二重积分练习题(二)

合集下载

9-2二重积分的计算 共37页

9-2二重积分的计算 共37页

y
1y
则 原 式 dyf(x)f(y)d.x 00
o
x
1
x
f(x)dxf(y)d,y
0
0
故 2I1f(x)dx 1f(y)dy1f(x)dxxf(y)dy
0
x
0
0
1
x1
f(x )d[x ( )f(y)d]y
0
0
x
1f(x)dx 1f(y)d yA 2.
薄片的质量 .
四、求由曲面z x2 2y2及z 6 2x2 y2,所围成的
立体的体积 .
一、填空题:
练习题2
1 、 将 f ( x , y )dxdy ,D 为 x 2 y 2 2 x , 表 示 为 极 坐
D
标 形 式 的 二 次 积 分 ,为 _____________________.
例 3改 变 积 分 0 2adx2 2a a x xx2f(x,y)dy(a0)
的 次 序 .

2a
y 2ax
a
y 2axx2 xaa2y2
a 2a
= 原式
a
a a2y2
0 dy y2
f (x, y)dx
2a a 2a
dy 0 aa2y2
D
1[x2( xx2)1(xx4)d ]x33 .
0
2
140
例 5、 求 x2ey2dx, d其 y 中 D是 以 (0,0)(,1,1),
D
(0,1)为 顶 点 的 三 角 形 .
解 e y 2 d 无 法 用 y 初 等 函 数 表 示
积 分 时 必 须 考 虑 次 序

二重积分习题

二重积分习题
D
a:=0..1;
b:=x-1..-x+1;
f:二exp(x+y);
int(f,y=b);
in t(i nt(f,y二b),x二a);
simpliW);
3、如果二重积分f (x,y)d的被积函数f (x, v)是两个函数f'x)及f2(v)的乘积,即
D
f (x, V) f1(x)f2(v),积分区域D {( x, v) |a x b,c y d},证明这个二重积分等于两个单 积分的乘积,即
bd
f (x, v)df1(x)dxf2(v)dv.
ac
D
精心整理
bdb
f)(x)f2(y)dy dxf1(x)dx
ln2 2
0dyeyf (x,y)dx.
所围成的闭区域
2 2
ay
0f(x, y)dx.
y 3
图形
于是
D
(II)由于D {( x, y) | x2
y.R
D
2x2
y2d
2
y
0
R2}关于x轴对称,且f(x,y) y_R2x2y2为y的奇函数,于是
(III)
{(x,y)|x2y2
R2}关于x轴对称,且f(x,y)
3
y
1x y
3
y cosx
d1 x2y2
3
,
精心整理
(1)Il(x y)2d与I2(X y)3d,其中D是由x轴、y轴与直线x y 1所围成;
2
I1ln(x y)d [lnΒιβλιοθήκη x y)] d I2.DD
4
(1)I xy(x y 1)d,
D
其中D {(x,y)|0 x 1,0 y 2};

二重积分练习题(二)

二重积分练习题(二)
二重积分的练习题
O3
直角坐标系下的练习题
计算$int_{0}^{1}int_{0}^{2}xy^{2}dxdy$
计算$int_{0}^{1}int_{0}^{2}(x + y)dxdy$
计算$int_{0}^{1}int_{0}^{2}(x - y)dxdy$
极坐标系下的练习题
计算$int_{0}^{frac{pi}{2}}int_{0}^{1}r^{2}costheta dtheta dr$
确定积分区域
拆分积分
逐个积分
极坐标系下的计算方法
将直角坐标转换为极坐标,即$x = rho cos theta, y = rho sin theta$。
将二重积分拆分为两个定积分,即$int int f(rho,theta) dA = int drho int f(rho,theta) dtheta$。
二重积分的几何意义
二重积分表示二维平面上的曲顶柱体的体积。 当f(x,y) > 0时,二重积分表示曲顶柱体的体积,其中f(x,y)是曲顶的函数。 当f(x,y) < 0时,二重积分表示曲顶柱体的体积的负值,即该体积的负值。 当f(x,y) = 0时,二重积分表示曲顶柱体的边界形状的面积。
二重积分的计算方法
二重积分的综合应用
O4
1
2
3
利用二重积分可以计算由平面曲线围成的平面区域的面积。
计算面积
利用二重积分可以计算由曲面围成的三维空间的体积。
计算体积
通过二重积分可以求出平面薄片的重心坐标。
计算平面薄片的重心
在几何中的应用
在物理中的应用
利用二重积分可以计算分布不均匀的物体的质量。 计算质量 通过二重积分可以求出两个质点之间的引力。 计算引力 利用二重积分可以计算空间中电荷分布产生的电场强度。 计算电场强度

二重积分计算习题

二重积分计算习题

x D关于x、y轴对称 y

2I D / 2 I D 4I D / 4 2I D / 2 ( I D 0)
例1
求以xOy面上的圆域 D {( x, y) | x2 y 2 1} 为底, 圆柱面
2 2 抛物面 z 2 x y x2 y 2 1 为侧面 ,
为顶的曲顶柱体的体积。 并在极坐标系下求其二重积分值
z
2
解:如图所示,所求曲顶柱体的体积为
V (2 x y )d
2 2 D
其中积分区域D可表示为
O
x
y D {( x, y ) | 1 x 2 y 1 x 2 , 1 x 1}
由D的对称性及被积函数
f ( x, y) 2 x y
2
2
关于x,y均为偶函数可知 V 4
D a
b
2 ( x )
1 ( x )
f ( x, y )dy
II、 y 型区域(先x后y)
V f ( x, y )dxdy dy
D c d
2 ( y)
1 ( y )
f ( x, y )dx
III、方法与步骤
① 绘出区域D的图形: ② 确定积分限: ③ 计算积分: ④ 利用奇偶性简化运算。

例3 计算二重积分
其中
e
D
x y
d
y
D {( x, y) || x | | y | 1}
1
解: 如图 D D1 D2
x y x y x y e d e d e 因此 d D D1 D2
e dx
x 1 0
0
x 1
与直线 2 x

二重积分部分练习题

二重积分部分练习题

题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择 (16小题,共53.0分) (2分)[1] (3分)[2]二重积分Dxydxdy ⎰⎰ (其中D :0≤y ≤x 2,0≤x ≤1)的值为(A )16 (B )112 (C )12 (D )14答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2Dxy dxdy =⎰⎰=(A )0; (B )323 (C )643(D )256 答 ( )(3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分22(,)Df x y dxdy =⎰⎰__________122(,)D f x y dxdy ⎰⎰(A )2 (B )4 (C )8 (D )12答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分11(,)x dx f x y dy -+⎰(A)112111(,)(,)y dy f x y dx dy f x y dx ---+⎰⎰⎰(B)1101(,)y dy f x y dx --⎰⎰(C)11111(,)(,)y dy f x y dx f x y dx ---+⎰⎰⎰(D)21(,)dy f x y dx -⎰⎰答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)Df x y dxdy ⎰⎰可化累次积分为(A)201(,)x dx f x y dy -⎰(B)21(,)x dx f x y dy -⎰⎰(C)21(,)y dy f x y dx -⎰⎰(D)210(,)y dy f x y dx ⎰答 ( )(3分)[7]设f (x ,y )为连续函数,则二次积分21102(,)y dy f x y dx ⎰⎰可交换积分次序为(A)1010(,)(,)dx f x y dy f x y dy +⎰(B)112102(,)(,)(,)dx f x y dy f x y dy f x y dy ++⎰⎰⎰(C)1(,)dx f x y dy ⎰(D)222cos 0sin (cos ,sin )d f r r rdr πθθθθθ⎰⎰答 ( ) (3分)[8]设f (x ,y )为连续函数,则积分212201(,)(,)x xdx f x y dy dx f x y dy -+⎰⎰⎰⎰可交换积分次序为 (A)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰(B)2122001(,)(,)x xdy f x y dx dy f x y dx -+⎰⎰⎰⎰(C)120(,)y dy f x y dx -⎰(D)2120(,)xxdy f x y dx -⎰⎰答 ( ) (4分)[9]若区域D 为(x -1)2+y 2≤1,则二重积分(,)Df x y dxdy ⎰⎰化成累次积分为(A)2cos 0(,)d F r dr πθθθ⎰⎰(B)2cos 0(,)d F r dr πθπθθ-⎰⎰(C)2cos 202(,)d F r dr πθπθθ-⎰⎰(D)2cos 202(,)d F r dr πθθθ⎰⎰其中F (r ,θ)=f (r cos θ,r sin θ)r .答 ( ) (3分)[10]若区域D 为x 2+y 2≤2x,则二重积分(Dx y +⎰⎰化成累次积分为(A)2cos 202(cos sin d πθπθθθ-+⎰⎰(B)2cos 30(cos sin )d r dr πθθθθ+⎰⎰(C)2cos 3202(cos sin )d r dr πθθθθ+⎰⎰(D)2cos 3222(cos sin )d r dr πθπθθθ-+⎰⎰答 ( ) (4分)[11]设777123[ln()],(),sin ()DDDI x y dxdy I x y dxdy I x y dxdy =+=+=+⎰⎰⎰⎰⎰⎰其中D 是由x =0,y =0,12x y +=,x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序是 (A)I 1<I 2<I 3; (B)I 3<I 2<I 1; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (5分)[12]设2211cos sin x y dxdyI x y +≤=++⎰⎰,则I 满足 (A)223I ≤≤ (B)23I ≤≤ (C)12D I ≤≤ (D)10I -≤≤答 ( ) (4分)[13]设12x y +=其中D 是由直线x =0,y =0,及x +y =1所围成的区域,则I 1,I 2,I 3的大小顺序为(A)I 3<I 2<I 1; (B)I 1<I 2<I 3; (C)I 1<I 3<I 2; (D)I 3<I 1<I 2.答 ( ) (3分)[14]设有界闭域D 1与D 2关于oy 轴对称,且D 1∩D 2=φ,f (x ,y )是定义在D 1∪D 2上的连续函数,则二重积分2(,)Df x y dxdy =⎰⎰(A)122(,)D f x y dxdy ⎰⎰(B)224(,)D f x y dxdy ⎰⎰(C)124(,)D f x y dxdy ⎰⎰(D)221(,)2D f x y dxdy ⎰⎰ 答 ( )(3分)[15]若区域D 为|x |≤1,|y |≤1,则cos()sin()xy Dxexy dxdy =⎰⎰(A) e; (B) e -1;(C) 0; (D)π.答 ( ) (4分)[16]设D :x 2+y 2≤a 2(a >0),当a =___________时,222.Da x y dxdy π--=(A)1答 ( ) 二、填空 (6小题,共21.0分)(4分)[1]设函数f (x ,y )在有界闭区域D 上有界,把D 任意分成n 个小区域Δσi (i =1,2,…,n ),在每一个小区域Δσi 任意选取一点(ξi ,ηi ),如果极限 01lim(,)niiii f λξησ→=∆∑(其中入是Δσi (i =1,2,…,n )的最大直径)存在,则称此极限值为______________的二重积分。

2019版 2微积分练习题(下) 第二章 答案

2019版 2微积分练习题(下) 第二章 答案

dx f (x, y)dy
1
1
x
13
33
dy f (x, y)dx dy f (x, y)dx
1
1
3
y
1y
12
练习题 7
班级
学号
姓名
1. 把下列二重积分化为累次积分.
(1) f (x, y)d ,其中 D 是由 y x ,
D
x 2 及 x 轴所围成的闭区域;
解:原式= 2 x f (x, y)dydx . 00
2. 交换下列二次积分的积分次序(要求画出积 分区域的图形):
1
y
(1) dy f (x, y)dx ;
0
y
1x
解:原式= dx f (x, y)dy . 0 x2
1x
2 2x
(3) dx f (x, y)dy + dx f (x, y)dy .
00
1
0
1 2 y
解:原式= dy f (x, y)dx .
积函数关于 x 轴、 y 轴不对称,所以该式不
成立.
2.计算二重积分:
(| x | y)dxdy , D : x y 1;
D
解:积分区域 D 关于 x 轴、 y 轴都对称, y 关于
y 是奇函数, ydxdy 0
D
1 1x
x dxdy 2 xdxdy 2 dx xdy
D
D1
0 x1
2
2
cos
原式=
2
0
f ( cos , sin )dd
2
2.利用极坐标计算下列各题:
(1) e x2 y2 dxdy , D : x 2 y 2 4 ; D
解:设 x r cos , y r sin .则

二重积分计算习题

二重积分计算习题

V
f (x, y)dxdy
d
dy
2 ( y)
f (x, y)dx
c
1( y)
D
III、方法与步骤
① 绘出区域D的图形: ② 确定积分限: ③ 计算积分: ④ 利用奇偶性简化运算。
(2) 极坐标系下二重积分的计算
f (x, y)d f (r cos, r sin )rdrd
D
计注算:二重积分可利用区域D的对称性和被积 函 数的奇偶性简化计算。
为顶的曲顶柱体的体积。并在极坐标系下求其二重积分值
z
2 解:如图所示,所求曲顶柱体的体积为
O x
V (2 x2 y2)d
D
其中积分区域D可表示为
y D {(x, y) | 1 x2 y 1 x2 , 1 x 1}
由D的对称性及被积函数 f (x, y) 2 x2 y2
关于x,y均为偶函数可知 V 4 (2 x2 y2 )d
1000 150 80
1
200
[20( x
200)2
292000
]dx
1000 150
3
1 3000
20( x
200)3
292000 x 125000
12100 3
4033
的三角形闭区域
解:
y
x cos(x y)d
D
x
0 dx0 x cos(x y)dy
x
0 xdx0 cos(x y)dy
D
x
0
xdx[sin( x
y)]
|0x
续解
0 x(sin 2x sin x)dx
xd (cos x 1 cos 2x)
0
2

9二重积分的计算法2

9二重积分的计算法2

解 在极坐标系下
D:0 r a ,0 2.
ex2 y2dxdy

2
d
a e r2 rdr
D
0
0
例 3 求广义积分 ex2dx . 0
解 D1 {( x, y) | x2 y2 R2 }
D2 {( x, y) | x2 y2 2R2 }
2
2
( x, y) x 2 y 2 ,求这薄片的质量.
五、计算以 xoy 面上的圆周 x 2 y 2 ax 围成的闭区域为
底,而以曲面z x 2 y 2为顶的曲顶柱体的体积.
练习题答案

2 cos
一、1、
2
d
0
f (r cos , r sin )rdr ;
D
x2 y2
其中积分区域为D {( x, y) | 1 x2 y2 4}.
解 由对称性,可只考虑第一象限部分,
D 4D1
注意:被积函数也要有对称性.
sin( x2 y2 ) dxdy 4 sin( x2 y2 ) dxdy
D
x2 y2
D1
x2 y2
D
及坐标轴所围成的在第一象限内的区域.
2、 ( x 2 y 2 )d 其中D 是由直线y x ,
D
y x a, y a, y 3a(a 0)所围成的区域.
3、 R 2 x 2 y 2 d ,其中D 是由圆周
D
x 2 y 2 Rx 所围成的区域.
4、将 0 dx0 f ( x, y)dy 化为极坐标形式的二次积分
为______________________.

练习题3二重积分练习题2

练习题3二重积分练习题2

极坐标计算二重积分1.把积分dxdyy x f D),(⎰⎰表示为极坐标形式的二次积分, 其中积分区域D是:222{(,)|},x y x y a +≤ 其中0a >解 积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤a }, 所以θρρθρθρd d f d x d y y x f DD)s i n ,c o s (),(⎰⎰⎰⎰=⎰⎰=πρρθρθρθ20)s i n ,c o s (d f d a.2.把积分d xd y y x f D),(⎰⎰表示为极坐标形式的二次积分, 其中积分区域D 是:2222{(,)|},x y a x y b ≤+≤, 其中0<a <b ;解 因为D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以 θρρθρθρd d f d x d y y x f DD)s i n ,c o s (),(⎰⎰⎰⎰=⎰⎰=πρρθρθρθ20)s i n ,c o s (bad f d .3. 将二重积分⎰⎰=Dd y x f Iσ),(化为极坐标形式的累次积分, 其中:. D: 2222,a x y b ≤+≤0y ≥,(0)b a >>解⎰⎰⎰⎰==baDd f d d y x f I ρρθρθρθσπ)sin ,cos (),(04. 22xy DI e dxdy +=⎰⎰,其中2222:(0)D a x y b a b ≤+≤<<,则I=( )A(A )22()b a e e π- (B )222()b a e e π-(C )()2b a e π- (D )()b ae π-答案:(A ) 解2222222012()2bx y bb a aa DI edxdy d e d e e e πρρθρρππ+===⋅=-⎰⎰⎰⎰,选A5.计算σd e y xD22+⎰⎰,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以θρρσρd d e d e Dy x D222⎰⎰⎰⎰=+)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.6.计算σd y x D)1ln(22++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以θρρρσd d d y xDD)1l n ()1l n (222+=++⎰⎰⎰⎰)12l n 2(41)12l n 2(212)1l n (0102-=-⋅=+=⎰⎰πρρρθπd d .7.计算⎰⎰++--Ddxdy yx y x 222211, D: 221,0,0x y x y +≤≥≥. 解.=++--⎰⎰Ddxdy yx y x 222211⎰⎰⎰+-=+-12211411,dt ttxd d D πθρρρρθρu t t =+-11令 ⎰+10222)1(du u u π θtan =u 令 θθθθππd ⎰40422sec sec tan =)2(8sin 42-=⎰ππθθππd .8.计算σd yx y x D222211++--⎰⎰, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以θρρρρσd d d y x y x D D ⋅+-=++--⎰⎰⎰⎰2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d .9.计算σd xyDarctan ⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以θρρθθρρθσd d d d d xyDDD⋅=⋅=⎰⎰⎰⎰⎰⎰)a r c t a n (t a n a r c t a n 2401d d πθθρρ=⋅⎰⎰324013d 64d ππθθρρ==⎰⎰..10.计算σd y x D22+⎰⎰, 其中D 是圆环形闭区域2222{(,)|},x y a x y b ≤+≤ 解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以σd y x D22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ.11 .设22:16D x y +≤,则224______.Dx y dxdy +-=⎰⎰80π答案:解 将积分区域分为22224,416x y x y +≤≤+≤两部分,计算可得。

二重积分求体积的例题

二重积分求体积的例题

二重积分求体积的例题
摘要:
一、二重积分的概念与性质
1.二重积分的定义
2.二重积分的性质
二、二重积分求体积的方法
1.直接积分法
2.替换变量法
3.极坐标变换法
三、二重积分求体积的例题解析
1.例题一
2.例题二
3.例题三
正文:
二重积分是数学中的一种积分方法,用于求解空间内某一区域的体积。

它具有丰富的性质和灵活的计算方法,是数学分析中的重要内容。

首先,我们来了解二重积分的概念与性质。

二重积分是指在三个变量(x,y,z)的笛卡尔坐标系中,对两个变量(x,y)进行积分,而第三个变量(z)作为被积函数的参数。

二重积分具有以下性质:交换律、结合律、分配律、链式法则等。

接下来,我们学习二重积分求体积的方法。

常用的方法有直接积分法、替
换变量法和极坐标变换法。

直接积分法适用于被积函数较简单的二重积分;替换变量法通过引入新变量,将复杂被积函数转化为简单形式;极坐标变换法则是将笛卡尔坐标系中的积分问题转化为极坐标系中的积分问题,从而简化计算过程。

最后,我们通过例题来解析二重积分求体积的方法。

例题一:求解空间上半球体的体积;例题二:求解空间中四棱锥的体积;例题三:求解空间中曲面的体积。

这些例题涵盖了不同类型的二重积分求体积问题,有助于我们巩固所学知识并提高解题能力。

总之,二重积分是一种强大的数学工具,通过掌握其概念、性质和计算方法,我们可以解决空间体积计算中的一系列问题。

二重积分的计算方法例题及解析

二重积分的计算方法例题及解析

二重积分的计算方法例题及解析一、利用直角坐标计算二重积分1. 例题- 计算∬_D(x + y)dσ,其中D是由直线y = x,y = x^2所围成的闭区域。

2. 解析- (1)首先确定积分区域D的范围:- 联立方程<=ft{begin{array}{l}y = x y = x^2end{array}right.,- 解得<=ft{begin{array}{l}x = 0 y = 0end{array}right.和<=ft{begin{array}{l}x = 1 y = 1end{array}right.。

- 所以在x的范围是0≤slant x≤slant1,对于每一个x,y的范围是x^2≤slant y≤slant x。

- (2)然后将二重积分化为累次积分:- ∬_D(x + y)dσ=∫_0^1dx∫_x^2^x(x + y)dy。

- (3)先计算内层积分:- ∫_x^2^x(x + y)dy=∫_x^2^xxdy+∫_x^2^xydy。

- ∫_x^2^xxdy=x<=ft(y)<=ft.rve rt_x^2^x=x(x - x^2)=x^2-x^3。

- ∫_x^2^xydy=(1)/(2)y^2<=ft.rvert_x^2^x=(1)/(2)(x^2-x^4)。

- 所以∫_x^2^x(x + y)dy=x^2-x^3+(1)/(2)(x^2-x^4)=(3)/(2)x^2-x^3-(1)/(2)x^4。

- (4)再计算外层积分:- ∫_0^1((3)/(2)x^2-x^3-(1)/(2)x^4)dx=(3)/(2)×(1)/(3)x^3-(1)/(4)x^4-(1)/(2)×(1)/(5)x^5<=ft.rvert_0^1。

- =(1)/(2)-(1)/(4)-(1)/(10)=(10 - 5 - 2)/(20)=(3)/(20)。

二重积分的换元法

二重积分的换元法

(1) x ( u , v ), y ( u , v ) 在 D 上具有一阶连续偏导数 ;
(2) 在 D 上雅可比式 J (u,v ) ( x , y ) 0; (u,v)
(3) 变换 T : D D 是一对一的,则有
f ( x , y )dxdy f [ x ( u , v ), y ( u , v )] J ( u , v ) dudv .
D
D
r r
将区域D 用从O出发的射线和 以O为圆心的圆弧进行划 . 分
则 rr



D

o
于是面积微 d元rdrd
r rr
故 f(x,y)d f(rco ,rssin )rdrd
D
D
定理 设 f ( x , y ) 在 xoy 平面上的闭区域 D 上 连续,变换 T : x x ( u , v ), y y ( u , v ) 将 uov 平面上的闭区域 D 变为 xoy 平面上的 D , 且满足
(1) x ( u , v ), y ( u , v ) 在 D 上具有一阶连续偏导数 ;
(2) 在 D 上雅可比式 J (u,v ) ( x , y ) 0; (u,v)
(3) 变换 T : D D 是一对一的,则有
f ( x , y )dxdy f [ x ( u , v ), y ( u , v )] J ( u , v ) dudv .
f(rco,srsin)rdrd
D dr2()f(rco ,rs si)n rdr
r1()
d 0 r()f(rc o,rsi)n rdr 0 2 d 0 r()f(rc o,rs s i)n rdr

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常二重积分(含习题及参考答案)

数学分析21.8反常⼆重积分(含习题及参考答案)第⼆⼗⼀章重积分 8 反常⼆重积分⼀、⽆界区域上的⼆重积分:定义1:设f(x,y)为定义在⽆界区域D 上的⼆元函数. 若对于平⾯上任⼀包围原点的光滑封闭曲线γ, f(x,y)在曲线γ所围的有界区域E γ与D 的交集 D ∩E γ=D γ上恒可积. 令d γ=min{22y x +|(x,y)∈γ}. 若极限σγγd y x f Dd ??∞→),(lim存在且有限,且与γ的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛,并记σd y x f D),(=σγγd y x f Dd ??∞→),(lim,否则称f(x,y)在D 上的反常⼆重积分发散,或简称σd y x f D),(发散.定理21.17:设在⽆界区域D 上f(x,y)≥0, γ1, γ2,…, γn ,…为⼀列包围原点的光滑封闭曲线序列,满⾜:(1)d n =inf{22y x +|(x,y)∈γn }→+∞, (n →∞);(2)I=σd y x f nD n),(sup <+∞, 其中D n 为γn 所围的有界区域E n 与D 的交集,则反常⼆重积分σd y x f D),(收敛,且有σd y x f D),(=I.证:设γ’为任何包围原点的光滑封闭曲线,这曲线所围的区域记为E ’, 并记D ’=E ’∩D. ∵∞→n lim d n =+∞, ∴存在n, 使得D ’?D n ?D. 由f(x,y)≥0,有σd y x f D ??'),(≤σd y x f n),(sup , ?ε>0, ?n 0, 使得σd y x f nD ??0),(>I-ε. 对充分⼤的d ’, 区域D ’⼜可包含D 0n, 使得σd y x f D ??'),(>I-ε. 由I-ε<σd y x f D ??'),(≤I, 知f(x,y)在D 上的反常⼆重积分存在,且σd y x f D),(=I.定理21.18:若在⽆界区域D 上f(x,y)≥0, 则反常⼆重积分σd y x f D),(收敛的充要条件是:在D 的任何有界⼦区域上f(x,y)可积,且积分值有上界.例1:证明反常⼆重积分σd eDy x ??+-)(22收敛,其中D 为第⼀象限部分,即D=[0,+∞)×[0,+∞).证:设D R 是以原点为圆⼼, 半径为R 的圆与D 的交集,即该圆第⼀象限部分. ∵) (22y x e +->0,∴⼆重积分σd e Dy x ??+-)(22关于R 递增.⼜σd eRD y x ??+-)(22=dr r e d Rr ??-0202πθ=)1(4D y x R ??+-+∞→)(22lim =)1(4lim 2R R e -+∞→-π=4π. 即对D 的任何有界⼦区域D ’, 总存在⾜够⼤的R ,使得D ’?D R , ∴σd e D y x ??' +-)(22≤σd e RD y x ??+-)(22≤4π.由定理21.18知,反常⼆重积分σd e Dy x ??+-)(22收敛,⼜由定理21.17有,σd e Dy x ??+-)(22=4π.注:由例1结论,可推出反常积分?+∞-02dx e x 的值(常⽤于概率论). 考察S a =[0,a]×[0,a]上的积分σd eaS y x ??+-)(22=??--ay ax dy edx e22x dx e .由D a ?S a ?aD2(如图)知σd eaD y x ??+-)(22≤σd eaS y x ??+-)(22=202??? ???-ax dx e ≤σd e aDy x ??+-222)(. 令a →+∞, 则得202lim ??? ???-+∞→a x a dx e =σd e D y x ??+-)(22=4π, ∴?+∞-02dx e x =2π.例2:证明:若p>0, q>0, 则B(p,q)=)()()(q p q p +ΓΓΓ.证:令x=u 2, 则dx=2udu, Г(p)=?+∞--01dx e x x p =2?+∞--0122du e u u p , 从⽽ Г(p)Г(q)=4?+∞--+∞--?0ydx exy q x p =4??----+∞→?Ry q Rx p R dy e y dx ex1201222lim.令D R =[0,R]×[0,R], 由⼆重积分化为累次积分计算公式有σd eyxy x D q p R)(121222+---??=??----?Ry q Rx p dy e y dx ex1201222.∴Г(p)Г(q)= 4σd e y x y x D q p R R)(121222lim +---+∞2+---??, 其中D 为平⾯上第⼀象限部分. 记D r ={(x,y)|x 2+y 2≤r 2, x ≥0, y ≥0}. 于是有 Г(p)Г(q)=4σd e y x y x Dq p )(121222+---??=4σd e y x y x D q p r r)(121222lim +---+∞→??,应⽤极坐标变换,有Г(p)Г(q)=4??----++∞→rr q p q p r rdr e r d 012122)(2202sin cos lim θθθπ=4??--+--+∞→rr q p q p r dr e r d 01)(22012122sin cos lim πθθθ=2?+Γ?--201212)(sin cos πθθθq p d q p =B(p,q)Г(p+q). ∴B(p,q)=)()()(q p q p +ΓΓΓ.定理21.19:函数f(x,y)在⽆界区域D 上的反常⼆重积分收敛的充要条件是|f(x,y)|在D 上的反常⼆重积分收敛.证:[只证充分性]设σd y x f D|),(|收敛,其值为A. 作辅助函数f +(x,y)=2),(|),(|y x f y x f +, f -(x,y)=2),(|),(|y x f y x f -, 则0≤f +(x,y)≤|f(x,y)|, 0≤f -(x,y)≤|f(x,y)|.∴在D 的任何有界⼦区域σ上, 恒有σd y x f D+),(≤σd y x f D|),(|=A,σd y x f D即f +(x,y)与f -(x,y)在D 上的反常⼆重积分收敛. ⼜f(x,y)=f +(x,y)-f -(x,y), ∴f(x,y)在D 上的反常⼆重积分也收敛.定理21.20:(柯西判别法)设f(x,y)在⽆界区域D 的任何有界⼦区域上⼆重积分存在, r 为D 内的点(x,y)到原点的距离r=22y x +. (1)若当r ⾜够⼤时, |f(x,y)|≤p rc, 其中常数c>0, 则当p>2时,反常⼆重积分σd y x f D),(收敛;(2)若f(x,y)在D 内满⾜|f(x,y)|≥p rc,其中D 是含有顶点为原点的⽆限扇形区域, 则当p ≤2时,反常⼆重积分σd y x f D),(发散.⼆、⽆界函数的⼆重积分定义2:设P 为有界区域D 的⼀个聚点,f(x,y)在D 上除点P 外皆有定义,且在P 的任何空⼼邻域内⽆界,△为D 中任何含有P 的⼩区域,f(x,y)在D-△上可积. ⼜设d 表⽰△的直径,即 d=sup{221221)()(y y x x -+-|(x 1,y 1),(x 2,y 2)∈△}. 若极限-→D d d y x f σ),(lim存在且有限,且与△的取法⽆关,则称f(x,y)在D 上的反常⼆重积分收敛. 记作-D d y x f σ),(=-→D d d y x f σ),(lim 0,否则称f(x,y)在D 上的反常⼆重积分??Dd y x f σ),(发散.定理21.21:(柯西判别法)设f(x,y)在有界区域D 上除点P(x 0,y 0)外处处有定义, 点P(x 0,y 0)为瑕点,则: (1)若在点P 附近有|f(x,y)|≤a rc, 其中c 为常数, r=2020)()(y y x x -+-, 则当a<2时,反常⼆重积分σd y x f D),(收敛; (2)若在点P 附近有|f(x,y)|≥a rc, 且D 含有以点P 为顶点的⾓形区域, 则当a ≥2时,反常⼆重积分σd y x f D),(收敛.习题1、试讨论下列⽆界区域上⼆重积分的收敛性: (1)??≥++1σ?d y x y x y p≤≤++1022)1(),(, (0解:(1)令x=rcos θ, y=rsin θ, 则≥++12222)(y x m y x d σ=??+∞12201rdr r d m πθ=??+-+∞→d m d dr r d 11220lim πθ=-2π?+-+∞→d m d dr r 11 2lim . ∵?+-+∞→dm d dr r 112lim 当2m-1>1时, 收敛;当2m-1≤1时, 发散;∴≥++12222)(y x m y x d σ当m>1时, 收敛;当m ≤1时, 发散. (2)由区域的对称性和被积函数关于x,y 的偶性得原积分=4??+∞+∞++001111dy ydx x q p . ∵?+∞+011dx x p当p>1时, 收敛;当p ≤1时, 发散. ∴原积分当p>1, q>1时收敛,其它情况发散.(3)∵0y x y x )1(),(22++?≤p x M)1(2+,∴当p>21时, 由σd x My p ??≤≤+102)1(收敛,得原积分收敛;当p<21时, 由σd x my p ??≤≤+1∞-+-+∞∞-+dx y x e dy y x )cos(22)(22. 解:令x=rcos θ, y=rsin θ, 则+∞∞-+-+∞∞-+dx y x e dy y x)cos(22)(22=??+∞-0220cos 2dr r re d r πθ=π?-+∞→du d udu e 0cos lim=2π.3、判别下列积分的收敛性: (1)≤++12222)(y x m y x d σ;(2)??≤+--12222)1(y x m y x d σ. 解:令x=rcos θ, y=rsin θ, 则(1)??≤++12222)(y x m y x d σ=??102201rdr r d m πθ=2π?+-→1120lim d m d dr r . ∵?+-→1 120lim dm d dr r 当2m-1<1时, 收敛;当2m-1≥1时, 发散;∴??≤++1 2222)(y x m y x d σ2222)1(y x m y x d σ =??-10220)1(rdr r d d m σθπ=π?-→-d m d du u 01)1(lim . ∴当m<1时, 由?-→-dmd du u 01)1(lim 收敛知,原积分收敛;当m ≥1时, 由?-→-dm d du u 01)1(lim 发散知,原积分发散.。

数学分析21.1二重积分的概念(含习题及参考答案)

数学分析21.1二重积分的概念(含习题及参考答案)

第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
化为先x 后y 的二次积分为
5.将二次积分 2 dx 2xx2 1 2x
f
(x,
y)dy
改换积分次序,
应为
6.将二次积分 1 dy 2
1 2
2
f (x, y)dx dy
f (x, y)dx
e2
ln y
1
( y1)2
改换积分次序应为
二重积分 6
7.设D是由直2. 1 1x
0
1 y
1 1 y
f (x, y)d dx f (x, y)dy dy f (x, y)dx dy f (x, y)dx
0
x1
1 0
00
D
3. 4
2x
4
y
f (x, y)d dx
0
x
f (x, y)dy
的闭区域,则 d
D
8.设D是由圆环
所确定的闭区
域,则 d
D
9.设D是由
所确定
的闭区域,若 d 4, 则
D
10.设D:
则(x y)d
D
二重积分 7
三、将二重积分 f (x, y)d 化为两种不同顺序
D
的二次积分,其中积分区域D是 1.由y 0, y x 和 x 1 围成. 2.由x y 1, x y 1 和 x 0围成. 3.由 y x 和 y2 4x 围成. 4.由y x2 和y 1 x2 围成.
5.
1
2y
dy f (x, y)dx
0
0
二重积分 10
答案
一、单选题
题号 1 2 3 4 5 6 答案 C B D A C B
二、填空题
1、1
2、 3
2
3、 r
r2 x2
dx f (x, y)dy
r 0
4、 1
2
2
2
1 dy 1 f (x, y)dx 1 dy y f (x, y)dx
2
y
11
5、 1 1 1y2
dy
f (x, y)dx
0 2y
6、 2
1 x
dx f (x, y)dy
0
ex
7、1 8、2 9、2 10、0
三、将二重积分化为二次积分
1. 1
x
11
f (x, y)d 0 dx0 f (x, y)dy 0 dyy f (x, y)dx
D
是 (0,0),(,0),(, )的三角形区域.
3.将二重积分 f (x, y)d 其中D是由x轴及
D
半圆 x2 y2 r2(y 0)所围成的闭区域.化为
先 y后x的二次积分为
二重积分 5
4.将二重积分 f (x, y)d 其中D是由直线 y x,
D
x 2 及双曲线y 1 (x 0) 所围成的闭区间,
0y
C. 1 y
I dy f (x, y)dx
0
y2
D.I

y
y
1
dy0
f
(x,
y)dx
二重积分 4
二、填空题
1. (x3 3x2 y y3)d _________. 其中D:
D
0 x 1,0 y 1
2. xcos(x y)d ________. 其中D是顶点分别
练习题
一、选择题
1.设 I 3 x2 y2 1d
D
二重积分 2
二重积分 3
5.设D是由直线 y 2, y x, y 2x 所围成的闭
区域,则二重积分 f (x, y)d 化为二次积分,
正确的是( ) D
A.01dx
2x x
f
(x,
y)dy
B.12 dx
dy
0
1 y2
f (x, y)dx
D
4
二重积分
12
4.
2
1 x2
f (x, y)d 2 dx f (x, y)dy
D
2
x2
2
1
y
1
1 y

2 dy
0

y
f (x, y)dx
1 dy
1 y
f (x, y)dx
2
四、计算下列二重积分
1、565 4、 2
0
2
2
2
5.
2
1
0 dxx f (x, y)dy
2
二重积分 14
15
2x x
f
(x,
y)dy
C.02 dy
y y
f (x, y)dx
D.2 dy x f (x, y)dx
0
2x
2
6.设 I

1x
dx
0
x2
f
(x,
y)dy
将I变换积分次序后得(

A. B. x 1
I dy f (x, y)dx
x2
0
1
y
I dy f (x, y)dx
二重积分 8
四、计算下列二重积分
1.
,其中D由抛物线y x, y x2围成
2.
,其中D由0 x 4 y2 确定
3.
,其中D由x 2, y x, xy 1围成
4.
,其中D由y 0, y x, x 围成
5.
,其中D由0 x 1, 0 y 围成
2
二重积分 9
五、交换下列二次积分的顺序
1. 0
1 x 2
dx
f (x, y)dy
1
x1
2.
e
ln x
dx f (x, y)dy
1
0
3. 2
y
4
2
dy
1
1
f (x, y)dx
dy
2
y f (x, y)dx
2
4. 2
2x
dx f (x, y)dy
0
x
2、
64 15
5、14 ( 2)
3、 9 4
二重积分 13
五、交换下列二次积分的顺序
1. 1
y1
dy
f (x, y)dx
0
1 y2
2. 1
e
dy f (x, y)dx
0
ey
3. 2
2x
dx f (x, y)dy
1
x
4. 2
y
4
2
dy y f (x, y)dx dy y f (x, y)dx
相关文档
最新文档