方程组与不等式综合应用题

合集下载

二元一次方程组和一元一次不等式的应用

二元一次方程组和一元一次不等式的应用

二元一次方程组及不等式的综合应用崔莹莹2016-6-112.(2015•广东省,第22题,7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y .答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.6.(2015·四川甘孜、阿坝,第26题8分)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用..分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.7.(2015·山东潍坊第19 题9分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.解答:解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.点评:此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.12.(2015•四川眉山,第24题9分)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1100元,则工会最多可以购买多少支钢笔?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,根据总费用不超过1100元,列出不等式解答即可.解答:解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得解得:答:一支钢笔需16元,一本笔记本需10元;(2)设购买钢笔的数量为x,则笔记本的数量为80﹣x,由题意得16x+10(80﹣x)≤1100解得:x≤50答:工会最多可以购买50支钢笔.点评:此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.13. (2015•四川泸州,第21题7分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。

(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。

该公司所筹资金不少于2090万元,但不超过2096万元。

且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。

等式与不等式综合练习

等式与不等式综合练习

等式与不等式综合练习等式和不等式是数学中的重要概念,它们在解方程、证明不等式、表示数值关系等方面起着重要的作用。

通过综合练习,我们可以加深对等式和不等式的理解,并进一步提高解题能力。

本文将介绍一些等式和不等式的综合练习题,帮助读者更好地掌握这些概念。

1. 等式练习题1.1 方程求解(1) 解方程:3x + 7 = 22(2) 解方程组:2x + y = 10, 3x - y = 4(3) 求二次方程:x^2 - 5x + 6 = 0 的根1.2 应用题(1) 一个数的三倍减去5的结果等于17,求这个数。

(2) 甲和乙共有50元,如果甲的钱数是乙的2倍,求甲和乙各有多少钱。

2. 不等式练习题2.1 不等式求解(1) 求解不等式:2x + 3 > 7(2) 求解不等式组:{ x + y > 5, 2x - y < 10 }2.2 应用题(1) 甲和乙的身高相差不超过5厘米,甲的身高不低于158厘米,乙的身高至少为多少?(2) 一辆车从A地到B地,总共行驶了200公里,已知非高速路段行驶的里程不超过120公里,求高速路段行驶的里程至少为多少?3. 等式与不等式综合练习题3.1 求解等式和不等式(1) 解方程:2x + 5 = 9(2) 解不等式:3x - 4 > 10(3) 解方程组与不等式组:{ x + y = 5, 2x - y < 10 }3.2 应用题(1) 一个数减去5的绝对值大于8,求这个数的取值范围。

(2) 甲和乙同时从A地到B地,已知甲的车速为60km/h,乙的车速至少为多少,才能保证乙能在不超过2小时的时限内到达B地?通过以上综合练习题,我们可以加深对等式和不等式的理解和运用。

在解等式和不等式的过程中,需要灵活应用各种解题方法,如加减消元、代入法、图像法等。

同时,注意题目中的应用题,将数学知识与实际问题相结合,培养解决实际问题的能力。

总结:等式和不等式是数学中重要的概念,通过综合练习题可以加深对其理解和运用。

二元一次方程组与一元一次不等式的应用题

二元一次方程组与一元一次不等式的应用题

1 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。

2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A 、B 两种设备,已知:购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元. (1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计 解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:,解得:,答:每台A 种、B 种设备各0.5万元、1.5万元;(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z≥15,答:至少购买A 种设备15台.3.暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?4某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%. (1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.5.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包。

不等式(组)及分式方程综合应用

不等式(组)及分式方程综合应用
解应用题的基本步骤: (1)审(2)设(3)列(4)解(5)验(6)答
典例精解
考点: 分式方程,一元一次不等式(组)的应用
开明中学开学初在金利源商场购进A,B两种品牌的足球, 购买A品牌足球花费了2500元,购买B品牌足球花费了2000 元,且购买A品牌足球的数量是购买B品牌足球数量的2倍, 已知购买一个B品牌足球比购买一个A品牌足球多花30元. (1)求购买一个A品牌、一个B品牌的足球各需多少元;
专题突破
旧知回顾
1、某产品进价120元,共有15件,为了使利润不低 于1000元,那么这件产品的定价至少在多少元?
解:设定价为x元
(x-120) ×15≥1000
2.某人骑一辆电动自行车,如果行驶速度增加5km/h ,那么2h所行驶的路程不少于原来速度2.5h所行驶 的路程.他原来行驶的速度最大是多少?
(3)【延伸题】在(2)条件下,若购买B品牌的足球数 不少于A品牌足球数的1.5倍,求有多少种购买方案?
变式训练
考点: 分式方程,一元一次不等式(组)的应用
为配合“一带一路”国家倡议,某铁路货运集装箱物流 园区正式启动了2期扩建工程.一项地基基础加固处理 工程由A、B两个工程公司承担建设,已知A工程公司 单独建设完成此项工程需要180天.A工程公司单独施 工45天后,B工程公司参与合作,两工程公司又共同施 工54天后完成了此项工程. (1)求B工程公司单独建设完成此项工程需要多少天?
(2)设未知数注意和题目中各个量关系都密切 的量,注意根据问题情况灵活选择设法,如直接 法,间接法,设多元等 (3)求分式方程的解,验根应从两个方面出发: 方程本身和实际意义
(2)开明中学为响应习总书记“足球进校园”的号召,决 定再次购进A,B两种品牌足球共50个.恰逢金利源商场对两 种品牌足球的售价进行调整,A品牌足球的售价比第一次购 买时提高了8%,B品牌足球按第一次购买时售价的9折出售. 如果这所中学此次购买A,B两种品牌足球的总费用不超过 3260元,那么开明中学此次最多可购买多少个B品牌足球?

初二数学-一次函数、方程(组)及不等式的综合应用

初二数学-一次函数、方程(组)及不等式的综合应用

不等式在实际问题中的应用
方案优选问题 在多种方案中选择最优方案,可以通过建立和解决不等式来比较各种方案的优劣。 最大值最小值问题 在生产、生活中,经常需要求某个量的最大值或最小值,可以通过建立不等式来解决。 经济问题 在经济学中,价格、成本、利润等变量之间存在不等关系,可以通过建立和解决不等式来分析经济问题。
建立实际问题与数学模型的联系
实际问题的数学建模与解决
通过分析实际问题,将问题转化为数学模型,如线性方程、不等式或函数表达式。
利用数学知识和方法求解数学模型,得出实际问题的解决方案。
实际问题的数学解决方案
将数学解决方案应用到实际问题中,验证其可行性和有效性。
实际问题的应用与验证
综合应用题的解题思路与技巧
方程组在实际问题中的应用
在经济学中,方程组被用来描述和解决各种问题,如供需关系、成本和收益等。
经济问题
在解决物理问题时,经常需要建立和解决方程组,例如在力学、电磁学和热力学等领域。
物理问题
在航天工程中,需要建立复杂的方程组来描述和解决飞行器的轨道、速度和加速度等问题。
航天工程
PART THREE
初二数学-一次函数、方程(组)及不等式的综合应用
答辩学生:XXX 指导老师:XXX
Contents
目 录
目录
绪论
研究 方法
PART ONE
一次函数的应用
3.1关键技术 3.2技术难点 3.3案例分析
一次函数的定义与性质
一次函数是形如$y=kx+b$的函数,其中$k$和$b$是常数,且$k neq 0$。 一次函数的图像是一条直线,其斜率为$k$,截距为$b$。 一次函数的性质包括单调性、奇偶性等,这些性质在解决实际问题中具有重要意义。

方程与不等式应用题及答案

方程与不等式应用题及答案

方程与不等式应用题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(方程与不等式应用题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为方程与不等式应用题及答案的全部内容。

方程与不等式应用题及答案1.(2012湖北省恩施市)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高( )A .40%B .33.4%C .33.3%D .30%【解析】根据关系式:售价≥进价×(1+20%)进行计算.设超市购进大樱桃P 千克,每千克Q 元,售价应提高x %,则有P (1—10%)•Q(1+x%)≥PQ (1+20%),即(1-10%)(1+x%)≥1+20%,∴x%≥33.3%. 【答案】B2。

( 2012年浙江省宁波市)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“[说明:①]已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a,b 的值(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?【解析】(1)由题意,得错误!用加减法解此方程组,得a=2.2,b=4.2(2)当用水量为30吨时,水费为:17×3+13×5=116元,9200×2%=184元,∵116﹤184,∴小王家六月份的用水量超过30吨,设小王家6月份用水量为x 吨,由题题,得17×3+13×5+6。

二元一次方程组和不等式组练习

二元一次方程组和不等式组练习

□x +5y =13 ①4x -□y =-2 ② 三、填空:28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________;30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题: 47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解; 48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;50、要使下列三个方程组成的方程组有解,求常数a 的值。

方程与不等式应用题(习题及解析)

方程与不等式应用题(习题及解析)

方程与不等式应用题(习题及解析)例题示范例 1:现要把 228 吨物资从某地运往甲、乙两地,用大、小两种货车共 18 辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为 16 吨/辆和 10 吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆.(2)假如安排 9 辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为 a 辆,前往甲、乙两地的总运费为 w 元,求出 w 与a 之间的函数关系式,并写出自变量的取值范畴.(3)在(2)的条件下,若运往甲地的物资许多于 120 吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.【思路分析】2.建立数学模型(1)结合题中信息“用大、小两种货车共 18 辆,恰好能一次性运完这批物资”,考虑方程模型;(2)结合题中信息“自变量的取值范畴”,考虑建立不等式模型,查找题目中的不等关系(显性和隐性);(3)结合题中信息“运费最少的货车调配方案”,考虑建立函数模型.3.求解验证,回来实际.【过程书写】解:(1)设大货车用 x 辆,则小货车用(18-x)辆,依照题意得,16x +10(18-x)=228解得,x=8即大货车用 8 辆,小货车用 10 辆.(2)由题意得,w 720a 800(8 a) 500(9 a) 650[10 (9 a)]70a 11550a ≥ 08 a ≥ 09 a ≥ 010 (9 a) ≥ 0∴ 0 ≤ a ≤ 8 ,且 a 为整数∴ w 70a 11550( 0 ≤ a ≤ 8 ,且a为整数)(3)由题意得,16a 10(9 a) ≥120解得, a ≥ 5∵ 0 ≤ a ≤ 8 ,且 a 为整数∴ 5 ≤ a ≤ 8 ,且 a 为整数在 w 70a 11550 中∵ 70 0∴w 随 a 的增大而增大∴当 a=5 时, wmin 11900(元)即最优方案为:甲地乙地大货车 5 3小货车 4 6巩固练习已知 2 辆 A 型车和 1 辆 B 型车载满物资时一次可运货 10 吨;1 辆 A 型车和2 辆 B 型车载满物资时一次可运货 11 吨.某物流公司现有物资 31 吨,打算同时租用 A 型车和 B 型车,要求一次运完,且恰好每辆车都载满物资.依照以上信息,解答下列问题:(1)1 辆 A 型车和 1 辆 B 型车都载满物资时一次可分别运货多少吨?(2)请你关心该物流公司设计出所有的租车方案;(3)若每辆 A 型车的租金为 100 元/次,每辆 B 型车的租金为120 元/次,请选出最省钱的租车方案,并求出最少的租车费.受金融危机的阻碍,某店经销的甲型号手机今年的售价与去年相比,每台降价 500 元,假如卖出相同数量的手机,去年销售额为 8 万元,今年销售额只有 6 万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,今年该店决定再经销乙型号手机,已知甲型号手机每台进价为 1 000 元,乙型号手机每台进价为 800 元,打算用不多于 1.8 4 万元且许多于 1.76 万元的资金购进这两种手机共 20 台,则该店有哪几种进货方案?(3)若乙型号手机每台售价为 1 400 元,为了促销,打九折销售,而甲型号手机仍按今年的售价销售,则在(2)的各种进货方案中,哪种方案获利最大?最大利润是多少元?小王家是新农村建设中涌现出的“养殖专业户”,他预备购置 80 只相同规格的网箱,养殖 A,B 两种淡水鱼(两种鱼不能混养).打算用于养鱼的总投资多于 6.7 万元,但不超过6.91 万元,其中购置网箱等基础建设需要 1.2 万元.设他用 x 只网箱养殖 A 种淡水鱼,目前平均每只网箱养殖 A,B 两种淡水鱼所需投入及产出情形如下表:(1)小王有哪几种养殖方式?(2)哪种养殖方案获得的利润最大?(3)依照市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A 种鱼价格上涨 40%,B 种鱼价格下降 20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)摸索小结应用题的处理框架是什么?①明白得题意:分,找借助等梳理信息;②建立:方程模型、不等式(组)模型、函数模型等③求解验证,回来实际目前我们差不多学习了几种数学模型,在什么情形下考虑对应的模型?【参考答案】巩固练习1.(1)1 辆 A 型车载满物资时一次可运货 3 吨,1 辆 B 型车载满物资时一次可运货 4 吨.(2)该物流公司共有 3 种租车方案.方案一,租用 A 型车 1 辆,B 型车 7 辆;方案二,租用 A 型车 5 辆,B 型车 4 辆;方案三,租用 A 型车 9 辆,B 型车 1 辆.(3)最省钱的租车方案为,租用 A 型车 1 辆,B 型车 7 辆.最少的租车费为 940 元.2.(1)今年甲型号手机每台售价为 1 500 元.(2)该店共有 5 种进货方案.方案一,购进甲型号手机 8 台,乙型号手机 12 台;方案二,购进甲型号手机 9 台,乙型号手机 11 台;方案三,购进甲型号手机 10 台,乙型号手机 10 台;方案四,购进甲型号手机 11 台,乙型号手机 9 台;方案五,购进甲型号手机 12 台,乙型号手机 8 台.(3)购进甲型号手机 12 台,乙型号手机 8 台,所获利润最大,最大利润为 9 680 元.3.(1)小王共有 5 种养殖方案.方案一,养殖 A 种淡水鱼 45 箱,B 种淡水鱼 35 箱;方案二,养殖 A 种淡水鱼 46 箱,B 种淡水鱼 34 箱;方案三,养殖 A 种淡水鱼 47 箱,B 种淡水鱼 33 箱;方案四,养殖 A 种淡水鱼 48 箱,B 种淡水鱼 32 箱方案五,养殖 A 种淡水鱼 49 箱,B 种淡水鱼 31 箱.(2)养殖 A 种淡水鱼 45 箱,B 种淡水鱼 35 箱,所获利润最大.(3)价格变化后,养殖 A 种淡水鱼 49 箱,B 种淡水鱼 31 箱,所获利润最大.摸索小结①层次,结构,表格②数学模型共学了 3 种数学模型,分别是是方程模型,不等式(组)模型,函数模型①有共需、同时、刚好、恰好、相同等关键词时,考虑方程模型②有显示、隐性不等关系等,考虑不等式(组)模型③有最大利润、最省钱、运费最少、尽可能少、最小值等,考虑函数模型。

_方程(组)与不等式(组)应用题(含答案)-

_方程(组)与不等式(组)应用题(含答案)-

方程(组)与不等式(组)应用题【例题经典】一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【点评】此题通过数学建模能培养同学们应用数学知识解决问题的能力,此题先将实问题转化为列方程组和不等式组解应用题.例2《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。

它的代数成就主要包括开放术、正负术和方程术。

其中,方程术是《九章算术》最高的数学成就。

《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两。

问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。

问每头牛、每只羊各值金多少两”设每头牛值金x,每只羊各值金y两,可列方程组为_____________.例3:(2010•北京)列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【点评】此题通过数学建模能培养同学们应用数学知识解决问题的能力,此题先将实问题转化为列方程组和不等式组解应用题.中考达标函数/不等式/方程的应用问题(东城)9. 为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品. 已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过...200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是A.5 B.6 C.7D.8(海淀)9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 000(燕山)9.手工课上,老师将同学们分成A,B两个小组制作两个汽车模型,每个模型先由A组同学完成打磨工作,再由B组同学进行组装完成制作,两个模型每道工序所需时间如下:A.20分钟B.22分钟C.26分钟D.31分钟(石景山)9.王先生清明节期间驾车游玩,每次加油都把油箱加满.下表记录了该车相邻两次加油时的相关数据:注:“累计里程”指汽车从出厂开始累计行驶的路程.根据数据,王先生计算出这段时间内该车行驶一百公里....的平均耗油量大约是 A .7升 B .8升 C .9升 D .10升则应选择的套餐是A .套餐1B .套餐2C .套餐3D .套餐4(门头沟)15.某地中国移动“全球通”与“神州行”收费标准如下表:65~70分钟之间,那么他选择 较为省钱(填“全球通”或“神州行”).(2016房山一模)9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱 A. 方式一 B. 方式二 C.两种方式一样 D. 无法确定(2016昌平二模)9.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四(2016海淀二模)8.某通信公司自2016年2月1日起实行新的4G 飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是A.套餐1 B.套餐2 C.套餐3 D.套餐4(2016朝阳二模)8.现有A、B两种商品,买3件A商品和2件B商品用了160元,买2件A商品和3件B商品用了190元.如果准备购买A、B两种商品共10件,下列方案中费用最低的为A.A商品7件和B商品3件B.A商品6件和B商品4件C.A商品5件和B商品5件D.A商品4件和B商品6件【考点精练】1.(2006年潍坊市)据《淮坊日报》报道,潍坊市物价局下发了《关于调整潍坊市城市供数50%(•含)•以内的部分]•的基本水价在基数内基本水价的基础上,••每立方米加收_______元;基数外二档(即超基数50%以外的部分)•的基本水价在基数内基本水价的基础上,每立方米加收_________元;(2)若李明家基数内用水为每月6吨,5月份他家用水12吨,那么李明家5月份应交水费(按综合水价计算)多少元?若李明家计划6月份水费不超过30元,那么李明家6月份最多用水多少吨?(精确到0.01)2.双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,•B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,•需要1880元.(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型号服装可获利18元,销售1件B型号服装可获利30元,•根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,•且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,•问有几种进货方案?如何进货?3.(2006年龙岩市)某水果经销商上月份销售一种新上市的水果,•平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x元/千克,•则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系式y=kx+b.当x=7•时,•y=2000;x=5时,y=4000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,•要使本月份销售这种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,•那么该种水果价格每千克应调低至多少元?(利润=售价-成本价)4.武汉市江汉一桥维修工程中拟由甲、乙两个工程队共同完成某项目,•从两个工程队的资料可以知道:若两个工程队合做24天恰好完成;若两队工程队合做18天后,甲工程队再单独做10天,也恰好完成,请问:(1)甲、乙两个工程队单独完成该项目各需多少天?(2)已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?5.(2006年日照市)日照市是中国北方最大的对虾养殖产区,•被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公割标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的种苗每投放一吨的先期投资、290千元,•设西施舌种苗的投放量为x吨.(1)求x的取值范围;(2)设这两个品种的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?6.某企业在“蜀南竹海”收购毛竹进行粗加工,每天可加工8吨,•每吨获利800元,如果对毛竹进行精加工,每天可加工1吨,每吨获利4000元.由于受条件限制,每天只能采用一种方式加工,要求在一月内(30天)将这批毛竹全部销售.为此企业厂长召集职工开会,让职工们讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可以几天粗加工,再用几天精加工后销售,请问厂长采用哪位说的方案获利最大?7.(2005年盐城市)学校书法兴趣小组准备到文具店购买A,B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20枝时,按零售价销售;超过20枝时,•超过部分每枝比零售价低0.4元,其余部分仍按零售价销售;一次性购买B型毛笔不超过15枝时,按零售价销售;超过15枝时,超过部分每枝比零售价低0.6元,•其余部分仍按零售价销售.(1)如果全组共有20名同学,若每人各买1枝A型毛笔和2枝B型毛笔,共支付145元;若每人各买2枝A型毛笔和1枝B型毛笔,共支付129元,这家文具店的A,B•两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对A型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少枝,一律按原零售价(即(1)中所求得的A型毛笔的零售价)的90%出售,现要购买A型毛笔a枝(a>40),在新的销售方法和原来的销售方法中,•应选择哪种方法购买花钱较少?并说明理由.8.(2006年天门市)某地为促进特种水产养殖业的发展,•决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在改建的10个1亩大小的水池里分别养殖甲鱼和黄鳝,•因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,•相关信息如下表所示:(收益=(1(2)应怎样安排养殖,可获得最大收益?(3)据市场调查,在养殖成本不变的情况下,黄鳝的毛利润相对稳定,而每亩甲鱼的毛利润针减少m万元.问该农户又该如何安排养殖,才可获得最大收益?答案:例题经典例1. 设甲班人数为x 人,乙班人数为y 人.9169(1)138(1)830069(1)40027334439y x x y x x ⎧=-⎪+-=+-⎧⎪⎨⎨<+-<⎩⎪<<⎪⎩即, 因为x 为整数,所以x=34,35,36,37,38,39,40,41,42,43,44.又因为y 也整数,x 必须是8的倍数,所以x=40,•y=44, 所以总人数为84人.例2. 分析:可设A 、B 两种型号的轿车每辆分别为x 万元、y 万元. 通过列方程组解出(1)问. 解:(1)设A 型号的轿车每辆为x 万元,B•型号的轿车每辆为y 万元,根据题意,得1015300,15,818300.10.x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得. 答:A 、B 两种型号的轿车每辆分别为10万元,15•万元(2)设购进A 种型号的轿车a 辆,则购进B 种型号的轿车(30-a )辆. 根据题意,得1510(30)400,0.80.5(30)20.4.a a a a +-≤⎧⎨+-≥⎩,解此不等式组得18≤a ≤20,∵a 为整数,∴a=18,19,20, ∴有三种购车方案.方案1:•购进A 种型号轿车18辆,购进B 型号轿车12辆; 方案2:购进A 型号轿车19辆,购进B 型号轿车11辆; 方案3:购进A 型号轿车20辆,购进B 型号轿车10辆.• 汽车销售公司将这些轿车全部售出后; 方案1获利18×0.8+12×0.5=20.4(万元); 方案2获利19×0.8+11×0.5=•20.7(万元); 方案3获利20×0.8+10×0.5=21(万元).答:在三种购车方案中,•汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元.考点精练 1.(1)0.9;1.9(2)解:由题意知,李明家5月份基数内6吨水费为3.2×6=19.2(元),基数外一档3吨水费为4.1×3=12.3(元); 基数外二档3吨水费为5.1×3=15.3(元),所以,李明家5月份应交水费为19.2+12.3+15.3=46.8(元). 设李明家6月份计划用水x 吨,∵19.2<30<19.2+12.3,∴6<x<9, 依题意得19.2+(x-6)×4.1≤30,••解得x ≤8.63, ∴李明家6月份计划用水8.63吨. 2.(1)解:设A 种型号服装每件x 元,B 型服装每件y 件,由题意得9101810901281880100x y x x y y +==⎧⎧⎨⎨+==⎩⎩,解得; (2)设B 型服装购进m 件,则A 型服装购进(2m+4)件,由题意得18(24)306992428m m m ++≥⎧⎨+≤⎩,解不等式组,得912≤m ≤12,∵m 为正整数,∴m=10,11,12,∴2m+4=24,26,283.解:(1)依题意得:200071000400059000k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩, ,y=-1000x+9000. (2)•设该种水果价格每千克应调低至x•元.•(9000-1000x )(x-4)=(10-5)·(1+20%)·1000,整理得:x 2-13x+42=0,解得:x 1=6,x 2=7,• ∵要让顾客得到实惠,∴取x 1=6,答:该种水果价格每千克应调低至6元4.(1)解:•设甲独做x 天完成,乙独做y 完成.111402411106018()1x x y y x yx ⎧+=⎪=⎧⎪⎨⎨=⎩⎪++=⎪⎩,解之得符合题意. (2)设甲施工a 天,乙施工b 天.•140600.60.3522ab a b ⎧+=⎪⎨⎪+≤⎩,解之得b ≥40,即乙最少施工40天5.(1)94(50)360310(50)290x x x x +-≤⎧⎨+-≤⎩,解之得30≤x ≤32,(2)y=30x+20(•50-•x )•=10x+1000, ∵k=10>0,∴x=32时,y=1320千克6.设m 为毛竹的数量(吨),m ≤30•时应用精加工,当30<m<150时,应用30240,77m m--天粗加工天精加工, 当m ≥150时,应用粗加工7.解:(1)设每枝A 型毛笔x 元,每枝B 型毛笔y 元,则,2015(4015)(0.6)145,220(4020)(0.4)155(0.6)129.3x y y x x x y y y ++-⨯-==⎧⎧⎨⎨+-⨯-++-==⎩⎩解得, 故每枝A 型毛笔2元,每枝B 型毛笔3元.(2)如果按原来的销售方法购买a 枝A 型毛笔共需m 元,则m=20×2+(a-20)×(2-0.4)=1.6a+8;如果按新的销售方法购买a 枝A 型毛笔共需n 元,则n=a ×2×90%=1.8a ,于是n-m=1.8a-(1.6a+8)=0.2a-8,[键入文字]- 11 - ∵a>40,∴0.2a>8,∴n-m>0,可见,当a>40时,用新的方法购买A 型毛笔花钱多,因此应选择原来的方法购买.8.解:(1)设安排x 亩养甲鱼,得 1.5(10)14(2.5 1.50.2)(1.810.1)(10)10.8x x x x +-≤⎧⎨-++-+-≥⎩解得:6≤x ≤8,∴x=6,7,8.即安排:① 6亩水池养甲鱼,4亩水池养黄鳝;② 7亩养甲鱼,3亩养黄鳝;③8亩养甲鱼,2亩养黄鳝.(2)设收益为W 1,则W 1=(2.5-1.5+0.2)x+(1.8-1+0.1)(10-x )=0.3x+9,由(1)当x=8时W 最大.即8亩水池养甲鱼,2亩水池养黄鳝.(3)设收益为W 2,则W 2=(2.5-1.5+0.2-m )x+(1.8-1+0.1)(10-x )=(0.3-m )x+9, ① 当m=0.3时,按(1)中的安排均可获得最大收益.② 当m<0.3时,安排8亩养甲鱼,2亩养黄鳝.③当m>0.3时,安排6亩养甲鱼,4亩养黄鳝.。

2021年数学中考数学不等式(组)方程(组)的应用

2021年数学中考数学不等式(组)方程(组)的应用

中考数学不等式(组)与方程(组)的应用【例题经典】例1(1)甲、乙两公司单独完成这项工程各需多少天?(2)要使整个工程费用不超过22.5万元;则乙公司最少应施工多少天?【点评】(1)利用方程组解决;(2)利用不等式解决;结合实际取值.例2为了加强学生的交通安全意识;某中学和交警大队联合举行了“我当一日小交警”活动;星期天选派部分学生到交通路口值勤;协助交通警察维持交通秩序.若每一个路口安排4人;那么还剩下78人:若每个路口安排8人;•那么最后一个路口不足8人;但不少于4人.求这个中学共选派值勤学生多少人?•共在多少个交通路口安排值勤?【分析】本题与学生生活实际联系紧密;是一道很好的列不等式组应用题;解决本题应注意路口人数与总人数之间的关系.例3 华溪学校科技夏令营的学生在3名老师的带领下;准备赴北京大学参观;体验大学生活.现有两个旅行社前来承包;报价均为每人2000元;他们都表示优惠:希望社表示带队老师免费;学生按8折收费:青春社表示师生一律按7折收费.经核算;参加两家旅行社费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生;学校应选择哪家旅行社?【点评】方程与不等式的综合应用;注意取值与实际生活要相符【基础训练】1.九年级的几位同学拍了一张合影作留念;•已知冲一张底片需要0.80元;洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下;平均每人分摊的钱不足0.5元;那么参加合影的同学人数( )A .至多6人B .至少6人C .至多5人D .至少5人2.现用甲、乙两种运输车将46吨抗旱物资运往灾区;甲种运输车载重5吨;•乙种运输车载重4吨;安排车辆不超过10辆;则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆3.在一次“人与自然”知识竞赛中;竞赛题共25道;每道题都给4个答案;其中只有一个答案正确;选对得4分;不选或选错倒扣2分;得分不低于60•分得奖;那么得奖至少应选对题( )A .18道B .19道C .20道D .21道4.一种灭虫药粉30千克;含药率15%;现要用含药率较高的同种灭虫药粉50•千克和它混合;使混合后的含药率大于20%而小于35%;则所用药粉的含药率x 的范围是( •)A .15%<x<23%B .15%<x<35%C .23%<x<47%D .23%<x<50%5.某林场原计划在一定期限内固沙造林240公顷;实际每天固沙造林的面积比原计划多4公顷;结果提前5天完成任务;设原计划每天固沙造林x 公顷;根据题意下列方程正确的是( ) 240240240240.5.544240240240240.5.544A B x x x x C D x x x x +=-=+++=-=-- 6.某学校要印刷一批完全材料;甲印务公司提出制版费900元;•另外每份材料收印刷费0.5元:乙印务公司提出不收制版费;每份材料收印刷费0.8元.(1)分别写出两家印务公司的收费y (元)与印刷材料的份数x (份)•之间的函数关系式.(2)若学校预计要印刷5000份以内的宣传材料;请问学校应选择哪一家印务公司更合算?7.水是人类最宝贵的资源之一;我国水资源人均占有量远远低于世界平均水平;为了节约用水;保护环境;学校于本学期初制定了详细的用水计划.如果实际每天比计划多用一吨水;那么本学期的用水总量将会超过2300吨:如果实际每天计划节约一吨水;那么本学期用水量将会不足2100吨.如果本学期的在校时间按110天(22周)•计算;那么学校计划每天用水量是在什么范围?(结果保留四个有效数字)8.某商场购进甲、乙两种服装后;都加价40%标价出售.•“春节”期间商场搞优惠促销;决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元;两种服装标价之和为210元;问这两种服装的进价和标价各是多少元?【能力提升】9.某公司开发的960件新产品;需加工后才能投放市场;•现有甲、乙两个工厂都想加工这批产品;•已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天;而乙工厂每天比甲工厂多加工8件产品.在加工过程中;公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)该公司要选择省时又省钱的工厂加工;乙工厂预计甲工厂将向公司报加工费用为每天800元;请问:乙工厂向公司报加工费用每天最多为多少元时;才可满足公司要求;有望加工这批产品.10.“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源.•某荷藕加工企业已收购荷藕60吨;根据市场信息;如果对荷藕进行粗加工;•每天可加工8吨;每吨可获利1000元:如果进行精加工;每天可加工0.5吨;每吨可获利5000元.•由于受设备条件的限制;两种加工方式不能同时进行.(1)设精加工的吨数为x•吨;•则粗加工的吨数为______•吨;•加工这批荷藕需要____天;可获利______元(用含x的代数式表示)(2)为了保鲜需要;该企业必须在一个月(30天)内将这批荷藕全部加工完毕;•精加工的吨数x在什么范围内时;该企业加工这批荷藕的获利不低于80000元?11.某公司为了扩大经营;决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择;其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算;本次购买机器所耗资金不能超过(1(2)若该公司购进的6台机器的日生产能力不能低于380个;那么为了节约资金应选择哪种购买方案?12.为迎接“2005.中国贵州黄果树瀑布节”;•园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花奔搭配A、B两种园艺造型共50个;•摆放在迎宾大道两侧;搭配每个(1(2)若搭配一个A种造型的成本为1000元;搭配一个B种造型的成本为1200元;•试说明选用(1)中哪种方案成本最低?【应用与探究】13.我市某乡A、B两村盛产柑桔;A村有柑桔200吨;•B•村有柑桔300吨.现将这些柑桔运到C、D两个冷藏室;已知C仓库可储存240吨;D•仓库可储存260吨:从A村运往C、D两处的费用分别为每吨20元和25元;从B村运往C、D•两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨;A、B•两村运往两仓库的柑桔运输费用分别为y A元和y B元.(1)请填写下表;(2)试讨论A、B(3)考虑到B村的经济承受能力;B村的柑桔运费不得超过4830元.在这种情况下;请问怎样调运;才能使两村运费之和最小?求出这个最小值.答案:例题经典例1:(1)甲独做20天;乙独做30天(2)设甲做了x天;乙做了y天完成作业;1.20.722.51 2030x yx y+≤⎧⎪⎨+=⎪⎩解y≥15;即乙公司最少应施工15天.例2:学校派出158名;共有20个交通路口安排值勤例3:(1)学生共有21人(2)应选青春社考点精练1.B 2.C 3.B 4.C 5.B6.(1)9000.50.8y x y x=+⎧⎨=⎩甲乙(2)y甲<y乙;∴900+0.5x<0.8x;•解得x>3000;∴选甲公司8.甲进价为50元;•标价70元;乙进价为100元;标价140元9.解:(1)设甲工厂每天加工x件;则乙公司每天加工(x+8)件由题意得:960960208x x-=+;解之得:x1=-24;x2=16.经检验;x1、x2均为所列方程的根;但x1=-24不合题意;舍去.此时x+8=24.答:甲工厂每天加工16件;乙工厂每天加工24件.(2)由(1)可知加工960件产品;甲工厂要60天;乙工厂要40天.所以甲工厂的加工总费用为60×(800+50)=51000(元).设乙工厂报价为每天m元;•则乙工厂的加工总费用为40×(m+50)元.由题意得:40×(m+50)≤51000;解得m≤1225.答:•乙工厂所报加工费每天最多为1225元;可满足公司要求;有望加工这批产品.10.(1)(60-x)吨;(600.58x x-+)天;•[5000x+(60-x)×1000]元(2)5(吨)≤x≤12(吨)11.(1)有3种方案:①甲0台;•乙6台;②甲1台;乙5台;③甲2台;乙4台(2)应选方案②12.(1)(2)•(50-x)=-200x+60000;∴A32天;B18个费用最低.13. (1)y A=-B(2)当y A=y B时;-5x+5000=3x+4680;x=40:当y A>y B时;-5x+5000>3x+4680;x<40:当y A<y B时;-5x+5000<3x+4689;x>40;∴当x=40时;y A=y B•即两村运费相等:当0≤x<40时;y A>y B即B村运费较少:当40<x≤200时;y A<y B即A村费用较小.•(3)由y B≤4830;3x+4680≤4830;∴x≤50;设两村运费之和为y;∴y=y A+y B;即:y=-2x+9680.又∵0≤x≤50时;y随x增大而减小.∴当x=50时;y有最小值;y最小值=9580(元).答:•当A村调往C仓库的柑桔重量为50吨;调往D仓库为150吨;B村调往C仓库为190吨;调往D仓库110吨的时候;两村的运费之和最小;最小费用为9580元.。

(完整版)多元一次方程组与一元多次不等式组经典应用题

(完整版)多元一次方程组与一元多次不等式组经典应用题

(完整版)多元一次方程组与一元多次不等式组经典应用题引言本文将介绍多元一次方程组与一元多次不等式组的经典应用题,旨在帮助读者更好地理解和应用这些数学概念。

多元一次方程组多元一次方程组是由多个未知数和这些未知数的一次项组成的方程组。

例如,以下是一个多元一次方程组的例子:x + y = 52x - y = 1经典应用题1. 问题描述:小明和小红在一家商场里购物,他们买了一些衣服和鞋子,总共花费了150元。

已知一件衣服的价格为x元,一双鞋子的价格为y元。

已知小明买了3件衣服和2双鞋子,小红买了2件衣服和3双鞋子。

求解衣服和鞋子的单价。

解答:设衣服的单价为x元,鞋子的单价为y元。

根据题目的描述,可以得到以下两个方程:3x + 2y = 1502x + 3y = 150解方程组可以得到衣服的单价x=30元,鞋子的单价y=45元。

2. 问题描述:小明和小红在一家餐厅吃饭,他们点了若干份菜品,总共消费了100元。

已知一份菜品的价格为x元,小明点了3份菜品,小红点了5份菜品。

如果小明和小红平分账单,则每人应付多少钱?解答:设一份菜品的价格为x元。

根据题目的描述,可以得到以下两个方程:3x + 5x = 100解方程可以得到菜品的单价x=10元。

所以小明和小红每人应付10元。

一元多次不等式组一元多次不等式组是由一个未知数和这个未知数的多次项组成的不等式组。

例如,以下是一个一元多次不等式组的例子:x^2 + 3x - 4 > 02x^3 - 5x^2 + x < 0经典应用题1. 问题描述:求解不等式4x^2 - x - 3 > 0。

解答:首先,化简不等式为标准形式:4x^2 - x - 3 > 0然后,我们需要找到不等式的根,即使不等式成立。

可以使用因式分解或配方法得到根x=1/2和x=-3/4。

由于不等式的符号是大于号,所以我们需要找到不等式根的右边区间使得不等式成立。

根据图像可知x>1/2或x<-3/4。

列方程(组)、不等式(组)解应用题

列方程(组)、不等式(组)解应用题

列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1、【解析】根据总费用等于水量乘以平均值得出方程,求出水量,然后求出水费。

二元一次方程组和不等式组的综合应用题

二元一次方程组和不等式组的综合应用题

二元一次方程组和不等式组的综合应用题1、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆,经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2 000元.乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?2、某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需资金4 120元.(1)每台电脑机箱和液晶显示器进价各多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22 240元.根据市场行情,电脑机箱、液晶显示器销售一台获利分别为10元、160元.该经销商希望销售完这两种商品后,所获利润不少于4 100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?3、响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?4、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?5、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。

七年级下册数学期末复习题-不等式与方程组应用题

七年级下册数学期末复习题-不等式与方程组应用题

二元一次方程组的应用专题1、篮球联赛中,每场比赛都要分出胜负,每队胜一场得两分,负一场得一分,某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?2、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5。

某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?3、张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5小时后到达县城。

他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米。

他骑车与步行各用多少时间?4、2台大收割机和5台小收割机均工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5小时共收割小麦8公顷。

1台大收割机和1台小收割机每小时各收割小麦多少公顷?5、甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可追上乙。

两人的平均速度各是多少?6、一条船顺流航行,每小时20km;逆流航行,每小时16km.求轮船在静水中的速度与水的流速。

7、用白铁皮做罐头盒。

每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒。

现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身和盒底正好配套?8、从甲地到乙地的路有一段上坡与一段平路。

如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟。

甲地到乙地全程是多少?9、用含药30%和75%的两种防腐药水,配制含药50%的防腐药水18kg,两种药水各需取多少?一元一次不等式(组)的应用专题1、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?2、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共用50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题摘要:一、二元一次方程组的定义和基本解法1.二元一次方程组的定义2.代入法解二元一次方程组3.消元法解二元一次方程组二、不等式的基本性质和解法1.不等式的定义和基本性质2.解不等式的方法3.解含有绝对值的不等式三、二元一次方程组和不等式的结合应用题1.结合二元一次方程组解不等式2.结合不等式解二元一次方程组3.二元一次方程组和不等式的实际应用正文:一、二元一次方程组的定义和基本解法二元一次方程组是指包含两个未知数,且每个方程中的次数都是一次的方程组。

解决二元一次方程组的方法有代入法和解元法。

代入法是将一个方程的未知数表示为另一个方程的未知数的函数,然后代入另一个方程求解。

解元法是先将两个方程相加或相减,消去一个未知数,然后再用已知条件求解另一个未知数。

二、不等式的基本性质和解法不等式是指含有比较关系的数学表达式,如大于、小于、大于等于、小于等于等。

解不等式首先要了解不等式的基本性质,如加减同一数、乘除同一正数或负数等。

解不等式的方法有移项法、系数化为1法、解集的端点法等。

对于含有绝对值的不等式,可以先将其转化为不含绝对值的不等式,然后再用相应的方法解出。

三、二元一次方程组和不等式的结合应用题在实际问题中,我们常常需要同时解决二元一次方程组和不等式的问题。

例如,一个商店的苹果和香蕉的价格分别为每斤x元和y元,已知苹果的总价不小于100元,香蕉的总价不大于200元,求苹果和香蕉各多少斤。

这类问题需要先根据不等式确定未知数的取值范围,然后再用二元一次方程组求解。

另外,二元一次方程组和不等式的结合应用题也可以是关于时间、速度、距离等问题。

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题

二元一次方程组和不等式的结合应用题二元一次方程组和不等式的结合应用题一、引言在数学学习中,二元一次方程组和不等式是基础且重要的内容。

它们不仅有着独特的解题方法,还能灵活地应用于各种实际情境中。

本文将通过深入讨论二元一次方程组和不等式的结合应用题,探索其在现实生活中的应用和意义。

二、二元一次方程组和不等式的概念回顾在开始探讨二元一次方程组和不等式的结合应用题之前,我们先来回顾一下二元一次方程组和不等式的基本概念。

二元一次方程组是指由两个未知数的一次方程组成的方程组,通常表示为:\[ \begin{cases} ax + by = c \\ dx + ey = f \end{cases} \]其中,a、b、c、d、e、f为已知数,x、y为未知数。

而不等式则表示不同数之间的大小关系,一般形式为:\[ ax + by < c \]\[ dx + ey > f \]其中,a、b、c、d、e、f为已知数,x、y为未知数。

三、二元一次方程组和不等式的结合应用题1. 题目:某商场正在进行促销活动,A品牌和B品牌的T恤分别售价为x和y元,现有总预算为z元,且希望购买数量尽量多,同时要求品牌A的T恤数量不少于品牌B的T恤数量。

请问应该如何安排购买数量才能使总购买数量最多?解析:我们可以建立以下二元一次方程组来表示购买数量:\[ \begin{cases} x \geq y \\ x + y \leq z \end{cases} \]其中,x表示品牌A的T恤数量,y表示品牌B的T恤数量。

根据题意,我们需要找到满足方程组的x和y的取值,使得x+y的值最大。

接下来,我们可以将不等式转化为方程表示:\[ x = y \]\[ x + y = z \]我们可以将x代入x+y=z的方程中,得到:\[ y + y = z \]\[ 2y = z \]\[ y = \frac{z}{2} \]同理,代入x的方程,得到:\[ x = \frac{z}{2} \]品牌A和品牌B的T恤数量应该相等,且都等于预算的一半,这样购买数量才能最多。

二元一次方程组与一元一次不等式组经典应用题

二元一次方程组与一元一次不等式组经典应用题

二元一次方程组与一元一次不等式(组)应用题1.某商店准备购进甲、乙两种商品,已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。

(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少?2.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310 元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?3.为了打造区域中心城市,实现跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?4.某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1 块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?5.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购4套A型和6套B型课桌凳共需1820元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程组与不等式综合应用题
2、(2010,贵港)某儿童服装店欲购进A、B两种型号的儿童服装.经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.(1)求A、B两种型号童装的进货单价各是多少元?(2)若该店每销售1件A 型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用不超过6300元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元.问该店应该怎样安排进货,才能使总获利最大?最大总获利为多少元?
例3、(2009,济南)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响.为落实“保民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:
职工甲乙
月销售件数(件)200 180
月工资(元)1800 1700
(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各是多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?
答案:
1、解(1)购买A型的价格是a万元,购买B型的设备b万元,a=b+2 2a+6=3b 解得a=12 b=10 (2)设购买
A型号设备m台,12m+10(10-m)≤105 240m+200(10-m)≥2040 ∴1≤m≤5/2,∴m=1或2,因为A型买的越少越省钱,所以买A
型设备1台,B型的9台最省钱.2、(对于第1小问,题设也可设为2
个元;对于第二小问,可以根据童装件数为整数,所以a=180或
181,然后可分为方案一和方案二的讨论,这样就避免了初一学生没学过函数,不能解这道题的尴尬。

)3、(1)设职工的月基本保障工资为x元,销售每件产品的奖励金额为y 元.由题意得解这个方程组得答:职工月基本保障工资为800元,销售每件产品的奖励金额5元.(2)设该公司职工丙六月份销售z件产品,由题意得800+5z≥2000,解这个不等式得:z≥240.答:该公司职工丙六月份至少销售240件产品。

相关文档
最新文档