人教版八年级下册数学二次根式

合集下载

人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总

八年级下册第十六章:二次根式(1))0a ≥号,a 叫做被开方数.2,即:2可以省略 .(2) 二次根式有意义的条件:被开方数为非负数,即:被开方数大于或等于0.在实数范围内有意义的条件为: . 由20x -≥,可以得出:2x ≥.20x ≥,x 属于任意实数.在实数范围内有意义的条件:30x ≥,0x ⇒≥.在实数范围内有意义的条件:10121202x x x x x -≥≤⎧⎧⇒⇒-<≤⎨⎨+>>-⎩⎩. (分析:分子、分母都要有意义,分式有意义:分母不为0)(3) 负数没有平方根也没有算术平方根,0的平方根是0,0的算术平方根是0.(4) 正数的立方根是正数,负数的立方根是负数,0的立方根是0.(5) 一个正数有两个平方根,互为相反数. 一个正数有一个算术平方根方根,且为正根. (6) 二次根式的双重非负性:0a ≥0≥.21a =-,则a 的取值范围是: .根据二次根式的双重非负性,()2120a -≥,则210a -≥,所以:12a ≥. (7)()20a a=≥.例如:21.5=;(22224520=⨯=⨯=.提示:2=2倍根号5”.(8()()()0000a a a a a a >⎧⎪===⎨⎪-<⎩.4==5== .11=-=;14==;π==-;110==. (9)代数式:用基本运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接起来的式子叫做代数式.例如:3,x ,x y +)0x ≥,ab -,()0st t≠,3x 都是代数式.(10)二次根式的乘法法则:一般地,=()0,0a b ≥≥,=.=; 3=== ;2612==⨯=;33===;14===== ;⑥((32-=⨯-=-=-=-=-;====;(11=()0,0a b ≥>,=()0,0a b ≥>利用它可以进行二次根式的化简 .====;=====;==; 53=== ;⑤===;(12)最简二次根式:最简二次根式是指满足下列两个条件的二次根式①被开方数不含分母;②被开方数中不含开的尽方的因数或因式..(13)化简最简二次根式的一般方法:①将被开方数中能开得尽方的因数或因式进行开方.====.②化去根号下的分母,即:分母有理化.====;=====;====;==.(14)二次根式的加减:一般地,二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并.例:==;==;==;-==;同类二次根式:根指数相同、化简后被开方数相同的二次根式;=.注:合并被开方数相同的二次根式与合并同类项类似,将它们的“系数”相加减,最简结果,不能合并.(15)二次根式的混合运算:①二次根式的混合运算顺序与实数的运算顺序一样,先乘方,再乘除,后加减,有括号先算括号里面的,同级运算从左往右依次计算; ②在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用 .例: ① ⎛÷ ⎝解原式(=÷(2=+2==②)23-解原式22223⎡⎤--=-⎢⎥⎣⎦()5329=---229=-+9=注:运算结果是根式的,应表示为最简二次根式 .(16 解:2150126=+ ; 令:12a =,6b =;61212.25224b a a ≈+=+≈第十七章:勾股定理(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222a b c =+ . 勾股定理的证明方法:全世界共有370多种证明方法.其中赵爽正弦图、毕达哥拉斯证法、美国第20任总统詹姆斯加菲尔德的证法比较出名;勾股定理的变式:① 222c a b =+;②()()222a cbc b c b =-=+- ;③ ()()222b c a c a c a =-=+-;④c =⑤a =⑥b =(2)勾股定理逆定理:如果三角形三边长a ,b ,c 满足222a b c =+,那么这个三角形是直角三角形 .(3)定理:经过证明被确认正确的命题叫做定理 .(4)我们把题设、结论正好相反的两个命题叫做互逆命题;如果把其中一个叫做原命题,那么另一个叫做它的逆命题 .(例如:勾股定理与勾股定理逆定理) (5)常见的勾股数(勾股数是正整数):①3、4、5,222345⇒+= ; ②5、12、13,22251213⇒+=; ③6、8、10,2226810⇒+=; ④7、24、25,22272425⇒+=;注:只要三角形的三边长都是勾股数的k (k 为正整数)倍时,构成的三角形仍然是直角三角形.(6)蚂蚁吃食物最短路径问题:①如下图,是一个边长为2的正方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为AB = 42 + 22 =20 =25AbacCBAAAB = 42 + 22 =20 =25AAB = 42 + 22 =20 =25②如下图,是一个长为2,宽为4,高为8的长方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为10.③如下图,是一个底面半径为2,高为8的圆柱体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程.(注:表面爬行)情况一: 情况二:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为(7)如图:直角三角形的两直角边长分别为a 、b ,斜边为c .以两直角边为边长的正方形的面积等于以斜边为边长的正方形的面积.即:123S S S +=,或222a b c +=.AB =82+4π()2 =64+16π2 =44+π2AB =82+4π()2 =64+16π2 =44+π2A8AB = 62 + 82 =100 =10AB AB = 122 + 22 =148AAB = 62 + 82 =100 =10bac S 3S 2S 1(8)三角形面积的计算方法:海伦秦九韶公式(知道三角形的三边长可以直接求面积).2a b cP ++=(其中,,a b c 为三角形的三边长 );S =.例:在下列ABC ∆中,边长如图所示,计算其面积. 解:由海伦秦九韶公式得:6810122P ++==ABC S ∆∴==24==(9)如图,AB BC ⊥,3,4,12,13,AB BC CD AD ====求四边形ABCD 的面积. 解:(法一)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===22222251216913AC CD AD +=+===∴根据勾股定理得逆定理得:ACD ∆是直角三角形. AC CD ∴⊥,即:90ACD ∠=︒. ∴S 四边形ABC ACD S S ∆∆=+ 111134512362222AB BC AC CD =⋅+⋅=⨯⨯+⨯⨯=.解:(法二)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===在ACD ∆中,由海伦秦九韶公式得:51213152P ++==A C D S ∆∴=30== ∴S 四边形113034306303622ABC ACD S S AB BC ∆∆=+=⋅+=⨯⨯+=+=. 6108CBA341213DCBA第十八章:平行四边形(1)平行四边形:两组对边分别平行的四边形叫做平行四边形.平行四边形用“”表示,如平行四边形ABCD 记作“ABCD ”.即:若AB ∥CD ,AD ∥BC ,则四边形ABCD 是平行四边形. (2)平行四边形的性质:①平行四边形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC .AB =CD ,AD =BC .②平行四边形的两组对角相等.即:BAD BCD ∠=∠,ABC ADC ∠=∠.平行四边形的邻角互补.即:180BAD ABC ∠+∠=︒,180BCD ABC ∠+∠=︒. ③平行四边形的对角线互相平分.即:OA OC =,OB OD =.(3)平行四边形的两条对角线将平行四边形分成四个面积相等的三角形.即:14AOBBOCCODAODABCDSSSSS ====.4444ABCDAOBBOCCODAODSSS SS====.(4)两平行线间的距离处处相等. (5)平行四边形的面积:底⨯高.(6)平行四边形的判定:①两组对边分别相等的四边形是平行四边形. ②两组对角分别相等的四边形是平行四边形. ③对角线互相平分的四边形是平行四边形. ④一组对边平行且相等的四边形是平行四边形. ⑤两组对边分别平行的四边形叫做平行四边形. (7)三角形中位线定理:三角形的中位线平行且等于第三边的一半. 在ABC ∆中,点D 是AB 的中点,点E 是AC 的中点,所以DE 是ABC ∆的中位线.即:12DE BC =,DE ∥BC .(8)梯形中位线定理:梯形的中位线平行且等于上底与下底和的一半. 在梯形ABCD 中,点E 是AB 的中点,点F 是DC 的中点,所以EF 是梯形ABCD 的中位线.即:2AD BCEF +=,EF ∥AD ∥BC .(9)矩形:有一个角是直角的平行四边形叫做矩形. (10)矩形的性质:①矩形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②矩形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒. ③矩形的对角线相等且互相平分.即:AC BD =,12OA OC AC ==,12OB OD BD ==.ODCB AED CBAFEDCBAODCBAA OB ∆,BOC ∆,COD ∆,AOD ∆都是等腰三角形. (11)矩形的面积:长⨯宽.即:S AB BC =⋅.(12)在直角三角形中,斜边上的中线等于斜边的一半.如:在Rt ABC ∆中,90ABC ∠=︒,BD 是斜边AC 的中线,则12BD AD DC AC ===.(13)矩形的判定:①对角线相等的平行四边形是矩形. ②有三个角是直角的四边形是矩形.③对角线相等且互相平分的四边形是矩形. ④有一个角是直角的平行四边形叫做矩形. (14)菱形:有一组邻边相等的平行四边形叫做菱形. (15)菱形的性质:①菱形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②菱形的四条边都相等.即:AB BC CD AD ===. ③菱形的对角线互相垂直平分,且每一条对角线平分一组对角.即:AC BD ⊥,12OA OC AC ==,12OB OD BD ==. 1122ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠.1122BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 菱形ABCD .(16)菱形的面积:两条对角线乘积的12.即:12S AC BD =⋅.(17)菱形的判定:①有一组邻边相等的平行四边形叫做菱形.②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形. ④对角线互相垂直平分的四边形是菱形.(18)正方形:有一组邻边相等且有一个角是直角的平行四边形是正方形.正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;既是矩形又是菱形的四边形是正方形. (19)正方形的性质:①正方形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②正方形的四条边都相等.即:AB BC CD AD ===.正方形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒ ③正方形的对角线相等且互相垂直平分,且每一条对角线平分一组对角.即: A C B D ⊥,AC BD =,12OA OC AC ==,12OB OD BD ==. DCBAODCB AODCB A114522ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠=︒.114522BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠=︒.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 正方形ABCD .(20)正方形的面积:边长⨯边长或对角线乘积的一半.即:S AB BC =⋅或12S AC BD =⋅. (21)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形.②有一组邻边相等的矩形是正方形.③有一个角是直角的菱形是正方形.④对角线相等且互相垂直平分的四边形是菱形. ⑤对角线相等的菱形是正方形. ⑥对角线互相垂直的矩形是正方形.(22)平行四边形的中点四边形是平行四边形;菱形的中点四边形是矩形;矩形的中点四边形是菱形;正方形的中点四边形是正方形. (23)平行四边形不是轴对称图形;矩形是轴对称图形,有2条对称轴;菱形是轴对称图形,有2条对称轴;正方形是轴对称图形,有4条对称轴.第十九章:一次函数(1)常量与变量:在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说y 是x 的函数,x 是自变量. (3)函数值:函数值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值.如果当x a =时,y b =,那么b 叫做当自变量的值为a 时的函数值.(4)解析式:像23y x =-+这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.(5)函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. (6)描点法画函数图象的步骤:①列表; ②描点; ③连线;(7)判断分析函数图象的突破点:①明确两坐标轴所表示的意义;②明确图象上的点所表示的意义;③弄清图象上的转折点、最高(低)点所表示的意义;④弄清上升线和下降线所 表示的意义.(8)函数的表示方法:解析式法;列表法;图象法.例1:小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系. 第(1)段:小明从家到食堂,相距0.6km ,用时8min . 第(2)段:小明在食堂用餐,用时()25817min -=. 第(3)段:小明从食堂到图书馆,食堂与图书馆相距()0.80.60.2km -=,用时()28253min -=.食堂与家相距()0.800.8km -=.第(4)段:小明在图书馆看书,用时()582830min -=. 第(5)段:小明从图书馆到家,用时()685810min -=,速度()0.8100.08/min v km =÷=.例2:画出函数21y x =+的图象.第三步:连线(9)正比例函数:一般地,形如()0y kx k =≠(k 是常数)的函数,叫做正比例函数,其/miny /中k 叫做比例系数或斜率.例:①0.2y x =-; ②2xy =; ③22y x =; ④24y x =. 在上面式子中: ①②是正比例函数;③④不是正比例函数.(10)正比例函数()0y kx k =≠的图象性质:①正比例函数()0y kx k =≠的图象是一条经过原点的直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数),函数图象经过第一、三象限.③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数),函数图象经过第二、四象限.④k 越大,直线越倾斜(越陡).⑤正比例函数()0y kx k =≠的图象经过点()0,0和()1,k .(11)一次函数:一般地,形如()0y kx b k =+≠(,k b 是常数)的函数,叫做一次函数.当0b =时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数. (12)一次函数()0y kx b k =+≠的图象性质: ①一次函数()0y kx b k =+≠的图象是一条直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数). ③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数). ④当0b >时,函数图象交y 轴的正半轴. ⑤当0b =时,函数图象经过原点. ⑥当0b <时,函数图象交y 轴的负半轴.⑦k 越大,直线越倾斜(越陡).正比例函数和一次函数的图象都是直线,画函数图象时只需要找两个点,即两点作图法.(13)函数的平移:x :左+右-;y :上+下-.例:6y x =-向上平移5个单位长度得到:65y x =-+. 6y x =-向下平移3个单位长度得到:63y x =--.2y x =-向左平移3个单位长度得到:()2326y x x =-+=--.2y x =-向右平移2个单位长度得到:()2224y x x =--=-+.22y x =--向左平移2个单位,向下平移3个单位得到:()222329y x x =-+--=--. 32y x =-+向右平移2个单位,向上平移3个单位得到:()3223311y x x =--++=-+.(14)在一次函数()11110y k x b k =+≠和()22220y k x b k =+≠中:①当12k k =时,1y ∥2y . ②当121k k =-时,12y y ⊥.例:直线21y x =--与26y x =-+互相平行;直线21y x =--与162y x =+互相垂直. (15)直线与x 轴相交0y =;直线与y 轴相交0x =(16)待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.例:已知一次函数的图象过点()3,5和()4,9--,求这个一次函数的解析式.解:设这个一次函数的解析式为()0y kx b k =+≠.函数图象经过点()3,5和()4,9--∴3549k b k b +=⎧⎨-+=-⎩解得:21k b =⎧⎨=-⎩∴这个一次函数的解析式为21y x =-.(17)一次函数与方程、不等式:①一次函数与方程的关系:函数值y 为某一特定值时,求自变量x 的值. ②一次函数与不等式的关系:函数值y 为某一范围时,求自变量x 的取值范围.(18)两个一次函数图象相交时,它们有相同的横坐标,相同的纵坐标.例:求函数5y x =+与0.525y x =+的交点坐标. 解:50.525x x +=+ 20x =把20x =代入5y x =+中得20525y =+=.∴函数5y x =+与0.525y x =+的交点坐标为()20,25. (19)一次函数的实际应用:①方案选择问题 ②租车问题. 两个问题的考察实则是考察自变量的取值范围 例题:重点掌握人教版教材109页的第15题.第二十章:数据的分析(1)算术平均数:一般地,我们把n 个数12,,,n x x x ⋅⋅⋅,的和与n 的比值,叫做这n 个数的算术平均数,简称平均数,记作“__x ”.即__12nx x x x n++⋅⋅⋅+=.(2)加权平均数:一般地,若n 个数12,,,n x x x ⋅⋅⋅的权分别是12,,,n w w w ⋅⋅⋅,则__112212n nnx w x w x w x w w w ++⋅⋅⋅+=++⋅⋅⋅+叫做这n 个数的加权平均数.(3)在求n 个数的平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次,(这里12k f f f n ++⋅⋅⋅+=),那么这n 个数的平均数为__1122k kx f x f x f x n++⋅⋅⋅+=.也叫做12,,,k x x x ⋅⋅⋅这k 个数的加权平均数,其中12,,,k f f f ⋅⋅⋅分别叫做12,,,k x x x ⋅⋅⋅的权.(4)中位数:将-组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则最中间两个数的平均数就是这组数据的中位数.(5)众数:把一组数据中出现次数最多的那个数据叫做这组数据的众数.注:一组数据的众数可能不止一个,也可能没有众数.(6)平均数、中位数、众数都刻画了数据的集中趋势,但它们各有特点.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极值(一组数据中与其余数据差异很大的数据)的影响较大.当一组数据中某些数据多次重复出时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.(7)方差:设__x 是n 个数据12,,,n x x x ⋅⋅⋅的平均数,各个数据与平均数只差的平方的平均数,叫做这n 个数据的方差.用“2s ”表示,即:222______2121n s x x x x x x n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 方差越大,数据的波动越大,方差越小,数据的波动越小.(8)标准差:方差的算术平方根称为标准差.s =(9)极差:一组数据中的最大值与最小值的差称为极差.。

人教版八年级数学下册_16.2二次根式的乘除

人教版八年级数学下册_16.2二次根式的乘除

特别提醒 进行二次根式的除法运算时,若两个被开方数可以
整除,就直接运用二次根式的除法法则进行计算;若两 个被开方数不能整除,可以对二次根式化简或变形后再 相除.
感悟新知
例 3 如果
a a-8
a a-8
成立,那么( D )
A.a ≥ 8
B.0 ≤ a ≤ 8
C.a ≥ 0
知3-练
D.a>8
解题秘方:紧扣“二次根式除法法则”成立的条
(式)移到根号外时,要注意应写在分母的位置上;
(3)“三化”,即化去被开方数中的分母.
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中每个因数(式)的指数都小于根指数2,即每个因
数(式)的指数都是1. 注意:分母中含有根式的式子不是最简二次根式.
感悟新知
知5-练
例8 下列各式中,哪些是最简二次根式?哪些不是最简二
次根式?不是最简二次根式的,请说明理由.
(1)
1 ;(2)
x2+y2 ;(3)
0.2;
3
(4)
24 x;(5)
2 .
3
解题秘方:紧扣“最简二次根式的定义”进行判断.
感悟新知
知5-练
解:(1)不是最简二次根式,因为被开方数中含有分母; (3) 不是最简二次根式,因为被开方数是小数(即含有分母); (4)不是最简二次根式,因为被开方数24x 中含有能开得尽 方的因数4,4=22; (2)(5)是最简二次根式.
感悟新知
知3-讲
(2)当二次根式根号外有因数(式)时,可类比单项式除以单 项式的法则进行运算,将根号外的因数(式)之商作为商 的根号外因数(式) ,被开方数(式)之商作为商的被开方 数(式) ,即a b÷c d = (a÷c ) b d ( b ≥ 0,d > 0,c ≠ 0 ).

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

人教版数学八年级下册《二次根式的除法》课件

人教版数学八年级下册《二次根式的除法》课件

5 8
=
2 3
1 =21=1. 36 3 6 9
二 商的算术平方根的性质 我们知道,把二次根式的乘法法则反过来就
得到积的算术平方根的性质.
类似的,把二次根式的除法法则反过来,就得到 二次根式的商的算术平方根的性质:
a a (a 0,b 0). bb
语言表述:商的算术平方根,等于积中各因式 的算术平方根的商.
我们可以运用它来进行二次根式的解题和化简.
a
a a 0,b 0
注意: 如果被开方数是带分
bb
数,应先化成假分数。
例5:化简 (1) 3 100
(2) 1 3 16
3 25x
9y2
解:1 3 3 3
100 100 10
(1)化什么?
(2)观察三个式子 有什么共同特征?
(2)1 3 = 19 = 19 = 19 根号内有分母 16 16 16 4
5
34 2 3 2
4
计算:
(1) 18 2;
(2) 6a 3a;
(3) 72 ; 6
(4) 2 3 1 3. 45 2 5
解: (1)原式= 18 2 9 3;
(2)原式= 6a 2;
3a
(3)原式= 72 6 12 2 3;
(4)原式=
1
3 2
2 8 45 5
1
2 3
2 45
10
高空抛物到落地所需时间t2是从50米高空抛物到落地 所需时间t1的多少倍?
2 100
解:由题意得 t2 10 20 2.
t1 2 50 10 10
1.【章前引言】如果两个电视塔的高分别是h1km,
h2km,那么它们的传播半径的比为

人教版八年级下册数学二次根式

人教版八年级下册数学二次根式

人教版八年级下册数学二次根式二次根式是指形如$\sqrt{a}$的式子,其中$a\geq 0$。

最简二次根式是指被开方数的因数是整数且因式是整式(分母中不含根号),同时被开方数中含能开得尽方的因数或因式的二次根式。

如果几个二次根式化成最简二次根式后,被开方数相同,那么这几个二次根式就是同类二次根式。

二次根式有一些性质,比如$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$(其中$a\geq 0$,$b\geq 0$),以及$\sqrt{a}=\sqrt{|a|}$(其中$a$为任意实数)。

分母有理化是指将分母中的根号化去,有理化因式则是指两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式。

在解题时,需要掌握二次根式的计算和化简求值,以及二次根式的运算法则,包括加减乘除四则运算和分母有理化。

在选择题中,常考查最简二次根式、同类二次根式的概念,而在中等难度的解答题中,则常考查二次根式的计算和化简求值。

在计算或化简求值时,可以使用因式的外移和内移的方法,将被开方数中的因式移到根号外面或根号里面。

11.当$x=-2$时,代数式$5x^2-3x-1$的值是多少?1.计算:$(3-2)+\frac{1}{3}+4\cos30^\circ-|-12|$。

2.在进行二次根式化简时,有时会遇到如下式子:$\frac{\sqrt{5}-1}{2}$,其实我们还可以将其进一步化简:begin{aligned} \frac{\sqrt{5}-1}{2} &= \frac{\sqrt{5}-1}{2} \cdot \frac{\sqrt{5}+1}{\sqrt{5}+1} \\ &= \frac{5-1}{4} \\ &=\frac{3}{2}-\frac{1}{2} \end{aligned}$$以上这种化简的步骤叫做分母有理化。

还可以用以下方法化简:begin{aligned} \frac{3+1}{\sqrt{2^2\cdot 3^2}} &=\frac{3+1}{2\sqrt{3}} \\ &= \frac{1}{\sqrt{3}}-\frac{1}{2\sqrt{3}} \\ &= \frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{6} \\ &= \frac{\sqrt{3}}{6} \end{aligned}$$1) 请用不同的方法化简$\frac{2}{5+\sqrt{3}}$。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

二次根式的概念(教学课件)八年级数学下册(人教版)

二次根式的概念(教学课件)八年级数学下册(人教版)

例1.下列各式中,哪些是二次根式?哪些不是?
(1)
பைடு நூலகம்
32;
(2) 6;
(6)
xy x, y异号 ;
2;
(3)
分析: 是否含二次根号

(7)

(4)
a 2 1;
-m m≤0 ; (5)
(8)
3
被开方数是
不是非负数

不是二次根式
5;

(9)
1
;
5
2 3 .
二次根式
判断下列式子,哪些是二次根式?
11.要画一个面积为18cm2的长方形,使它的长与宽之比为3:2,它的长、宽
各应取多少?
解:设长方形的长、宽分别为3xcm、2xcm,依题意得
3x•2x=18
6x2=18
x2=3
解得 x= 3
答:矩形的长、宽分别为3 3cm、2 3cm.
1
12.先化简,再求值:(
+

2
)
2 +
÷
−2
2.使分式
B.①③
C.①②③
+3
有意义的x的取值范围是(

A. ≥ −3
B. ≥ −3且 ≠ 0
D.①②③⑤
B )
C. ≠ 0
D. > 0
3.使得 x 3 有意义的x值有( B )
2
A.0个
B.1个
C.无数个
D.以上都不对
x 1
x 3 有意义的x的取值范围在数轴上表示为(
2.多个二次根式相加如 A B ... N 有意义的条件:
3.二次根式作为分式的分母如

人教版八年级数学下册课件 16-3 第1课时 二次根式的加减

人教版八年级数学下册课件 16-3 第1课时  二次根式的加减

b
2a+3b
如果把a,b用二次根式来替代,能得到什么呢?
当a= 2 ,b= 8 时,得2a+3b= 2 2 3 8 .
因为 3 8 3 22 2 6 2,由前面知两者可以合并.
你又发现
了什么?
2a+3b=2 2+6 2=8 2
我们发现:要将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
归纳总结
将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
注意:判断几个二次根式是否可以合并,一定都要
化为最简二次根式再判断.
合并的方法与合并同类项类似,把根号外的因数(式)
相加,根指数和被开方数(式)不变.如:
m a n a m n a
例题讲解
例1 若最简根式
3 − 2 与 3 可以合并,
2
4 5 , 3 5, 2 5 .
化简后被开方数相同
获取新知
知识点一:同类二次根式
同类二次根式:几个二次根式化成最简二次根式后,它们
的被开方数相同, 这些二次根式就称为同类二次根式
备注:
1.同类二次根式首先必须是最简二次根式;
2.同类二次根式再次必须是被开方数相同
例题讲解
例1 下列根式中,与 3 不是同类二次根式的是( C )
第十六章 二次根式
16.3 第1课时 二次根式的加减
知识回顾
问题1 满足什么条件的根式是最简二次根式?
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
问题2 化简下列两组二次根式,每组化简后有什么共同特点?
(1) 8 ,18 ,0.5;

人教版数学八年级下册16.1.2二次根式的性质(教案)

人教版数学八年级下册16.1.2二次根式的性质(教案)
3.重点难点解析:在讲授过程中,我会特别强调二次根式的乘法、除法、平方和开方性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,如\( \sqrt{a} \times \sqrt{b} = \sqrt{ab} \)和\( \sqrt{a^2} = |a| \)的运用。
(三)实践活动(用时10分钟)
-复杂化简:对于\( \sqrt{\frac{24}{3}} \)的化简,学生可能会直接得到\( \sqrt{8} \),而忽视\( \frac{\sqrt{24}}{\sqrt{3}} = \sqrt{\frac{24}{3}} = \sqrt{8} \)中的正确步骤。
四、教学流程
(一)导入新课(用时5分钟)
3.培养学生的数学建模能力:引导学生将实际问题转化为二次根式的数学模型,培养学生运用数学知识解决实际问题的能力。
4.培养学生的数学抽象素养:通过对二次根式性质的探究,使学生理解数学概念的本质,提高数学抽象思维。
三、教学难点与重点
1.教学重点
-二次根式的性质:理解并掌握二次根式的乘法、除法、平方和开方性质,能熟练应用于解题。
其次,我发现有些学生对乘法性质和除法性质容易混淆,尤其是在应用时。为了帮助学生更好地掌握这两个性质,我计划在下一节课中增加一些对比练习,让学生通过实际操作,感受两者之间的区别和联系。
此外,关于二次根式的化简,我觉得在讲解过程中需要更加注重步骤的详细解释。有些学生对于多层嵌套的二次根式化简感到困惑,我将在以后的课堂中多举例,并引导学生逐步分解和化简,以提高他们的解题能力。
-二次根式的化简:掌握运用性质对二次根式进行化简的方法,提高解题效率。
-实际问题的建模:学会将实际问题转化为二次根式的数学模型,培养数学应用能力。

人教版数学八年级下册:二次根式(含答案)

人教版数学八年级下册:二次根式(含答案)

二次根式》1.二次根式的概念(1) 一般地,我们把形如a(a≥0)的式子叫做二次根式.(2) 对于a(a≥0)的讨论应注意下面的问题:①二次根号“ ”的根指数是2,二次根号下的 a 叫被开方数,被开方数可以是数字,也可以是整式、分式等.②式子a只有在条件a≥0 时才叫二次根式.即a≥0 是a为二次根式的前提条件.式子-2就不是二次根式,但式子(-2)2是二次根式.③a(a≥0)实际上就是非负数 a 的算术平方根,既可表示开方运算,也可表示运算的结果.④4是二次根式,虽然4=2,但 2 不是二次根式.因此二次根式指的是某种式子的“外在形态”.二次根式有两个要素:一是含有二次根号“” ;二是被开方数可以不只是数字,但必须是非负的,否则无意义.【例1-1】当a为实数时,下列各式中哪些是二次根式?a+10,|a|,a2,a2-1,a2+1,(a-1)2.分析:因为 a 为实数,而|a|≥0,a2≥0,a2+1> 0,(a-1)2≥0,所以|a|,a2,a2+1,(a-1)2是二次根式.因为 a 是实数时,并不能保证a+10,a2- 1 是非负数,即a+10,a2-1 可能是负数.如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0,因此,a+10,a2-1 不是二次根式.解:|a|,a2,a2+1,(a-1)2是二次根式.【例1-2】x 是怎样的实数时,式子x-3在实数范围内有意义?分析:问题实质上是问当x是怎样的实数时,x-3 是非负数,式子x-3有意义.解:由二次根式的定义可知被开方式x-3≥0,即x≥3,就是说当x≥3 时,式子x-3在实数范围内有意义.2.二次根式的性质(1) a(a≥0)是一个非.负.数.a (a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥0(a≥0),我们把这个性质叫做二次根式的非负性.【例2-1】若a+3+(b-2)2=0,则a b的值是__________ .解析:由题意可知a+3=0,(b-2)2=0,所以a+3=0,b-2=0,则a=-3,b=2.所以a b=(-3)2=9.答案:9(2) ( a)2=a(a≥0)由于a(a≥0)是一个非负数,表示非负数 a 的算术平方根,因此通过算术平方根的定义,将非负数 a 的算术平方根平方,就等于它本身,即( a)2=a(a≥0).例② ( x -3)2(x ≥3)= ________ .解析: ①直接利用公式 ( a)2=a(a ≥ 0),可得 ( 32)2=23; ②因为 x ≥ 3,所以 x -3≥0, 所以由公式 ( a)2=a(a ≥0),可得 ( x -3)2= x -3(x ≥3).2 答案: ①32 ② x - 33a(a ≥ 0), 由算术平方根的定义,可得 a 2= |a|= -a(a<0). a 2=a(a ≥0)表示非负数 a 的平方的算术平方根等于 a. 【例 2-3】 计算:(1) (- 1.5)2;(2) (a -3)2(a < 3);(3) (2x3)2( x 32)(1) ( a)2=a 的前提条件是 a ≥0;而 a 2=|a|中的 a 为一切实数.(2) a(a ≥ 0), |a|,a 2 是三个重要的非负数,即 a(a ≥0)≥0,|a|≥0,a 2≥0,在解题时 应用较多.(3) a 2=( a)2 成立的条件是 a ≥ 0,否则不成立.(4) ( a)2= a(a ≥ 0)可以逆用,即任意的一个非负数都可以写成它的算术平方根的平方 形式.(5) 在利用 a 2进行化简时,要先得出 |a|,再根据绝对值的性质进行化简,一定要弄清 被开方数的底数是正还是负,这是容易出错的地方.3.求二次根式中被开方数字母的取值范围 由二次根式的意义可知, a 的取值范围是: a ≥0.即当 a ≥ 0 时, a 有意义,是二次根 式;当 a <0 时, a 无意义,不是二次根式.(1) 确定形如 a 的式子中的被开方数中的字母取值范围时,可根据式子 a 有意义或无 意义的条件,列出不等式,然后 解不等式即可.(2)当被开方数是分式时,同时要求分母不等于零.(3) a 2= |a|=a(a ≥ 0),- a(a<0).求解此类问题抓住一点,就是由二次根式的定义a(a ≥ 0)得被开方数必须是非负数,即把问题转化为解不等式.【例 3】 当字母取何值时,下列各式为二次根式.(1) a 2+ b 2; (2) - 3x ;分析: 必须保证被开方数是非负数,以上式子才是二次根式,当分母上有未知数时, 分母不能为 0,根据这些要求列不等式解答即可.解: (1)因为 a , b 为任意实数时,都有 a 2+b 2≥0,所以当 a ,b 为任意实数时, a 2+b 2是二次根式.(2)- 3x ≥ 0, x ≤ 0,即当 x ≤0 时, - 3x 是二次根式.1(3) ≥ 0,且 x ≠0,所以 x > 0. 2x4.二次根式非负性的应用(1)在实数范围内,我们知道式子 a(a ≥ 0)表示非负数 a 的算术平方根,它具有双重非 负性:① a ≥0;② a ≥0.运用这两个简单的非负性,再结合非负数的简单性质“若几个非负数的和等于 这几个非负数都等于 0”可以解决一些算术平方根问题. 巧记要点: 二次根式,内外一致;即二次根式根号下和根号外一致为非负数. (2)到目前为止,我们已经学过三类具有非负性的代数式:① |a|≥ 0;②a 2≥0;③ a ≥0(a ≥0).【例 4- 1】已知 x ,y 都是实数,且满足 y = 5-x + x - 5+ 3,求 x +y 的值. 分析: 式子中有两个二次根式,它们的被开方数都应该是非负数,由此可得关于 x 的 不等式组.当 x =5时, y = 5-5+ 5-5+3=3. ∴x +y =5+3= 8.两个算术平方根,当 被开方数互为相反数时,只有它们同时为零,这两个 式子才能都有意义.1【例 4- 2】已知 x ,y 为实数,且 y =2+ 8x -1+ 1- 8x ,则 x ∶ y = _______ 解析: 因为 y 为实数,所以隐含着两个算术平方根都有意义,即被开方数均为非负1 1 1解得 x =8,于是 y =2+ 0+0=2.故 x ∶y = 1∶4.(4) ≥ 0, 2-x故 x -2≥0 且 x - 2≠0,所以 x >2.0,则 解: 由题意知 5 - x ≥ 0,x ≤5, ∴ x = 5.x - 5≥ 0, x ≥5, 数.实际上,若 a 和 - a 都有意义,则 a =0.即依题意得8x -1≥0,1- 8x ≥0.(3)-3答案:1∶4,5.式子( a)2的意义和运用二次根式的一个性质是:( a)2=a(a≥0).因为2=( 2)2,35=( 53)2,所以上面的性质又可以写成:a=( a)2(a≥0).可见,利用这个式子我们可以把任何一个非负数写成一个数的平方的形式.二次根式中的 2 3表示2× 3,这与带分数221表示2+12是不一样的,因此,以后遇到32× 3应写成32 3,而不能写成121 3.【例5-1】计算:(1)(2 3)2;(2)( -2 21)2;(3)(-5×3)2.解:(1)(2 3)2=22×( 3)2=12.(2)(-2 21)2=(-2)2×( 12)2= 2.(3) (-5× 3)2=(-1)2× ( 5× 3)2=15.【例5-2】把多项式n5-6n3+9 n 在实数范围内分解因式.分析:按照因式分解的一般步骤,先对多项式n5-6n3+9n 提取公因式,得n(n4-6n2+9),再利用完全平方公式分解,得n(n2-3)2,要求在实数范围内分解,所以可以将3写成( 3)2,再运用平方差公式进行因式分解.解:n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+3)2(n-3)2.6.二次根式与相反数和绝对值的综合应用(1)二次根式具有非负性,一个数的绝对值,完全平方数也是一个非负数,因此可以把这几者结合出题.(2)绝对值、算术平方根、完全平方数为非负数,即:|a|≥0,b≥0(b≥0),c2≥0.非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零.即:|a|+b=0? a=0,b=0;|a|+c2=0? a=0,c=0;b+c2=0? b=0,c=0;|a|+b+c2=0? a=0,b=0,c=0.【例6-1】若|a-b+1|与a+2b+4互为相反数,则(a+b)2 011= ____ .解析:|a-b+1|与a+2b+4互为相反数,∴ |a-b+1|+a+2b+4=0.而|a -b+1|≥0 , a +2b+ 4 ≥0 ,a-b+1=0,a=-2,a+2b+4=0. b=- 1.∴(a+b)2 011=(-2-1)2 011=(-3)2 011=-32 011. 答案:-32 011【例6-2】若a2+b-2=4a-4,求ab的值.分析:通过变形将等式转化为两个非负数的和等于零的形式,即(a-2)2+b-2=0,由二次根式的性质可知b-2≥0,由完全平方数的意义可知(a-2)2≥0,而它们的和为零,则a-2=0,b-2=0,从而可求出a,b 的值.解:由a2+b-2=4a-4,得a2-4a+4+b-2=0,即(a-2)2+b-2=0.∵(a-2)2≥0,b-2≥0 且(a-2)2+b-2=0,∴ a-2=0,b-2=0,解得a=2,b=2.∴ ab=2,即ab的值为 2.7.二次根式( a)2=a( a≥0)与a2=|a|的区别、运用( a)2=a(a≥0)与a2=|a|是二次根式的两个极为重要的性质,是正确地进行二次根式化简、运算的重要依据.(1)正确理解( a)2与a2的意义学习了二次根式的定义以后,我们知道a≥0(a≥0),即a是一个非负数,a是非负数a的算术平方根,那么( a)2就是非负数 a 的算术平方根的平方,但只有当a≥0 时,a才能有意义.对于a2,则表示a2的算术平方根,由于a2中的被开方数是一个完全平方式,所以 a 无论取什么值,a2总是非负数,即a2总是有意义的.(2)( a)2与a2的区别和联系区别:①表示的意义不同.( a)2表示非负实数 a 的算术平方根的平方;a2表示实数a 的平方的算术平方根.②运算的顺序不同.( a)2是先求非负实数 a 的算术平方根,然后再进行平方运算;而a2则是先求实数 a 的平方,再求a2的算术平方根.③取值范围不同.在( a)2中,a只能取非负实数,即a≥0;而在a2中,a可以取一切实数.④写法不同.在( a)2中,幂指数 2 在根号的外面;而在a2中,幂指数 2 在根号的里面.a(a> 0),⑤结果不同.( a)2=a(a≥0),而a2=0(a=0),-a(a< 0).联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即( a)2≥0,a2≥0.③仅当a≥0 时,有( a)2=a2. 如果先做二次根式运算,后做平方运算,只有一种可能;如果先做平方运算,再做二次根式运算,答案需分情况讨论.【例7-1】已知x< 2,则化简x2-4x+4的结果是( ).A.x-2 B.x+2 C.-x- 2 D.2-x解析:x2-4x+4=(x-2)2=(2-x)2,因为x<2,2-x>0,所以x2-4x+4=2-x.答案:D【例7-2】化简1-6x+9x2-( 2x-1)2得( ).A .-5xB .2-5x C.x D.-x解析:错解正解由 2x -1,知 2x -1≥ 0,得 x ≥1,从而有原式= (1-3x )2- (2x -=(1-3x )-(2x - 1)=2-5x , 3x - 1≥ 0,所以原式= (1- 3x )2- (2x -1) = 故选 B. (3x -1)2-(2x -1)=(3x -1)-(2x -1)=x.故 选 C. 错因剖析:思路分析: 本题错在忽视了二次根式成本题主要应用二次根式的性质: 立的隐含条件.题目中a a 0 , (1) a 2= |a|= a a 0 ,2x - 1有意义, 说明隐含了 - a a <0 .1 条件 2x -1≥ 0,即 x ≥2,可(2)( a)2=a(a ≥0) . 知 3x -1≥ 0.正确应用二次根式的性质是解决本题的关键 . 答案: C【 例 7 - 3 】 若 m 满 足 关 系 式 3x +5y -2-m + 2x +3y -m = x - 199+y · 199- x -y ,试确定 m 的值. 分析: 挖掘题目中隐含的算术平方根的两个非负性,并在解题过程中有机地配合应 用,是解决本题的关键.解: 由算术平方根的被开方数的非负性,得x - 199+ y ≥ 0, x + y ≥ 199,即 ∴x +y = 199.199-x - y ≥ 0, x + y ≤ 199.x - 199+ y · 199-x -y =0.+5y -2- m + 2x + 3y -m =0. 再由算术平方根的非负性及y =- 197. ∴m =2x +3y =2×396+3×(-197)=201.点拨: (1)运用二次根式的定义得出: x ≥a 且 x ≤a ,故有 x = a ,这是由不等关系推出相等关系的一种十分有效的方法,在前面的解题中已用到.a ≥ 0,(2)由 b ≥ 0, 推出 a = b =0,这也是求一个方程中含有多个未知数的有效方法之a +b = 0 两个非负数的和为零,① 3x + 5y -2-m =0,得 2x + 3y -m =0. 由①-②,得 x +2y = 2.x + y =199 , 解方程组 得 x +2y = 2, x = 396,。

八年级数学下册课件(人教版)二次根式的乘除

八年级数学下册课件(人教版)二次根式的乘除

例3 计算:(1) 14 7; (2) 3 5 2 10;
(3) 3 x 1 xy .
3
解:(1) 14 7 14 7 72 2 72 2 =7 2;
(2) 3 5 2 10 3 2 510 6 52 2
6 52 2 6 5 2 30 2;
(3) 3 x 1 xy 3x 1 xy x2 y
二次根式的乘除
第1课时
复习提问
1.什么叫二次根式?
形如 a (a≥ 0)的式子叫做二次根式 .
2.两个基本性质:
2 a =a (a≥ 0)
a2 =∣a∣ =
a (a≥ 0) -a (a<0)
知识点 1 二次根式的乘法法则
探究 计算下列各式,观察计算结果,你能发现什么规律?
(1) 4 9 =_______, 4 9 =_______; (2) 16 25 =_______, 16 25 =_______;
1 下列各式计算正确的是( C )
A.
3 3 22
B.
8 2
2
C. 3 3 42
D. a a 9b 3b
2

1a a2
1a a
,则a 的取值范围是( D )
A.a≤0 B.a<0
C.a>0 D.0<a≤1
3 下列等式不一定成立的是( A )
A. a a =(b≠0) bb
B.a
3·a-5=
(3) 2a 6a ;(4)
b 5
b 20a 2
.
解: (1) 3;
(2) 2 3;
(3) 3 ; 3
(4)2a.
2
a 3 a 3 成立的条件是( D )
a1 a1

人教版数学八年级下册16.3二次根式的加减(教案)

人教版数学八年级下册16.3二次根式的加减(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
5.激发学生的自主学习与合作探究:鼓励学生在课堂中积极参与讨论,学会与他人合作探究,培养自主学习和团队协作能力。
本节课将紧扣核心素养目标,关注学生能力的全面发展,提高学生数学学科素养。
三、教学难点与重点
1.教学重点
-二次根式的定义及其性质:理解二次根式的概念,掌握其性质,如√a(a≥0)。
-二次根式的加减法则:熟练运用加减法则进行同类项合并和不同类项化简,如√a±√a=±2√a。
五、教学反思
在今天的教学过程中,我尝试了多种方法来帮助学生理解二次根式的加减。首先,通过日常生活中的实例导入新课,让学生感受到数学与生活的紧密联系。在实际操作中,我发现同学们对这个问题产生了浓厚的兴趣,这为后续的学习打下了良好的基础。
在理论介绍环节,我尽量用简洁明了的语言解释二次根式的定义和性质,让学生易于理解。然而,我也注意到,部分学生在理解不同类项的化简和符号处理上还存在一定的困难。在今后的教学中,我需要更加关注这部分学生,通过设计更多有针对性的练习和实例,帮助他们突破这个难点。
在新课讲授的案例分析环节,我选取了一个与学生生活密切相关的例子,希望能够让他们更好地体会到二次根式在实际中的应用。从学生的反馈来看,这个案例确实帮助他们加深了对二次根式加减的理解。但在实践活动和小组讨论中,我也发现部分学生在将理论知识应用到实际问题解决时,仍然显得有些吃力。这可能是因为他们对二次根式的掌握还不够熟练,需要在今后的教学中加强练习。

人教版数学八年级下册16.1二次根式(教案)

人教版数学八年级下册16.1二次根式(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”(例如,计算一个边长为$\sqrt{5}$的正方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
4.培养学生的数学抽象素养:让学生从具体的二次根式实例中抽象出一般规律,提升对数学概念的理解和抽象思维能力。
5.激发学生的数学探究精神:鼓励学生在二次根式学习中积极思考、探索,培养他们的创新意识和探究精神。
三、教学难点与重点
1.教学重点
-二次根式的定义:理解二次根式的概念,明确根号下仅含非负实数的表达式。
-二次根式的性质:掌握二次根式的乘除、平方等运算性质,如$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$。
-二次根式的化简:学会通过因式分解、提取公因数等方法化简二次根式,如$\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}$。
-二次根式的乘除法:熟练运用性质进行二次根式的乘除运算,如$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)。
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析问题,提高解题的条理性和逻辑性。
2.提升学生的数学运算能力:让学生掌握二次根式的化简、乘除与加减运算,培养他们在数学运算中的准确性和熟练度。
3.增强学生的数学建模意识:通过解决实际问题,使学生能够运用二次根式知识构建数学模型,提高解决实际问题的能力。

人教版数学八下课件-二次根式

人教版数学八下课件-二次根式

抓住被开方数必须为非 负数,从而建立不等式 或不等式组求出其解集.
二次根式 的双重非 负性
二次根式 a 中,a≥0且
a ≥0
第二课时
二次根式化简
返回
导入新知
【思考】下列数字谁能顺利通过下面两扇门进入客厅?
0 -4 1
1 2
1
-1
4
1 4
算术平方根之门
a
a
a≥0
平方之门
( a )2
我们都是非 负数哟!
x≥-1且x≠2
x>0
x为全体实数
探究新知 知识点 2 二次根式的双重非负性
【回顾思考】二次根式 a 的被开方数a的取值范围是什么?它 本身的取值范围又是什么?
当a>0时, 表示a的算术平方根,因此 a>0;当a=0时, 表示0的算术平方根,因此 a=0 .这就是说,当a≥0时,a 0. 【新知思考】当x 是怎样的实数时, x2 在实数范围内有意义?
2x 1
解:由题意得
x 2 ≥0, 2x 1

2xx21≥>00,,或
x 2≤0, 2x 1<0,
解得x≥2或x<

1 2

即当x≥2或x<
1 2
时, x 2 有意义.
2x 1
课堂小结 二次根式
定义
带有二次根号 被开方数为非负数
在有意义 条件下求 字母的取 值范围
探究新知
在前面的问题中,得到的结果分别是: 3, S ,
(1)这些式子分别表示什么意义?
分别表示3,S,65,
h 5
的算术平方根.
(2)这些式子有什么共同特征?
①根指数都为2;
②被开方数为非负数.

人教版八年级下册数学精品教学课件 第十六章 二次根式 二次根式的乘除 第1课时 二次根式的乘法

人教版八年级下册数学精品教学课件 第十六章 二次根式 二次根式的乘除 第1课时 二次根式的乘法

5
2
=20,
3
3
2 =32
3 2 =27,
又∵20<27,
∴ 2 5 2 < 3 3 2,即 2 5<3 3 .
(2) 2 13与-3 6.
解:∵ 2 13= 22 13= 52,
3 6= 32 6= 54, 又∵52<54,
∴ 52< 54 ,
两个负数比较 大小,绝对值 大的反而小
讲授新课
一 二次根式的乘法 计算下列各式:
(1) 4 9 = __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36= __5_×_6__=__3_0_; 25 36 =__9_0_0___30__.
( 2 ) 6 12 = __6__2___ ;
( 3 ) 32 2 __2_6__.
4. 比较下列两组数的大小(在横线上填“>”“<” 或“=”):
(1)5 4 > 4 5;(2) 4 2 < 2 7.
5.计算: ( 1 ) 2 3 5 21 ;
解: (1) 2 35 21
25 321 10 327 30 7;
3
解: (1) 3 5 15;
(2) 1 27 1 27 9 3.
3
3
可先用乘法结合 律,再运用二次 根式的乘法法则
(3) 2 3 5 ( 2 3) 5 6 5 30.
归纳 (3)只需其中两个结合就可实现转化进行计算, 说明二次根式乘法法则同样适合三个及三个以上的二
次根式相乘,即 a b k a b k(a 0,b 0,k 0) .
3.如果因式中有平方式(或平方数),应用关系式 a2 = a 把这个因式(或因数)开出来,将二次根 式化简 .

人教版八年级数学下册知识点总结

人教版八年级数学下册知识点总结

人教版八年级数学下册知识点总结第十六章二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥0)的式子叫做二次根式。

“√()”称为二次根号,a叫做被开方数。

- 二次根式有意义的条件是被开方数a≥0。

例如,√(x - 1)有意义,则x-1≥0,即x≥1。

2. 二次根式的性质。

- √(a)(a≥0)是一个非负数,即√(a)≥0(a≥0)。

- (√(a))^2=a(a≥0)。

例如(√(3))^2 = 3。

- √(a^2)=| a|=<=ft{begin{array}{l}a(a≥0) -a(a < 0)end{array}right.。

如√((-2)^2)=| - 2|=2。

3. 二次根式的乘除。

- 二次根式乘法法则:√(a)·√(b)=√(ab)(a≥0,b≥0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥0,b > 0)。

如(√(8))/(√(2))=√(frac{8){2}}=√(4) = 2。

4. 二次根式的加减。

- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。

例如√(8)不是最简二次根式,因为8 = 2^3,√(8)=√(4×2)=2√(2),2√(2)是最简二次根式。

- 二次根式加减时,先把各个二次根式化成最简二次根式,再把同类二次根式(被开方数相同的二次根式)合并。

例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。

第十七章勾股定理。

1. 勾股定理。

- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。

- 例如,在直角三角形中,a = 3,b = 4,则c=√(a^2)+b^{2}=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。

2. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式◆【课前热身】1.已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .3 2.下列根式中,不是..最简二次根式的是( )ABCD 3.3最接近的整数是( )A .0B .2C .4D .54. )A .3-B .3或3-C .9D .35.计算18-8=___________.【参考答案】◆【考点聚焦】1.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式.掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;2.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化.1.二次根式a ≥0)叫做二次根式. 2.最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式. 3.同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.4.二次根式的性质①(2=a (a ≥0);│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;a ≥0,b ≥0);=(b ≥0,a>0). 5.分母有理化及有理化因式把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,•若它们的积不含二次根式,则称这两个代数式互为有理化因式. ◆【备考兵法】(本知识点涉及到的常用解题方法)1.考查最简二次根式、同类二次根式概念.有关习题经常出现在选择题中.2.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多. 二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. ◆【考点链接】 1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 . ⑵ 最简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式. (3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.2.二次根式的性质 ⑴; ⑵()=2a (a ≥0) ⑶ =2a ;⑶ =ab (0,0≥≥b a );⑷=ba(0,0>≥b a ). 3.二次根式的运算 (1) 二次根式的加减:①先把各个二次根式化成 ;②再把 分别合并,合并时,仅合并 , 不变. ◆【典例精析】 例1 填空题: (1x 的取值范围是_______.(2)实数a ,b ,c a -b │=______.【解答】(1)由x -3≥0-2≠0,得x ≥3且x ≠7. (2)由图可知,a<0,b>0,c<0,且│b │>│c │-a ,-│a -b │=a -ba -b │.例2 选择题:(1)在下列各组根式中,是同类二次根式的是( )A BC(2)在根式 ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)(3)已知a>b>0,的值为( )A .2B .2C .12【解答】(1,∴A 错.B 正确.|b =│a ∴C 错,而显然,D 错,∴选B . (2)选C .(3)∵a>b>0)2)2=a+b -21,22===,故选A .例3 (贵州安顺)先化简,再求值:244(2)24x x x x -+⋅+-,其中x =【答案】22(2)4=(2)2(2)2x x x x --∙+=-原式或(2)(2)[]2x x +-x 22441222x --==【解析】遇到此种问题,要注意观察整个式子,然后合理运用分解因式的方法进行化简,得到最简式子后,代入求值.◆【迎考精练】 一、选择题1. (湖北武汉)函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x -≤D .12x ≤2. (湖北荆门)2()x y =+,则x -y 的值为( )A .-1B .1C .2D .33. (湖北黄石)下列根式中,不是..最简二次根式的是( )ABCD4. (四川眉山)2的值()A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间5. (湖南益阳)在电路中,已知一个电阻的阻值R 和它消耗的电功率P.由电功率计算公式RU P 2= 可得它两端的电压U 为 ( )A.P RU =B.RP U = C.PR U = D.PR U ±=6. (新疆)若x y ==xy 的值是( )A .B .C .m n +D .m n -二、填空题1.(河南省)16的平方根是 .2.(山西省)= .3.(2009年辽宁铁岭)函数y =自变量x 的取值范围是 .4.(广西崇左)当x ≤0时,化简1x --的结果是 .5.(湖北襄樊)= .6.(上海市)= . 7.(黑龙江大兴安岭)计算:=-2712 .8.(广东佛山)(1A..2E .0 问题的答案是(只需填字母): ;(29.(福建福州)小的整数 .10.(湖南湘西自治州)对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+,如3※2=52323=-+.那么12※4= 11.(浙江嘉兴)当2-=x 时,代数式1352--x x 的值是 . 三、解答题1.(广东梅州)计算:1012)4cos30|3-⎛⎫++- ⎪⎝⎭°.2.(湖南邵阳)在进行二次根式化简时,我们有时会碰上如35,32,132+一样的式子,其实我们还可以将其进一步化简:35=5535553=⨯⨯;(一) 32=363332=⨯⨯(二) 132+=))(()-(1313132-+⨯=131313222---=)()( (三)以上这种化简的步骤叫做分母有理化。

132+还可以用以下方法化简:132+=131313131313131322-+-++-+-=))((=)(=(四) (1)请用不同的方法化简352+。

(2) ①参照(三)式得352+=______________________________________________;②参照(四)式得352+=_________________________________________.(2)化简:12121...571351131-+++++++++n n . 3.(山东威海)先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中232a b =-=.4.(2009年辽宁朝阳)先化简,再求值:2112x x x x x ⎛⎫++÷- ⎪⎝⎭,其中1x =.5.(湖南怀化)先化简,再求值:()20tan 60a ab a b b a b-⨯--- ·,其中1a b ==,6.(山东泰安)先化简、再求值:33)225(423-=---÷--a a a a a ,其中.【参考答案】选择题1.B2.C [解析]本题考查二次根式的意义,由题意可知1x=,1y=-,∴x-y=2,故选C.3.C4.C5.C6.D填空题1. ±42.3 x>-4. 1 【解析】二次根式的性质及绝对值的化简,=x,∵x≤0,∴原式=1-x+x=15.=6.557. 3-8. (1)A D E、、;(2)设这个数为x,则x a=(a为有理数),所以x=(a为有理数).注:无“a为有理数”扣1分;写x=视同x=9. 答案不唯一,小于或等于2的整数均可,如:2,1等.10. 1 211. 5 解答题1.解:112)4cos30|3-⎛⎫++-⎪⎝⎭°.1342 =++⨯-4=+4=2. 解:(1=====(2)原式+……3. 解:2222222()()(2)3223a b a b a b a a ab b a ab b a++-+-=+++---ab=.当2a=-2b=时,原式22(22)(2)1=-=--=4. 解:原式=221212x x xx x+--÷=12(1)(1)x xx x x++-=21x-.将1x=代入上式得原式2==.5. 解:()20tan 60a ab a b b a b -⨯--∙-()1a a b b a b-=⨯--a b =-112a b ==∴==- ,原式6. 解:原式=⎥⎦⎤⎢⎣⎡--+-÷--)2()2)(2(5)2(23a a a a a =292)2(23a a a a --∙-- =)3)(3(2)2(23a a a a a -+-∙--=)3(21+-a当63)333(2133-=+--=-=时,原式a。

相关文档
最新文档