【精选】北师版七年级数学下册第六章《概率初步》优秀教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【精选】北师版七年级数学下册
第六章《概率初步》优秀教案
6.1 感受可能性
【学习目标】
1.通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点) 2.知道事件发生的可能性是有大小的.(难点)
【教学过程】
一、情境导入
在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?
二、合作探究
探究点一:必然事件、不可能事件和随机事件
【类型一】必然事件
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( ) A.摸出的4个球中至少有一个是白球
B.摸出的4个球中至少有一个是黑球
C.摸出的4个球中至少有两个是黑球
D.摸出的4个球中至少有两个是白球
解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、
2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.
方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.
【类型二】不可能事件
下列事件中不可能发生的是( )
A.打开电视机,中央一台正在播放新闻
B.我们班的同学将来会有人当选为劳动模范
C.在空气中,光的传播速度比声音的传播速度快
D.太阳从西边升起
解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件.故选D.
【类型三】随机事件
下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°.其中是随机事件的是________(填序号).
解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件.故答案是①③.
探究点二:随机事件发生的可能性
掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数( )
A.一定是6
B.是6的可能性大于是1~5中的任意一个数的可能性
C.一定不是6
D.是6的可能性等于是1~5中的任意一个数的可能性
解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数.要求可能性的大小,只需求出各自所占的比例大小即可.第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B 错,D对.故选D.
方法总结:不确定事件的可能性有大有小.骰子在掷的过程中,每个点数出现的可能性是一样的.
三、板书设计
1.必然事件、不可能事件和随机事件
必然事件:一定会发生的事件;
不可能事件:一定不会发生的事件;
必然事件和不可能事件统称为确定事件;
随机事件:无法事先确定一次试验中会不会发生的事件.
2.随机事件发生的可能性
【教学反思】
教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去
6.2 频率的稳定性
【学习目标】
1.理解频率和概率的意义;
2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点) 【教学过程】
一、情境导入
养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?
二、合作探究
探究点一:频率的稳定性
在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有( )
A.5个 B.10个 C.15个 D.45个
解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).故选C.
方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率”计算即可.
探究点二:用频率估计概率
【类型一】用频率估计概率
为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是( )
A.钉尖着地的频率是0.4
B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近
C.钉尖着地的概率约为0.4
D.前20次试验结束后,钉尖着地的次数一定是8次
解析:A.钉尖着地的频率是0.4,故此选项说法正确;B.随着试验次数的增加,钉尖着地的频率稳定在0.4,故此选项说法正确;C.∵钉尖着地的频率是0.4,∴钉尖着地的概率大约是0.4,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.故选D.
【类型二】利用频率估计球的个数
王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生