第22讲 随机事件与概率课程讲义例题练习含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件与概率--知识讲解
【学习目标】
1、感受生活中的随机现象,并体会不确定事件发生的可能性大小;
2、通过试验感受不确定事件发生的频率的稳定性,理解概率的意义.
【要点梳理】
要点一、确定事件与不确定事件
1.确定事件
在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件.有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.必然事件与不可能事件统称为确定事件.
2.不确定事件
也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件.
要点诠释:
要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小可能不同.
要点二、频率与概率
1.频率与概率的定义
频率:在n次重复试验中,不确定事件A发生了m次,则比值m
n
称为事件A发生的频
率.
无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.
概率:我们把刻画事件A发生的可能性大小的数值,称为事件A发生的概率,记作P (A).事件A的概率是一个大于等于0,且小于等于1的数,即.
2.频率与概率的关系
事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.
要点诠释:
①事件A的概率是一个大于等于0,且小于等于1的数,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.
②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
【典型例题】
类型一、确定事件与不确定事件
1.指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?
①若 a、b、c都是实数,则a(bc)=(ab)c;
②没有空气,动物也能生存下去;
③在标准大气压下,水在 90℃时沸腾;
④直线 y=k(x+1)过定点(-1,0);
⑤某一天内电话收到的呼叫次数为 0;
⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则
为白球.
【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是不确定事件.
【总结升华】准确掌握定义,依据定义进行判别.
举一反三
【变式1】(•凉山州模拟)下列事件中不是随机事件的是()
A.打开电视机正好在播放广告
B.从有黑球和白球的盒子里任意拿出一个正好是白球
C.从课本中任意拿一本书正好拿到数学书
D.明天太阳会从西方升起
【答案】D.
解:A、打开电视机正好在播放广告是随机事件,选项错误;
B、从有黑球和白球的盒子里任意拿出一个正好是白球,是随机事件,选项错误;
C、从课本中任意拿一本书正好拿到数学书,是随机事件,选项错误;
D、明天太阳会从西方升起是不可能事件,不是随机事件,选项正确.
故选D.
【变式2】下列说法中,正确的是( ).
A.生活中,如果一个事件不是不可能事件,那么它就必然发生;
B.生活中,如果一个事件可能发生,那么它就是必然事件;
C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;
D.生活中,如果一个事件不是必然事件,那么它就不可能发生.
【答案】C.
2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?
(1)从口袋中任取出一个球,它恰是红球;
(2)从口袋中一次性任意取出2个球,它们恰好全是白球;
(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.
【答案与解析】(1)可能发生,因为袋中有红球;
(2)可能发生,因为袋中刚好有2个白球;
(3)不可能发生,因为袋中只有2个白球,取不出3个白球.
【总结升华】要掌握三种事件的区别与联系.
举一反三
【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则
甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方
都公平的游戏.
【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性
是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.
类型二、频率与概率
3.(•阜新)为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.
【思路点拨】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
【答案】20.
【解析】解:设暗箱里白球的数量是n,则根据题意得:=0.2,
解得:n=20,
故答案为:20.
【总结升华】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
4. 如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什么?
【答案与解析】落在黄色区域的可能性大.
理由如下:
由图可知:黄色占整个转盘面积的;
红色占整个转盘面积的;
蓝色占整个转盘面积的.
由于黄色所占比例最大,所以,指针落在黄色区域的可能性较大.
【总结升华】计算随机事件的可能性的大小,根据不同题目的不同条件确定解法,如面积法、数值法等.