1015 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

抽样与抽样分布(试题及答案)

抽样与抽样分布(试题及答案)

第五章抽样与抽样分布一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

)1.抽样推断的主要目的是( )。

A.用统计量来推算总体参数B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法[答案] A[解析] 抽样调查是指从总体中按随机原则抽取部分单位作为样本,进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法,因此,抽样推断的主要目的是用已知的统计量来推算未知的总体参数。

2.抽样调查中,无法消除的误差是( )。

A.抽样误差B.责任心误差C.登记误差D.系统性误差[答案] A[解析] 抽样误差是指在遵循了随机原则的条件下,不包括登记误差和系统性误差在内的,用样本指标代表总体指标而产生的不可避免的误差。

3.在其他条件相同的情况下,重复抽样的抽样平均误差和不重复抽样相比,( )。

A.前者一定小于后者B.前者一定大于后者C.两者相等D.前者可能大于,也可能小于后者[答案] B[解析] 以抽样平均数的抽样平均误差为例进行说明:在重复抽样条件下,抽样平均数的平均误差的计算公式:;在不重复抽样条件下,抽样平均数的平均误差的计算公式:。

因为,故。

4.拟分别对甲、乙两个地区大学毕业生在试用期的工薪收入进行抽样调查。

据估计甲地区大学毕业生试用期月工薪的方差要比乙区高出一倍。

在样本量和抽样方法相同的情况下,甲区的抽样误差要比乙区高( )。

A.41.4% B.42.4% C.46.8% D.48.8%[答案] A[解析] 假设乙地区的大学毕业生试用期月工薪的方差为σ2,甲地区的大学毕业生试用期月工薪的方差为2σ2,则:,那么,在样本量和抽样方法相同的,情况下,甲区的抽样误差要比乙区高=41.4%。

5.对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。

表5-1耐用时间(小时) 全面检测(支) 抽样复测(支)3000以下3000~4000 4000~5000 50600990230505000以上总计36020018100规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为( )。

管理统计学习题参考答案第八章

管理统计学习题参考答案第八章

第八章1. 解:(1)假设检验的基本思想是,样本平均数与总体平均数出现差异不外乎两种可能:一是改革后的总体平均长度不变,但由于抽样的随机性使样本平均数与总体平均数之间存在抽样误差;二是由于工艺条件的变化,使总体平均数发生了显著的变化。

因此,可以这样推断:如果样本平均数与总体平均数之间的差异不大,未超出抽样误差范围,则认为总体平均数不变;反之,如果样本平均数与总体平均数之间的差异超出了抽样误差范围,则认为总体平均数发生了显著的变化。

根据样本平均数的抽样分布定理,有x Z σx μ±=或Z /σμx x ≤-。

当0=Z 时,表明样本均值等于总体均值,即μx =;当Z 很大时,表明样本均值离总体均值很远,即∆很大。

后一种情况是小概率事件。

在正常情况下,小概率事件是不会发生的,那么在一次抽样中小概率事件居然发生了,我们就有理由认为样本均值是不正常的,它与原总体相比,性质已经发生变化,应该拒绝接受原假设。

(2)假设检验的一般步骤包括:① 提出原假设和备择假设;对每个假设检验问题,一般可同时提出两个相反的假设:原假设和备择假设。

原假设又称零假设,是正待检验的假设,记为H 0;备择假设是拒绝原假设后可供选择的假设,记为H 1。

原假设和备择假设是相互对立的,检验结果二者必取其一。

接受H 0,则必须拒绝H 1;反之,拒绝H 0则必须接受H 1。

② 选择适当的统计量,并确定其分布形式;不同的假设检验问题需要选择不同的统计量作为检验统计量。

在例中,我们所用的统计量是Z ,在H 0为真时,N Z ~(0,1)。

③选择显著性水平α,确定临界值;显著性水平表示H 0为真时拒绝H 0的概率,即拒绝原假设所冒的风险,用α表示。

假设检验就是应用了小概率事件实际不发生的原理。

这里的小概率就是指α。

但是要小到什么程度才算小概率? 对此并没有统一的标准。

通常取α=0.1,0.05,0.01。

给定了显著性水平α,就可由有关的概率分布表查得临界值,从而确定H 0的接受区域和拒绝区域。

统计学:抽样估计习题与答案

统计学:抽样估计习题与答案

一、单选题1、从某生产线上每隔55分钟抽取5分钟的产品进行检验,这种抽样方式属于( )。

A.等距抽样B.分层抽样C.整群抽样D.简单随机抽样正确答案:A2、若总体平均数X̅=50,在一次抽样调查中测得x̅=50,则以下说法正确的是( )。

A.抽样极限误差为2B.抽样平均误差为2C.抽样实际误差为2D.以上都不对正确答案:C3、重复抽样条件下,成数的抽样标准误计算公式是( )。

A.√P2(1−P2)/nB.√P(1−P)/nC.√D. P(1−P)/√n正确答案:B4、在其它条件不变情况下,采用重复抽样方式,将允许误差扩大为原来的3倍,则样本容量( )。

A.扩大为原来的9倍B.扩大为原来的3倍C.缩小为原来的1/9倍D.缩小为原来的1/3倍正确答案:C5、如果随着样本容量的增大,估计量的值会越来越靠近总体参数的真值,符合这一要求的估计量被称为( )。

A.无偏估计量B.有效估计量C.一致估计量D.充分估计量正确答案:C6、下列关于抽样标准误的叙述哪个是错误的。

( )A.抽样标准误是抽样分布的标准差B.抽样标准误的理论值是惟一的,与所抽样本无关C.抽样标准误比抽样极限误差小D.抽样标准误只能衡量抽样中的偶然性误差的大小正确答案:C7、简单重复随机抽样条件下,欲使误差范围缩小一半,其他要求不变,则样本容量须( )。

A.增加2倍B.增加3倍C.减少2倍D.减少3倍正确答案:B8、调查某市电话网100次通话,得知通话平均时间为4分钟,标准差为2分钟,在95.45%的置信水平下,估计通话的平均时间为( )。

A.[3.9,5.1]B.[3.8,4.2]C.[3.7,4.3]D.[3.6,4.4]正确答案:D9、从2000名学生中按不重复抽样方法抽取了100名进行调查,其中有女生45名,则样本成数的抽样标准误为( )。

A.0.24%B.4.85%C.4.97%D.以上都不对正确答案:B10、重复抽样条件下,平均数的抽样标准误计算公式是()。

统计学第八章 抽样推断

统计学第八章 抽样推断


和P的使用及使用条件
(1)σ2取最大值;(2)P取接近于0.5的值
(3)可以用样本 s或2 代p替;(4)可以用估计值或实验值代替。
计算例题:
在10000只电池中,随机抽检1%的产品进行检查,检查结果如下:
电流强度 (安培) 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7
2
f
P 2N 0 1 P 2 N1
f
N
P2N0 1 P2 N1 P2Q 1 P2 P
N
N
P2Q Q2P PQP Q PQ P1 P
例(1):已知某产品的合格率为95%,则其标准差为:
0.951 0.95 21.79%.
2、样本指标(统计量)
根据样本总体各单位的数量标志值或属性计算所得的指 标,称为样本指标。样本指标通常包括:
统计指标 抽样平均数 抽样成数 抽样平均数的标准差 抽样成数的标准差 抽样平均数的方差
抽样成数的方差
未分组资料
x x n
p n1 n
sx
xx 2
n
分组资料
x xf f
sx
x
2
x
f
f
sP p(1p)
s2
2
xx
x
n
sP2 p(1 p)
s2
2
xx f
x
f
四、抽样方法(P151)
(二)抽样极限误差的意义
(三)抽样极限误差的计算
平均数的抽样极限误差
Δx
t
μ x
成数的抽样极限误差
Δp
t
μ p
正态分布图示
68.27%
95.45%
99.73%

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。

本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。

首先,我们来理解抽样的概念。

在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。

总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。

通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。

接下来,让我们了解抽样的方法。

常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

每种抽样方法都有其特点和适用范围。

简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。

系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。

分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。

整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。

选择合适的抽样方法可以更好地保证样本的代表性和可靠性。

抽样之后,我们需要了解抽样分布的概念。

在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。

常见的抽样分布包括正态分布、t分布和F分布等。

其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。

t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。

F分布常用于分析方差比较和回归模型中的显著性分析。

抽样分布的重要性在于它可以帮助我们进行推断。

根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。

参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。

假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。

通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。

在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。

《概率统计简明教程》第二版(第8章-统计量与抽样分布)统计与统计学、统计量、抽样分布

《概率统计简明教程》第二版(第8章-统计量与抽样分布)统计与统计学、统计量、抽样分布

《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆短期的机遇变异
重复投掷一枚均匀硬币六次,观察每次出现的面: (1)正反正反反正 (2)反反反正正正 (3)正反反反反反
直觉认为结果(1)是随机的,结果(2)和结果 (3)很不随机。 从概率的观点认为结果(1)、(2)、(3)的发 生有相同的概率,因而没有哪一个结果比其他结果更多 一点或少一点随机性。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
◆变异性(Variablity)
统计数据和统计资料具有变异性, 即个体之间有 差异,而对同一个体的多次观察,其结果也会不一样, 并且几乎每一次观察都随着时间的不同而改变,因而变 异性是一个重要的统计观念。 抽样结果的差异是变异性的主要表现 不能仅仅根据一次抽样的结果就断下结论!
《概率统计简明教程》第二版
第八章 统计量与抽样分布
二、总体和样本
1.总体
我们关心的是总体中的个体的某项指标(如人的身高、 灯泡的寿命, 汽车的耗油量…) .
由于每个个体的出现是随机的,所以相应的数量指标 的出现也带有随机性 . 从而可以把这种数量指标看作一 个随机变量X ,因此随机变量X的分布就是该数量指标在 总体中的分布.
《概率统计简明教程》第二版
第八章 统计量与抽样分布
三、什么是统计学
◆长期的规律性
在某地的彩票活动中,七年中有人累计中两次大 奖的机会是: 一半对一半
人们的潜意识常常与理性思考的结果有很大差别, 如不善于统计思考,即使面对十分平常的现象,也会闹 出笑话。
《概率统计简明教程》第二版
第八章 统计量与抽样分布
第八章 统计量与抽样分布
二、总体和样本

统计学第八章

统计学第八章
19
8.1.3 两类错误
项目
没有拒绝H0
拒绝H0
H0为真
1-α(正确)
α(弃真错误)
H0为假
β(取伪错误)
1-β(正确)
假设检验中各种可能结果的概率
20
8.1.3 两类错误
α和β的关系: 1、 α和β的关系就像跷跷板, α小β就大, α大β就小。因为, 要减少弃真错误α,就要扩大接受域。而扩大接受域,就必然导致取 伪错误的可能性增加。因此,不能同时做到犯两种错误的概率都很 小。要使α和β同时变小,唯一的办法就是增大样本量。 α和β两者的 关系就像是区间估计当中可靠性和精确性的关系一样。 2、在假设检验中,大家都在执行这样一个原则,即首先控制犯α错 误原则。
一般来说,在研究问题的过程中,我们想要予以反对的那个结论, 我们就把它作为原假设。
比如,一家研究机构估计,某城市当中家庭拥有汽车的比例超过 30%。为了验证这种估计是否正确,该研究机构随机的抽取了一个样本 进行检验。试陈述用于检验的原假设和备择假设。
解:研究者想要收集证据予以支持的假设是:“该城市中家庭拥有 汽车的比例超过30%”。因此,原假设是总体比例小于等于30%,备择 假设是总体比例大于30%。可见,通常我们应该先确定备择假设,再确 定原假设。
6
8.1.2 假设的表达式
在假设检验中,一般要先设立一个假设(比如从来没做过坏事),然 后从现实世界的数据中找出假设与现实的矛盾,从而否定该假设。所以, 在多数统计教材当中,假设检验都是以否定事先设定的那个假设为目标的。
如果搜集到的数据分析结构不能否定该假设,只能说明我们掌握的现 实不足以否定该假设,但不能说明该假设一定成立。这是假设检验做结论 的时候尤其要注意的一点。比如一个人在数次的观察中都没有干坏事,但 并不说明他从来都没干过坏事。

抽样检验和抽样分布

抽样检验和抽样分布

抽样检验和抽样分布1. 引言抽样是统计学中非常重要的概念,通过对总体的一局部样本进行研究和分析,可以得出关于总体的推断和结论。

抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。

抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。

2. 抽样检验抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。

在抽样检验中,我们首先提出一个原假设和一个备择假设,然后通过计算样本统计量的概率来判断原假设是否成立。

常用的抽样检验方法包括:2.1 单样本 t 检验单样本 t 检验用于判断一个样本的均值是否与总体均值存在显著差异。

通过计算样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明样本均值与总体均值之间存在显著差异。

2.2 双样本 t 检验双样本 t 检验用于判断两个样本的均值是否存在显著差异。

通过计算两个样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明两个样本的均值之间存在显著差异。

2.3 卡方检验卡方检验用于判断两个或多个分类变量之间是否存在关联性。

通过计算卡方统计量来进行判断,如果卡方统计量的值较大,说明分类变量之间存在关联性。

2.4 方差分析方差分析用于判断一个因变量在不同组之间是否存在显著差异。

通过计算方差比率统计量来进行判断,如果方差比率统计量的值较大,说明不同组之间的因变量存在显著差异。

3. 抽样分布抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。

常用的抽样分布包括:3.1 正态分布在很多情况下,当样本容量足够大时,抽样分布可以近似地认为是正态分布。

正态分布是一种对称的连续概率分布,其概率密度函数可由均值和标准差完全描述。

3.2 学生 t 分布学生 t 分布是在样本容量较小、总体标准差未知的情况下使用的抽样分布。

学生 t 分布相比于正态分布,具有更宽的尾部,适用于小样本量的情况。

3.3 卡方分布卡方分布是基于正态分布的样本推断中经常使用的一种抽样分布。

概率统计——抽样分布课后练习(附答案)

概率统计——抽样分布课后练习(附答案)

课后练习:一、单项选择:1、抽样误差是指:()A.抽样推断中各种原因引起的全部误差B.工作性误差C.系统性代表误差D.随机误差 D2、重复抽样的抽样误差()A.大于不重复抽样的抽样误差B.小于不重复抽样的抽样误差C.等于不重复抽样的抽样误差D.不一定 A3、在简单重复抽样下,若总体标准差不变,要使抽样平均误差变为原来的一半,则样本单位数必须()A.扩大为原来的2倍B.减少为原来的一半C.扩大为原来的4倍D.减少为原来的四分之一 C4、在抽样之前对每一个单位先进行编号,然后使用随机数字表抽取样本单位,这种方式是()A.等距抽样B.分层抽样C.简单随机抽样D.整群抽样 C5、一个连续性生产的工厂,为检验产品的质量,在一天中每隔1小时取5分钟的产品做全部检验,这是()A.等距抽样B.分层抽样C.整群抽样D.简单随机抽样 C6、某工厂连续生产,为检验产品质量,在一天中每隔半小时取一件产品做检验,这是()A.简单随机抽样B.整群抽样C.机械抽样D.类型抽样 C7、为了了解某工厂职工家庭收支情况,按该厂职工名册依次每50人抽取1人,对其家庭进行调查,这种调查属于()A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样 B8、抽样平均误差的实质是()A. 总体标准差B. 抽样总体的标准差C. 抽样误差的标准差D. 抽样平均数的标准差 D9、为调查某消费群体的消费习惯,将消费者按受教育层次分类后,再确定比例抽取样本,此抽样方法属于()A. 纯随机抽样B. 分层抽样C. 机械抽样D. 整群抽样 B10. 抽样调查必须遵循的基本原则是()A. 灵活性原则B. 准确性原则C. 随机原则D. 可靠性原则 C11. 抽样误差是()A. 代表性误差B. 登记性误差C. 系统性误差D. 随机误差 D12. 抽样平均误差和极限误差的关系是()A. 抽样平均误差小于极限误差B.抽样平均误差大于极限误差C. 抽样平均误差等于极限误差D. 抽样平均误差可能大于、等于或小于极限误差 D13. 在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A. 扩大为原来的4倍B. 每个大为原来的2倍C. 缩小为原来的1/4倍D. 缩小为原来的1/2倍 A14. 一般来说, 在抽样组织形式中,抽样误差较大的是()A. 简单抽样B. 分层抽样C. 整群抽样D. 等距抽样 C15. 根据抽样的资料, 一年级优秀生比重为10%, 二年级为20%,在人数相等时,优秀生比重的抽样误差()A. 一年级较大B. 二年级较大C.相同 D. 无法判断16. 根据重复抽样的资料, 甲单位工人工资方差为25,乙单位为100,乙单位人数比甲单位多3倍, 则抽样误差()A. 甲单位较大B. 无法判断C.乙单位较大 D. 相同17. 最符合随机原则地抽样组织形式是( )A. 整群抽样B. 类型抽样C. 阶段抽样D. 简单随机抽样二、判断题1、 抽样调查必须遵循的原则是灵活性原则。

抽样与抽样分布

抽样与抽样分布

抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。

而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。

本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。

一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。

抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。

抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。

二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。

简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。

2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。

系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。

3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。

整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。

4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。

分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。

三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。

即样本统计量是对总体参数的无偏估计。

无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。

2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。

即样本统计量在大样本情况下能够接近总体参数,具有一致性。

统计学之抽样与抽样分布

统计学之抽样与抽样分布
a. n/N > 30 b. N/n < 0.05 c. n/N < 0.05 d. n/N > 0.05
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值

电子课件 [统计学原理与实务(第3版)][曹印革][电子教案和习题解答] 第八章 抽样推断分析

电子课件 [统计学原理与实务(第3版)][曹印革][电子教案和习题解答] 第八章 抽样推断分析

注:极限误差与概率度和抽样平均误差三者之 间存在如下关系:
1.在平均误差保持不变的情况下,增大概率度 的值,把握程度相应增加,误差范围也随之扩大, 这时估计的精确度将降低;反之,要提高估计的精 确度,就得缩小概率度值,此时把握程度也会相应 降低。
2.在概率度保持不变的情况下,抽样平均误差 小,则误差范围就就小,估计的精确度就高;反之, 抽样平均误差大,误差范围就大,估计的精确度就 低。
2.特点 (1)抽样推断是由部分推算总体的一种认识方法。 (2)抽样推断是建立在按随机原则抽取样本的基础上。 (3)抽样推断是运用概率估计的方法。 (4)抽样推断产生的误差可以事先计算、并加以控制。
二、抽样推断的作用 1.应用抽样推断法可对某些不可能或不容易进行全面 调查而又要了解其全面情况的社会经济现象进行数量 方面的统计分析。 2.应用抽样法可对全面调查的结果加以补充或订正。 3.应用抽样法可对生产过程中产品质量进行检查和控 制。 4.应用抽样推断法可对总体的某种假设进行检验,判 断假设的真伪。
4.当抽样调查是为了检验全面统计数字的质量时,全 及总体的标志变异指标或是有实际资料的,可以直接 代入公式计算必要的抽样单位数。 5.如有几个方差可以选用时,宜选择最大数值。对于 成数方差,如果没有资料时,可取其最大值0.25。 6.一个总体往往可以同时计算抽样平均数和抽样成数。 由于它们的方差和允许误差范围不同,因此,需要的 必要抽样单位数也不相同。为了防止由于样本单位数 不足而扩大抽样误差,在实际工作中往往根据比较大 的必要抽样单位数进行抽样,以满足共同的需要。
等距抽样示意图
(四)整群抽样 也称集团抽样、区域抽样,是将总体各单位按时
间或空间形式划分成许多群,然后按纯随机抽样或机 械抽样方式从中抽取部分群,对中选的所有单位进行 全面调查的抽样组织方式。

统计学知到章节答案智慧树2023年河南大学

统计学知到章节答案智慧树2023年河南大学

统计学知到章节测试答案智慧树2023年最新河南大学第一章测试1.在相同或近似相同的时间点搜集的数据成为()参考答案:截面数据2.只能归于某一有序类别的非数字型数据成为()参考答案:顺序数据3.最近发表的一份报告称,“由150部新车组成的一个样本表明,外国新车的价格明显高于本国生产的新车”。

这项结论属于()参考答案:对总体的推断4.一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。

这里的参数是()参考答案:所有在网上购物的消费者的平均花费金额5.某年全国汽车总产量(万辆)是()参考答案:随机变量6.统计数据的研究的基本方法()参考答案:统计分组法;综合指标法;统计推断法;大量观察法7.以下信息是通过描述统计取得的有()参考答案:调查某班统计学分数而得到的优秀比例;一幅表示某班学生统计学考试分数的统计图;调查某班学生统计学考试分数而得到的该班学生的平均成绩8.下面属于顺序数据的有()参考答案:学生对考试成绩的满意度;学生的智商等级9.统计推断学研究的主要问题是()参考答案:如何科学的从总体中抽取样本;如何科学的确定总体;如何由所抽样本去推断总体特征10.大数据按存在形态不同,大数据可以分为()参考答案:非结构型数据;结构型数据11.统计量是不包含任何未知参数的样本的函数()参考答案:对12.变量按其所受影响因素不同,可以分为确定性变量和随机性变量()参考答案:对13.按指标的性质不同,可以分为数量指标和质量指标()参考答案:对14.统计指标和标志是同一个概念()参考答案:错15.按照统计数据的收集方法,可以将其分为观测数据和实验数据()参考答案:对第二章测试1.如果一个样本因人为故意操纵而出现偏差,这种误差属于()参考答案:非抽样误差2.对一批牛奶的质量进行调查,应该采用()参考答案:抽样调查3.抽样误差产生的原因()参考答案:抽样的随机性产生的4.抽样误差的特点()参考答案:不可避免5.为了掌握商品销售情况,对占该地区商品销售额70%的十家大型商场进行调查,这种调查方式属于()参考答案:重点调查6.不同的调查问卷在具体结构、题型、措词、版式设计上会有所不同,但在结构上一般都由( )参考答案:问卷标题;问卷说明;主体内容成;填写要求7.重点调查的特点( )参考答案:有意识地选取若干具有典型意义的单位进行的调查;属于范围较小的全面调查,即对所有重点单位都要进行观测;解剖麻雀式;以客观原则来确定观测单位8.简单随机抽样的特点()参考答案:抽选的概率相同,用样本统计量对总体参数进行估计及计算估计量误差都比较方便;每个单位的入样概率是相等的9.根据封闭性问题的回答方法可分为()参考答案:两项选择法;顺序选择法;评定尺度法;多项选择法10.搜集数据的方式有()参考答案:访问;统计调查方式;实验方式;网络数据采集方式11.普查是根特定研究目的而专门组的一次性的全面调查,以搜集研究对象的全面资料数据()参考答案:对12.统计报表是指按照国家统一规定的表格形式、指标内容、报送程序和报送时间,由填报单位自下而上逐级提供统计资料的一种统计调查方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章抽样与抽样分布
一、名词解释
1、统计抽样:按照随机原则从被研究现象的总体中,抽取一部分单位进行观察,然后根据
观察的结果运用数理统计的原理,来估计总体综合指标或者对总体综合指标的某种假设进行
检验。

2、重复抽样:是从总体中每抽出一个样本单位后,把结果记录下来,随即将该单位放回到
总体中去,使它和其余的单位在下一次抽选中具有同等被抽中的机会,再抽取第二个单位,直至抽取n个单位为止。

3、不重复抽样:一个单位被抽中后不再放回总体,然后再从所剩下的单位中抽取第二个单位,直到抽出n个单位为止,这样的抽样方法不可能使一个总体单位被重复抽中,所以称为
不重复抽样。

4、简单随机抽样:在从总体中随机抽取n个单位作为样本时,要使得每一个总体的单位都
有相同的机会(概率)被抽中。

5、分层抽样:在抽样之前先将总体的单位划分为若干层(类),然后从各个层中抽取一定数
量的单位组成一个样本,这样的抽样方式称为分层抽样,也称为分类抽样。

6、系统抽样:在抽样中先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点,
然后,每隔一定的间隔抽取一个单位,直至抽取n个单位形成一个样本。

这样的抽样方式称
为系统抽样,也称等距抽样或机械抽样。

7、整群抽样:调查时,先将总体划分成若干群,然后再以群作为调查单位从中抽取部分群,
进而对抽中的各个群中所包含的所有个体单位进行调查或观察,这样的抽样方式称为整群抽样。

8、总体分布:总体是我们关心的若干个元素的集合,总体中每个元素的取值是不同的,这些
观察值所形成的相对频数分布就是总体分布。

9、样本分布:是指一个样本中各观察值所形成的相对频数分布。

10.抽样分布:某个样本统计量的抽样分布,从理论上说就是在重复选取容量为n的样本时,
由该统计量的所有可能取值形成的相对频数分布。

11、比率:是指总体(或样本)中具有某种属性的单位与全部单位总数之比。

12、样本比率的抽样分布:在重复选取容量为n的样本时,由样本比率的所有可能取值形成
的相对频数分布称为样本比率的抽样分布。

二、判断题
1、×
2、√
3、×
4、×
5、√
6、×
7、√
8、√
9、× 10、√
三、选择题
1、A
2、A
3、B
4、B
5、C
6、D
7、D
8、D
9、C 10、D 11、C 12、B 13、C 14、C 15、A 16、D 17、A 18、B 19、C 20、B 21、B 22、B 23、B 24、A 25、A
四、简答题
1、简述统计抽样的基本特点。

(1)统计抽样是从样本指标来推断总体的相应指标;
(2)按照随机的原则来抽取样本;
(3)能科学地计算出抽样数目;
(4)误差可以计算并控制。

2、简述统计抽样的重要作用。

(1)用更少的人力、时间和费用达到对总体的认识;
(2)在实际工作中可以取得全面资料,但不能进行全面调查时,要运用统计抽样;
(3)对时间序列总体,根据一定顺序的抽查,可以对生产过程进行控制和检验;
(4)对普查质量进行检查和修正;
(5)对于需要了解全面资料因时间紧迫不可能取得全面资料时,要运用统计抽样的方法来取得资料。

3、常用的统计抽样方法有哪些,?
(1)简单随机抽样:在从总体中随机抽取n 个单位作为样本时,要使得每一个总体的单位都有相同的机会(概率)被抽中。

(2)分层抽样:在抽样之前先将总体的单位划分为若干层(类),然后从各个层中抽取一定数量的单位组成一个样本,这样的抽样方式称为分层抽样,也称为分类抽样。

(3)系统抽样:在抽样中先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点,然后,每隔一定的间隔抽取一个单位,直至抽取n 个单位形成一个样本。

(4)整群抽样:调查时,先将总体划分成若干群,然后再以群作为调查单位从中抽取部分群,进而对抽中的各个群中所包含的所有个体单位进行调查或观察。

4、简述大数定律。

大数定律又叫大数法则,说明由大量相互独立的随机变量构成的总体,其中每个变量虽有各种不同的表现,但对这些大量的变量加以综合平均,就可以消除由偶然因素引起的个别差异,从而使总体单位的某一标志的规律性及其共同特征能在一定的数量和质量上表现出来。

五、计算题
1.解:(1)400)(==μx E
510050)2(===n x σσ
)25,400(~)3(N x
2.解:(1)17)(==μx E 重复抽样:1100
1002===n x σσ 则)1,
17(~N x 不重复抽样:876.01
80010080012=--=--=N n N n x σσ 则)876.0,
17(~N x
(2)17)(==μx E 由于样本容量与总体单位数相差很大,故
25.6161002
===n x σσ
因为总体服从于正态分布,所以,即使抽取为小样本,但仍有 )25.6,17(~N x
3.解:(1)429.14910
===n x σ
σ
(2)0843.17588.0429.1120049200429.11=⨯=--=--=N n N n
x σ
σ 总体单位数为5000时,可认为是重复抽样 所以:429.14910===n x σ
σ
4.解(1)5606.0100>=⨯=np
5404.0100)1(>=⨯=-p n
所以:6.0)(==πp E
(2)049.01004.06.0)1(=⨯=-=n
p ππσ (3))049.0,
6.0(~2N p。

相关文档
最新文档