太原市2018年高三年级模拟试题理数
2021届山西省太原市高三第二学期模拟考试(一)(一模)数学(理科)试卷【含答案】
2021届山西省太原市高三第二学期模拟考试(一)(一模)数学(理科)试卷(考试时间:下午3:00-5:00)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至4页,第II卷5至8页。
2.回答第I卷前,考生务必将自己的姓名考试编号填写在答题卡上。
3.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
4.回答第II卷时,将答案写在答题卡相应位置上,写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x||x|<1},B={x|2x<1},则A∩B=A.(-1,0)B.(-∞,1)C.(-1,1)D.(0,1)2.已知复数z满足z iz i-+=i,则复数z=A.1-iB.1+iC.-1-iD.-1+i3.公元前6世纪,古希腊毕达哥拉斯学派在研究正五边形和正十边形的作图时,发现了黄金分51-0.618,这是一个伟大的发现,这一数值也表示为a=2sin18°,若a2+b=4,则2a b1cos72-︒=A.12B.2C.512D.44.函数f(x)=x cosxx sinx⋅-的部分图象大致是5.在区间[-1,1]上任取一个实数k ,则使得直线y =kx 与圆(x -2)2+y 2=1有公共点的概率是 A.32 B.22 C.33 D.126.已知梯形ABCD 中,AB//DC ,且AB =2DC ,点P 在线段BC 上,若5AP AB AD 6λ=+,则实数λ= A.34 B.23 C.13 D.127.已知{a n }是各项均为正数的等比数列,其前n 项和为S n ,且{S n }是等差数列,给出以下结论:①{a n +S n }是等差数列;②{a n ·S n }是等比数列;③{a n 2}是等差数列;④n S n ⎧⎫⎨⎬⎩⎭是等比数列,则其中正确结论的个数为 A.4 B.3 C.2 D.18.已知实数x ,y 满足x 3y 1303x 2y 1102x y 50+-≤⎧⎪+-≥⎨⎪--≤⎩,若不等式x +my +1≤0恒成立,则实数m 的取值范围是 A.(0,14] B.[-4,-12] C.(-∞,-12] D.(-∞,-4] 9.已知a =2ln3π,b =3ln2π,c =2ln π3,则下列结论正确的是 A.b<c<a B.c<b<a C.b<a<c D.a<b<c10.已知三棱锥A -BCD 中,AB =BC =BD =CD =AD =4,二面角A -BD -C 的余弦值为13,点E 在棱AB 上,且BE =3AE ,过E 作三棱锥A -BCD 外接球的截面,则所作截面面积的最小值为 A.103π B.3π C.3πD.3411.已知过抛物线y 2=2px(p>0)的焦点F(12,0)的直线与该抛物线相交于A ,B 两点,点M 是线段AB 的中点,以AB 为直径的圆与y 轴相交于P ,Q 两点,若AF 2FB =,则sin ∠MPQ= A.59 B.37 C.911 D.51312.已知函数f(x)=sin(ωx +φ)(ω>0,|φ|<2π)的图象关于x =-3π对称,f(6π)=0,f(x)在[3π,1124π]上单调递增,则ω的所有取值的个数是 A.3 B.4 C.1 D.2太原市2021年高三年级模拟考试(-~)数学试卷(理科) 第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答。
山西省太原市2018届高考模拟理科数学试题Word版含答案
山西省太原市2018届高考模拟试卷(理科数学)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.设全集U=R ,集合A={x|0<x <2},B={x|x <1},则集合(∁U A )∩B=( ) A .(﹣∞,0) B .(﹣∞,0] C .(2,+∞) D .[2,+∞)2.已知复数Z 的共轭复数=,则复数Z 的虚部是( )A .B . iC .﹣D .﹣ i3.命题“∃x 0≤0,使得x 02≥0”的否定是( )A .∀x ≤0,x 2<0B .∀x ≤0,x 2≥0C .∃x 0>0,x 02>0D .∃x 0<0,x 02≤04.已知直线l 经过圆C :x 2+y 2﹣2x ﹣4y=0的圆心,且坐标原点到直线l 的距离为,则直线l 的方程为( ) A .x+2y+5=0B .2x+y ﹣5=0C .x+2y ﹣5=0D .x ﹣2y+3=05.五个人坐成一排,甲要和乙坐在一起,乙不和丙坐在一起,则不同排法数为( ) A .12 B .24 C .36 D .486.一个多面体的三视图如图所示,则该多面体的体积为( )A .B .C .6D .77.已知公差不为0的等差数列{a n },它的前n 项和是S n ,,a 3=5,则取最小值时n=( ) A .6 B .7C .8D .98.已知,则y=f (x )的对称轴为( )A .B .C .D .9.算法如图,若输入m=210,n=119,则输出的n 为( )A .2B .3C .7D .1110.设实数x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的x ≥0,y≥0最大值为12,则的最小值为( )A .B .C .D .411.已知双曲线(a >0,b >0)的左右焦点分别为F 1,F 2,过右焦点F 2的直线交双曲线右支于A 、B 两点,连结AF 1、BF 1,若|AB|=|BF 1|且,则双曲线的离心率为( )A .B .C .D .12.已知定义在R 上的函数f (x ),其导函数为f'(x ),若f'(x )﹣f (x )<﹣2,f (0)=3,则不等式f (x )>e x +2的解集是( )A .(﹣∞,1)B .(1,+∞)C .(0,+∞)D .(﹣∞,0)二、填空题(本大题共4小题,每小题5分,共20分)13.已知,是夹角为的两个单位向量, =﹣2, =k+,若•=0,则实数k 的值为 .14.已知的展开式中,x 3项的系数是a,则= .15.函数f (x )=,若方程f (x )=mx﹣恰有四个不相等的实数根,则实数m的取值范围是 .16.已知等边三角形ABC的边长为,M ,N 分别为AB ,AC 的中点,沿MN 将△ABC 折成直二面角,则四棱锥A ﹣MNCB 的外接球的表面积为 .三、解答题(本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤) 17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知,.(1)求证:;(2)若a=2,求△ABC 的面积.18.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.(1)根据以上信息,完成下面2×2列联表:(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X ,求X 的分布列和期望E (X ).附:其中:n=a+b+c+d.19.如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD ⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是.20.已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x+y+1=0与以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设P为椭圆C上一点,若过点M(0,2)的直线l与椭圆C相交于不同的两点S和T,满足(O为坐标原点),求实数t的取值范围.21.已知函数f(x)=x2﹣ax(a≠0),g(x)=lnx,f(x)的图象在它与x轴异于原点的交点M处的切线为l1,g(x﹣1)的图象在它与x轴的交点N处的切线为l2,且l1与l2平行.(1)求a的值;(2)已知t∈R,求函数y=f(xg(x)+t)在x∈[1,e]上的最小值h(t);(3)令F(x)=g(x)+g′(x),给定x1,x2∈(1,+∞),x1<x2,对于两个大于1的正数α,β,存在实数m满足:α=mx1+(1﹣m)x2,β=(1﹣m)x1+mx2,并且使得不等式|F(α)﹣F(β)|<|F(x1)﹣F(x2)|恒成立,求实数m的取值范围..[选修4-4坐标系与参数方程]22.在直角坐标系中,曲线C的参数方程为,(ϕ为参数),直线l的参数方程为(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为.(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|(1)当a=2时,解不等式f(x)≥4﹣|x﹣1|;(2)若f(x)≤1的解集为[0,2], +=a(m>0,n>0)求证:m+2n≥4.山西省太原市2018届高考模拟试卷(理科数学)参考答案与试题解析一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B铅笔涂黑答题纸上对应题目的答案标号)1.设全集U=R,集合A={x|0<x<2},B={x|x<1},则集合(∁UA)∩B=()A.(﹣∞,0) B.(﹣∞,0] C.(2,+∞)D.[2,+∞)【考点】1H:交、并、补集的混合运算.【分析】根据全集U=R求出A的补集,再求A的补集与B的交集即可.【解答】解:∵全集U=R,集合A={x|0<x<2}=(0,2),B={x|x<1}=(﹣∞,1),∴∁UA=(﹣∞,0]∪[2,+∞);∴(∁UA)∩B=(﹣∞,0].故选:B.2.已知复数Z的共轭复数=,则复数Z的虚部是()A.B. i C.﹣D.﹣ i【考点】A5:复数代数形式的乘除运算;A2:复数的基本概念.【分析】利用复数代数形式的乘除运算化简,求得Z后得答案.【解答】解:由==,得,∴复数Z的虚部是.故选:A.3.命题“∃x0≤0,使得x2≥0”的否定是()A.∀x≤0,x2<0 B.∀x≤0,x2≥0 C.∃x0>0,x2>0 D.∃x<0,x2≤0【考点】2J:命题的否定.【分析】直接利用特称命题的否定是全称命题,写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0≤0,使得x2≥0”的否定是∀x≤0,x2<0.故选:A.4.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=0【考点】J9:直线与圆的位置关系.【分析】求出圆C的圆心C(1,2),设直线l的方程为y=k(x﹣1)+2,由坐标原点到直线l的距离为,求出直线的斜率,由此能求出直线l的方程.【解答】解:圆C:x2+y2﹣2x﹣4y=0的圆心C(1,2),∵直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,∴当直线l的斜率不存在时,直线l的方程为x=1,此时坐标原点到直线l的距离为1,不成立;当直线l的斜率存在时,直线l的方程为y=k(x﹣1)+2,且=,解得k=﹣,∴直线l的方程为y=﹣(x﹣1)+2,即x+2y﹣5=0.故选:C.5.五个人坐成一排,甲要和乙坐在一起,乙不和丙坐在一起,则不同排法数为()A.12 B.24 C.36 D.48【考点】D8:排列、组合的实际应用.【分析】根据题意,用间接法分析:首先计算甲和乙坐在一起排法数目,再计算其中甲乙相邻且乙和丙坐在一起的排法数目,结合题意,用“甲和乙坐在一起排法数目”减去“甲乙相邻且乙和丙坐在一起”的排法数目即可得答案.【解答】解:根据题意,甲乙必须相邻,将甲乙看成一个元素,考虑其顺序,有A22=2种情况,将甲乙与剩余的3个人进行全排列,有A44=24种情况,则甲和乙坐在一起有2×24=48种不同的排法,其中,如果乙和丙坐在一起,则必须是乙在中间,甲和丙在乙的两边, 将3个人看成一个元素,考虑其顺序,有A 22=2种情况, 将甲乙丙与剩余的2个人进行全排列,有A 33=6种情况, 则甲乙相邻且乙和丙坐在一起的排法有2×6=12种;故甲要和乙坐在一起,乙不和丙坐在一起排法有48﹣12=36种; 故选C .6.一个多面体的三视图如图所示,则该多面体的体积为( )A .B .C .6D .7【考点】L!:由三视图求面积、体积.【分析】判断几何体的形状,结合三视图的数据,求出几何体的体积.【解答】解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图, 正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V 正方体﹣2V 棱锥侧=.故选:A .7.已知公差不为0的等差数列{a n },它的前n 项和是S n ,,a 3=5,则取最小值时n=( ) A .6B .7C .8D .9【考点】85:等差数列的前n 项和.【分析】利用等差数列通项公式列出方程组,求出首项和公差,从而求出a n ,S n ,利用基本不等式能求出取最小值时n 的值.【解答】解:∵公差不为0的等差数列{a n },它的前n 项和是S n ,,a 3=5,∴a 3=a 1+2d=5,且(a 1+d )2=a 1(a 1+4d ), 由d ≠0,解得a 1=1,d=2,∴a n =2n ﹣1,∴,∴,∴当n=7的取等号, 故选:B .8.已知,则y=f (x )的对称轴为( )A .B .C .D .【考点】GL :三角函数中的恒等变换应用;H2:正弦函数的图象. 【分析】化简函数f (x )的解析式,求出函数的对称轴即可.【解答】解:,∴对称轴方程为,∴x=﹣,令k=1,得x=,故选:B .9.算法如图,若输入m=210,n=119,则输出的n 为( )A.2 B.3 C.7 D.11【考点】EF:程序框图.【分析】算法的功能辗转相除法求m、n的最大公约数,利用辗转相除法求出m、n的最大公约数可得答案.【解答】解:由程序框图知:算法的功能利用辗转相除法求m、n的最大公约数,当输入m=210,n=119,则210=119+91;119=91+28;91=3×28+7,;28=4×7+0.∴输出n=7.故选:C.10.设实数x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的x≥0,y≥0最大值为12,则的最小值为()A.B.C.D.4【考点】7C:简单线性规划.【分析】利用线性规划的知识求出则Z在点D处取得最大值,由此得出a、b的关系式,max再利用基本不等式求的最小值.【解答】解:约束条件表示的平面区域如图所示;由,解得D (4,6),目标函数z=ax+by (a >0,b >0)的最大值为12, 则Z max 在点D 处取得最大值; 即4a+6b=12, 所以2a+3b=6,所以,当且仅当a=b=时取“=”. 故选:A .11.已知双曲线(a >0,b >0)的左右焦点分别为F 1,F 2,过右焦点F 2的直线交双曲线右支于A 、B 两点,连结AF 1、BF 1,若|AB|=|BF 1|且,则双曲线的离心率为( )A .B .C .D .【考点】KC :双曲线的简单性质.【分析】运用双曲线的定义可得|AF 1|﹣|AF 2|=2a ,|BF 1|﹣|BF 2|=2a ,结合等腰直角三角形可得|AF 1|=4a ,设|BF 1|=x ,运用勾股定理,可得a ,c 的关系,由离心率公式即可得到所求. 【解答】解:由双曲线的定义可得|AF 1|﹣|AF 2|=2a ,|BF 1|﹣|BF 2|=2a , 相加可得|AF 1|+|BF 1|﹣|AB|=4a ,|AB|=|BF 1|且,∴|AF1|=4a,设|BF1|=x,则,,又∵,即有8a2+(2a﹣2a)2=4c2,化简可得(5﹣2)a2=c2,即有e==.故选:B.12.已知定义在R上的函数f(x),其导函数为f'(x),若f'(x)﹣f(x)<﹣2,f(0)=3,则不等式f(x)>e x+2的解集是()A.(﹣∞,1) B.(1,+∞)C.(0,+∞)D.(﹣∞,0)【考点】6B:利用导数研究函数的单调性.【分析】问题转化为,令,根据函数的单调性求出不等式的解集即可.【解答】解:f(x)>e x+2转化为:,令,则,∴g(x)在R上单调递减,又∵∴g(x)>0的解集为(﹣∞,0),故选:D .二、填空题(本大题共4小题,每小题5分,共20分)13.已知,是夹角为的两个单位向量, =﹣2, =k+,若•=0,则实数k 的值为.【考点】9R :平面向量数量积的运算.【分析】利用向量的数量积公式求出;利用向量的运算律求出,列出方程求出k .【解答】解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:14.已知的展开式中,x 3项的系数是a ,则=.【考点】67:定积分;DB :二项式系数的性质.【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于3,求得r 的值,即可求得展开式中的含x 3项的系数a 的值,再求定积分,可得要求式子的值.【解答】解:的展开式的通项公式为T r+1=C 5r ()r x 5﹣2r ,令5﹣2r=3则r=1∴x 3的系数为,∴dx=lnx|=ln,故答案为:ln15.函数f(x)=,若方程f(x)=mx﹣恰有四个不相等的实数根,则实数m的取值范围是(,).【考点】53:函数的零点与方程根的关系.【分析】方程f(x)=mx﹣恰有四个不相等的实数根可化为函数f(x)=与函数y=mx﹣有四个不同的交点,作函数f(x)=与函数y=mx﹣的图象,由数形结合求解.【解答】解:方程f(x)=mx﹣恰有四个不相等的实数根可化为函数f(x)=与函数y=mx﹣有四个不同的交点,作函数f(x)=与函数y=mx﹣的图象如下,由题意,C(0,﹣),B(1,0);故kBC=,当x>1时,f(x)=lnx,f′(x)=;设切点A的坐标为(x1,lnx1),则=;解得,x1=;故kAC=;结合图象可得,实数m的取值范围是(,).故答案为:(,).16.已知等边三角形ABC的边长为,M,N分别为AB,AC的中点,沿MN将△ABC折成直二面角,则四棱锥A﹣MNCB的外接球的表面积为52π.【考点】LG:球的体积和表面积.【分析】折叠为空间立体图形,得出四棱锥A﹣MNCB的外接球的球心,利用平面问题求解得出四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,求解即可.【解答】解:由,取BC的中点E,则E是等腰梯形MNCB外接圆圆心.F是△AMN外心,作OE⊥平面MNCB,OF⊥平面AMN,则O是四棱锥A﹣MNCB的外接球的球心,且OF=DE=3,AF=2.设四棱锥A﹣MNCB的外接球半径R,则R2=AF2+OF2=13,所以表面积是52π.故答案为:52π.三、解答题(本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤)17.在△ABC中,角A,B,C的对边分别为a,b,c.已知,.(1)求证:;(2)若a=2,求△ABC的面积.【考点】HT:三角形中的几何计算.【分析】(1)由正弦定理得:sinBcosC﹣sinCsinB=1,从而sin(B﹣C)=1,由此能证明.(2)由,得,,由,a=2,利用正弦定理求出b,c,由此能求出三角形△ABC的面积.【解答】证明:(1)由及正弦定理得:…整理得:sinBcosC﹣sinCsinB=1,所以sin(B﹣C)=1,又…所以…解:(2)由(1)及,得,,又因为,a=2…所以,,…所以三角形△ABC的面积…18.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.(1)根据以上信息,完成下面2×2列联表:(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X ,求X 的分布列和期望E (X ).附:其中:n=a+b+c+d .【考点】BO :独立性检验的应用;CH :离散型随机变量的期望与方差. 【分析】(1)由题意填写列联表即可; (2)计算观测值,对照临界值即可得出结论;(3)根据题意知随机变量X ~B (3,),计算对应的概率,写出X 的分布列,求出数学期望值. 【解答】解:(1)由题意得列联表:… (2)因为,所以能在犯错概率不超过0.001的前提下,认为全市高三年级学生“语文成绩与外语成绩有关系”; …(3)由已知数据,语文、外语两科成绩至少一科为优秀的概率是,… 则X ~B (3,),;…X 的分布列为…数学期望为.…19.如图所示,该几何体是由一个直三棱柱ADE ﹣BCF 和一个正四棱锥P ﹣ABCD 组合而成,AD ⊥AF ,AE=AD=2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P ﹣ABCD 的高h ,使得二面角C ﹣AF ﹣P 的余弦值是.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(Ⅰ)证明:AD⊥平面ABFE,即可证明平面PAD⊥平面ABFE;(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立方程关系即可求正四棱锥P﹣ABCD 的高.【解答】(Ⅰ)证明:直三棱柱ADE﹣BCF中,AB⊥平面ADE,所以:AB⊥AD,又AD⊥AF,所以:AD⊥平面ABFE,AD⊂平面PAD,所以:平面PAD⊥平面ABFE….(Ⅱ)∵AD⊥平面ABFE,∴建立以A为坐标原点,AB,AE,AD分别为x,y,z轴的空间直角坐标系如图:设正四棱锥P﹣ABCD的高为h,AE=AD=2,则A(0,0,0),F(2,2,0),C(2,0,2),=(2,2,0),=(2,0,2),=(1,﹣h,1),=(x,y,z)是平面AFC的法向量,则,令x=1,则y=z=﹣1,即=(1,﹣1,﹣1),设=(x,y,z)是平面ACP的法向量,则,令x=1,则y=﹣1,z=﹣1﹣h,即=(1,﹣1,﹣1﹣h),∵二面角C﹣AF﹣P的余弦值是.∴cos<,>===.得h=1或h=﹣(舍)则正四棱锥P﹣ABCD的高h=1.20.已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x+y+1=0与以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设P为椭圆C上一点,若过点M(0,2)的直线l与椭圆C相交于不同的两点S和T,满足(O为坐标原点),求实数t的取值范围.【考点】KL:直线与椭圆的位置关系.【分析】(1)圆心到直线x+y+1=0的距离,由椭圆C的两焦点与短轴的一个端点的连线构成等腰直角三角形,知b=c,由此能求出椭圆方程.(2)当直线l的斜率不存在时,可得t=0;当直线l的斜率存在时,t≠0,设直线l方程为y=kx+2,设P(x0,y),将直线方程代入椭圆方程得:(k2+2)x2+4kx+2=0,由此利用根的判别式、韦达定理、向量知识,结合已知条件能求出实数t的取值范围.【解答】解:(1)由题意,以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆的方程为x2+(y﹣c)2=a2,∴圆心到直线x+y+1=0的距离∵椭圆C的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b=c,,代入得b=c=1,∴,故所求椭圆方程为…(2)当直线l的斜率不存在时,可得t=0,适合题意.…当直线l 的斜率存在时,t ≠0,设直线l 方程为y=kx+2,设P (x 0,y 0), 将直线方程代入椭圆方程得:(k 2+2)x 2+4kx+2=0,… ∴△=16k 2﹣8(k 2+2)=8k 2﹣16>0,∴k 2>2.设S (x 1,y 1),T (x 2,y 2),则,…由,当t ≠0,得…整理得:,由k 2>2知,0<t 2<4,…所以t ∈(﹣2,0)∪(0,2),… 综上可得t ∈(﹣2,2).…21.已知函数f (x )=x 2﹣ax (a ≠0),g (x )=lnx ,f (x )的图象在它与x 轴异于原点的交点M 处的切线为l 1,g (x ﹣1)的图象在它与x 轴的交点N 处的切线为l 2,且l 1与l 2平行. (1)求a 的值;(2)已知t ∈R ,求函数y=f (xg (x )+t )在x ∈[1,e]上的最小值h (t );(3)令F (x )=g (x )+g′(x ),给定x 1,x 2∈(1,+∞),x 1<x 2,对于两个大于1的正数α,β,存在实数m 满足:α=mx 1+(1﹣m )x 2,β=(1﹣m )x 1+mx 2,并且使得不等式|F (α)﹣F (β)|<|F (x 1)﹣F (x 2)|恒成立,求实数m 的取值范围..【考点】6E :利用导数求闭区间上函数的最值;6H :利用导数研究曲线上某点切线方程. 【分析】(1)利用导数的几何意义,分别求两函数在与两坐标轴的交点处的切线斜率,令其相等解方程即可得a 值;(2)令u=xlnx ,再研究二次函数u 2+(2t ﹣1)u+t 2﹣t 图象是对称轴u=,开口向上的抛物线,结合其性质求出最值;(3)先由题意得到F (x )=g (x )+g′(x )=lnx+,再利用导数工具研究所以F (x )在区间(1,+∞)上单调递增,得到当x ≥1时,F (x )≥F (1)>0,下面对m 进行分类讨论:①当m ∈(0,1)时,②当m ≤0时,③当m ≥1时,结合不等式的性质即可求出a 的取值范围. 【解答】解:(1)y=f (x )图象与x 轴异于原点的交点M (a ,0),f′(x )=2x ﹣a ,y=g(x﹣1)=ln(x﹣1)图象与x轴的交点N(2,0),g′(x﹣1)=由题意可得k l1=k l2,即a=1;(2)y=f[xg(x)+t]=[xlnx+t]2﹣(xlnx+t)=(xlnx)2+(2t﹣1)(xlnx)+t2﹣t,令u=xlnx,在 x∈[1,e]时,u′=lnx+1>0,∴u=xlnx在[1,e]单调递增,0≤u≤e,u2+(2t﹣1)u+t2﹣t图象的对称轴u=,抛物线开口向上,①当u=≤0,即t≥时,y最小=t2﹣t,②当u=≥e,即t≤时,y最小=e2+(2t﹣1)e+t2﹣t,③当0<<e,即<t<时,y最小=y|u==﹣;(3)F(x)=g(x)+g′(x)=lnx+,F′(x)=≥0,所以F(x)在区间(1,+∞)上单调递增,∴当x≥1时,F(x)≥F(1)>0,①当m∈(0,1)时,有,α=mx1+(1﹣m)x2>mx1+(1﹣m)x1=x1,α=mx1+(1﹣m)x2<mx2+(1﹣m)x2=x2,得α∈(x1,x2),同理β∈(x1,x2),∴由f(x)的单调性知 0<F(x1)<F(α)、f(β)<f(x2),从而有|F(α)﹣F(β)|<|F(x1)﹣F(x2)|,符合题设.②当m≤0时,α=mx1+(1﹣m)x2≥mx2+(1﹣m)x2=x2,β=mx2+(1﹣m)x1≤mx1+(1﹣m)x1=x1,由f(x)的单调性知,F(β)≤F(x1)<f(x2)≤F(α),∴|F(α)﹣F(β)|≥|F(x1)﹣F(x2)|,与题设不符,③当m ≥1时,同理可得α≤x 1,β≥x 2,得|F (α)﹣F (β)|≥|F (x 1)﹣F (x 2)|,与题设不符, ∴综合①、②、③得 m ∈(0,1).[选修4-4坐标系与参数方程]22.在直角坐标系中,曲线C 的参数方程为,(ϕ为参数),直线l 的参数方程为(t 为参数).以原点为极点,x 轴的正半轴为极轴建立极坐标系,点P 的极坐标为.(Ⅰ)求点P 的直角坐标,并求曲线C 的普通方程;(Ⅱ)设直线l 与曲线C 的两个交点为A ,B ,求|PA|+|PB|的值. 【考点】QH :参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(I )消参数即可得到普通方程,根据极坐标的几何意义即可得出P 的直角坐标; (II )将l 的参数方程代入曲线C 的普通方程得出A ,B 对应的参数,利用参数得几何意义得出|PA|+|PB|.【解答】解:(Ⅰ),y=sin=,∴P 的直角坐标为;由得cos φ=,sin φ=.∴曲线C 的普通方程为.(Ⅱ)将代入得t 2+2t ﹣8=0,设A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=﹣2,t 1t 2=﹣8, ∵P 点在直线l 上,∴|PA|+|PB|=|t 1|+|t 2|=|t 1﹣t 2|==6.[选修4-5:不等式选讲] 23.设函数f (x )=|x ﹣a|(1)当a=2时,解不等式f(x)≥4﹣|x﹣1|;(2)若f(x)≤1的解集为[0,2], +=a(m>0,n>0)求证:m+2n≥4.【考点】R6:不等式的证明;R5:绝对值不等式的解法.【分析】对第(1)问,将a=2代入函数的解析式中,利用分段讨论法解绝对值不等式即可;对第(2)问,先由已知解集{x|0≤x≤2}确定a值,再将“m+2n”改写为“(m+2n)(+)”,展开后利用基本不等式可完成证明.【解答】解:(1)当a=2时,不等式f(x)≥4﹣|x﹣1|即为|x﹣2|≥4﹣|x﹣1|,①当x≤1时,原不等式化为2﹣x≥4+(x﹣1),得x≤﹣,故x≤﹣;②当1<x<2时,原不等式化为2﹣x≥4﹣(x﹣1),得2≥5,故1<x<2不是原不等式的解;③当x≥2时,原不等式化为x﹣2≥4﹣(x﹣1),得x≥,故x≥.综合①、②、③知,原不等式的解集为(﹣∞,﹣)∪[,+∞).(2)证明:由f(x)≤1得|x﹣a|≤1,从而﹣1+a≤x≤1+a,∵f(x)≤1的解集为{x|0≤x≤2},∴∴得a=1,∴ +=a=1.又m>0,n>0,∴m+2n=(m+2n)(+)=2+(+)≥2+2=4,当且仅当=即m=2n时及m=2,n=1时,等号成立,m+2n=4,故m+2n≥4,得证.。
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
山西太原2018届高三二模理科数学试题+Word版含答案
2018年高三年级模拟试题(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U 为全集,集合,,A B C 满足A C ⊆,U B C C ⊆,则下列结论中不成立的是( ) A .A B φ=I B .()U C A B ⊇ C .()U C B A A =I D .()U A C B U =U2.若复数2a ii -+的实部与虚部相等,则实数a 的值为( ) A . 13- B .3- C .13 D .33.下列命题中错误的是( )A .若命题0:p x R ∃∈,使得200x ≤,则:p x R ⌝∀∈,都有20x >B .若随机变量X ~2(2,)N σ,则(2)0.5P X >=C .设函数2()2()xf x x x R =-∈,则函数()f x 有两个不同的零点 D . “a b >”是“a c b c +>+”的充分必要条件4.已知椭圆2222:1(0)x y C a b a b +=>>的左右顶点分别是,A B ,左右焦点分别是21,F F ,若1121||,||,||AF F F F B 成等比数列,则椭圆的离心率为( )A .5 B .2 C. 12D .3 5.公元263年左右,我国数学家刘徽发现当圆内接正多边形无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( )(参考数据:0sin150.2588≈,0sin 7.50.1305≈)A. 6 B.12 C. 24 D.486.已知 1.12a=,0.45b=,5ln2c=,则()A.b c a>> B.a c b>> C.b a c>> D.a b c>>7.已知函数|2|,30()log,0ax xf xx x+-≤<⎧=⎨>⎩(0a>且1a≠),若函数()f x的图像上有且仅有一对关于y轴对称,则实数a的取值范围是()A.(0,1) B.(1,3) C.(0,1)(1,3)U D.(0,1)(3,)+∞U8.某校组织高一年级8个班级的8支篮球队进行单循环比赛(每支球队与其他7支球队各比赛一场),计分规则是:胜一局得2分,负一局得0分,平局双方各得1分,下面关于这8支球队的得分叙述正确的是()A.可能有两支球队得分都是14分 B.各支球队最终得分总和为56分C. 各支球队中最高得分不少于8分 D.得奇数分的球队必有奇数个9.一个几何体的三视图如图所示,则该几何体的体积等于()A. 72 B.48 C.24 D.1610.已知函数()2sin()f x xωϕ=+(0,||2πωϕ>≤),其图像与直线2y=-相邻两个交点的距离为π,若()0f x >对(,)123x ππ∀∈-恒成立,则ϕ的取值范围是( ) A .[,]126ππ B .[,]62ππ C. [,]123ππ D .[,]63ππ11.已知不等式20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,表示的平面区域为D ,若存在点00(,)P x y D ∈,使得0002||mx y x x =+,则实数m 的取值范围是( ) A . (2,4] B .[4,2)- C. (4,2)- D .[2,4] 12.若对任意的x R ∈,都有222sin()(23)63x x k x x x e ππ+-++<g 成立,则实数k 的取值范围是( )A . 1(,1)e -∞+B .1(1,3)e -+ C.1(2,)e ++∞ D .1(1,)2e++∞ 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.25(2)x x y ++的展开式中含有52x y 的项的系数是 .14.设P 为双曲线22122x y -=上一点,21,F F 分别是双曲线的左右焦点,若12||2||PF PF =,则21cos PF F ∠= .15.已知球O 是正三棱锥A BCD -的外接球,3BC =,AB =E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是 . 16.ABC ∆中,0GA GB GC ++=u u u r u u u r u u u r r ,且0GA GB •=u u u r u u u r ,若tan tan tan tan tan A B mA B C+=,则实数m 的值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n na 的前n 项和1(1)22n n S n +=-+,数列{}n b 的前n 项和为n T ,且*2221log log ()n n na a n Nb +•=∈. (1)求数列{}n a 的通项公式; (2)求n T .18. 按照国家质量标准:某种工业产品的质量指标值落在[100,120)内,则为合格品,否则为不合格品. 某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,对规定的质量指标值进行检测.表1是甲套设备的样本频率分布表,图1是乙套设备的样本频率分布直方图.(1)填写下面列联表,并根据列联表判断是否有90%的把握认为这种产品的质量指标值与甲、乙两套设备的选择有关;(2)根据表1和图1,对甲、乙两套设备的优劣进行比较;(3)将频率视为概率,若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为X ,求X 的期望()E X . 附:19. 如图,在四棱锥-E ABCD 中,底面ABCD 是圆内接四边形,1CB CD CE ===,3AB AD AE ===,EC BD ⊥.(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且//DP 平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.20. 已知平面曲线C 上任意一点到点(0,1)F 和直线1y =-上一点P 作曲线C 的两条切线,切点分别为,A B .(1)求证:直线AB 过定点F ;(2)若直线PF 交曲线C 于D ,E 两点,DF FE λ=u u u r u u u r ,DP PE μ=u u u r u u u r,求λμ+的值.21. 已知2()ln()(0)f x ax b x a =++≠.(1)若曲线()y f x =在点(1,(1))f 处的切线方程为y x =,求函数()f x 的极值; (2)若2()f x x x ≤+恒成立,求ab 的最大值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知点P 是曲线221:(2)4C x y -+=上的动点,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,以极点O 为中心,将点P 逆时针旋转090得到点Q ,设点Q 的轨迹方程为曲线2C .(1)求曲线1C ,2C 的极坐标方程; (2)射线(0)3πθρ=>与曲线1C ,2C 分别交于,A B 两点,定点(2,0)M ,求MAB ∆的面积.23.选修4-5:不等式选讲 已知实数,a b 满足2244a b +=. (1)求证:212b +;(2)若对任意,a b R ∈,|1||3|x x ab +--≤恒成立,求实数x 的取值范围.试卷答案一、选择题1-5: DACAC 6-10: DCBCD 11、12:BD 二、填空题13. 60 14. 4- 15. 2π 16.12三、解答题17.(1)当1n >时,1122(1)22n n a a na n ++++=-+L , ①1212(1)(2)22n n a a n a n -+++-=-+L ,②① - ②得:1(1)2(2)22n nn n na n n n +=---=g, 所以2n n a =,当1n =时,12a =,所以2n n a =,*n N ∈.(2)22211111()log log (2)22n n n b a a n n n n +===-++g则11111111111111(1)()()()()2322423521122n T n n n n =-+-+-++-+--++L 1111(1)2212n n =+--++ 3111323()421242(1)(2)n n n n n +=-+=-++++ 18.(1)根据表1和图1得到列联表:将列联表中的数据代入公式计算得:222()100(487243) 3.053()()()()5050919n ad bc K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯∵3.053 2.706>,∴有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关. (2)根据表1和图1可知,甲套设备生产的合格品的概率约为4850,乙套设备生产的合格品的概率约为4350,甲套设备生产的产品的质量指标值主要集中在[105,115)之间,乙套设备生产的产品的质量指标值与甲套设备相比较为分散,因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,从而甲套设备优于乙套设备. (3)由题知,1(3,)25X B :, ∴13()32525E X =⨯=. 19.(1)证明:连接AC ,交BD 于点O ,连接EO , ∵AD AB =,CD CB =,∴AC BD ⊥, 又因为底面ABCD 是圆内接四边形, ∴090ADC ABC ∠=∠=,AC 是直径,又∵EC BD ⊥,EC AC C =I ,故BD ⊥面AEC ,OE BD ⊥, 由3AD =,1CD =,可得:2AC =, 所以090AEC ∠=,32AO =,则AE AO AC AE=,故EO AC ⊥, 所以EO ⊥平面ABCD ,平面BED ⊥平面ABCD .(2)取AE 的中点M ,AB 的中点N ,连接,MN ND , 则//MN BE ,易知DN AB ⊥,BC AB ⊥, ∴平面//DMN 平面EBC ,∴点P 在线段MN 上. 建立如图空间直角坐标系,则3(,0,0)2A,(0,,0)2B,(0,0,2E,3(,0,44M,(0,,0)2D -,3(,0)44N ,3(,22AB =-u u u r,3(,0,22AE =-u u u r设平面ABE 的一个法向量为(,,)n x y z =r,则0y z ⎧+=⎪⎨+=⎪⎩,取n =r ,设MP MN λ=u u u r u u u u r,可得3()4DP DM MP =+=u u u r u u u u r u u u r 设直线DP 与平面ABE 所成角为θ,则sin θ=,∵01λ≤≤,∴当0λ=时,sin θ取得最大值7. 20.(1)证明:由已知条件可得曲线C 的方程为:24x y =. 设点(,1)P t -,11(,)A x y ,22(,)B x y ,∵24x y =,∴'2x y =,∴过点,A B 的切线方程分别为111()2x y y x x -=-,222()2xy y x x -=-, 由2114y x =,2224y x =,上述切线方程可化为112()y y x x +=,222()y y x x +=,∵点P 在这两条切线上,∴112(1)y tx -=,222(1)y tx -=, 即直线AB 的方程为2(1)y tx -=, 故直线2(1)y tx -=过定点(0,1)F .(2)设33(,)D x y ,44(,)E x y ,由DF FE λ=u u u r u u u r ,及DP PE μ=u u u r u u u r,得:33443344(,1)(,1)(,1)(,1)x y x y t x y x t y λμ--=-⎧⎨---=-+⎩,得3434x x t x x t λμ⎧=-⎪⎪⎨-⎪=⎪-⎩∴3344t x x x t x λμ-+=--43434344()tx x x x x tx x x t --+=-343444()2()t x x x x x x t +-=-由题意,直线PF 的斜率存在,故PF 的方程为21x y t -=-,即21x y t=+- 联立24x y =,得2840x x t +-=,∴348x x t-+=,344x x =-,∴4482(4)0()t t x x t λμ--⨯-+==-g . 21.(1)'()2af x x ax b=++, 依题意,有'(1)21(1)ln()11a f a bf a b ⎧=+=⎪+⎨⎪=++=⎩,解得:1a =-,2b =, 则1'()22f x x x =+-,由'()0f x =,得122x =,222x +=, 当2(,)2x -∈-∞时,'()0f x <;当22(22x +∈时,'()0f x >,当2(2)2x ∈时,'()0f x <, 所以()f x在2(,2--∞上为减函数,在22(,22+上为增函数,在2(2)2+上为减函数. 所以()f x在x =f =()f x在22x +=处取得极大值,极大值为223()ln(222f ++=+.(2)原不等式等价于ln()ax b x +≤,令()ln()g x ax b =+, ①当0a <时,()g x 的定义域为(,)ba-∞-, ⅰ)当0b <时,当1bx a-<时,()ln()0g x ax b x =+>>,∴此时不符合题意, ⅱ)当0b ≥时,0ab ≤; ② 当0a >时,()g x 的定义域为(,)ba-+∞,ⅰ)当1b >时,∵(0)ln 0g b =>,∴此时不符合题意,ⅱ)当01b <≤时,设直线y x =与()g x 相切于点00(,)P x y , 则0000'()1ln()a f x ax b x ax b ⎧==⎪+⎨⎪=+⎩,∴ln b a a a =-, ∴2(1ln ),0ab a a a =->,令2()(1ln ),0h a a a a =->,则'()(12ln )h a a a =-,令'()0h a >,则0a <<'()0h a <,则a >∴max 1()2h a h e ==, 当0b <时,0ab <,∴此时不符合题意, 综上,ab 的最大值为12e . 22.(1)曲线1C 的极坐标方程为=4cos ρθ.设(,)Q ρθ,(,)2P πρθ-,于是4cos()4sin 2πρθθ=-=, 所以,曲线2C 的极坐标方程为4sin ρθ=.(2)M 到射线3πθ=的距离为2sin 3d π==||4(sincos )1)33B A AB P P ππ=-=-=,则1||32S AB d =⨯=-23.(1)证明:2244||24a b a a ++≤=≤=. (2)由2244a b +=及2244||a b ab +≥=,可得||1ab ≤,所以1ab ≥-,当且仅当a =2b =-或a =2b =时取等号. 因为对任意,a b R ∈,|1||3|x x ab +--≤恒成立,所以|1||3|1x x +--≤-. 当1x ≤-时,|1||3|4x x +--=-,不等式|1||3|1x x +--≤-恒成立;当13x -<<时,|1||3|22x x x +--=-,由13221x x -<<⎧⎨-≤-⎩,得112x -<≤; 当3x ≥时,|1||3|4x x +--=,不等式|1||3|1x x +--≤-不成立; 综上可得,实数x 的取值范围是12x ≤.。
2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)
2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。
山东省济南市2018届高三第二次模拟考试理数试题word含答案
山东省济南市2018届高三第二次模拟考试理数试题word含答案山东省济南市2018届高三第二次模拟(5月)考试理科数学参考公式:锥体的体积公式:V=1/3Sh,其中S为锥体的底面积,h为锥体的高。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
21.设全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分表示的集合为()小幅度改写:已知全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分为集合A和集合B的交集。
2.设复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是()小幅度改写:已知复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是z=-1+i。
3.已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα等于()小幅度改写:已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα=±3/5.4.已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为()小幅度改写:已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为x2/b2-y2/a2=1.5.某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
则中奖的概率为()小幅度改写:某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
2018年3月2018届高三第一次全国大联考(新课标Ⅰ卷)理数卷(考试版)
理科数学试题 第1页(共6页) 理科数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2018年第一次全国大联考【新课标Ⅰ卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|2}P x y x x ==--+,{|ln 1}Q x x =<,则P Q =A .(0,2]B .[2,e)-C .(0,1]D .(1,e)2.若复数z 满足42ii 1z -=-(i 为虚数单位),则下列说法正确的是 A .复数z 的虚部为1 B .||10z =C .3i z=-+D .复平面内与复数z 对应的点在第二象限3.已知角α的终边经过点(2,)P m (0m ≠),若5sin 5m α=,则3πsin(2)2α-= A .35- B .35 C .45D .45-4.已知锐角ABC △的内角,,A B C 的对边分别为,,a b c ,若3c =,36sin a A =,ABC △的面积3S =,则a b +=A .21B .17C .29D .55.已知函数()3log (7)(0,1)a f x x a a =+->≠的图象恒过点P ,若双曲线C 的对称轴为两坐标轴,一条渐近线与310x y --=垂直,且点P 在双曲线C 上,则双曲线C 的离心率等于A .2B .103C .10D .226.如图,半径为R 的圆O 内有四个半径相等的小圆,其圆心分别为,,,A B C D ,这四个小圆都与圆O 内切,且相邻两小圆外切,则在圆O 内任取一点,该点恰好取自阴影部分的概率为A .322-B .642-C .962-D .1282-7.如图为某几何体的三视图(图中网格纸上每个小正方形的边长为1),则该几何体的体积等于A .π12+B .5π123+ C .π4+D .5π43+ 8.已知函数π()3)cos (03)2f x x x ωωω=--<<的图象过点π(,0)3P ,若要得到一个偶函数的图象,则需将函数()f x 的图象A .向左平移2π3个单位长度 B .向右平移2π3个单位长度 C .向左平移π3个单位长度D .向右平移π3个单位长度9.若执行下面的程序框图,则输出的结果为理科数学试题 第3页(共6页) 理科数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .180B .182C .192D .20210.当地时间2018年1月19日晚,美国参议院投票否决了一项旨在避免政府停摆的临时拨款法案,美国联邦政府非核心部门工作因此陷入停滞状态.某国家与美国计划进行6个重点项目的洽谈,考虑到停摆的现状,该国代表对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有 A .240种B .188种C .156种D .120种11.如图,已知抛物线28y x =,圆C :22430x y x +-+=,过圆心C 的直线l 与抛物线和圆分别交于,,,P Q M N ,则||9||PN QM +的最小值为A .32B .36C .42D .5012.已知{|()0}M f αα==,{|()0}N g ββ==,若存在M α∈,N β∈,使得||n αβ-<,则称函数()f x 与()g x 互为“n 度零点函数”.若2()21x f x -=-与2()e xg x x a =-互为“1度零点函数”,则实数a 的取值范围为A .214(,]e eB .214(,]e eC .242[,)e eD .3242[,)e e第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分) 13.已知向量,a b 满足(cos 2018,sin 2018)=a ,||7+=a b ,||2=b ,则,a b 的夹角等于 . 14.已知点P 在不等式组2221y xx y x ≤⎧⎪+≥⎨⎪≤⎩表示的平面区域内,(3,2)A 、(2,1)B ,则PAB △面积的最大值为 .15.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱.如图为一个“堑堵”,即三棱柱111ABC A B C -,其中AC BC ⊥,已知该“堑堵”的高为6,体积为48,则该“堑堵”的外接球体积的最小值为 .16.2017年吴京执导的动作、军事电影《战狼2》上映三个月,以56.8亿震撼世界的票房成绩圆满收官,该片也是首部跻身全球票房TOP100的中国电影.小明想约甲、乙、丙、丁四位好朋友一同去看《战狼2》,并把标识分别为A ,B ,C ,D 的四张电影票放在编号分别为1,2,3,4的四个不同盒子里,让四位好朋友进行猜测:甲说:第1个盒子里面放的是B ,第3个盒子里面放的是C ; 乙说:第2个盒子里面放的是B ,第3个盒子里面放的是D ;丙说:第4个盒子里面放的是D ,第2个盒子里面放的是C ;丁说:第4个盒子里面放的是A ,第3个盒子里面放的是C . 小明说:“四位朋友,你们都只说对了一半.” 可以推测,第4个盒子里面放的电影票为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)理科数学试题 第5页(共6页) 理科数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________已知数列{}n a 中0n a >,其前n 项和为n S ,且对任意*n ∈N ,都有2(1)4n n a S +=.等比数列{}n b 中,1330b b +=,46810b b +=.(Ⅰ)求数列{}n a 、{}n b 的通项公式;(Ⅱ)求数列{(1)}nn n a b -+的前n 项和n T .18.(本小题满分12分)据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:送货单数30 40 50 60 天数甲1010 20 10 乙515255已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪60元,每单抽成1元;乙公司规定底薪80元,每日前40单无抽成,超过40单的部分每单抽成t 元.(Ⅰ)分别求甲、乙快递公司的快递员的日工资12y y ,(单位:元)与送货单数n 的函数关系式; (Ⅱ)若将频率视为概率,回答下列问题:①记甲快递公司的快递员的日工资为X (单位:元),求X 的分布列和数学期望;②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由. 19.(本小题满分12分)如图所示的多面体中,下底面平行四边形ABCD 与上底面111A B C 平行,且111AA BB CC ∥∥,122AB AC AA ==,1π3A AC ∠=,AC BC ⊥,平面11ACC A ⊥平面ABC ,点M 为11BC 的中点.(Ⅰ)过点1B 作一个平面α与平面AMC 平行,并说明理由;(Ⅱ)求平面1A MC 与平面11AC D 所成锐二面角的余弦值. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,1)B ,且过点22,P . (Ⅰ)求椭圆C 的方程及其离心率;(Ⅱ)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值. 21.(本小题满分12分)已知函数2(e ()xa f x ax =+∈R ,e 为自然对数的底数).(Ⅰ)当e2a =-时,求函数()f x 的单调区间; (Ⅱ)若()1f x x ≥+在0x ≥时恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为123x ty t⎧=⎪⎨⎪=-⎩(t 为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线D 的极坐标方程为(1sin )2ρθ+=. (Ⅰ)求曲线C 的普通方程与曲线D 的直角坐标方程; (Ⅱ)若曲线C 与曲线D 交于,M N 两点,求||MN . 23.(本小题满分10分)选修4-5:不等式选讲已知函数()|23||1|f x x x =-+-. (Ⅰ)解不等式()2f x >;(Ⅱ)若正数,,a b c 满足123()3a b c f ++=,求123a b c++的最小值.。
河北省唐山市2018-2019学年高三下学期理数第三次模拟考试试卷(B卷)
河北省唐山市2018-2019学年高三下学期理数第三次模拟考试试卷(B卷)一、选择题:本题共12小题,每小题5分,共60分.1.已知集合M={x|x>3},N={xlx2-7x+10≤0},则MUN=()A.[2,3)B.(3,5]C.(-∞,5]D.[2,+∞)2.已知复数:满足(2+i)z=i2019,则:在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.中国古代数学名著《九章算术》卷“商功”篇章中有这样的问题:“今有方锥,下方二丈七尺,高二丈九尺。
问积几何?”(注:一丈等于十尺)。
若此方锥的三视图如图所示(其中俯视图为正方形),则方锥的体积为()(单位:立方尺)A.7047B.21141C.7569D.227074.已知sinα+ √3cosα=2,则tanα=()A.- √3B.√3C.- √33D.√335.设函数y=f(x)的定义域为I.则“f(x)在I上的最大为M”是“ x∈I,f(x)≤M”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设双曲线C:x2a2−y2b2=1(a>b>0)的两条渐近线的夹角为α.且cosα= 13,则C的离心率为()A.√52B.√62C.√72D.27.函数f(x)=tanx-x3的部分图象大致为()A .B .C .D .8.一个袋子中装有大小形状完全相同的4个白球和3个黑球,从中一次摸出3个球,已知摸出球的颜色不全相同,则摸出白球个数多于黑球个数的概率为( ) A .1835B .35C .2235D .11159.将函数f (x )=sin(ωx+ π3 )(0>0)的图象向右平移 π6个单位长度,得到的图象关于y 轴对称,则ω的最小值为( ) A .7B .6C .5D .410.设椭圆C : x 2a 2+y 2b2=1 (a>b>0)的左,右焦点分别为F 1,F 2,离心率为 √53 ,以F 1F 2为直径的圆与C 在第一象限的交点为P ,则直线PF 1的斜率为( ) A .13B .12C .√33D .√3211.在△ABC 中,AB=AC , BD⃗⃗⃗⃗⃗⃗ =3DC ⃗⃗⃗⃗⃗⃗ ,AD=2,△ABC 的面积为2 √3 ,则∠ADB=( ) A .30° B .45° C .60° D .30°或60°12.已知e 是自然对数的底数,不等式x[(e x-1+1)(e 1-x +1)-(e -1+e )2]>0的解集为( )A .(-1,0)U (3,+∞)B .(-1,0)U (0,3)C .(-∞,-1)U (3,+∞)D .(-∞,-1)U (0,3)二、填空题:本题共4小题,每小题5分,共20分。
2018-2019学年山西省太原市八年级(上)期末数学试卷
2018-2019学年山西省太原市八年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)在下列每个小题给出的四个选项中,只有一项符合题目要求,请选出并填入下表相应位置1.(3分)(2018秋•太原期末)一次函数y=﹣2x+3的图象与y轴的交点坐标是()A.(3,1)B.(,1)C.(3,0)D.(0,3)2.(3分)(2018秋•太原期末)下列计算正确的是()A.=2B.+=C.×=D.÷=2 3.(3分)(2018秋•太原期末)在平面直角坐标系中,以方程2x﹣3y=6的解为坐标的点组成的图形是()A.B.C.D.4.(3分)(2018秋•太原期末)如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55°B.60°C.65°D.70°5.(3分)(2018秋•太原期末)如图,数轴上的点A,B,C,D,E对应的数分别为﹣1,0,1,2,3,那么与实数﹣2对应的点在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上6.(3分)(2018秋•太原期末)在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是()A.甲B.乙C.丙D.无法判断7.(3分)(2018秋•太原期末)图象l表示的是某植物生长t天后的高度y(单位:cm)与t之间的关系,根据图象,下列结论不正确的是()A.该植物初始的高度是3cmB.该植物10天后的高度是10cmC.该植物平均每天生长0.7cmD.y与t之间的函数关系式是y=t+38.(3分)(2018秋•太原期末)下列三个命题:①同角的补角相等;②如果b∥a,c∥a,那么b∥c;③如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中是真命题的有()A.0个B.1个C.2个D.3个9.(3分)(2018秋•太原期末)我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.B.C.D.10.(3分)(2018秋•太原期末)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形11.(3分)(2018秋•太原期末)勾股定理在平面几何中有着不可替代的重要地位,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理.将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为()A.120B.110C.100D.90二、填空题(本大题共5个小题,每小题3分,共15分)把答案直接写在题中的横线上12.(3分)(2018秋•太原期末)把命题“对顶角相等”改写成“如果…那么…”的形式:.13.(3分)(2018秋•太原期末)小明妈妈有健步走的习惯,在她手机的小程序上连续记录了最近16天每天行走的步数(单位:万步).现将她的记录结果绘制成如图所示的条形统计图,在这16天中,她每天行走步数的众数是万步.14.(3分)(2018秋•太原期末)如图,已知一次函数y=3x﹣1和y=﹣x+3的图象交于点P,则二元一次方程组的解是.15.(3分)(2018秋•太原期末)如图,将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=135°,∠A=15°,则∠A′DB的度数为.16.(3分)(2018秋•太原期末)如图,直线l:y=x,点A1的坐标为(3,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x 轴正半轴于点A3;…,按此作法进行下去.请从A,B两题中任选一题作答.A.点A2019的坐标为.B.点B n的坐标为.三、解答题(本大题共8个小题,共55分)解答应写出必要的文字说明、演算步骤或推理过程。
太原市2018年高三年级模拟试题一数学(理科)试卷解析
太原市2018年高三模拟试题(一)数学试卷(理工类)一、选择题:本题共12道小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1. 已知集合{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛==>==1,21|,2,log |2x y y B x x y y A x ,则=B A ( )()+∞,1.A ⎪⎭⎫⎝⎛210.,B ⎪⎭⎫ ⎝⎛∞+,21.C ⎪⎭⎫ ⎝⎛121.,D2. 若复数imiz ++=11在复平面内对应的点在第四象限,则实数m 的取值范围是( ) 11.,-A 01.,-B ∞+,1.C 1,.--∞D所以⎩⎨⎧<->+0101m m 解得()1,1-∈m 3. 已知命题01,:0200≥+-∈∃x x R x p ;命题:q 若,b a <,则ba 11>.则下列为真命题的是( ) q p A ∧. q p B ⌝∧. q p C ∧⌝. q p D ⌝∧⌝.4. 执行如图所示的程序框图,输出S 的值为( )3log 213.2+A 3log .2B 3.C 2.D5. 已知等比数列n a 中,1238523,8a a S a a a +=-=,则=1a ( )21.A 21.-B 92.-C 91.-D6.函数2||In x y x x=+的图像大致为A B C D 7.已知不等式22ax by -≤在平面区域{(x,y)||x |1|y |1}≤≤且上恒成立,若a b +的最大值和最小值分别为M 和m ,则Mm 的值为.4A .2B .4C - .2D -点T(2,0)-时最小,最小为2m =-,所以4Mm =-8.已知抛物线22(p 0)y px =>的焦点为F ,准线为,,l A B 是抛物线上的两个动点,且满足60AFB ∠=o 。
设线段AB 的中点M 在l 上的投影为N ,则.|AB|2|MN |A ≥B.2|AB|3|MN |≥C.|AB|3|MN |≥D.|AB||MN |≥9.某空间几何体的三视图如图所示,则该几何体的体积是4.3A 8.3B .2C .4D10.已知函数(x)2sin(x ),f ωϕ=+ 若()2,()0,4f f ππ==在(,)43ππ上具有单调性,那么ω的取值共有.6A 个 .7B 个 .8C 个 .9D 个11.三棱锥D ABC -中,CD ABC ⊥底面,ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的外接球的体积为( )A. B. C.203π D.12.设函数2()ln 2f x x x x =-+,若存在区间[]1,[,)2a b ⊆+∞,使()f x 在[],a b 上的值域为()()2,2k a k b ⎡++⎤⎣⎦,则k 的取值范围是( ) A.92ln 2(1,)4+ B.92ln 21,4+⎡⎤⎢⎥⎣⎦C.92ln 2(1,]10+ D.92ln 21,10+⎡⎤⎢⎥⎣⎦二、填空题:本大题共四道,每小题5分,共20分。
太原市2021年高三年级二模考试数学学科(理)参考答案(1)
4
4
(
)2
1
220;
4
4
综上所述,实数 a 的取值范围是[2,) .
………12 分
22
解:(Ⅰ)将
xy2ttt22221t11,
的参数
t
消去得曲线
C
的普通方程为
x2 2
y2
1(y
1)
,……3
分
cos( ) 2 , cos sin 1 0 , 42
由
x cos ,
y
sin
可得直线
bn1
bn
1 2
,bn1
bn
1 2
是一个与
n
无关的常数,
………4 分
{bn} 是以首项 b1
1 2
、公差 d
1 2
的等差数列;
………6 分
(Ⅱ)由(Ⅰ)得 bn
n (n N*) , nan
2
an1 an
n 2
,
an1
3an ,
a1
1 ,an
3n1(n N *) ,cn
bn an
n 2 3n1
l
的直角坐标方程为
x
y
1
0
;
………5 分
(Ⅱ)由(Ⅰ)得曲线
C
的参数方程可表示为
x
y
2 cos,( sin
为参数)(
2
2k
,
k
Z)
,
设 A( 2 cos,sin) ,则点 A 到直线 l 的距离 d |
2 cos sin 1|
2
, ………7 分
2
2
2 cos sin 0 或 2 cos sin 3 cos( ) 2 (tan 2) (舍去),
2018新课标全国2卷(理数)
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
1.(5分)(2018•新课标Ⅱ)=()A.i B. C. D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f (1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)
2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21|log ,2,|,12xA y y x xB y y x ⎧⎫⎪⎪⎛⎫==>==<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =I ( )A . ()1,+∞B .10,2⎛⎫ ⎪⎝⎭ C .1,2⎛⎫+∞⎪⎝⎭ D .1,12⎛⎫ ⎪⎝⎭2. 若复数11miz i+=+在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .()1,1- B .()1,0- C .()1,+∞ D .(),1-∞- 3. 已知命题2000:,10p x R x x ∃∈-+≥;命题:q 若a b <,则11a b>,则下列为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝4. 执行如图所示的程序框图,输出S 的值为( ) A .213log 32+B .2log 3 C. 3 D .2 5. 已知等比数列{}n a 中,2583218,S 3a a a a a =-=+, 则1a =( ) A .12 B .12- C. 29- D .19- 6. 函数2ln xy x x=+的图像大致为( ) A. B . C. D .7. 已知不等式22ax by -≤在平面区域(){},|11x y x y ≤≤且上恒成立,若a b +的最大值和最小值分别为M 和m ,则Mm 的值为( ) A . 4 B . 2 C. -4 D .-28.已知抛物线()220y px p =>的焦点为F ,准线为,,l A B 是抛物线上的两个动点,且满足060AFB ∠=.设线段AB 的中点M 在l 上的投影为N ,则 ( )A .2AB MN ≥ B .23AB MN ≥ C. 3AB MN ≥ D .AB MN ≥9. 某空间几何体的三视图如图所示,则该几何体的体积是( ) A .43 B .83C. 2 D .4 10.已知函数()()2sin f x x ωϕ=+,若()2,04f f ππ⎛⎫== ⎪⎝⎭,在,43ππ⎛⎫⎪⎝⎭上具有单调性,那么ω的取值共有 ( )A . 6个B . 7个 C. 8个 D .9个11.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的外接球的体积为( )A B C. 203π D 12.设函数()2ln 2f x x x x =-+,若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],a b 上的值域为()()2,2k a k b ++⎡⎤⎣⎦,则k 的取值范围是( )A .92ln 21,4+⎛⎫ ⎪⎝⎭B .92ln 21,4+⎡⎤⎢⎥⎣⎦ C. 92ln 21,10+⎛⎤ ⎥⎝⎦ D .92ln 21,10+⎡⎤⎢⎥⎣⎦二、填空题:本大题共4道,每小题5分,共20分.13.在多项式()()65121x y ++的展开式中,3xy 的系数为___________.14.已知双曲线2222:1x y C a b -=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,交另一条渐近线于N ,若2MF FN =u u u r u u u r,则双曲线的离心率e =___________.15.某人在微信群中发了一个7元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领取的钱数不少于其他任何人的概率是___________. 16.数列{}n a 中,()()*110,121,2n n a a a n n N n -=--=-∈≥,若数列{}n b满足811n n b n -⎛⎫= ⎪⎝⎭,则数列{}n b 的最大项为第__________项.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤. 17. ABC ∆的内角为,,A B C 的对边分别为,,a b c ,已知cos sin sin cos a b cC B B C=+.(1)求()()sin sin cos cos A B A A A B +++-的最大值; (2)若b =ABC ∆的面积最大时,ABC ∆的周长;18.某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金. (1)若x 与y 成线性相关,则某天售出9箱水时,预计收入为多少元? (2)甲乙两名学生获一等奖学金的概率均为25,获二等奖学金的概率均为13,不获得奖学金的概率均为415,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和X 的分布列及数学期望;附:回归方程ˆˆˆybx a =+,其中()()()121ˆˆ,niii nii x x y y b ay bx x x ==--==--∑∑.19. 如图,在四棱锥P ABCD -中,底面ABCD的正方形,PA BD ⊥. (1)求证:PB PD =;(2)若,E F 分别为,PC AB 的中点,EF ⊥平面PCD , 求直线PB 与平面PCD 所成角的大小.20.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为12,A A ,右焦点为()21,0F ,点31,2B ⎛⎫⎪⎝⎭在椭圆C 上. (1)求椭圆方程;(2)若直线()():40l y k x k =-≠与椭圆C 交于,M N 两点,已知直线1A M 与2A N 相交于点G ,证明:点G 在定直线上,并求出定直线的方程.21. ()()()()1,1,x f x a x g x ax e a R =-=-∈.(1)证明:存在唯一实数a ,使得直线()y f x =和曲线()y g x =相切; (2)若不等式()()f x g x >有且只有两个整数解,求a 的范围.22.在平面直角坐标系xOy 中,曲线1C 过点(),1P a,其参数方程为1x a y ⎧=+⎪⎨=⎪⎩(t 为参数,ˆa R I ),以O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0r q q r +-=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)求已知曲线1C 和曲线2C 交于,A B 两点,且2PA PB =,求实数a 的值.23.选修4-5:不等式选讲已知函数()21f x x m x =++-.(1)当1m =-时,求不等式()2f x ≤的解集;(2)若()21f x x ≤+的解集包含3,24⎡⎤⎢⎥⎣⎦,求m 的取值范围.太原市2018年高三模拟试题(一)理数试卷答案一、选择题1-5: AABDB 6-10: CCDAD 11、12:BC二、填空题15. 2516. 6三、解答题 17.解:(1)由cos sin sin cos a b c C B B C =+得:cos sin cos sin sin cos a b C c BC B B C+=,cos sin a b C c B =+,即sin sin cos sin sin A B C C B =+,cos sin B B =,4B π=;由()())sin sin cos cos sin cos sin cos A B A A A B A A A A +++-=++,令sin cos t A A =+,原式21122t =+-, 当且仅当4A π=时,上式的最大值为52.(2)2221sin ,b 2cos 24S ac B a c ac B ===+-,即(2222,2a c ac ac =+≥≤+a c ==12MAX S =,周长L a b c =++=.18.解:(1)6,146x y ==,经计算ˆ20,26ba ==,所以线性回归方程为ˆ2026y x =+, 当9x =时,y 的估计值为206元;(2)X 的可能取值为0,300,500,600,800,1000;()441601515225P X ==⨯=;()418300215345P X ==⨯⨯=;()2416500251575P X ==⨯⨯=; ()111600339P X ==⨯=;()21480025315P X ==⨯⨯=;()22410005525P X ==⨯=;所以X 的数学期望()600E X =.19.解:(1)连接,AC BD 交于点O ,连接PO ,∵底面ABCD 是正方形,∴,AC BD OB OD ⊥=, 又,PA BD PA ⊥⊂平面,PAC AC ⊂平面,PAC PA AC A =I , ∴BD ⊥平面PAC ,∵PO ⊂平面PAC ,∴BD PO ⊥, 又OB OD =,∴PB PD =; (2)设PD 的中点为Q ,连接,AQ EQ ,则1//,2EQ CD EQ CD =, 又11//,22AF CD AF AB CD ==,∴//,EQ AF EQ AF =, ∴四边形AQEF 为平行四边形,∴//EF AQ , ∵EF ⊥平面PCD ,∴AQ ⊥平面PCD , ∴AQ PD ⊥,∵Q 是PD的中点,∴AP AD ==∵AQ ⊥平面PCD ,∴AQ CD ⊥,又,AD CD AQ AD A ⊥=I , ∴CD ⊥平面PAD ,∴CD PA ⊥,又,BD PA BD CD D ⊥=I ,∴PA ⊥平面ABCD ,以A 为坐标原点,以,,AB AD AP 为坐标轴建立如图所示的空间直角坐标系,则)((),,0,0,0,BP A Q ⎛ ⎝⎭,∴0,,22AQ PB ⎛⎫==⎪ ⎪⎝⎭u u u r u u ur ,∵AQ ⊥平面PCD ,∴AQ uuu r为平面PCD 的一个法向量.∴1cos ,2AQ PB AQ PB AQ PB==-u u u r u u u ru u u r u u u r g u u u r u u u r g ,设直线PB 与平面PCD 所成角为θ,则1sin cos ,2AQ PB θ==u u u r u u u r ,∴直线PB 与平面PCD 所成角为6π.20.解:(1)()21,0F ,∴1c =,由题目已知条件知222219141a b a b ⎧=+⎪⎪⎨⎪+=⎪⎩,∴2,a b ==,所以22143x y +=; (2)由椭圆对称性知G 在0x x =上,假设直线l过椭圆上顶点,则(M ,∴8,455k N ⎛⎫=-⎪ ⎪⎝⎭,))12:2,:2A M A N l y x l y x =+=-,∴1,2G ⎛⎫ ⎪ ⎪⎝⎭,所以G 在定直线1x =上.当M 不在椭圆顶点时,设()()1122,,,M x y N x y ,()224143y k x x y =-⎧⎪⎨+=⎪⎩得()2222343264120k xk x k +-+-=,所以22121222326412,3434k k x x x x k k-+==++g , ()()121212:2,:222A M A N y y l y x l y x x x =+=-+-,当1x =时,1212322y y x x -=+-得()12122580x x x x -++=,所以()222222834641232250343434k k k k k k +--+=+++显然成立,所以G 在定直线1x =上.21.解:(1)设切点为()00,x y ,则()()()0000000011,1xxxy a x ax e a x e x e =-=--+= ①,()y f x =和()y g x =相切,则()()()00000001,1x x x x a g x a ax e a x e e e '==+-+-= ②,所以00000011xxxx e x x e e -+=+-,即0020xe x +-=.令()()2,10x x h x e x h x e '=+-=+>,所以()h x 单增.又因为()()010,110h h e =-<=->,所以,存在唯一实数0x ,使得0020xe x +-=,且()00,1x ∈.所以只存在唯一实数a ,使①②成立,即存在唯一实数a 使得()y f x =和()y g x =相切. (2)令()()f x g x >,即()()11x a x ax e ->-,所以11x x a x e -⎛⎫-< ⎪⎝⎭, 令()1x x m x x e-=-,则()2x xe x m x e +-'=,由(1)可知,()m x 在()0,x -∞上单减,在()0,x +∞单增,且()00,1x ∈,故当0x ≤时,()()01m x m ≥=,当1x ≥时,()()11m x m ≥=, 当0a <时,因为要求整数解,所以()m x 在x Z ∈时,()1m x ≥,所以()1am x <有无穷多整数解,舍去;当01a <<时,()1m x a <,又()()11,011m m a >==,所以两个整数解为0,1,即()()1211m am a ⎧≥⎪⎪⎨⎪-≥⎪⎩,所以2221e a e ≥-,即22,121e a e ⎡⎫∈⎪⎢-⎣⎭,当1a ≥时,()1m x a <,因为()11,m x a≤在x Z ∈内大于或等于1, 所以()1m x a <无整数解,舍去,综上,22,121e a e ⎡⎫∈⎪⎢-⎣⎭.22.考点:参数方程极坐标方程和直角坐标方程的互化,直线的参数方程中t 的几何意义.解:(1)1C的参数方程1x a y ⎧=⎪⎨=+⎪⎩,消参得普通方程为10x y a --+=, 2C 的极坐标方程为2cos 4cos 0r q q r +-=两边同乘r 得222cos 4cos 0r q r q r +-=即24y x =;(2)将曲线1C的参数方程标准化为12x a y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数,ˆa R I )代入曲线22:4C y x =得211402t a +-=,由(()214?1402D a =->,得0a >, 设,A B 对应的参数为12,t t ,由题意得122t t =即122t t =或122t t =-,当122t t =时,()1212122214t t t t t t a =⎧⎪+=⎨⎪=-⎩,解得136a =, 当122t t =-时,()1212122214t t t t t t a =-⎧⎪+=⎨⎪=-⎩解得94a =, 综上:136a =或94.23.考点:绝对值不等式解:(1)当1m =-时,()121f x x x =-+-, ①1x ≥时,()322f x x =-≤,解得413x ≤≤; ②当112x <<时,()2f x x =≤,解得112x <<; ③当12x ≤时,()232f x x =-≤,解得102x ≤≤;综合①②③可知,原不等式的解集为4|03x x ⎧⎫≤≤⎨⎬⎩⎭. (2)由题意可知()21f x x ≤+在3,24⎡⎤⎢⎥⎣⎦上恒成立,当3,24x ⎡⎤∈⎢⎥⎣⎦时,()21212121f x x m x x m x x x =++-=++-≤+=+,从而可得2x m +≤,即2222x m x m x -≤+≤⇔--≤≤-,且()max 1124x --=-,()min 20x -=, 因此11,04m ⎡⎤∈-⎢⎥⎣⎦.。