大众汽车标准_VW_01105-1_电阻点焊
焊接现场工程师手册大纲(初稿)知识分享
焊接现场工程师手册一、体系及工具1、交运汽车零部件公司质量管理体系-质保TS16949体系(作为附件)-质保2、行业顾客有关体系流程-质保SGM体系流程SVW体系流程SAIC体系流程3、五大工具内容(APQP/PPAP/MSA/SPC/FMEA)-前八4、QSB内容(11部分模块)-质保二、技能基础1、焊接工艺基础知识(各类缺陷及预防整改措施)-前后八电阻焊(凸焊,点焊)、弧焊、螺柱焊2、常用材料焊接特性-前后八普通钢板焊接特性及焊接工艺参数选用参考高强度钢板焊接特性及焊接工艺参数选用参考镀锌钢板焊接特性及焊接工艺参数选用参考铝合金板焊接特性及焊接工艺参数选用参考3、主要生产设备、设施(不同品牌设备进行不同培训)-制造凸焊设备(单相凸焊机、三相整流凸焊机、次级整流凸焊机、储能凸焊机)点焊设备(悬挂点焊,中频点焊,机器人点焊)弧焊设备(MIG/MAG焊,TIG焊,机器人弧焊)螺柱焊设备(手持式螺柱焊、机器人螺柱焊)4、相关工装、检具及防错技术(按顾客分类)焊接工装结构及验收要求-制造总成检具结构及验收要求-质保防漏防错技术及要求-制造5、各类试验方法及要求-质保6、GP5及8D报告内容-质保三、现场管理规定-焊接件厂1、现场工程师岗位职责及工作要求熟悉焊接工艺技术及相关产品质量要求工艺文件管理产品过程控制设备工装调试生产现场管理协助新产品开发2、5S(常识及本公司相关要求)整理:把要与不要的材料、工具、设备、报表分开放置,然后再将不要的物品处理掉整顿:把要的物品定量定位放置。
清扫:将施工场地、环境、设备、材料的灰尘和污垢清扫干净。
操作人员在班后抽10分左右的时间清扫各自使用的机械。
清洁:“整理”、“整顿”、“清扫”之后的彻底维护。
素养:养成良好的工作习惯,遵守单位的规章制度,对单位规章的执行全力以赴。
3、标识及目视化管理设备型号标识焊接工装标识总成检具标识工位器具标识产品标识工位及场地标识4、TPM(全员生产维修)(常识及本公司相关规定)月底工作会与每日交班会制度TPM各岗位职责设备运转日报与设备点检每日巡视制度强制保养制度5、日常各项操作规定设置及调整焊接工艺参数的规定焊接设备调试的规定调整焊接工装的规定改进焊接工艺的规定检具的规范使用规定过程检验的规定入库检验的规定6、样件管理封样件及极限样件的管理7、人员培训新员工应知应会培训及考核操作工过程能力培训操作工岗位技能定期培训及考核换岗人员岗位技能培训及考核建立员工岗位技能柔性表建立员工培训记录册8、有关奖惩制度操作人员违反操作规范时的相关处罚操作人员未按工艺文件要求操作时,予以教育及相关处罚操作人员提出合理的工艺改进方案并被采纳时,予以相关奖励实行单机成本核算,单机成本盈亏情况每月公布,并依此奖惩职工。
VW 01106-1 (04.07)
插图 1 – 熔焊接合 附注:焊缝和熔焊线可以是同一的。
2.2.1.1 焊缝
在焊接接头处,于焊接接合范围内结合工件或者多只工件。其焊缝由基体材料和/或焊接添加剂材 料组成。
2.2.1.2 熔焊线 在焊接情况下,已熔化的基体-和/或添加剂材料与未熔化的基体材料之间的界限。
材料编号
1.0972 1.0976 1.0980 1.0982 1.0984 1.0986 1.8969 1.8976 1.8974
页次 7 VW 011 06-1: 2004-07
i) 由磷化钢制成的,具有较高冷成形屈服极限的冷轧带钢和钢板:
SEW 094 ZStE220P ZStE260P ZStE300P DIN EN 10292 H220PD+Z, +ZF H260PD+Z, +ZF H300PD+Z, +ZF
对保护气体焊接的进一步要求包含:
VW 011 06-2
对钢板焊接接合的再加工
VW 011 06-3
铝板的焊接接合
VW 011 42
关于铝板的焊接接合方面的再加工
在电弧焊制作钢板焊接接合的情况下,在结构目标含义上,足够安全性的前提下,实现最大可能 的造形强度。由此,对每种焊接接合,必须计及“正确焊接”,也就是说,在研发结构设计的情况 下,必须按照 DVS 0929,考虑焊接装置的尺寸和焊缝的可接近性。
用于: 对接焊缝与贴角焊缝,搭接焊缝,塞孔焊缝和特种焊缝形状
由…制成 光亮非镀层和镀层钢板以及由高合金钢和优质钢制成的钢板;示例参见章节 4.1;
附带: 按照 DIN EN ISO 5817 的评价组别的特征值,也可参见 DVS-标记卡 0705。
vW01105-1-2010版本
Resistance Spot WeldingDesign, CalculationUncoated and Coated Steel SheetsPrevious issuesVW 01105-1: 1977-05, 1993-12, 2003-05, 2003-06, 2003-11, 2007-03ChangesThe following changes have been made as compared to VW 01105-1: 2007-03:–Technical responsibility changed–Appendix A "Limits for quality levels" added–Referenced standards updatedContents PageScope (2)Terms and definitions (3)Spot welding (3)Heat-affected zone HAZ .............................................................................................3Unaffected base material (3)Design (3)Spot-welded joint (3)Weld joint (3)Sheet thickness (3)Requirements (3)Materials (welding suitability) (5)Design (weld reliability) (6)Position of the weld spots ..........................................................................................6122.12.22.32.42.4.12.4.22.4.333.13.23.2.1Group Standard VW 01105-1Issue 2010-02Class. No.:04815Descriptors:welding, spot welding, resistance spot welding, weld spot, sheet metal, steel, sheet steelCheck standard for current issue prior to usage.This electronically generated standard is authentic and valid without signature.The English translation is believed to be accurate. In case of discrepancies the German version shall govern.Numerical notation acc. to ISO practice.Page 1 of 32Technical responsibility Standards DepartmentGQL-LM1Dr. Knud Nörenberg Tel.: +49-5361-9-73623GQL-LM Dr. Stephan Eisenberg EKDV/4 Uwe Fischer EKDVTel.: +49-5361-9-27995Manfred Terlinden Confidential. All rights reserved. No part of this document may be transmitted or reproduced without prior permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the B2B supplier platform .© Volkswagen Aktiengesellschaft VWNORM-2008-12l QU E L L E : N O L I SWeld sequence ..........................................................................................................7Arrangement of spots (spot position) .........................................................................7Spot spacing ..............................................................................................................7Design examples and dimensions .............................................................................8Tolerances ...............................................................................................................13Manufacturing (welding capability) ...........................................................................14Basics .......................................................................................................................16Minimum shear force (F S ) .........................................................................................16Cross-tension force F K .............................................................................................17Peeling force F peel .....................................................................................................17Torsion .....................................................................................................................18Static and dynamic loads .........................................................................................18Process assurance ...................................................................................................19Weld spot geometry .................................................................................................19Number of weld spots ..............................................................................................23Surface quality class for spot-welded sheets ...........................................................23Drawing entries ........................................................................................................24Referenced documents ............................................................................................25Limit values for quality levels ...................................................................................263.2.23.2.33.2.43.2.53.2.63.344.14.24.34.44.54.64.6.14.6.24.6.356Appendix AScopeThe following basic regulations are based on experience with low to high degrees of mechanization,on test results, as well as on standards and technical regulations, e.g. DVS 2902-1, DVS 2902-2,DVS 2902-3.This standard is used for the design, calculation and workmanship of resistance-spot-welded sheet steel constructions subject to both static and dynamic loads. The joints used in these constructions are hereinafter referred to as "spot-welded joints".This standard covers resistance spot welding (reference number 21 acc. to DIN EN ISO 4063) on single-shear spot-welded joints with a sheet thickness ratio ≤ 3 : 1 for a thickness of 0,5 mm to 4,0 mm,as well as quality characteristics of single-spot and multiple-spot-welded joints. Larger sheet metal thicknesses and ratios are possible in agreement with the engineering departments. The nugget diameter is always determined by the thinnest sheet thickness.Sheets according to DIN EN 10139, however, are to be used only if their thickness does not exceed 3,0 mm.The introduction of zinc-coated sheets, e.g., according to DIN EN 10142 or DIN EN 10292, and the use of high-strength and higher-strength steels require higher electrode forces. This, in turn, may result in the necessity for larger electrode tip and electrode shank diameters (16 mm and 20 mm).When these electrodes are used, the weld nugget moves further away from the root face in the case of angled spot-welded flanges. However, as the distance between the weld nugget and the root face increases, component rigidity and strength decrease.Further requirements for (resistance) spot-welded joints are included in:–VW 01105-2 Resistance Spot Welding; Aluminum Materials,–VW 01105-4 Multiple-Sheet Joints; Dual- and Multiple-Shear JointsThe procedures described in the Test Specifications PV 6702 and PV 6717 are decisive for the quality audit of spot-welded joints.1 Page 2VW 01105-1: 2010-02Terms and definitions Spot weldingIn resistance spot welding, the weld zone between the parts to be joined is heated to the melting point using resistance heating with electrode force acting simultaneously. Size, shape and position of the melted base material depend on the temporal and spatial interaction of the heat quantities generated and dissipated in the weld zone and its surroundings. Under the influence of the electrode force, the workpieces are joined when the melt solidifies. The welded joint in the shape of a "weld nugget" that develops during this process is referred to as a …weld spot“ (Figure 26) that joins the parts (Section 2.4.2). The nugget diameter d L is the diameter of the melted material in the joining plane that is measured on the microsection.Heat-affected zone HAZArea of the base material that remains solid but experiences changes in microstructure due to the thermal energy applied during spot welding.Unaffected base materialArea of the base material that has experienced no recognizable changes in microstructure due to the energy applied during spot welding.Base materials that do not differ significantly in their chemical composition and suitability for spot welding are considered materials of the same type. Base materials that differ significantly in their chemical composition and suitability for spot welding are considered as different types of materials.Design Spot-welded jointThe spot-welded joint is a connection of two or more parts joined directly at the weld joint by one or more "weld spots" or "spot seams". The parts involved are designated on drawings as an ASSY (assembly) or WA (welded assembly).Weld jointThe weld joint is the configuration in which the parts are joined to each other by spot welding. The respective joint type is determined by the design relationships of the parts to each other.Sheet thicknesst 1 and t 2 are sheet thickness values of the single-shear spot-welded joint. For the purpose of uniform definition, especially for calculation, the thinnest sheet or the thinnest outer sheet of the joint must always be designated as t 1 if there are different sheet thicknesses. The thickest sheet of the joint is designated as t 2.RequirementsEach spot-welded construction must be "suitable for welding" in order to achieve the greatest possible design strength during manufacturing in the sense of the design goal with adequate safety and op‐timum cost-quality ratio. This means that the dimensions in the spot welding equipment, the electrode 22.1 2.2 2.3 2.42.4.1 2.4.2 2.4.3 3 Page 3VW 01105-1: 2010-02space requirement, as well as the accessibility of the workpiece must already be taken into consid‐eration during advance engineering. The weldability depends on three influencing variables:–welding suitability (material),–weld reliability (design),–welding capability (manufacturing).All three criteria have the same priority for weldability, see Figure 1. For a definition, please also refer to DIN Technical Report ISO/TR 581 "Weldability - Metallic Materials, General Principles".Figure 1 – Schematic representation of the weldability of spot-welded jointsPage 4VW 01105-1: 2010-02Materials (welding suitability)The welding suitability is a material property. Materials are suitable for welding if the material´s chemical composition allows a welded joint that meets the requirements set forth in the respective standards to be produced.For a first estimation of the welding parameters of a joining task, it is recommended to prepare a weldability lobe (time/current diagram, Figure 2) stating the limit lines for the minimum and maximumnugget or spot diameters for a constant electrode force and shape, see also DIN EN ISO 14327.Figure 2 – Weldability lobeFor estimation of the welding parameters, it is recommended to select the welding time and current values such that the following current differences result between the limit lines of d L min or d P min and d L max or d P max :–Δ ≥ 1,2 kA for resistance spot welding equipment with tip cutting device,–Δ ≥ 1,5 kA for resistance spot welding equipment without tip cutting device.The chemical composition basically influences the microstructure, hardening, nugget formation and strength of the spot-welded joint.The less the material-related factors have to be considered in manufacturing and design, the greater the welding suitability of a material within a material group (see DVS 2902-2).Testing of nugget position, nugget shape, and welding range is required for spot-welded joints of mixed materials (especially connections between unalloyed/low-alloyed steels and austenitic steels).All steels with a C content of up to 0,25% (max. 0,3%) are suitable for spot welding. In many cases,the equivalent carbon content (CE) is used for determining the welding suitability (hardening) of un‐alloyed and low-alloyed steels. According to DVS 2902-2, the following equation applies to a first estimation of the hardening of the weld metal:CE = C + Mn/6(1)3.1 Page 5VW 01105-1: 2010-02Figure 3 – Maximum hardness of the weld nugget as a function of the equivalent carbon content Figure 3 is an example illustrating the interdependence between the maximum hardness of the weld nugget and the equivalent carbon content.Special measures (e.g. reheating, multi-pulse welding, etc.) may be necessary for alloyed steels due to the alloying elements that influence hardness. Therefore, their use has to be agreed upon with the responsible engineering departments and tested separately.A hardness increase factor of ≤ 3,5 is recommended as the limit value for the hardness in both the weld nugget and the HAZ.Example:(2)The maximum hardness in the weld nugget and the HAZ must not exceed the value of 550 HV 0,2.See also DVS 2905.Design (weld reliability)Weld reliability is of particular importance for design. The design-related weld reliability is mainly influenced by the material and to a slight extent by manufacturing. Weld reliability is provided if, with the material used, a component remains functional under the intended operating conditions due to its design.Position of the weld spotsThe position of the weld spots must be specified by Design Engineering in consultation with Produc‐tion and Planning departments. If possible, the electrodes should contact the part perpendicular to the part surface. Otherwise, i.e. if they contact the part surface at a different angle, the nugget diam‐eter may be significantly smaller and elliptical.3.2 3.2.1 Page 6VW 01105-1: 2010-02The key criteria for the distance between the weld spot and the perpendicular flange are the minimum distance A = 2,0 mm from the current-carrying parts, the largest radius R i , as well as the electrode shank diameter d S or electrode tip diameter d K .Please refer to the drawing or DIN ISO 2768-1 for positional tolerances of the weld spots (spot spacing tolerance).Further information on the design of spot-welded joints can be obtained from DVS 2902-3.Weld sequenceContinuous rows of weld spots created using only one welding device must have spacings no smaller than 25 mm. For narrower spot spacings, the welding to gap method must be used (to prevent sub‐sequent spots from being too small or loose, see Figure 4).Arrangement of spots (spot position)The arrangement of spots must be selected such that the force F to be transferred is distributed as uniformly as possible over all spots. If the load distribution is not uniform, there will be a negative effect on both the vibration resistance and the crash behavior.With multiple-row spot seams, the spot arrangement is to be agreed upon with the Design Engineer‐ing, Calculation, Strength, Planning and Production departments.Spots that cannot be welded properly due to difficult accessibility are to be avoided (see Figure 7)."Quarter, third, half and three-quarter spots" reduce load bearing capacity. In checked exceptional cases, a defined portion of half and three-quarter spots can be permitted by the Testing department (Vehicle Strength and Vehicle Safety) in certain areas. This must be noted separately in the assembly drawing (Figure 29).Spot spacing The spot spacing e is the distance between the centers of two adjacent weld spots (Figure 4 and Figure 5). The spot spacing e Neb indicates the distance below which the shunt can no longer be ignored during the welding process.The shunt increases when–spot diameter,–sheet thickness,–electrode force, and –electrode contact surface increase, and when –the spot spacing decreases.Depending on the size of the shunt, the welding current must be increased more or less in order to create weld nuggets with the same diameter. The portion of the current that flows over spots of the seam that are already present does not contribute to heating the actual weld area. Therefore, the nugget diameter will be smaller starting from the 2nd spot of a seam if the spot spacing is too small and the setting data are constant. The influence of the shunt can be compensated for with the use of programmable and process-regulating controls. Generally, the following applies: e ≥ e Neb 4 x d L can be used as a reference value for the spot spacing e .Shunt can be ignored for a spot spacing e ≥ 10 (t 1 + t 2). In the case of multiple-row joints the following applies as a rule: e ≈ 5 x d L3.2.2 3.2.3 3.2.4 Page 7VW 01105-1: 2010-02Figure 4 – Left: double-row offset single-shear spot seam; right: double-row double-shear spot seam Figure 5 – Prevention of shunt in case of spot spacings that are too smallFigure 6 shows different forms of shunt.Figure 6 – Forms of shuntLegenda)Shunt at the sheet metal due to electrode contact b)Shunt via the centering pin (due to close distance)The Figure does not show shunt forms caused by c)clamps,dthe transformer grounding,e)the fixture.Design examples and dimensions Designs with poor accessibility are to be avoided, since specifically shaped electrodes and/or elec‐trode arms would be required (Figure 7 and Figure 12).3.2.5 Page 8VW 01105-1: 2010-02Figure 7 – Examples of unfavorable and favorable accessibility for the welding electrodes at the weldflangesOverlap Overlap b is the width of the contact surface of the weld flanges on the sections. The planes of thecontact surfaces must be parallel and touch each other (Figure 8).b is the shortest distance between the limit lines. The following applies: b ≥ 2v.Figure 8 – Left: single-row single-shear spot seam; right: double-row single-shear spot seamSeam spacing f For multiple-row spot seams, the seam spacing f is the shortest distance between the spot centers of adjacent seams (Figure 8 right). The following applies in general: f ≥ e.Seam length l The seam length l is the distance between the spot centers of the first and last spots of a spot seam (Figure 8).Edge distance v The edge distance v is the distance between the weld spot center and the closest limit line of the contact surface (Figure 9).3.2.5.1 3.2.5.2 3.2.5.3 3.2.5.4 Page 9VW 01105-1: 2010-02The following applies as a rule: v min = 1,25 x dL minFigure 9 – Edge distanceFlange width a The flange width a (Figure 10) is the value that is to be complied with in manufacturing, so that a)the position of the weld spot is not too close to the edge of the sheet metal,b)the welding equipment (electrode tip and shank) does not create any shunt to the bent sheet,c)the selected bending radius of the sheet is small enough to provide a longstraight portion of the flange width to ensure a sufficient contact surface forthe welding electrode.The flange width is to be agreed upon between Design Engineering, Planning and Production de‐partments.For calculation, see VW 01105-1 Supplement 1 "Resistance Spot Welding; Calculation of Flange Width ".In exceptional cases, it is possible to deviate from the flange width calculation. If this is the case, the flange width must be agreed upon between Design Engineering, Planning and Production depart‐ments.Figure 10 – Flange widthsFor multiple-row spot seams, the flange width a is to be increased according to the seam spacing f.The flange width is measured from the end of the flange to the angled sheet and is composed of the edge distance v and the clearance FM, as well as the tolerance T G .3.2.5.5 Page 10VW 01105-1: 2010-02Flange offset iThe flange offset i is the maximum projection of the primary flange with respect to the secondary flange, e.g. for the mounting of seals (Figure 10). The secondary flange must not protrude over the primary flange on the trim edge.Flange heights c and h, offset gThe dimensions c and h (Figure 10) take into consideration the dimensions of the spot weldingequipment, the electrode space requirements and the workpiece accessibility in manufacturing (see also Figure 13).The dimension g specifies the maximum permissible offset (Figure 11).The values must be agreed upon between Design Engineering, Planning and Production depart‐ments.Flange and overlap spacing kThe flange and overlap spacing k is the distance between overlap b and tangent line (Figure 11).Figure 11 – Offset g, spacing kThe following applies to k min : k ≥ 2,0 mm The following applies to g min : g ≥ sheet thickness3.2.5.6 3.2.5.73.2.5.8Flange geometryTable 1 – Weld flange geometry as a function of sheet thickness t min and welding condi‐tions (all dimensions in mm)Sheet thick‐nessSpot spacing Flange dimensions DiameterClearanceFlange width t mine Nebv min b min i g max k mind Kd SFMa0,5 to 0,6103,36,61,0–1,01,1213138,515,3> 0,6 to 0,8123,97,81,0–1,01,316181118,4> 0,8 to 1,0154,38,61,5–1,51,518,8> 1,0 to 1,2184,89,61,5–1,51,719,3> 1,2 to 1,5245,310,61,5–1,52,019,8> 1,5 to 1,6275,611,22,0–2,02,520,1> 1,6 to 2,0276,312,62,0–2,02,520201221,8> 2,0 to 2,5366,813,62,0–2,03,022,3> 2,5 to 3,0457,615,22,0–2,03,5241425,1> 3,0 to 3,5548,116,22,5–2,54,725,6> 3,5 to 4,0638,817,52,5–2,54,726,3Legend:v min = 1,25 d L min Edge distance (Figure 9) including tolerance b ≥ 2 v and b ≥ a - r Overlap (Figure 9)i Flange offset (Figure 10)g max Offset of the overlap (Figure 11)k min Flange and overlap spacing (Figure 11)d K Electrode tip diameter d SElectrode shank diameterFM = d S /2 + A Clearance for electrode shank diameter a ≥ v min + FM + T GFlange width, influence of electrode (f A=2; D shank )with T G = 3,5NOTE 1 Since the flange width values specified in Table 1 depend on several factors, and since at least T G must be agreed upon between Design Engineering, Planning and Production departments (see Section Section 3.2.6), the values still have to be corrected accordingly.Reference sheet thickness t vFor joints with different sheet thicknesses (t 1 ≠ t 2), the reference sheet thickness t v may be used instead of t min for determining the welding parameters.t v = 0,8 t 1 + 0,2 t 23.2.5.9 3.2.5.103.2.6TolerancesTolerance values must be agreed upon between Design Engineering, Planning and Production de‐partments.Trim tolerance T aThis value represents the trim tolerance during production of the individual part and must be included in the calculation.General body-in-white tolerance T RThis value considers the general tolerances in body construction, including the inaccuracies of in‐dustrial robots and must be included in the calculation.Design-related tolerance compensation T KThe value considers the flange displacements that are provided for secondary flanges and must be included in the calculation.Equipment tolerance T VThis value considers the repetition accuracy of the equipment and must be included in the calculation. Overall tolerance T GThe overall tolerance is made up of the tolerances T a, T R, T K and T V described above to the extent that these have to be considered.T G = T a + T R + T K + T VA total allowance of T G = 3,5 mm has been chosen for the calculation in Table 1.Manufacturing (welding capability)Care must also be taken in design to ensure that the component is capable of being welded (manu‐facturing-related weld reliability). It must be possible to produce the planned welds properly under the state-of-the-art manufacturing conditions.During the design of components, the following manufacturing aspects should be taken into consid‐eration:–If the designs require operating equipment with long arms spaced far apart, it must be determined early in the process whether the available welding equipment is suitable for this purpose.–If possible, the designs must allow short, straight and rigid arms, electrode brackets and elec‐trodes to be used (Figure 12).Figure 12 – Examples of electrode arm shapes to be avoided–Refer to VW 01105-4 for double-shear and multiple-shear joints.–The distance between the outer diameter of the electrode and/or the electrode bracket and theinner edge of the sheet must be at least (2 + 0,5) mm (Figure 13). Other specifications must be agreed upon between the responsible specialized departments.Figure 13 – Poor weld quality caused by electrodes that spring back and slide–During the welding process of high-strength and highest-strength sheets, the electrodes normally do not penetrate considerably into the base material. As a result, the risk of electrode sliding is increased. Especially if pneumatic electrode holder drives are used, it is important that the elec‐trodes are placed perpendicularly and that the electrode holder is as rigid as possible.–During welding of spot seams, the welding sequence must be selected such as to avoid the formation of cavities between the sheets (Figure 14).3.3Figure 14 – Welding sequence to avoid the formation of cavities–The electrode axis must be perpendicular to the sheet surface (90° ± 1°) (Figure 16, Figure 18).Figure 15 – Not per‐missible Figure 16 – Favor‐able Figure 17 – Permissi‐ble Figure 18 – Favor‐able–If asymmetrical electrode tips (Figure 17) are used, special measures are required in series production operation to ensure the proper alignment of the working surfaces (freedom from ro‐tation, orientation during tip change, special electrode tip milling cutters).BasicsDifferent types of loads occur depending on the design of a component (Section 2.4):–shear tension (Figure 19)–cross tension (Figure 20)–peeling tension (Figure 21)–torsion (Figure 22)If possible, spot-welded joints should only be loaded with shear tension since the highest forces per weld spot can be transferred with this type of load. Therefore, pure cross or peeling tensions and/or torsion are to be avoided.Minimum shear force (F S )For a single-shear joint, the shear force F s generates a bending moment M b = F s r s which increases with increasing load and also produces a portion of the cross tension force F K . r sis set as follows:Figure 19 – Shear tensionLegend A Prior to tensile testB After tensile test (exaggerated)C Outer notchF K Portion of the cross tension force of F max F SPortion of the shear force of F maxBecause of the realistic verification of requirements and the low variation of the test results, the cal‐culations of the spot-welded joints are based on the minimum shear force F s min that was determined from the shear test according to PV 6702:4 4.1F s min = F max - 2 s in kNLegend s Standard deviationF maxMean value of the maximum force determined in the shear test ac‐cording to DIN EN ISO 14273(3)Cross-tension force F KFigure 20 – Cross tensionWith this type of stress, the permissible load F K is only 60% of the shear force F min..The following applies according to DVS 2902-3 (to materials according to DIN EN 10130)F K ≤ 0,6 F min(4)Peeling force F peelFigure 21 – Peeling tensionWith this type of stress, the permissible load F peel perm is only 20% of the shear force F min as set forth in Table 2 and DVS 2902-3.F peel perm ≤ 0,2 F min(5)4.24.3TorsionFigure 22 – TorsionA durable joint is achieved with at least two weld spots, since, with twisting around one spot, the transferable torque M t is too low. Designs with only one load-bearing spot are not permissible.Static and dynamic loadsA basic distinction is made between calculations with static or dynamic loads. The formula relationship previously specified is used for calculation of static load.The following information applies to the proof of sufficient strength of dynamically loaded components:–Because of as yet inadequate knowledge about the influence of the design of the joint and the uncertainties in calculation, the load carrying capacity of the joints for vibration loads must always be verified through testing.–With a given material thickness, the service life of a joint depends on the load amplitude, the R value (stress ratio) and the type of load (Figure 23). The type of load may be shear or peeling.Cross tension and torsion usually do not occur. Generally no type of load occurs alone and in pure form.Figure 23 – Load amplitude–The single-row single-shear joint is to be preferred.–Dynamic cross tension, peeling tension and torsion are to be avoided due to the low permissible tension.4.4 4.5。
VW01105-2_EN_2004-03-01
Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.VOLKSWAGEN AGN o r m v o r A n w e n d u n g a u f A k t u a l i t ät p r üf e n / C h e c k s t a n d a r d f o r c u r r e n t i s s u e p r i o r t o u s a g e .T h e E n g l i s h t r a n s l a t i o n i s b e l i e v e d t o b e a c c u r a t e . I n c a s e o f d i s c r e p a n c i e s t h e G e r m a n v e r s i o n s h a l l g o v e r n .Page 2VW 011 05-2: 2004-03Unless otherwise specified in this standard, the following standards apply:DVS 2932-1 Resistance Spot and Roller Seam Welding of Aluminium and Aluminium Alloys from0.35 to 3.5 mm Individual Thickness – Fabrication WeldabilityDVS 2932-3 Resistance Spot and Roller Seam Welding of Aluminium and Aluminium Alloys from0.35 to 3.5 mm Individual Thickness – Fabrication Weldability – Preparation andExecution of the WeldingVW 01105-1 Resistance Spot Welding; Design, Calculation, Process Assurance; Uncoated and Coated Sheet Steelssuitability2 Welding2.1 DefinitionA material possesses welding suitability for resistance spot welding if, in the course of production, the chemical, metallurgical and physical properties and the surface characteristics inherent in the material allow a weld to be made that satisfies the requirements stipulated in the particular case. The less the factors governed by the material have to be taken into account when determining the welding procedure for a given design, the better is the welding suitability of a material within a material group.2.2 MaterialsAluminum and aluminum alloys have distinctly higher electrical and thermal conductivity than steels and therefore require many times higher welding current with shorter weld times. Upon exposure to oxygen, a natural oxide layer is spontaneously formed, which can impair welding to a greater or lesser extent depending on its type and thickness.The electrical conductivity is essentially determined by the chemical composition (see DIN EN 573-3, -4); this conductivity decreases as the alloy component content (e.g., Mg, Mn, Cu, Zn, Sn) increases (see Table 1).Aside from electrical and thermal conductivity, contact resistance is the most important influencing factor in resistance spot welding of aluminum and aluminum alloys.2.3 UnusualaspectsThe risk of hot cracks is less with spot welding than with fusion welding. This is because of the weld nugget (melt) solidifying under the external electrode force.Page 3VW 011 05-2: 2004-03Table 1 – Classification of aluminum materialsElongation at break Averagethermalconductivity Averagespecificelectricalconductivity Meltingtemperature/ solidification rangeTensilestrength R m 0.2% offset proof stress R p0.2 A 5 A 10 Material codeG r o u pW/cm Km/Ωmm 2°C N/mm 2 from/to N/mm 2 from/to % from/to % from/to Al 99.8 2.2 36.0 660 60 – 160≥50 – ≥100 4 – ≥40 3 – ≥35Al 99.5 2.2 34.5 646 – 657 65 – ≥170≥55 – ≥130 3 – ≥40 2 – ≥35Al 99.0 2.2 33.5 644 – 657 75 – ≥180≥60 – ≥140 3 – ≥40 2 – ≥35AlFeSi I2.2 32.5 640 – 655 80 – ≥210 30 – ≥180 3 – ≥35 2 – ≥30AlMn, AlMnCu 1.75 25.0 643 – 654 90 – ≥21035 – ≥170 3 – ≥28 2 – ≥25AlMn 1 Mg 1/Mg 0.5 1.63 34.5 635 – 654 120 – ≥28050 – ≥230 4 – ≥23 1 – ≥17AlMg 0.5 1.95 27.5 635 – 654 90 – ≥19030 – ≥180 3 – ≥26 2 – ≥24AlMg 1 1.85 27.5 630 – 650 105 – ≥21035 – ≥190 3 – ≥24 2 – ≥21AlMg 1.5 – 1.8 1.75 26.0 625 – 650 130 – ≥24045 – ≥200 6 – ≥23 5 – ≥20AlMg 2 Mn 0.3 1.5 24.5 560 – 645 155 – ≥27060 – ≥230 3 – ≥20 2 – ≥17AlMg 2.5 1.5 22.0 607 – 649 170 – ≥29060 – ≥210 3 – ≥20 2 – ≥17AlMg 2 Mn 0.8 1.5 22.0 620 – 650 190 – ≥30580 – ≥250 3 – ≥20 2 – ≥17AlMgSi 0.5 1) 3) 2.0 30.0 585 – 650 130 – ≥24565 – ≥195 10 – ≥198 – ≥16AlMgSi 0.7 1) 3) 1.7 28.0 585 – 650 180 – ≥27090 – ≥2258 – ≥15 6 – ≥12AlMgSi 1 1) 1.85 28.0 585 – 650 205 – ≥315255 8 – ≥188 – ≥15AlMg 0.4 Si 1.2 2) 4) 1.70 27.0 530 – 650 200 – ≥270100 – ≥240 12 – ≥2910 – ≥24AlCuMg 1 2) 1.55 23.5 512 – 650 395110 – ≥265 ≥13≥11AlCuMg 2 2) 1.50 23.0 504 – 640 440130 – ≥290 ≥13≥11AlCuSiMn 1) II1.65 23.5 507 – 638 380 – ≥460200 – ≥400 6 – ≥13 5 – ≥11AlMg 3 6) 1.45 21.0 580 – 650 ≥190 – ≥30580 – ≥250 3 – ≥20 2 – ≥17AlMg 5 5) 6) 1.3 17.0 560 – 630 ≥270 – ≥350≥130 – ≥270 3 – ≥26 2 – ≥22AlMg 2.7 Mn 1.35 20.0 602 – 646 ≥220 – ≥33090 – ≥310 4 – ≥22 3 – ≥22AlMg 4.5 Mn 1.2 17.5 574 – 638 275 – ≥405125 – ≥270 6 – ≥17 5 – ≥15AlZn 4.5 Mg 1 1) 1.3 20.5 600 – 650 310 – ≥350≥200 – ≥290 10 – ≥148 – ≥12AlZnMgCu 0.5 1) 1.35 20.0 485 – 640 310 – ≥450200 – ≥420 7 – ≥14 6 – ≥12AlZnMgCu 1.51)III1.3521.0480 – 640310 – ≥530250 – ≥4607 – ≥146 – ≥121) Values for the normal usage state artificially aged. 2) Values for the normal usage state naturally aged. 3) Available as extruded profiles only. 4) Non-standardized body alloy.5) Values also for non-standardized body panel alloy. 6) Also available as wire material.Page 4VW 011 05-2: 2004-033 Requirements 3.1Standard values for weldingThe electrode force, machine follow-up, welding current, weld time, electrode geometry, material and surface finish of the joining components are decisive for the dimensions and quality of weld spots.A welding range diagram is useful in adapting the setting values (VW 011 05-1). For aluminum and aluminum alloys the nugget diameter is .5t d L ∗= The following designation applies to the spot diameter: L P d d ∗=15.1.The standard values listed in Table 2 refer to an alloy of Group III in Table 1, e.g., AlMg 3. If alloys with a higher electrical conductivity are used, the welding current must be increased. When using pure aluminum, the electrode force must be reduced.Table 2 – Standard values for spot welding with direct currentDimensions in mmWith the standard values given in Table 2, the specific electrical conductivity of the materials to be welded must be taken into account:─ high conductivity – higher welding currents – longer weld times ─lower conductivity– lower welding currents– shorter weld timesPage 5VW 011 05-2: 2004-033.2 Welding equipmentMachines with considerably higher welding current are needed for welding aluminum than for steel of the same thickness.The following equipment is used: welding with alternating currentwelding with an inverter (direct current)Welding can in principle be performed using either alternating or direct current. The range of adjustable welding parameters is narrower when using alternating current. When using direct current, a lower welding current shall generally be used to obtain the same strength.The higher the electrical conductivity of the material of the joining components and the greater the sheet thickness, the greater the difference in the required welding current.It must be taken into account that the positive electrode (anode) is subject to greater thermal load due to the Peltier effect. Furthermore, the weld nugget can shift noticeably in the direction of the anode.3.3 Electrode shapesFor welding according to Table 2, electrode shapes A and B according to Figure 1 with the dimensions listed in the table are recommended .If the main criterion is the durability of the spot weld joints, conical (preferably 130°) electrodes can be used. The crowning radius of the electrodes should then be between 40 and 150 mm (sheet thickness ≤ 1.5 mm). Disadvantages include the increased thermal load on the electrodes, the greater tendency towards electrode pick-up and the deeper electrode indentation in the sheet. If the electrode pick-up tendency is the most important criterion, electrodes with crown radii between 100 and 150 mm should be selected. This also results in shallower electrode indentations. If the depth of the electrode indentation is the main criterion, an electrode with a flat working surface, combined with an electrode with a crowned working surface, is advantageous, Figure 1.Figure 1 – Examples of electrode shapes4 Design See VW 011 05-1.A B C DR 100 t o 150R 40 t o 50R 100 t o 150Page 6VW 011 05-2: 2004-035 TestFor the quality audit of spot weld joints with aluminum materials, the procedures in the Test Specifications PV 6723 and PV 6717 are decisive.entries6 DrawingSee DIN EN 22 553.standards*)7 ReferencedVW 01105-1 Resistance Spot Welding; Design, Calculation, Process Assurance;Uncoated and Coated Sheet SteelsPV 6717 Panels (Deep-Drawn Parts) in Steel Body Construction; Evaluation, Rework, InspectionPV 6723 Spot Weld Joints; Strength Testing; Aluminum MaterialsDIN EN 22553 Welded, Brazed and Soldered Joints – Symbolic Representation on DrawingsDVS 2932-1 Resistance Spot and Roller Seam Welding of Aluminium and Aluminium Alloys from 0.35 to 3.5 mm Individual Thickness – Fabrication Weldability DVS 2932-3 Resistance Spot and Roller Seam Welding of Aluminium and Aluminium Alloys from 0.35 to 3.5 mm Individual Thickness – Fabrication Weldability –Preparation and Execution of the WeldingOther standardsDIN EN 573-3 Aluminium and Aluminium Alloys – Chemical Composition and Form of Wrought Products – Part 3: Chemical CompositionDIN EN 573-4 Aluminium and Aluminium Alloys – Chemical Composition and Form of Wrought Products – Part 4: Forms of ProductsDVS 2936 Resistance Projection Welding of Aluminium Materials from 0.35 to 3.5 mm Individual Thickness*) In this section, terminological inconsistencies may occur as the original titles are used.。
VW011 06-1大众汽车气体保护焊标准 (中文版)
2004年7月气体保护焊钢板焊接结构、规格、质量保证VW011 06-1 标准中心 704 81 7后续2至24页翻译日期校对日期打字日期关键词:焊接,气体保护焊,钢制品,电弧焊接法,磁铁焊接,钨极惰性气体焊,钢板,钢皮焊接,板材目录页1适应范围 (2)2 缩写词和定义 (2)2.1缩写词 (2)2.2 定义 (3)3 汽车保护焊工艺说明 (4)3.1钨-惰性气体焊接(WIG) (4)3.2 金属-气体保护焊(MIG/MAG) (4)4 技术要求概述 (5)4.1材料 (5)4.2 结构设计 (8)4.3 焊缝尺寸 (10)5 焊缝的技术要求和质量保证 (12)5.1焊接质量 (12)5.2 焊接熔深 (12)5.3 焊缝形态 (13)5.4 特殊焊缝形态 (18)5.5 不均匀性的评估 (23)6 图纸数据 (23)7 相关参考文献 (23)更改同VW 011 06-1:2003-05比较,做了如下更改:—参见标准有所更改—标准从编辑角度作了一些修改— 5.1条有所简化— 5.4条特殊焊缝形状(多路顶焊道,焊接角接头)有所扩充— 5.4.1条技术要求有所变动以前版本1997-01;2003-05前言后面将要涉及的基本原理,其基础就是局部或全部机械化设备运用的经验和所完成的一系列试验,以及公认的工艺原则,例如:DIN标准、DVS(德国焊协)-标记卡等提供的工艺原则.第 2 页 VW 011 06-1:2004-07 1适用范围该标准适用于钢板电弧焊的结构设计、规格和质量保证,这种焊接法在大多数情况下都会使焊件动态地产生应变。
按照DIN EN ISO 4063的规定,本标准包括了下面的方法:特征数方法缩写词131金属惰性气体焊MIG135 金属活性气焊MAG141钨惰性气体焊WIG用于:对接焊缝和填充焊缝、搭接焊缝、电铆焊接和特殊焊缝。
焊材:光洁的、无涂[镀]层和有涂[镀]层的钢板,高合金钢、优质钢等;样品见第4.1条;工件厚度为0.5 mm至6 mm。
大众汽车标准_VW 01106-1_EN_2004-07-01
Gas-Shielded Arc WeldingThe English translation is believed to be accurate. In case of discrepancies the German version shall govern.Sheet Steel Joints Design, Type, Quality AssuranceVW 011 06-1Konzernnorm Descriptors: welding, gas-shielded arc welding, steel, MIG welding, MAG welding, TIG welding, sheet steel, sheet steel joint, sheet metal ContentsPage1 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 6 7Scope .................................................................................................................................. 2 Abbreviations and definitions .............................................................................................. 2 Abbreviations ...................................................................................................................... 2 Definitions ........................................................................................................................... 3 Gas-shielded arc welding procedure................................................................................... 4 Tungsten inert-gas welding (TIG)........................................................................................ 4 Gas-shielded metal arc welding (MIG/MAG)....................................................................... 4 General requirements ......................................................................................................... 5 Materials.............................................................................................................................. 5 Design ................................................................................................................................. 8 Weld dimensions............................................................................................................... 10 Requirements for welds and quality assurance of welds .................................................. 12 Weld quality....................................................................................................................... 12 Penetration depths ............................................................................................................ 12 Weld types ........................................................................................................................ 13 Special weld types ............................................................................................................ 18 Evaluation of imperfections ............................................................................................... 23 Drawing entries ................................................................................................................. 23 Referenced standards....................................................................................................... 24Changes The following changes have been made as compared to VW 011 06-1, 2003-05: Referenced standards updated Standard edited Section 5.1 shortened Section 5.4 extended by special weld types (multiple front weld; corner joint) Section 5.4.1: requirements revised Previous issues 1997-01; 2003-05Preface The following basic regulations are based on experience gained with partially and fully mechanized equipment and implemented tests and also on accepted engineering standards such as DIN standards and DVS specifications.Form FE 41 - 01.03Page 1 of 25Fachverantwortung/Responsibility K-QS-32 Herr Dr. Witt Tel.: 7 36 23 Normung/Standards (EZTD, 1733) Fischer Tel.: +49-5361-9-2 79 95 Sobanski© VOLKSWAGEN AGConfidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group. Parties to a contract can only obtain this standard via the responsible procurement department.Check standard for current issue prior to usage.Klass.-Nr./Class. No. 04 81 7July 2004Page 2 VW 011 06-1: 2004-07 1 ScopeThis standard applies to the design, layout and quality assurance of arc-welded sheet steel joints which are predominantly subject to dynamic loads. It comprises the following procedures according to DIN EN ISO 4063: Reference no. 131 135 141 for: of: Method Metal inert-gas welding Metal active-gas welding Tungsten inert-gas welding Code MIG MAG TIGbutt and fillet welds, lap welds, plug welds and special weld types bright uncoated and coated sheet steel as well as of both high-alloyed steels and premium steels; for examples see Section 4.1; Workpiece thickness 0.5 mm to 6 mm test characteristics of quality level B (high requirement) according to DIN EN ISO 5817, see also DVS specification 0705.with:All fusion-welded joints to which this scope is not applicable require the clarification of the responsible engineering departments. Special measures made necessary because of the component, e.g. change to the quality level for specific imperfections, are permissible and shall be entered in the drawing. 2 2.1 a f1,2 fL fSt Fi h l L s s1,2 sN t1 t2 HAZ Σt ∅ Abbreviations and definitions Abbreviations Calculated throat thickness Penetrations on sheets 1 and 2 Penetration length Penetration at the face surface Joining plane Gap size Throat length Length Throat thickness Throat thickness with respect to sheets 1 and 2 smallest common throat thickness Thickness of sheet 1 Thickness of sheet 2 Heat-affected zone Sum total of sheet thicknesses Diameter mm mm mm mm or % (of face surface) mm mm mm mm mm mm mm mm mm mmPage 3 VW 011 06-1: 2004-072.2DefinitionsFüThe following definitions are valid for the application of this standard: 2.2.1 Weld jointJoint created by fusion welding. It comprises the weld, fusion line, heat-affected zone and unaffected base material (Figure 1).1 2Legend: 1 = weld 2 = heat-affected zone 3 = fusion line, fusion zone344 = unaffected base material Figure 1 – Fusion weld jointNOTE Weld and fusion line may be identical. 2.2.1.1 Weld The area where the workpiece(s) is/are joined at the weld joint. The weld comprises the base material and/or the filler metal. 2.2.1.2 Fusion line Borderline between the base metal and/or filler material melted during welding and the metal that remains solid. 2.2.1.3 Weld metal Material that solidified after welding, comprising either the base material or filler metal and base material. Some elements in the weld metal can come from casings and/or accessory materials (DIN ISO 857-1). 2.2.1.4 Heat-affected zone HAZ Area of the base material that remained solid, but, due to the energy applied during welding, experienced microstructural changes related to temperature.Page 4 VW 011 06-1: 2004-072.2.1.5 Unaffected base material Area of the base material that experienced no evident microstructural changes as a result of the energy applied during welding. 2.2.2 Same types of materialMaterials which do not differ significantly in terms of their chemical composition and their suitability for welding (DIN 8528-1). 2.2.3 Different types of materialMaterials which differ significantly in terms of their chemical composition and their suitability for welding. 3 Gas-shielded arc welding procedureGas-shielded arc welding is a form of fusion welding. An electrical arc is used as the heat source. It burns between the electrode and the workpiece. In this process, the arc and the weld pool are protected from the atmosphere by a shield of protective gas. The classification into the following procedures depends on the electrode type: 3.1 Tungsten inert-gas welding (TIG)In this procedure, an arc is ignited between a non-consumable tungsten electrode and the workpiece. Argon, helium, mixtures of both and sometimes added active gases, are used to form the protective atmosphere. The filler metal is (as in the case of gas welding) fed from the side. 3.2 Gas-shielded metal arc welding (MIG/MAG)In this procedure, an arc is ignited between the melting end of the wire electrode (filler metal) and the workpiece. The welding current flows via sliding contacts in the electric current guide of the gun to the wire electrode. When inert gases (low-activity gases, e.g. noble gases such as argon, helium or mixtures of both) are used as protective atmosphere, this is called metal inert-gas welding (MIG). When active gases are used (e.g. CO2, or mixtures containing CO2, or, in some cases, mixtures of CO2 and oxygen), this is called metal active-gas welding (MAG). This procedure is used to weld unalloyed and low-alloy steels.Page 5 VW 011 06-1: 2004-074General requirementsWelds that are subject to mandatory documentation shall be evaluated according to the relevant type-specific and/or component-specific test specifications (PV). Deviations with respect to the specified weld geometries and weld layouts shall be detailed in the drawing and verified by testing. They shall be described in test specifications (PV). Further requirements with respect to gas-shielded arc welding are contained in the following documents: VW 011 06-2 VW 011 06-3 VW 011 42 Shielded Arc Welding - Rework on Sheet Metal Connections Gas-Shielded Arc Welding – Part 3: Al Welded Joints Welded Seam Repairs on Aluminum Structures – Product Evaluation and Notes on ProcedureWhen creating arc-welded sheet steel joints, the greatest possible design strength in accordance with the design goal must be realized while also ensuring sufficient reliability and a favorable cost/quality ratio. For this purpose, every weld joint must be suitable for welding, i.e. the dimensions of the welding equipment and the accessibility of the weld according to DVS 0929 must be taken into consideration for design. Weldability for service of a sheet steel joint is given if the component, on the basis of its design (Section 4.2) and with the material used (Section 4.1), remains functional (Section 4.3) under the intended operating stresses (Figure 2).Material Welding suitabilityWeldability of the partWelding capability ManufacturingWeldability for service DesignFigure 2 – Representation of weldability according to DIN 8528-1 4.1 MaterialsThe following list is not complete. The following products and materials have good welding properties: a) Cold-rolled flat products made from soft steels for cold forming: DIN 1623-1 (02.83)1) DIN EN 10130 Material no. St 12 DC01 1.0330 St 13 DC03 1.0347 St 14 DC04 1.0338 1) DIN 1623-1 was replaced in October 1991 by DIN EN 10130.Page 6 VW 011 06-1: 2004-07b) c) d)Cold-rolled strips DC01 to DC04 with the surface finishes BK, RP, RPG according to DIN EN 10139. Hot-rolled strips with ≤ 0.20% C content, e.g. according to TL 1111. Hot-rolled products of structural carbon steels DIN 17100 (01.80)2) DIN EN 10025 Material no. St 37-2 -1.0037 St 37-2 R St37-2 S 235 JR 1.0114 St 37-3 S 235 JO 1.0116 St 52-3 S 355 J2G3 1.0570 Conditionally weldable: St 50-2 E295 1.0050 2) DIN 17100 was replaced in March 1994 by DIN EN 10025.The following products and materials are also weldable:e) f)g)Cold-rolled strip and sheet with higher yield point for cold working made from micro-alloyed steels (SEW 093 of March 1987) Isotropic micro-alloyed cold-rolled strip (according to VW 500 17) is a further development of the traditional micro-alloyed cold-rolled strip ZStE260 to ZStE420 (formerly SEW 093). NOTE VW 500 17 defines the material requirements of isotropic micro-alloyed steels, placing particular emphasis on the mechanical properties. Cold-rolled flat products with high yield point for cold working made from micro-alloyed steels: DIN EN 10268 Material no. H240LA 1.0480 H280LA 1.0489 H320LA 1.0548 H360LA 1.0550 H400LA 1.0556 DIN EN 10292 Material No. H260LAD+Z, +ZF 1.0929 H300LAD+Z, +ZF 1.0932 H340LAD+Z, +ZF 1.0933 H380LAD+Z, +ZF 1.0934 H420LAD+Z, +ZF 1.0935 Hot-rolled flat products made from steels with a high yield point for cold working: DIN EN 10149-2 Material no. S315MC 1.0972 S355MC 1.0976 S420MC 1.0980 S460MC 1.0982 S500MC 1.0984 S550MC 1.0986 S600MC 1.8969 S650MC 1.8976 S700MC 1.8974h)Page 7 VW 011 06-1: 2004-07i)Cold-rolled strip and sheet with higher yield point for cold working made from phosphorus-alloy steels SEW 094 Material no. ZStE220P 1.0397 ZStE260P 1.0417 ZStE300P 1.0448 DIN EN 10 292 Material no. H220PD+Z, +ZF 1.0358 H260PD+Z, +ZF 1.0431 H300PD+Z, +ZF 1.0443 Strip and sheet from stainless steels (DIN EN 10088-2): e.g. austenitic steels X5CrNi18-10 1.4301 or ferritic steels X2CrTi12 1.4512j)Page 8 VW 011 06-1: 2004-074.2DesignFüThe following specifications and the notes on design from the DVS 0929 Specification are used as the basis for the production-friendly design of arc-welded sheet-steel joints. 4.2.1 Joint typesThe weld joint is the area in which the parts are joined by welding. The respective type of joint is determined by the arrangement of the parts with respect to each other (extension, reinforcement, branching), see Table 1. Table 1 – Joint types (DIN EN 12345) Position of parts Description The parts lie in the same plane and touch against each other end to end The parts lie on top of one another in parallel, e.g. in explosive cladding The parts lie in parallel on top of one another and overlap. The parts meet at right angles (Tshaped) and lie on top of one another Two parts lying in the same plane meet on a third part that lies between them at right angles (forming a double T shape) One part meets the other at an angle. The edges of two parts meet at an angle of more than 30° (corner)No. 1 2 3Type of joint Butt joint Edge joint Lap joint4T-joint5Double T-joint6Bevel joint7Corner joint8Front jointThe edges of two parts meet at an angle of 0° to 30°9Multiple jointThree or more parts meet at any angle Two parts, e.g. wires, lie on top of one another in a cross shape10Cross jointPage 9 VW 011 06-1: 2004-074.2.2Weld typesThe weld type is determined by the following: Type of weld joint Type and scope of preparation, e.g. gap optimization (see DIN EN ISO 5817 and DIN EN ISO 9692-1) Material Welding method. 4.2.2.1 Fillet weld The parts lie in two planes with respect to one another, form a fillet joint and are joined by welding. It is possible to differentiate between a fillet weld (Figures 3 and 5) and a double fillet weld (Figure 4) with and without edge preparationFigure 3 - Fillet weld on T-jointFigure 4 – Double fillet weld on T-jointFigure 5 - Fillet weld on bevel joint without edge preparation4.2.2.2 Square butt weld on butt joint, flanged weld The parts lie in one plane, form a gap and are joined by welding, see Figures 6 and 7.Figure 6 - Square butt weld 4.2.2.3 Lap weldFigure 7 – Flanged weldThe parts lie in parallel on top of one another. The face surface of the top sheet and the bottom sheet form a fillet. Both parts are joined by welding. This is termed lap weld (see Figure 8). Variant 1 Variant 2Figure 8 – Lap weldPage 10 VW 011 06-1: 2004-074.2.2.4 Front weld See Figure 9.Figure 9 – Front weld 4.2.2.5 Plug weld See Figure 10.Figure 10 – Plug weld 4.3 4.3.1 Weld dimensions Throat thicknessThe calculated throat thickness a is required for the calculation of the forces acting on a weld joint. For example, the following applies to the design of a fillet weld: a ≤ 0.7 tmin. In production, the actually measured throat thickness s must always be greater than or the same as the calculated throat thickness a. If the throat thickness s (Figure 11) cannot be determined directly, the smallest common throat thickness sN (Figure 12) can be used for an alternative criterion. The smallest common throat thickness sN is the shortest distance between the contact surfaces of component edge and weld metal and the surface of the weld (see also Figures 13 and 14).sN saaFigure 11 - Fillet weldFigure 12 - Fillet weld with deep penetrationPage 11 VW 011 06-1: 2004-07sNsNFigure 13 – Concave weldFigure 14 – Convex weldThe shortest (common) distance between both components of the weld joint shall be measured in order to determine the shortest common throat thickness sN. Excess weld metal must not be considered for convex welds (see Figure 14). 4.3.2 Weld lengthThe calculated weld length l is the weld length defined for the specific design by the designer. Both the starting and end areas (end crater) are used to determine the weld length. In order to improve the dynamic load capacity, the weld length can exceed the component length (Figure 15).l1 = Calculated weld length e.g. component length l2 = Weld seam length Figure 15 – Magnified weld length Proof of sufficient strength is provided by the component-specific strength tests.Page 12 VW 011 06-1: 2004-075Requirements for welds and quality assurance of weldsIn general, the welding quality requirements according to DIN EN 729-1 shall be taken into consideration together with the comprehensive quality requirements set out in DIN EN 729-2. The design of a weld shall be described clearly by indicating the weld’s length, thickness and quality. These requirements are part of the drawing specifications (also see Section 6). Unless other specifications are noted in the drawing, the requirements of Sections 5.1 to 5.5 shall apply. 5.1 Weld qualityIf there is no component-specific test specification, quality level B, high, specified in DIN EN ISO 5817, shall apply. The imperfections specified there are represented for square butt welds and fillet welds on a T-joint. The limit values for imperfections apply to other weld types, too (e.g., flanged weld, fillet weld on lap joint). Unequal weld leg lengths as an imperfection according to DIN EN ISO 5817 must not be evaluated for the fillet weld in joints of sheet metal in the body-in-white and in exhaust systems. 5.2 Penetration depthsThe weld joint is sufficient once a continuous crystalline joint with a measurable penetration depth of f ≥ 0.2 mm is created between the sheets involved. For certain weld types – e.g. fillet weld on lap joint or flanged weld – the penetrations f cannot always be determined if 100% of the face surfaces is included in the weld. Permissible penetration depths f < 0.2 mm shall be indicated in the drawing or specified in a component-specific test specification. The weld quality and/or strength must be verified by means of a dynamic strength test and a microscopic examination. NOTE: Due to the smaller “welding window” the test intervals for f < 0.2 mm (e.g. using microsections) shall be conducted at shorter time intervals or on smaller batch sizes. The processes shall be coordinated with all the departments involved (Design, Quality Assurance, Production).Page 13 VW 011 06-1: 2004-075.3 5.3.1Weld types Square butt weld on butt jointt1sFigure 16 - Square butt weld on butt joint s = throat thickness fSt = penetration The face surfaces (fSt ) shall be 100% melted. Design as flanged weld: s ≥ tmin. (see Figure 16) fSt ≥ 100 %SNt1Figure 17 – Flanged weld sN = smallest common throat thickness The face surfaces (fSt ) shall be 100% melted. sN ≥ tmin. (see Figure 17)t2t2Page 14 VW 011 06-1: 2004-075.3.2Front weldSNf1 SN fL2sNf2t1t2 t1a) b) Figure 18 – Front weld sN fL2. f1,2 tmin. t1 0.2 mmt2t1c)t2sN = smallest common throat thickness fL2 = penetration length f1,2 = penetration 5.3.3 Fillet weld on lap joints1 sN N af2t1hs2Figure 19 - Lap weld s1,2 sN a f2 h = throat thickness = smallest common throat thickness = calculated throat thickness = side wall penetration on the component t2: = gap size s1,2 0.7 tmin. sN f2 s1,2 and sN 0.7 tmin. a ≤ 0.7 tmin. (design recommendation) 0.2mm (see Figure 19)NOTE: If the throat thicknesses s1,2 cannot be determined directly, the smallest common throat thickness sN may be chosen as an alternative criterion.t2Page 15 VW 011 06-1: 2004-075.3.4Fillet weld with deep penetrationt1 f1 s1 sNt2aTheoretical root pointFigure 20 - Fillet weld with deep penetration s1,2 sN a f1,2 = throat thickness (with deep penetration) = smallest common throat thickness = calculated throat thickness = side wall penetration on component t1,2 s1,2 0.7 tmin. sN s1,2 and sN 0,7 tmin. a ≤ 0.7 tmin. f1,2 0.2 mm (see Figure 20)NOTE: If the throat thicknesses s1,2 cannot be determined on the microsection directly, the smallest common throat thickness sN may be chosen as an alternative criterion. 5.3.5 Fillet weld on bevel jointt1sN≤ 30°Figure 21 - Fillet weld on bevel joint sN = throat thickness f2 = penetration sN f2 tmin. 0.2 mm (see Figure 21)The face surface of the upper sheet must be 100 % melted.f2t2f2 s2Page 16 VW 011 06-1: 2004-075.3.6Multiple jointf1f2lt1t3Figure 22 – Three-sheet-T-joint f1,2,3 = penetration fSt1,2 = face surface penetration of t1,2 fSt3 = face surface penetration of t3 5.3.7 Corner joint f1,2,3 > 0.2 mm fSt1,2 ≥ insertion depth l fSt3 = 100% meltedsNt1t2Figure 23 – Corner joint The face surfaces of both sheets must be 100 % melted. Smallest common throat thickness sN ≥ tmin.t2Page 17 VW 011 06-1: 2004-075.3.8Plug weldFor plug weld see Figure 24. The values in Table 2 serve as reference values for the ratio of the sheet thickness to the hole diameter. Table 2 – Hole diameter and sheet thickness Sheet thickness used t (mm) up to 1.0 > 1.00 to 1.25 > 1.25 to 1.50 > 1.50 to 2.00 > 2.0 to 3.00 > 3.00 to 3.50 Hole diameter ∅ or L (mm) ≥6 ≥7 ≥8 ≥9 ≥ 10 ≥ 14 Optionally, long holes for narrow flanges W x L (mm) 6 x 10 6 x 12 8 x 12 -When there are gaps between the sheets, the length of the penetration fL must be equivalent to the length L or to the diameter of the hole, or exceed it. ∅ or L x Bt1 t2 fLf2fSt1,2 = face surface penetration of t1,2 fL = penetration length, width and/or diameter f2 = penetration depthfSt1,2 = 100 % melted fL ≥ ∅ or L or W f2 ≥ 0.2 mm Figure 24 – Plug weldThe face surfaces of the hole must be 100 % melted.Page 18 VW 011 06-1: 2004-075.4Special weld typesAdequate evaluation criteria shall be used to evaluate any special weld types that are not listed here. 5.4.1 Fillet weld on multiple lap jointS1t1 t2 t3 f3S2Figure 25 - Three-sheet lap weld The cross-sections of the upper sheets t1 and t2 must be 100 % melted and the throat thickness a of t1 and t2 must be met. If no specifications are made in the drawing, the following applies as reference value: a = 0.7 tmin2,3 The penetration depth f3 in sheet t3 shall be minimum 0.2 mm.Page 19 VW 011 06-1: 2004-075.4.2Multiple front weld sN2 sN1 sN3 F1 F2 Fi = joining plane i F3 *1) If it is clear that one sheet arrangement in a multiple-sheet arrangement is to be considered as a single sheet, then this sheet shall not be included in the overall evaluation when determining the throat thickness sN. t1 t2 t3 t4*1)Figure 26 – Four-sheet front weld In the case of multiple-sheet joints, the smallest common throat thickness sN of the relevant joining planes is used to determine the throat thickness s, as is the case for a multiple lap joint. Here the following applies: In the relevant joining plane (in Figure 26 - four-fold front weld with the joining planes F1, F2 and F3) the throat thickness sN must be ≥ Σ of the sheet thicknesses on the right and = Σ of the sheet thicknesses on the left of the joining plane. The following applies to Figure 26 as an example: sN1 ≥ t 1 sN2 ≥ ? t(3+4) sN3 ≥ ? t4 fSt = face surfaces t1 t4 < (t2 + t3 + t4 ) < (t1 + t2 + t3 ) t3 + t4 < (t1 + t2 ) fSt 1,2,3,4 = 100% meltedPage 20 VW 011 06-1: 2004-07sN4sN3sN 2 s N1t1 t t34t2Figure 27 – Multiple front weld For multiple front welds in exhaust systems (e.g., sheet layers on the exhaust pipe, Figure 27) the factor 0.7 applies in the determination of the smallest common throat thickness sN: sN1 ≥ 0.7 t1 sN2 ≥ 0.7 (t1 + t2) sN3 ≥ 0.7 (t1 + t2 + t3) sN4 ≥ 0.7 tpipe or or sN2 ≥ 0.7 (t3 + t4) sN3 ≥ 0.7 t4Page 21 VW 011 06-1: 2004-075.4.3Fillet welds on components with round cross sectionsf1 sNtaFigure 28 - Fillet weldt f1 = = t2 f2Figure 29 - Fillet weld with deep penetrationsFigure 30 – Concave fillet weld For Figures 28 and 30 determine the throat thickness s approximately: On workpieces with different geometrical shapes, the shortest distance of the median line between the two workpieces shall be selected as the dimension s. s = throat thickness s ≥ 0.7 tminFor fillet welds on components with a round cross section it is recommended to determine the smallest common throat thickness sN as shown in Figure 29. sN = smallest common throat thickness sN ≥ a. NOTE: In the event of imperfections, e.g. undercuts, DIN EN ISO 5817 shall apply.f2Page 22 VW 011 06-1: 2004-075.4.4Square butt weld on flanged jointf1 f2 t1 sN t2Figure 31 - Fillet weld on specially shaped workpieces sN = smallest common throat thickness f1,2 = penetration depth sN ≥ tmin. (see Figure 31) f1,2 ≥ 0.2 mmPage 23 VW 011 06-1: 2004-075.5 5.5.1Evaluation of imperfections Weld spatterWeld spatter must be avoided as far as possible. Any globules or welding residues that remain stuck to the parts and which could lead to an impairment of function are not permitted. Spatter-free areas shall be defined in the drawing or in a test specification. 5.5.2 General imperfectionsImperfections such as cracks, pores, lack of fusion, gap sizes shall be evaluated, unless otherwise indicated in the drawing, according to DIN EN ISO 5817, quality level B “high”. Unequal weld leg lengths shall not be evaluated for fillet welds on lap joint. For exhaust systems the gap size must not exceed 1.0 mm. 6 Drawing entriesThe graphical representation (for example see Figure 32), dimensioning and symbols for the welding procedures named in Section 1 shall be carried out according to DIN EN 22553.s8a6n x l (e)131/ VW01106-1/h Legend: s8 = actual throat penetration) 8 mm thickness (with deepva6 = design throat thickness (without deep penetration) 6 mm n = number of welds l = minimum weld length; tolerance +5 mm, unless otherwise indicated e = distance between the welds v = initial dimensionExplanation: Weld produced by means of metal inert-gas welding (code number 131 according to DIN EN ISO 4063); evaluation according to VW 011 06-1; horizontal position h according to DIN EN ISO 6947. Figure 32 - Example of application for interrupted fillet weld with initial dimension; symbolic representationPage 24 VW 011 06-1: 2004-077Referenced standards1 Steel Flat Products; Cold Rolled Sheet and Strip; Technical Delivery Conditions; Mild Unalloyed Steels for Cold Forming Weldability; Metallic Materials, Definitions Steels for General Structural Purposes; Quality Standard Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 1: Guidelines for Selection and Use Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 2: Comprehensive Quality Requirements Hot Rolled Products of Non-Alloy Structural Steels; Technical Delivery Conditions Stainless Steels - Part 2: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion-Resisting Steels for General and Construction Purposes Cold Rolled Low Carbon Steel Flat Products for Cold Forming – Technical Delivery Conditions Cold Rolled Uncoated Mild Steel Narrow Steel Strip for Cold Forming Technical Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 1: General Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 2: Delivery Conditions for Thermomechanically Rolled Steels Cold-Rolled Flat Products Made of High Yield Strength Micro-Alloyed Steels for Cold Forming - General Delivery Conditions Continuously Hot-Dip Coated Strip and Sheet of Steels with Higher Yield Strength for Cold Forming – Technical Delivery Conditions Welding - Multilingual Terms for Welded Joints with Illustrations Welded, Brazed and Soldered Joints - Symbolic Representation on Drawings Welding – Fusion-Welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded) – Quality Levels for Imperfections Welding and Allied Processes - Nomenclature of Processes and Reference Numbers Welds - Working Positions - Definitions of Angles of Slope and Rotation Welding and Allied Processes – Recommendations for Joint Preparation Part 1: Manual Metal-Arc Welding, Gas-shielded Metal-Arc Welding, Gas Welding, TIG Welding and Beam Welding of Steels Welding and Allied Processes – Vocabulary - Part 1: Metal Welding Processes Recommendations for Selection of Acceptance Levels according to DIN EN 25 817; Butt Welds and Fillet Welds on Steel Notes on Design for MIG/MAG Welding using Industrial Robots Cold-Rolled Strip and Sheet of Micro-Alloyed Steels with Higher Yield Point for Cold Forming – Technical Supply SpecificationsThe last publication date of withdrawn standards is provided in parentheses. DIN 1623-1 (02.83) DIN 8528-1 DIN 17100 (01.80) DIN EN 729-1 DIN EN 729-2 DIN EN 10025 DIN EN 10088-2 DIN EN 10130 DIN EN 10139 DIN EN 10149-1 DIN EN 10149-2 DIN EN 10268 DIN EN 10292 DIN EN 12345 DIN EN 22553 DIN EN ISO 5817 DIN EN ISO 4063 DIN EN ISO 6947 DIN EN ISO 9692-1 DIN ISO 857-1 DVS 0705 DVS 0929 SEW 093 (03.87)1In this section terminological inconsistencies may occur as the original titles are used.。
大众汽车标准_VW_01105-1_电阻点焊
共36页第 1 页关键词:焊接,点焊,电阻点焊,焊接点,板材,钢,钢板前言本标准中概述包括术进步的过程中,将在相应章节中专门说明。
计算例证在本标准的副篇各种不同的简要说明适用12变更 相对于VW 011 05-1:2003-05有如下更改处:-第4.3.1节公差一章增加较小的点焊直径和松动的焊接点内容。
先前版本 1977-05;1993-12;2003-051应用范围 下列基本原则是以少批量到大批量机械化点焊程度和研究结果的经验为基础,以及公开发表的标准和技术规则,例如DVS-规则2902-1,-2,-3。
本标准适用有关静态和动态要求的电阻点焊的钢板结构的形状、计算和实施,在其他的文件中称之为“点焊连接”。
本标准应用范围包括接口点焊连接上的(电阻)点焊(特性因数21按照DIN EN ISO 4063),其在无涂层的板材上的板材厚度比例,板材厚度从0.5~4 mm,以及有关单点和多点焊接的过程保证的质量特征。
在特殊情况下,遇到较大的板材厚度和比例情况请与专业部门进行协调。
按照DIN EN 10 139使用的板材其厚度最多只能够是3.0 mm 。
引进镀锌板材,例如按照DIN EN 10 142或DIN EN 10 292, 和高和高硬度钢的部件要求具备直径较大的电极罩和电极套筒(16 mm 及 20 mm)。
该电极的部件上,当点焊法兰盘发生弯曲时焊核脱离连接片部位。
随着焊核与连接片之间出现的增大的距离现象构件的坚固性和构件强度随之降低。
另外有关(电阻)点焊连接的要求包括:VW 011 05-2(铝材料)VW 011 05-4(多板材连接;两层和多层接口的点焊连接)有关点焊连接的质量评审是检验标准PV 6702和PV 6717中给出的方法。
2 定义 2.1点焊 进行(电阻)点焊连接时,在所连接部分之间的焊接区域,通过电阻加热的方法借助于同时作用的焊条对零件的压力,加热直至其熔化。
尺寸、形状和被熔化的基材的位置取决于在焊接区域和环境中所产生的时间和空间的相互作用和散发的热量。
大众汽车标准_VW 01155 汽车外购件概述 首批供货和更改的批准
供货厂要对其产品的回收方案(材料循环利用的条约)及回收途径作出说明。
对于有结构种类认可义务的供货产品:零件生产许可证应同时提交型式试验鉴 定书。 为了认可提供的产品,在批量供货前可以要求其它试验,如功能试验和/或道 路试验。 提供产品诸如设计结构,材料及其化学成分,加工方法,预选厂家和/或制造 地方面的更改必须事先得到用户的书面批准,此外还应提供所有规定的证明。
汽车外购件概述 首批供货和更改的批准 标准中心 关键词: 汽车零件,外购件,首批供货
2000 年 12 月 VW 011 55 01 19 0 共 2 页 第 1 页
更改 相对于1999年10月版作了如下更改: 年 月版作了如下更改: 相对于 —第2条:修改了第 段,添加了第 —第 条:修改了第4段,添加了第 段。 条:修改了第 段,添加了第5段。 —修改了第3条 —修改了第 条 以前版本 首次出版:88年 月 首次出版: 年1月 上一次更改:99年 月 上一次更改: 年12月
在用户采购时,应对关于这样的更改批准的申请以书面的形式根据图纸参数/ 零件号提出。 在事先没有得到用户批准的情况下,供货厂对其供货产品进行更改从而给用户 造成的直接或间接的损失由供货厂负责。
大众点焊标准
分类号:04815 2004年12月德国大众汽车公司镀层/无镀层板件电阻点焊之设计、计算与工艺质量保证VW011 05-1 Konzern标准关键词焊接、点焊、电阻点焊、焊点、板件、钢板、薄钢板本标准英文版翻译准确,如果出现前后不一致,则以德文版为准。
使用前请检查本标准的最新版本。
机密文件,注意保密。
版权所有;未事先得到德国大众集团标准部的书面同意,不得传输或复制本文件中的任何部分。
签约方只能够从主管部门获取本标准。
目次1.范围…………………………………………………………………………2.定义………………………………………………………………………….2.1.点焊………………………………………………………………………… 2.2.热影响区…………………………………………………………………… 2.3.未受影响的母材……………………………………………………………2.4.焊接设计……………………………………………………………………3. 焊接要求…………………………………………………………………… 3.1. 母材(可焊性)……………………………………………………………… 3.2. 焊接设计(焊接性)…………………………………………………………3.3. 生产(焊接能力)……………………………………………………………4. 点焊基础…………………………………………………………………… 4.1最小剪切力F min…………………………………………………………… 4.2. 横向拉力F K…………………………………………………………………4.3. 剥离力F Schäl…………………………………………………………………4.4. 扭力M t………………………………………………………………………4.5. 静态和动态应力负载…………………………………………………………4.6. 工艺质量保证…………………………………………………………………5. 图纸……………………………………………………………………………..6. 引用标准………………………………………………………………………如需计算例证,请参阅本标准附件1。
大众标准目录-2013
normnr klass VW 010******* VW 010******* VW 010******* VW 010******* VW 010******* VW 010******* VW 010******* VW 010******* VW 01059-102211 VW 01059-202211 VW 01059-322632 VW 01059-622632 VW 010******* VW 010******* VW 010******* VW 01087-204533 VW 010******* VW 010******* VW 010******* VW 0110304815 VW 01105-104815 VW 01106-104817 VW 01106-204817 VW 0110704818 VW 01110-1VW 01110-2VW 01126-101666 VW 01126-201666 VW 0112701667 VW 0112801712 VW 0112901712 VW 0113101712 VW 0113302623 VW 01141-104825 VW 0114204846 VW 01150-104041 VW 01150-1004041 VW 01150-1204041 VW 01150-1304041 VW 01150-1404041 VW 01150-1504041 VW 01150-1604041 VW 01150-204041 VW 01150-304041 VW 01150-404041 VW 01150-504041 VW 01150-604041 VW 01150-704041 VW 01150-804041 VW 01150-904041 VW 0115104041 VW 0115401190 VW 0115501190 VW 0117801819VW 1002013731 VW 1002113731 VW 1002713214 VW 1050001150 VW 10510VW 1051301151 VW 1051401151 VW 10540-101155 VW 10540-301155 VW 10540-6VW 10540-701155 VW 1055001154 VW 1056001152 VW 1151601833 VW 1161101813 VW 1162401813 VW 1162501815 VW 1163501884 VW 1370502624 VW 1375002642 VW 18015VW 2.8.155152 VW 2201551532 VW 3001334316 VW 4404555111 VW 5001851112 VW 5001950337 VW 50094A6102 VW 50096A6102 VW 50097VW 5009951602 VW 5010157221 VW 5010555536 VW 50120A6450 VW 5012355154 VW 5012555112 VW 5012755112 VW 5013155312 VW 5014055326 VW 515572VW 5018055104 VW 5018550321 VW 5019050202 VW 5020057221 VW 5030157221 VW 5040057221 VW 5050157221 VW 5060057221 VW 5060157221 VW 5070057221 VW 6000467625 VW 6001161187 VW 6012261263 VW 6018467558VW 6021261131 VW 60219VW 60249VW 6025061100 VW 6028267571 VW 6030769302 VW 6033069606 VW 60360VW 6036161000 VW 6036261179 VW 6043261253 VW 6043561277 VW 6044061256 VW 6044261253 VW 6044961253 VW 6055961105 VW 6056061104 VW 6056461104 VW 6064366236 VW 7402066732 VW 7507369110 VW 75113-269203 VW 75173-169606 VW 75173-269606 VW 7801067611 VW 7801167612 VW 801018MA00 VW 801028MC10 VW 801068ME20 VW 806228BC60 VW 806608CD20 VW 809728FL40 VW 80972-18FL40 VW 9110097000 VW 9110197210 VW 91102VW 91101 BEIBLATT 197410 VW 91103benn_c1螺纹说明一览表用于自攻螺钉的螺纹拉削内密齿廓螺纹工件的传动形式带螺纹的翻边孔板金螺钉用的戳穿孔眼内六角倒圆轮廓螺纹类零件的驱动方式机械制图基准点系统-RPS-图示法CAD/CAM数据要求专业技术描述对CAD/CAM数据的要求数据特征CAD/CAM系统要求汽车零件的原则CAD/CAM数据要求 CAD系统CATIA V5汽车零件上的条码非切削成形金属件工艺偏差凹槽加工方法冲压TOX连接(压嵌铆接) 钢材料零件边角概念图中标注说明零件编号系统工厂合营公司和企业的代号工作方法焊接焊接凸点接触点焊连接未涂覆薄板的结构和工艺保证气体保护焊接钢板连接设计制造质量保证气体保护焊钢板连接返工销钉焊接连接要求和检验螺栓连接设计和装配预给参数螺栓连接装配和作业安全连接技术螺栓连接的拧紧扭矩连接技术螺栓装配超弹性拧紧方法连接自攻螺钉应用、底孔直径的标准值、拧紧力矩的固定塑料用连接螺钉设计注意事项摩擦系数极限值米制ISO螺纹的机械连接元件摩擦系数的测定实际定向试验金属表面无缺陷钢板激光束焊接第1部分结构规格质量保证铝焊缝的维修汽车用油封概念极限偏差图纸说明汽车用径向轴密封环功能试验试验台和试验条件汽车用径向轴密封环显微硬度检验弹性体(IRHD)布氏硬度的确定汽车用径向轴密封环弹性体硫化状态的检验汽车用径向轴密封环弹性体红外线光谱分析汽车用径向轴密封环差热分析弹性体冷特性的确定汽车用径向轴密封环应用说明汽车用径向轴密封环材料要求和试验汽车用径向轴密封环明显的不均匀性汽车用径向轴密封环试验测量条件和测量工具汽车用径向轴密封环试验外径测量仪汽车用径向轴密封环试验锥形测量芯棒汽车用径向轴密封环试验轴线剖面的结构汽车用径向轴密封环试验径向力-数字测量仪径向测量仪活塞密封杆研究开发条件一般技术要求汽车零部件首次供货及更改的认可米制ISO-螺纹模制螺纹的极限尺寸圆筒件米制内螺纹极限塞规特殊螺纹按VW01044标准公制圆柱内螺纹界限螺纹塞规特种螺纹公制圆柱形内螺纹止端螺纹塞规公制ISO螺纹螺纹工艺型圆柱形量规用于塑料公司标志, 零件标记使用规程奥迪商标用于汽车零件商标汽车零部件的标记制造厂代码用于汽车零件汽车零件制造厂代码用于国外厂及其承制厂气门弹簧的标记制造国标记法汽车零件日期标记法汽车零件过渡啮合的紧配合外螺纹和内螺纹关于VW紧配合的极限尺寸公制 ISO 螺纹包括防护层在内的极限尺寸用于一般公差米制ISO螺纹公差带6G/6f的极限尺寸 6f 螺母 6米制ISO螺纹;公差带7G/8F的极限尺寸制作螺丝用的型芯孔穿孔钻头公差范围H的钻头和极限尺寸表面粗糙度金属表面防护防护方式缩写符号橡胶性能成品件的试验和要求精密钢管测量供货技术条件米制圆筒内螺纹丝锥用于特种螺纹的丝锥按VW010 44聚丙烯(PP)成品部件材料技术要求轴向弹簧质量规范表面淬火的变速箱零件材料和零件性能的图纸注释缸盖罩盖-EA111 4V 验收条件验收条件缸盖铸造质量一般要求金属铸件多孔性技术要求铸造和铸造技术术语保养用汽油发动机油要求实验软垫面料要求、质量特征检验铝锻件表面特性热塑性弹性体质量技术要求尼龙6,汽车内饰成品件材料要求尼龙66,汽车内饰成品件材料要求自粘附消音材料吸附性能纤维素纤维密封制品, 一般要求和检验汽车内部空间的结构件辐射性状汽车零件耐暴晒性汽车内饰件色度测量评价保养用汽油发动机油要求,实验节省燃油型长寿命保养用增压汽油发动机油适用于所有汽油发动机的保养用低灰分长寿命发动机油SAE 5W-30-要保养用柴油发动机油要求,实验节省燃油型长寿命保养用柴油发动机油要求实验节省燃油型长寿命保养用柴油发动机油要求实验适用于所有柴油发动机包括装有微粒捕集器的柴油发动机的低灰分长燃料化合物三层式软管由带有强力支撑层的弹性体构成焊接螺栓全金属六角法兰面锁紧螺母软管夹子弹簧夹子六角头螺栓带大法兰面和便于自动进给的导向锥端内六圆边形埋头螺栓冲压螺栓不漏气且防水的弹簧螺母用于米制螺纹、卡嵌式、孔洞安全性高强度螺钉及类似螺纹件供货技术条件软管和万向节轴固定有耳软管夹头无机变速规格电线超声波焊接无焊接的电气连接卷曲连接机械连接元件零件压缩品种一般原则旋入热塑性塑料的螺纹和螺纹末端方头焊接螺母低规格冲压螺母薄板螺母方头焊接螺母高规格四角形焊接螺母高规格螺丝用的Powerlok螺纹焊接螺母/螺栓的焊接接合强度检验凸焊盲铆螺杆、压入螺杆和压入螺帽以及冲压螺杆,冲压螺帽和冲压螺栓用于自攻螺钉的板簧螺母堵塞起动型蓄电池用于起动照明和点火系统汽车-白炽灯缺陷类型目录扁形插头连接技术要求试验扁形插头(带有插接时用的止动舌) 技术要求试验无织物层, 弹性体软管软管带有织物层的橡胶管汽车上电气和电子部件一般试验条件开关和按钮一般要求汽车上电气和电子元件中的插接件技术要求发动机标识发动机号图形标志用于操作件,显示器和指示灯英福泰门特-系统一般功能要求汽车收音机欧洲,中国和农村配电线无线电广播技术要求汽车环境标准汽车零件, 材料, 燃料, 目标的确定规定汽车环境标准汽车零件, 材料, 燃料汽车环境标准回收利用技术要求回收利用部件回收利用能力的样benn_d1Gewindebezeichnungen; ÜbersichtGewindedurchzug; für BlechschraubenInnenvielzahnprofil; Antriebsform für GewindeteileBlechdurchzüge mit Gewinde; Hohe AusführungReißlöcher für BlechschraubenInnensechsrundprofil; Antriebsform für GewindeteileZeichnungen; DarstellungenReferenz-Punkt-Systematik, RPS; ZeichnungenAnforderungen an CAD/CAM-Daten; Darstellung Technischer SachAnforderungen an CAD/CAM-Daten; Geometrische und mathematiscAnforderungen an CAD/CAM-Daten; CAD-System CATIA V4 für Anforderungen an CAD/CAM-Daten; CAD-System CATIA Version 5 Baugruppenkennzeichnung; Codierung an FahrzeugteilenVerfahrensbedingte Abweichungen; Für spanlos geformte T Arbeitsverfahren, Stanzen; SickenDurchsetzfuegeverbindungen; StahlwerkstoffeWerkstückkanten; Begriffe, ZeichnungsangabenTEILENUMMERNSYSTEMKennung von Werken, Beteiligungsgesellschaften und Firmen Widerstandsbuckelschweissen; Konstruktion, Berechnung, Proze Widerstandspunktschweißen; Konstruktion, Berechnung; USchutzgasschweißen, Stahlblechverbindungen; KonstruktiSchutzgasschweißen; Nacharbeit an StahlblechverbindungLichtbogenschweißen von Bolzen und Blechsegmenten Schraubenverbindungen; Konstruktion und Montagevorgaben Schraubenverbindungen; Montage und ProzesssicherungFügetechnik; Anziehdrehmomente für SchraubenverbinFügetechnik; Anziehdrehmomente für überelasti BLECHSCHRAUBENVERBINDUNGEN; ANWENDUNG; RICHTWERTE FUER KERNL VERSCHRAUBUNGEN IN KUNSTSTOFF; KONSTRUKTIONSHINWEISE Grenzwerte der Reibungszahlen; Mechanische VerbindungselemenERMITTLUNG VON REIBUNGSZAHLENFehlerfreiheit an metallischen OberflächenLaserstrahlschweißen; StahlblechverbindungenSchweißnahtreparaturen an Aluminiumstrukturen; ProduktRadial-Wellendichtringe für Kraftfahrzeuge; Begriffe, GRadial-Wellendichtringe für Kraftfahrzeuge; PrüfstRadial-Wellendichtringe für Kraftfahrzeuge; BestimmungRadial-Wellendichtringe für Kraftfahrzeuge; VulkanisatiRadial-Wellendichtringe für Kraftfahrzeuge; InfrarotspeDifferential-Thermoanalyse; Radial-Wellendichtringe fürRadial-Wellendichtringe für Kraftfahrzeuge; BestimmungRadial-Wellendichtringe für Kraftfahrzeuge; AnwendungshRadial-Wellendichtringe für Kraftfahrzeuge; WerkstoffanRadial-Wellendichtringe für Kraftfahrzeuge; Sichtbare URadial-Wellendichtringe für Kraftfahrzeuge; MessbedinguRadial-Wellendichtringe für Kraftfahrzeuge; AußenRadial-Wellendichtringe für Kraftfahrzeuge; KegelmessdoRadial-Wellendichtringe für Kraftfahrzeuge; AusfühRadial-Wellendichtringe für Kraftfahrzeuge; Radialkraft STANGENDICHTRINGEEntwicklungsbedingungen; Allgemeine AnforderungenFahrzeug-Zulieferteile; Genehmigung von Erstlieferung und &AMetrisches ISO-Gewinde; Grenzmaße für geformte GeMetrisches zylindrisches Innengewinde; Grenzlehrdorn; Sonder Metrisches zylindrisches Innengewinde; Gewinde-Grenzlehrdorn Metrisches zylindrisches Innengewinde; Gewinde-Ausschuß Metrisches ISO-Gewinde; Gewinde-Funktionslehrdorn; Muttergew Firmenbezeichnung, Teilekennzeichnung; Richtlinien für AUDI-Markenzeichen für FahrzeugteileMarkenzeichen; Kennzeichnung von FahrzeugteilenHersteller-Code für FahrzeugteileHersteller-Code; Vergabebereiche für Herstellercode-ver Kennzeichnung von VentilfedernHerstellland-Kennzeichnung; Fahrzeugteile Datumskennzeichnung; FahrzeugteileAußen- und Innenfestsitzgewinde mit Übermaß Metrisches ISO-Gewinde; Grenzmaße mit Schutzschicht f& Metrisches ISO-Gewinde; Grenzmaße für Toleranzkla Metrisches ISO Gewinde; Grenzmaße für Toleranzkla Kernlöcher für Gewinde; Bohrer und Grenzmaße Geometrische Produktspezifikation; Technische Zeichnungen; A Oberflächenschutz für Metallteile; Schutzarten, Ku Elastomere; Werkstoffanforderungen und -prüfungenPräzisionsstahlrohre; Abmessungen, Lieferbedingungen Metrisches zylindrisches Innengewinde; Gewindebohrer fü Polypropylen, Fertigteile; WerkstoffanforderungenAchsfedern; GüteanforderungenEinsatzgehärtete Getriebebauteile; Zeichnungseintragung Zylinderkopfhaube 4V für EA 111; Abnahmebedingungen Abnahmebedingungen; Gussqualitäten für Zylinderk&o Porosität von Metallgussteilen; AnforderungenGießerei und Gießtechnik; BegriffeServicemotorenöl für Ottomotoren; Anforderung, Pr& Polsterbezugsstoffe, Anforderungen, Qualitätsmerkmale, Leichtmetall-Umformteile für Sicherheitsbauteile; Abnah Thermoplastische Elastomere; Qualitätsanforderungen Polyamid 6, Fertigteile des Fahrzeuginnenraums; Werkstoffanf Polyamid 66, Fertigteile des Fahrzeuginnenraums; WerkstoffanDämpfungen, selbstklebend; Haftungseigenschaften Zellulosefaser; Dichtungen; Anforderungen, Prüfungen Bauteile des Fahrzeuginnenraumes; Emissionsverhalten Fahrzeugbauteile; FreibewitterungsbeständigkeitBauteile der Fahrzeuginnenausstattung; Messtechnische Beurte Servicemotorenöl für Ottomotoren; Anforderung, Pr& Servicemotorenöl für Turbo-Ottomotoren mit kraftst Servicemotorenöl SAE 5W-30 mit abgesenktem Aschegehalt Servicemotorenöl für Dieselmotoren; Anforderung, P Servicemotorenöl für Dieselmotoren mit kraftstoffs Servicemotorenöl für Dieselmotoren mit kraftstoffs Servicemotorenöl SAE 5W-30 mit abgesenktem Aschegehalt Kraftstoffverbindung; 3-Lagen-Schläuche; drucklosSchweißschrauben; Schweißwarzen auf dem Kopf Sechskantflanschmuttern mit Klemmteil und Einsenkung; Ganzme Schlauchschellen; Federbandschellen; für diverse AnwendSechskantflanschschrauben; mit großem Flansch Senkschrauben mit InnensechsrundStanzschrauben, wasserdicht und mit Einschränkungen auc Schnappmuttern; für metrisches Gewinde, klemmend, mit L Hochfeste Schrauben und ähnliche Gewindeteile; Technisc Schlauch- und Gelenkwellenbefestigung; Ohrschlauchklemme; st Ultraschallverschweißte elektrische Leitungen Crimpverbindungen; Lötfreie elektrische Verbindungen Mechanische Verbindungselemente; Teilereduzierung; Allgemein Gewinde und Schraubenende zum Einschrauben in thermoplastisc Vierkant-Schweißmuttern; Niedrige Ausführung StanzmutternBlechmutternVierkant-Schweißmutter; Hohe Ausführung, gro&szli Vierkant-Schweissmutter; Hohe AusführungGewinde für gewindefurchende und selbsthemmende Schraub Festigkeitsprüfung der Schweissverbindung von Schweissm Prüfparameter für Blindniet-, Einpressschrauben un Schnappmuttern; mit Blechschraubengewinde und Lochsicherung PfropfenStarterbatterien für 12 V-Bordnetze; Allgemeine Prü Kraftfahrzeug-Glühlampen; Fehlerkatalog Flachsteckverbindung; Anforderungen; Prüfungen Flachsteckverbindungen; mit Rastzunge zum Einrasten in Geh&a Schläuche; aus Elastomer, gewebelos Schlauchverbindung; 2-Lagen-Schläuche; aus Elastomer mi Elektrische und elektronische Baugruppen in Kraftfahrzeugen; Elektrische Bedienelemente (Schalter, Taster); Allgemeine An Steckanschluss an und in Elektrik- und Elektronik-Komponente Kennzeichnung der Motoren; Motor-NummerBildzeichen für Bedienteile, Anzeigegeräte und Kon Infotainmentsysteme; Allgemeine Funktionsanforderungen Autoradio; Rundfunkanforderungen Europa, China und RdW Umweltnorm Fahrzeug; Fahrzeugteile, Werkstoffe, Betriebsstof Umweltnorm Fahrzeug; Fahrzeugteile, Werkstoffe, Betriebsstof Umweltnorm Fahrzeug, Recyclinganforderungen, Rezyklateinsatzbenn_e1Pierced Holes for Tapping ScrewsTechnical Drawings; RepresentationsRequirements for CAD/CAM Data; Representation of Technical C Requirements for CAD/CAM Data; Geometric and Mathematic Data Requirements for CAD/CAM Data; CAD System CATIA V4 for VehicProcess-Related Deviations for Metal Parts Formed by Non-MacWorkpiece Edges; Definitions, Drawing SpecificationsPart Number SystemCodes for Plants, Affiliated Companies and CompaniesResistance Projection Welding; Design, Calculation, ProcessResistance Spot Welding; Design, Calculation, Process AssuraGas-Shielded Arc Welding; Sheet Steel Joints; Design, Type,SHIELDED ARC WELDING; REWORK ON SHEET METAL CONNECTIONS Tapping Screw Connections; Application, Standard Values forFlawless Condition of Metallic SurfacesLASER WELDING SHEET-STEEL JOINTS; DESIGN, PROCEDURE, QUALITY Radial Shaft Seals for Motor Vehicles; Visible ImperfectionsDevelopment Conditions; General RequirementsVehicle Supply Parts; Approval of First Supply and ChangesLogos; Identification of Vehicle PartsManufacturer's Code for Vehicle PartsManufacturer Code; Foreign Plants and Their SuppliersCountry-of-Origin Identification; Vehicle PartsDate Marking; Vehicle PartsMetric ISO Threads; Limit Dimensions for Tolerance Class 8f/ Geometrical Product Specifications; Technical Drawings; Spec Surface Protection of Metal Parts; Surface Protection Types,Case-Hardened Transmission Components; Drawing Notes on Mate Foundry and Casting Technology; TermsService Engine OilUpholstery Fabrics; Requirements, Quality Specifications, Te Forged Aluminium Parts; Surface FinishThermoplastic Elastomers; Quality RequirementsPolyamide 66, Finished Parts in the Passenger Compartment; MService-Fill Engine Oil for High-Performance Spark Ignition Service Engine Oil SAE 5W-30 with Reduced Ash Content for al Service engine oilService Engine Oil SAE 5W-30 with Reduced Ash Content for al Fuel Lines; 3-Layer Hoses of Elastomer with ReinforcementHigh-Strength Screws and Similar Threaded Parts; Technical S Ultrasonically Welded Electric WiringMechanical Joining Elements; Parts Reduction; General Guidel Square Weld Nuts; Thin TypeSquare Weld Nut; High Type, Large Wrench SizeSquare Weld Nut; High TypeStrength Test for Welded Joints of Weld Nuts/Welded Bolts; PHoses; Elastomer, Without Textile CoverElectrical and Electronic Assemblies in Motor Vehicles; Gene Engine identificationEnvironmental Standard for Vehicles; Vehicle Parts, Material Environmental Standard for Vehicles; Vehicle Parts, Material Environmental Standard for Vehicles, Vehicle Parts, Material。
VW_01105-1_电阻焊大众电焊标准中文版
3 要求
第4页 草案 VW 011 05-1:2006-01
为了在点焊连接加工时,在足够的安全性和最优的成本质量比的结构设计目标方面,实现尽可能高的 结构强度,每个点焊结构必须“正确的焊接”,也就是说,在预开发时必须考虑点焊设备中的尺寸、 电极需要的空间和工件的可操作性。
可焊接性取决于三个影响量
— 焊接特性(母材)
为了估算焊接参数,建议如下进行焊接时间和电流值选择,在 或者 和 限曲线之间产生一个电流差:
或者
的极
— 当电阻点焊设备带有头铣削机构时,△≧1.2 kA。
— 当电阻点焊设备带有头铣削机构时,△≧1.5kA。
工件本身的化学组成从根本上影响连接组织构成、硬化、熔核构成和点焊的强度。
在加工中和结构设计中必须注意的,材料影响的因素越少(参见 DVS 2902-2),则在一个材料组内的 该材料的焊接特性越好。
前言
计算示例在本标准的附件 1 中。
修订
相对于 VW011 05-1:2003-11 做了如下修订: — 第 1 条:为带有涂层板块的安装了薄板厚度比例 — 第 3.1 条:在第一调节点附近补充了图 2 同时电流差降到 1.2 kA — 第 3.2.5.10 条, 表 1:补充了法兰宽度,新建了表 2 — 更新了参考文献 — 点数计算移放进了附件 1 内
早期版本 1977-05; 1993-12; 2003-05; 2003-06; 2003-11
翻译: 肖磊、徐倩民
日期: 2006 年 5 月 29 日
校对: 张新伟
日期: 2006 年 5 月 29 日
打字: 谷京晶
后续 2 至 28 页
日期: 2006 年 5 月 29 日
第2页 草案 VW 011 05-1:2006-01
焊接现场工程师手册大纲(初稿)
焊接现场工程师手册一、体系及工具1、交运汽车零部件公司质量管理体系-质保TS16949体系(作为附件)-质保2、行业顾客有关体系流程-质保SGM体系流程SVW体系流程SAIC体系流程3、五大工具内容(APQP/PPAP/MSA/SPC/FMEA)-前八4、QSB内容(11部分模块)-质保二、技能基础1、焊接工艺基础知识(各类缺陷及预防整改措施)-前后八电阻焊(凸焊,点焊)、弧焊、螺柱焊2、常用材料焊接特性-前后八普通钢板焊接特性及焊接工艺参数选用参考高强度钢板焊接特性及焊接工艺参数选用参考镀锌钢板焊接特性及焊接工艺参数选用参考铝合金板焊接特性及焊接工艺参数选用参考3、主要生产设备、设施(不同品牌设备进行不同培训)-制造凸焊设备(单相凸焊机、三相整流凸焊机、次级整流凸焊机、储能凸焊机)点焊设备(悬挂点焊,中频点焊,机器人点焊)弧焊设备(MIG/MAG焊,TIG焊,机器人弧焊)螺柱焊设备(手持式螺柱焊、机器人螺柱焊)4、相关工装、检具及防错技术(按顾客分类)焊接工装结构及验收要求-制造总成检具结构及验收要求-质保防漏防错技术及要求-制造5、各类试验方法及要求-质保6、GP5及8D报告内容-质保三、现场管理规定-焊接件厂1、现场工程师岗位职责及工作要求熟悉焊接工艺技术及相关产品质量要求工艺文件管理产品过程控制设备工装调试生产现场管理协助新产品开发2、5S(常识及本公司相关要求)整理:把要与不要的材料、工具、设备、报表分开放置,然后再将不要的物品处理掉整顿:把要的物品定量定位放置。
清扫:将施工场地、环境、设备、材料的灰尘和污垢清扫干净。
操作人员在班后抽10分左右的时间清扫各自使用的机械。
清洁:“整理”、“整顿”、“清扫”之后的彻底维护。
素养:养成良好的工作习惯,遵守单位的规章制度,对单位规章的执行全力以赴。
3、标识及目视化管理设备型号标识焊接工装标识总成检具标识工位器具标识产品标识工位及场地标识4、TPM(全员生产维修)(常识及本公司相关规定)月底工作会与每日交班会制度TPM各岗位职责设备运转日报与设备点检每日巡视制度强制保养制度5、日常各项操作规定设置及调整焊接工艺参数的规定焊接设备调试的规定调整焊接工装的规定改进焊接工艺的规定检具的规范使用规定过程检验的规定入库检验的规定6、样件管理封样件及极限样件的管理7、人员培训新员工应知应会培训及考核操作工过程能力培训操作工岗位技能定期培训及考核换岗人员岗位技能培训及考核建立员工岗位技能柔性表建立员工培训记录册8、有关奖惩制度操作人员违反操作规范时的相关处罚操作人员未按工艺文件要求操作时,予以教育及相关处罚操作人员提出合理的工艺改进方案并被采纳时,予以相关奖励实行单机成本核算,单机成本盈亏情况每月公布,并依此奖惩职工。
上海大众气保焊金相检验标准
共25页第 1 页关键词:焊接,气体保护焊接,钢,钢板连接,板材122.12.233.13.244.14.2更改:相对于VW 011 06-1:1997-01有以下部分进行更改:-标准从新分段-图例再进行加工-补充特殊焊缝形状-计算接缝厚度在构件端面上的焊焰穿透裂缝尺寸长度与板材i有关的焊缝厚度板材i的板材厚度板材厚度总和图1-熔焊连接2.2.1.1焊缝 焊接范围是指工件或焊接接头上的工件中的位置。
焊缝由基本材料和/或焊接添加剂组成。
2.2.1.2熔化线 焊接时被熔化材料和坚固保持不变的材料之间的边界。
2.2.1.3焊缝金属 焊接后材料发生硬化的物质,不是由材料就是由焊接添加物和基本材料组成。
焊缝金属内的元素也能够含有焊条涂药和/或辅助材料(DIN ISO 857-1)。
2.2.1.4热影响区域WEZ 焊接时通过导入的能量得到热组织变化使得基本材料坚固保持不变的范围。
2.2.1.5 不受影响的基本材料 焊接时通过导入的能量没有明显的组织变化现象的基本材料范围。
2.2.2 同种类材料 在化学合成和焊接可能性(DIN 8528-1)中无本质区别的材料。
2.2.3 不同种类的材料 在化学合成和焊接可能性中有本质区别的材料。
3 惰性气体保护焊接方法描述 惰性气体保护焊接归属于熔焊方法。
电弧光作为热源。
它燃烧在电极和工件之间此时一个“惰性气体罩”盖住防大气压的电弧光和熔池,按照下述方法确定使用分类的电极种类:3.1 钨-惰性气体焊接(MIG) 采用该方法时,在一个非熔化的钨电极和工件之间使一个电弧点着。
氩气或氦气作为保护气体。
从侧面送入添加的材料(如气焊)。
3.2 金属-保护气体焊接(MIG/MAG) 采用该方法时,在电焊条(添加材料)熔化末端和工件之间使一个电弧点着。
焊接电流经过气焊嘴夹具内的滑动触点流向电焊条。
在添加活动气体时(例如和部分氧气)关系到金属-活性气体-焊接(MAG).该方法用于焊接非合金和低合金钢材。
大众汽车标准_VW 01106-3 英文 气体保护焊-铝焊接接头
nicht gestattet. Vertragspartner erhalten die Norm nur über die zuständige Beschaffungsabteilung.Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standard Department of the Volkswagen Group,.Parties to a contract can only obtain this standard via the responsible procurement department.VOLKSWAGEN AGF o r m F E 41 - 1N o r m v o r A n w e n d u n g a u f A k t u a l i t ät p r üf e n / C h e c k s t a n d a r d f o r c u r r e n t i s s u e p r i o r t o u s a g e .Q U E L L E : N O L I S1.2 Validity of requirementsThe requirements shall apply to all welds if the number of this VW standard is indicated in a draw-ing or a technical supply specification or if its application is agreed as part of other specifications.If the drawings or other specifications (e.g. those of the responsible engineering departments or rework catalogs) contain individual deviating stipulations, then these shall have priority. Likewise, a component-specific test specification has priority over this VW standard if this is defined in the drawing.The joint types described in this standard are ideal representations. Welded seams that are not shown are to be treated analogously.The standard is divided into evaluations of type A and type B. If the index is not given in the draw-ing, type A shall be used for the evaluation.Type B stipulates slightly lower requirements for some evaluation criteria. The responsibility for allocating joints to type B rests with the engineering department.2 Requirements and evaluation─OK evaluation:The test according to VW 011 06-3 is evaluated as OK if the welded seams comply with the listed evaluation criteria.─Conditionally OK evaluation:The test according to VW 011 06-3 is evaluated as being conditionally OK if max. 2 “soft”evaluation criteria according to Table 2:, Table 4:, Table 6: or Table 8: are not OK. The “hard”evaluation criteria according to table 1, Table 3:, Table 5: and Table 7: as well as the porosity evaluation according to Table 9: must be OK under all circumstances. Steps must be taken to ensure that the items that were not OK are rectified.─Not OK evaluation:The test according to VW 011 06-3 is deemed not to be OK in all other cases.3 Test3.1 Characteristics for the external findingsAccording to Table 1: and Table 2: by visual test.The dimensions, position, number and presence of seams are evaluated according to the drawing and the evaluation criteria set out in Table 1: and Table 2: in a visual test.The test is performed with the naked eye. In case of doubt, other suitable test procedures and/or equipment must be used (e.g., magnifying glass, stereo microscope, dye-penetration procedure).3.2 Characteristics for the internal findingsAccording to Table 3: to Table 9: by evaluating microsections.3.3 Sampling─Unless otherwise agreed between the engineering departments, metallographic microsections shall be taken from each welded seam at the specified points, cross-wise to the direction of the seam (e.g. defined in TLD sheets, PVs or ground section plans).─The microsections are sawn, ground and polished.─Additional microsections can be taken in the direction of the seam if required.─Recommended specimen removal:Seam length < 50 mm 1 specimen in the center of the seamSeam length < 100 mm 2 specimensSeam length < 300 mm 3 specimensPer further 100 mm one further specimen eachNo specimen removal in the first and last 5 mm of a seamDistance between 2 specimens > 10 mmcriteria4 EvaluationThe evaluation takes the form of a visual inspection of the seam (section 4.1), a test of the seam and penetration geometry (sections 4.2 to 4.4) and a test of the porosity (section 4.5). A reflected light microscope must be used for evaluation as per sections 4.2 to 4.5. The use of a stereo micro-scope can also be agreed; however, impairments in the quantitative pore analysis must be taken into consideration.Definitions:t Material thickness of the thinner materialt b Material thickness of the bottom material (lap joints)t t Material thickness of the top material (lap joints)t1Material thickness of the base material (T-joint)t2Material thickness of the material that is welded on (T-joint)h Height/depth of the criterion describedb Width of the criterion describedd Diameter of the criterion describedr Radiusa Throat thickness4.1 External findings (visual inspection)The stipulations of Table 1: and Table 2: have equal weight and apply accordingly to lap joints with fillet welds, butt joints with square butt welds and T-joints with fillet welds.If series monitoring produces the result “not OK”, the agreed rework options (see e.g. VW 011 42) can be applied.Table 1: Characteristics for irregularities, external findings (visual inspection), “hard” criteriaLimit values, commentsNo.Designation DrawingVW 011 06-3-A VW 011 06-3-B1Burned-throughspots Not permissible Isolatedpermissible if d < 1 mm2Welded seammismatchEdges that havebeen melted off Material not welded orfused without bondingNot permissible3Cracks (particu-larly end-cratercracks)Not permissibleTable 2: Characteristics for irregularities, external findings (visual inspection), “soft” criteriaLimit values, commentsNo.Designation DrawingVW 011 06-3-A VW 011 06-3-B1Open end craters End craters with a de-crease in the weldedseam cross sectionNot permissible2Partially melted weld spatter Material drops that arefused onto the surfaceof the base material orthe welded seamPermissible for innerpanels.Spatters must be removedfrom visible areas (par-ticularly skin) and functionareas (e.g. points at whichparts are secured or whichhave sealing functions).Weld spatter that is notfirmly stuck on must al-ways be removed.Permissible;spatters must be removedfrom visible areas (par-ticularly skin) and functionareas (e.g. points at whichparts are secured or whichhave sealing functions).Weld spatter that is notfirmly stuck on must al-ways be removed.3Visible strayarcing Localized partial melt-ing as a result of arcingon the tool surfacePermissible for innerpanels if it does not impairthe function of the compo-nent. Spatters must beremoved from visible areas(particularly skin) andfunction areas (e.g. pointsat which parts are securedor which have sealingfunctions).Permissible,as long as it does not im-pair the function of thecomponent. Spatters mustbe removed from visibleareas (particularly skin)and function areas (e.g.points at which parts aresecured or which havesealing functions).4Visible pores Not permissible Permissible in isolatedcases if d < 1 mm and overmax. 5% of the seamlength4.2 Lap joints with fillet weldNote:The throat thickness (dimension “a”) of fillet welds is determined by entering the largest possible equilateral triangle into the sectional view. In this process, the leg length z is calculated using the formula z = a x √2. The minimum throat thickness a min must be at least 0.7 x t (thickness of the thinner material) and/or the condition z ≥ t must be fulfilled. In practice, the throat thickness can be exceeded. As this standard describes the minimum requirements, a min is always entered in the drawings.Examples:Table 3: Characteristics for irregularities, internal findings (to be assessed in the micro-section), “hard” criteriaTable 4: Characteristics for irregularities, internal findings (to be assessed in the micro-section), “soft” criteria4.3 T-joint with fillet weldNote:The throat thickness (dimension “a”) of fillet welds is determined by entering the largest possible equilateral triangle into the sectional view. In this process, the leg length z is calculated using the formula z = a x √2. The minimum throat thickness a min must be at least 0.7 x t (thickness of the thinner material) and/or the condition z ≥ t must be fulfilled. In practice, the throat thickness can be exceeded. As this standard describes the minimum requirements, a min is always entered in the drawings.Examples:Table 5: Characteristics for irregularities, internal findings (to be assessed in the micro-section), “hard” criteriaThe designations for t1 and t2 shall apply for all images in Table 5:Table 6: Characteristics for irregularities, internal findings (to be assessed in the micro-section), “soft” criteriaThe designations for t1 and t2 shall apply to all images in Table 6:4.4 Butt joint with square butt weldTable 7: Characteristics for irregularities, internal findings (to be assessed in the micro-section), “hard” criteriaTable 8: Characteristics for irregularities, internal findings (to be assessed in the micro-section), “soft” criteria4.5 Evaluation of porosityNote:The evaluation applies accordingly to all types of welded seam. If the description does not suffice,a component-specific test specification can be created.Table 9: Characteristics for the evaluation of porosityThe area within a broken line around the entire seam is measured. Evaluation is performed usingdigital image analysis. Evaluations based on photographic plates must be noted separately.Limit value: consider only pores > 0.05 mmIf the pores are > 0.5 t, two additional samples can be taken approx.If there is increased porosity under the seam surface, the area above the dimension “a” limit can be excluded from the measurement. The use of the “a” dimension correction must be noted in the test report.Open pores on the surface are not permitted. (The limitation is imposed simply using a straight line and notthe calculated “a” dimension).If there is increased local porosity in the load-bearing cross section, only this local area is to be evalu-ated. As it is difficult to provide more than a general description of all the possible applications in this standard, the evaluation must be performed in conjunction with the relevant specialist superior. The occurrence of lo-calized porosity must be noted in the test report. If the increased localized porosity occurs more frequently, the preparation of further transverse microsections and a longitudinal microsection is recommended.standards5 ReferencedVW 011 42Welded Seam Repairs on Aluminum Structures。
大众常用标准汇总
大众常用标准汇总LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】一、焊接标准VW 01101类似国标中描述焊接类型并用图例表示的标准。
对各种焊接进行了概括的介绍,并规定了各种标准的图示符号,是焊接里很概括的一章。
eg:VW 01103凸点焊标准(weld projection),图示表示了不同的凸点焊情况,规定了不同厚度的板件进行凸点焊时凸点的直径、高度等。
eg:VW 01105点焊标准(spot weld),详细介绍了点焊的设计思想、焊点排布、强度计算和校合,以及焊接头的布置和形状参考,有图示、查表表格和例题,教科书般的详尽标准。
规定了焊接点的熔深要求、焊接头大小标准、缩印要求。
焊接后表面等级OG1\OG2\OG3的定义。
规定了图纸表注标准。
使用此标准焊接的熔深、劈凿(或者母材撕裂)都以VW01105为认可标准(Acceptance criteria)。
实验方法也定义为VW01105,实际上此标准内第3 章有具体的实验标准比如PV6702等。
考虑到VW01105比较全面而且大众认可,所以不把具体的小标准作为实验方法。
VW 01105-2 针对铝制金属的特殊焊接要求,包括特殊的熔深、劈凿要求。
eg:VW 01105-3 镀锌合金的特殊焊接要求,对焊板、焊接头有比较详细的描述,对校合计算过程有详细介绍,熔深和劈凿依然参考VW01105-1。
VW 01105-4 针对大厚度钢和高强度钢的焊接标准,介绍了特殊的技术要求和过程控制。
介绍了“焊接强度——焊接时间”图,介绍了标准的图纸表注方法。
eg:VW 01106弧焊、二氧化碳保护焊、熔焊标准。
规定了图纸标注的标准。
详尽规定了不同钢板焊接时的要求和标准,图例表示了各种焊接情况下焊缝的形式。
介绍了应力计算标准、涂层材料。
规定了不同钢材焊接时焊缝的评估标准。
认可标准和实验方法均为VW 01106。
大众汽车标准_VW 01141-2 参考译文
1999.03激光焊—铝平点焊、质量保证1、总则1.1、范围阐述了激光铝平点焊中不规则的评价标准。
此标准适用于厚度为0.8毫米到5毫米原材料。
评价的是生产的质量而不是性能。
性能必须通过合适的冲击实验、耐力实验和功能实验来做出客观的评价。
实验需由有资格的人员在有必要装备的实验室来完成。
1.2、要求的有效性如果标准在图纸中做出陈述,要求应适合所有的焊缝。
在个别情况下,图纸规定了违背条款,这些条款具备优先权。
2、评价焊缝必须符合所列的评价标准。
对于每300毫米的焊缝,在三个位置取样,要求至少每10毫米一次。
在焊缝的起点/终点不少于10毫米处进行焊接情况的评定。
同样适用于未提及的焊缝。
实际的实验计划优于所规定的说明。
3、测试3.1外部特性根据表一,通过可视测试。
3.2内部特性根据表二,通过底层截面来评定。
如有疑义,根据3.2测试的特性可适用于依据3.1测试的特性换言之以3.2测试的特性为标准。
3.3解释说明t 原料厚度to 原料上部厚度tu 原料下部厚度h 规定标准高度/深度b 规定标准宽度r 半径a 焊缝厚度Fachverantwortung/Responsibility Normung/Standards (EZTD, 1733)EBKR, Dr. Welsch PP-F2, Müller-Rogait PP-F1, Siegel Fischer Tel: +49-5361-9 2 79 95 Sobanski Vertraulich. Alle Rechte vorbehalten. Weitergabe oder Vervielfältigung ohne vorherige schriftl. Zustimmung einer Normenabteilung des Volkswagen Konzerns nicht gestattet.Vertragspartner erhalten die Norm nur über die zuständige Beschaffungsabteilung.Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.~ VOLKSWAGEN AG4、评定标准表一:不规则特性,外部测试(可视测试)序号不规则名称标注极限值1 连接部件间隙(在小部分也应做出评定)图一标准高度小于等于0.3毫米此规定仅适合于焊接状态。
大众汽车标准_VW 01105-1 接触点焊
3.2.5.4 焊缝长度 I
焊缝长度 I 是在一条焊缝上第 1 个焊点与最后一个焊点中心之间的距离(图 7 至图 10)
3.2.5.5 边缘间距 v
边缘间距 v 是焊点中心到接触面最近边界线的距离(图 7 至图 17)
图 11. 边缘距离 1
图 12. 边缘距离 2
接触点焊 设计,计算,安全作业 有涂层和无涂层的钢板
接触点焊 设计,计算,安全作业 有涂层和无涂层的钢板
VW 011 05-1
共 27 页 第 8 页
图 4. 焊点距离变小时分流的避免方法 图 5 是为了说明分流流经的各种可能性
图例说明: a) 经电极装置达到钢板上的分流 b) 距离近时通过定位销的分流 图中未表示出来的,可以通过下列各部分流来说明: c) 夹具 d) 变压器接地 e) 装置
能否垂直于法兰盘,这对于确定焊点距离来说,有决定性影响的是导电体的最小距离 A = 2.0 mm,是最大半径 Ri 以及焊条杆直径 ds 和焊条帽直径 dk.
焊点位置的误差(焊点距离误差)见图纸或 DIN ISO 2768-1 标准.
关于点焊连接结构的设计数据的其他说明,见 DVS 2902-3.
3.2.2 焊接顺序
这时候,在焊区光滑平面上测出熔融金属的直径,并从接合平面上把它作为熔核直径 dL 记录下来.
2.2 热影响区 (WEZ)
热影响区就是这样一个区域,它在点焊时虽因热能作用而发生结构上的变化,但母体 金属却牢固地保持不变.
接触点焊 设计,计算,安全作业 有涂层和无涂层的钢板
VW 011 05-1
共 27 页 第 3 页
连续的点系列是由焊机确定的,不允许有 25 mm 的贴得太近的点距离,点距离较近时, 可以在空隙处进行焊接(把细小或零散的序列焊点一个接着一个地连接起来.见图 9).
大众汽车标准 大众标准译文1
等级号:8MA00 2006年10月更改下列的内容是对大众公司标准VW80101 2005-06的说明。
—第二章,通用要求的补充—表5:附加注释—“材料要求”章节删除—增加工作模式3—第三章3.4节,增加电压等级定义:表7 对输入级的电压等级的定义;表8 当连接到终端15时的电压等级的定义;—对于功能状态C、D、E未定义不允许的功能;—第三章3.5节,在欠电压和过电压下的功能要求:图3电压一览表;—第三章3.8节,反极性保护:增加目的及所要求的规范;—第三章3.9.2节,电子设备的输出:电流负载规范;—第三章3.15节,短路保护:增加规范的要求和图;—第三章3.18节,断路:增加接插件的断路要求;—第四章4.1节,振动:第一段更新;—“气候要求”章:增加了对于工作模式3.2下机械性能要求试验—尘埃试验,Arizona尘埃试验按ISO 12103-1;—第五章5.2.1节,以规定的额定值下的温度变化试验:增加工作模式;—第五章5.2.2节,温度快速变化规定了转换持续时间:增加了PCB板;—第五章5.5.2节,发动机清洁原在第六章6.2节;—减少了热像图,增加了工作模式的规范;—第七章耐久性试验,第7.1节和第7.1.1节,增加工作模式和注释;早期的版本1987-06,1988-08,1992-01,1993-04,1994-05,1995-06,1998-01,1999-06,2000-09,2001-04,2003-07,2005-061 导论大众公司标准VW80101 规定了电器、机电和电子元件及系统的通用试验条件。
当在部件级规范(Technical Supply Specification)中引用、摘录或执行本标准时,可用表27(第八章),并与大众集团工程部商讨后,补充适当的规范条款。
2 总规范总规范适用于全工作电压范围和全工作温度范围。
产品功能和试验条件要求应可以被监控,以及测试温度并电源电压以及开关动作,电压降低,负载电流,闭合电路的电流和总线信息(适用时包括定时值和相关信息等)。
【干货】大众汽车16项零部件检测标准
【干货】大众汽车16项零部件检测标准汽车供应链对质量越来越关注,伴随着众多零部件和原材料在很多不同的地区和供应商采购,期望着每一个质量环节都能达到高的质量标准,同时也期望在开始就知道这些质量信息,并期望着众多的供应商能在现在和未来都能持续满足他们的需要,这是一个挑战,同时也是一个机遇以证明产品质量并且与汽车供应链建立持续的互动联系。
检测技术服务有限公司向各大汽车零部件供应商提供贯穿整个汽车及其零部件从生产到价值链的服务,帮客户降低风险,抵抗质量危机。
大众集团作为汽车行业的领导者,对汽车零部件的检测可谓是丝毫不漏,下面我们看看16项零部件检测项目都有哪些。
图片来源:上海金玺1.汽车用材料测试:1)高分子材料测试(机械力学性能、热学性能、绝缘电性能、耐化学药品测试、人工加速老化、燃烧测试等);2)反光测试测试(尺寸、颜色、反光性能、耐着力、冲击性能、冲击强度、抗磨性能、色牢度、盐雾试验、压缩性能、绕曲强度、裂纹等);3)泡沫泡棉材料测试(表观密度、压缩形变、硬度、拉伸性能、吸水率、导热系数、反抗弹力、燃烧性能等);4)橡胶材料测试(密度、硬度、拉伸性能、冲击性能、挠曲性能、门尼粘度、热学性能、燃烧试验、人工加速老化试验、耐化学试剂、耐油试验等)。
2.汽车外饰件测试:1)适用产品:汽车前后塑料(金属)保险杠、金属&非金属翼子板、后视镜壳、发动机罩、外装饰件、防撞条等。
2)测试项目:机械力学性能、刚强度、变形量测试、表层厚度测试、附着力测试、抗腐蚀测试、抗磨耗测试、高低温环境测试/紫外线老化测试、紫外/氙弧光老化、高低温环境力学试验、环境机械性能测试、沙尘/淋雨/飞石测试、金相测试、无损探伤、综合性能测试/疲劳耐久测试等。
3.汽车内饰件测试:1)适用产品:方向盘、汽车门内饰件总成、玻璃升降开关、汽车顶棚、遮阳板、车内扶手、立柱饰板、行李箱、各种开关、汽车座椅、汽车地毯等。
2)测试项目:材料重金属成分分析、挥发性有机化合物分析、车内其他受限制成分分析、内饰件材料阻燃成分分析、燃烧性能测试、燃烧烟雾尘粒测试、高低温/湿热测试、高低温冲击测试、温度/湿度/盐度多循环耐腐蚀测试、人工加速紫外光/氙弧光/自然光老化测试、各种环境下的机械冲击、机械拉压、变形量等力学测试、粉尘环境测试、霉斑环境测试、部件的装配、皮革/纺织品性能测试、雾化测试等。
汽车焊接技术标准(点焊)
汽车焊接技术标准(点焊)前言目的:本标准吸收了国外及国内汽车行业的技术标准而制订,为规范本公司在汽车产品设计、试制中焊接(点焊)的技术要求和质量。
非汽车产品的焊接(点焊)等效执行。
内容:1. 本标准的适用范围;2. 点焊接头设计原则;3. 焊点质量标准;4. 焊点质量的检验方法;5. 焊点接头的质量等级;1.适用范围1.1本标准是**公司负责确立或认可的汽车产品设计提供电阻点焊的焊接技术标准。
除非在焊接图纸上有特定的注释,确立不同的焊接要求,任何与本标准以外的特例,必须征得工艺人员同意。
1.2本标准适用于厚度6mm以下的低碳钢板(08、08AL、10、20、A2、A3等)、低合金高强度钢板(16Mn、09S iV)、含磷钢板(镀锌板、镀铝板、镀铅板等)的点焊。
1.3本标准未包括的材料厚度的点焊技术条件由现场工艺人员参照本标准自行在工艺技术文件中规定。
1.4本标准颁布前已有的产品图,如有不符合本标准之处可不作修改,新图纸设计或旧图纸换版时均符合本标准。
1.5 点焊种类:基本两种类型,结构点焊和工艺点焊。
1.5.1 结构点焊结构点焊是为了达到产品性能而设计的,所有点焊均为结构点焊,除非焊接图纸上特别注明工艺焊缝(点)。
所有的结构点焊应符合结构式样。
1.5.2 工艺点焊工艺点焊是为了简化(在线)工艺装配,但在工艺焊缝(点)的产品结构性能不作要求。
工艺点焊必须接受产品设计部门的认可,并在焊接图纸中注明。
2.点焊接头设计原则2.1点焊接头应为敞开式以利于焊接工具的接近。
如果设计为半敞开式或封闭式须和工艺人员洽商。
(见图1)2. 2点焊零件的板材的层数一般为2层,不超过3层。
2. 3点焊接头各层板材的厚度比不超过2,否则应征得工艺人员同意。
敞开式半敞开式封闭式图 1 点焊接头型式2. 4原则上板材表面不得有任何涂复层(油漆、磷化膜、密封胶),如有特殊需要,设计和工艺双方协商确定。
2. 5 板厚t、焊点直径d、设计时可选取的最小焊点直径dmin,焊点间的最小距离e及焊点到零件边缘的最小距离f见图2-1、2-2和表1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共36页第 1 页关键词:焊接,点焊,电阻点焊,焊接点,板材,钢,钢板前言本标准中概述包括术进步的过程中,将在相应章节中专门说明。
计算例证在本标准的副篇各种不同的简要说明适用12变更 相对于VW 011 05-1:2003-05有如下更改处:-第4.3.1节公差一章增加较小的点焊直径和松动的焊接点内容。
先前版本 1977-05;1993-12;2003-051应用范围 下列基本原则是以少批量到大批量机械化点焊程度和研究结果的经验为基础,以及公开发表的标准和技术规则,例如DVS-规则2902-1,-2,-3。
本标准适用有关静态和动态要求的电阻点焊的钢板结构的形状、计算和实施,在其他的文件中称之为“点焊连接”。
本标准应用范围包括接口点焊连接上的(电阻)点焊(特性因数21按照DIN EN ISO 4063),其在无涂层的板材上的板材厚度比例,板材厚度从0.5~4 mm,以及有关单点和多点焊接的过程保证的质量特征。
在特殊情况下,遇到较大的板材厚度和比例情况请与专业部门进行协调。
按照DIN EN 10 139使用的板材其厚度最多只能够是3.0 mm 。
引进镀锌板材,例如按照DIN EN 10 142或DIN EN 10 292, 和高和高硬度钢的部件要求具备直径较大的电极罩和电极套筒(16 mm 及 20 mm)。
该电极的部件上,当点焊法兰盘发生弯曲时焊核脱离连接片部位。
随着焊核与连接片之间出现的增大的距离现象构件的坚固性和构件强度随之降低。
另外有关(电阻)点焊连接的要求包括:VW 011 05-2(铝材料)VW 011 05-4(多板材连接;两层和多层接口的点焊连接)有关点焊连接的质量评审是检验标准PV 6702和PV 6717中给出的方法。
2 定义 2.1点焊 进行(电阻)点焊连接时,在所连接部分之间的焊接区域,通过电阻加热的方法借助于同时作用的焊条对零件的压力,加热直至其熔化。
尺寸、形状和被熔化的基材的位置取决于在焊接区域和环境中所产生的时间和空间的相互作用和散发的热量。
在焊条对零件的压力的影响下,在熔液固化时使得工件连接在一起。
此时点状形式出现的焊接-准确的说是作为“焊核”的熔核状-作为“焊接点”表示(图27)。
零件在焊接接缝部分上连接在一起(图6)。
此时把接缝平面内熔化的材料磨光,测量的直径以熔核直径¡£±íʾ-焊接适应性(材料)-焊接可靠性(结构)-焊接可能性(施工)3条准则具有同样的焊接可靠性的优先权,见图1。
图1- 根据DIN 8528-1点焊连接的焊接可靠性图解说明 3.1 原料(可焊接性) 可焊接性是一种材料的性能。
该性能说明在其化学成分基础上,能够满足一个随时需要完成达到标准要求的焊接。
在首次对焊接参数进行评估时,建议绘制一个焊接范围图(时间/电流图图2),在图中对恒定焊条对零件的压力和形状记录有关最小和最大焊核直径的界线,见DIN EN ISO 14 327(当前的草图)图2- 焊接范围图 对焊接参数评估,建议这样选择焊接时间和电流值,在和之间得出一个图3 - 在炭素当量相关性中的最大焊核硬度 图3 举例说明有关炭素当量的焊核最大硬度的相关性。
对于合金钢来说,由于淬硬性影响缘故,可能必须是特殊含量的合金元素(例如:余热,多脉冲焊接,等等)并且它的投产因此必须与主管专业部门进行协调并做特殊检验。
作为有关焊核/WEZ内的硬度极限值,建议一个硬度提高因数≤3.5。
3.2.1焊接点的位置 焊接点的位置必须由结构,施工和计划部门规定。
必须把电极准确放置,因为放置位置不正时的焊核直径可能是明显较小和呈椭圆形的。
对垂直状凸缘的焊点间距标准是其导电部分的最小间距A=2.0 mm,最大半径以及电极罩壳直径之下的焊点距离方面(表1)不得忽视其并联的作用。
当发生如下情况时,增加并联:-焊点直径-板材厚度-焊条对工件的压力和-电极套筒平面增大和-焊点距离缩小按照每个并联连接的尺寸要求,为了使得焊核具有同样的直径大小,焊接过程必须或多或少地增大焊接电流。
通过已有的焊缝焊点的电流部分,无助于对原来的焊接位置进行加热。
因此,从一个焊缝的第2个焊点开始,在过于小的焊点距离和恒定的调节参数上,获得的是一个较小的焊核直径(图4)。
在可编程以及过程调节控制的部件上能够补偿并联造成的影响。
图4- 避免过小点焊距离上的并联 图5 说明的是各种可能的并联状况。
图5- 并联的可能性 a)在板材上借助电极位置进行的并联b)通过中央销钉进行并联(在较小的距离上)在图中未说明的并联可能性是:c)夹紧装置d)变压器-接地e)装置3.2.5结构示例和尺寸 因为特殊形状的电极以及电极臂要求的缘故,必须避免不良的可接触性位置的结构。
(图6)。
图6- 有关在焊接法兰上焊接电极的不好与好的可接触性 3.2.5.1 重叠b 重叠b是零件焊接边缘接触面的宽度。
接触面的平面必须是平行的并紧密接触(图7 ~17)。
b 表示限制线的最短距离。
一般为:页图7 - 单行切入的点焊缝 图8 - 双行切入的点焊缝 3.2.5.2 点焊距离e ,标明的是距离,在进行焊接过程时,当该距离上发生并联下移现象时能够忽略不计。
一般为:图10 - 焊点接缝双行双接 图9 - 焊点接缝双行单接 3.2.5.3点焊距离f 进行多行点焊接缝时,接缝距离f是相邻接缝最短的距离,与焊点中心有关(图8~10)。
一般为:3.2.5.4 焊缝长度l 焊缝长度l 是一个焊点接缝的第一个和最后的焊点的焊点中心距离(图7和图10)。
3.2.5.5边缘距离v 边缘距离v 是焊接点中心到接触面最近距离限制线的距离。
(图7和图17)。
图11- 边缘距离1 图12- 边缘距离2 图13- 边缘距离3 图14- 边缘距离4 3.2.5.6 法兰宽度a 法兰宽度a(图15,16)的状况仅出现在所示意的板材上。
该宽度的测量示从法兰末端一直到所示意的板材,并且由边缘距离v和自由尺寸FM以及公差必须从制造技术观点角度考虑法兰宽度的数值,因此:a)焊接点位于板材边缘不是太近,b)焊接设备(电极罩和套筒)无并联现象到所示意的板材,和c)选用板材不太大的弯曲半径,为了保证焊接电极有一个足够的支撑面,刚好延伸至法兰宽度部分。
必须在结构、计划和制造之间确定法兰宽度问题。
辅助计算见VW 011 05-1,副篇1。
图15- 法兰宽度1 图16- 法兰宽度16 在进行多行点焊接缝时,适合焊缝距离f的法兰宽度a 必须扩大。
法兰宽度区分为:导向法兰宽度aA配合法兰是其结构形状的基础为普通的组合结构,必须配合导向法兰,不得超出。
3.2.5.7 法兰错开i 法兰错开i 是从导向法兰到配合法兰的最大伸出部分,例如用于容纳密封件。
(图15)。
3.2.6法兰高度c和h,错开g 尺寸c和h (图15和16)考虑点焊设备的尺寸,施工时电极需要的位置和工件的可触及可能性(见图19和21)。
尺寸说明最大允许的错开部位(图17)。
必须在结构、计划和制造之间确定该数值。
3.2.6.1 法兰和重叠距离k 法兰和重叠距离k是位于重叠b和接头半径之间的最小距离(图17)。
图17- 错开g,距离k 3.2.6.2 板材比较厚度有关结构的形状和计算焊接参数是标准的比较板材厚度表1 - 焊接法兰几何形状与比较板材厚度有关法兰尺寸的图例: 重叠(图13和14)和重叠错开(图17)电极罩直径有关电极套筒的自由尺寸注意:进行加工电极罩(罩铣削或造型)的部件可能需要较大的边缘距离部分。
需要在设计、计划和加工部门之间进行确定。
3.2.7公差 公差数值必须在设计、计划和制造部门之间确定。
参考值在括号内引用。
切边公差该数值涉及到车身制造包括工业机器人在内的一般公差,并且必须(例如:用0.4mm)计算在内。
结构的公差平衡该数值考虑设备的重复精度,并且必须(例如用0.4mm)计算在内。
总公差和总公差必须用于法兰宽度的计算方面。
3.3 施工(焊接可能性) 必须注意结构上的焊接可能性(具备施工条件的焊接安全性能)。
计划进行的焊接必须符合技术状态的焊接条件,能够专业地进行施工。
在构件的结构方面应该考虑下列施工技术外观状态:? 若施工结构要求使用的机器设备具有较大伸出部分和较大工作臂距,必须及时查明,是否现有的焊接设备能够适用(图18)。
图18- 有关必须避免电极工作臂的示例 ? 两个或多个切口连接,见VW 011 05-4。
? 在平面点焊法兰部分上,当点焊距离很小时,把凸焊部分拉出施工。
? 电极外径以及夹头和板材内边之间的距离应至少有(2+0.5mm)(图19)。
其他规定在有关专业部门中间决定。
? 结构加工应尽可能使用短的、直的和不易变形的工作臂、电极夹和电极(图18)。
图19- 电极弹动和移动现象是造成焊接质量不合格的原因 ? 进行点焊接缝施工时,要求选择的焊接顺序必须在板材之间不会形成空腔现象(图20)。
图20- 避免出现空腔现象的焊接顺序 ? 电极轴线应垂直于板材表面(90o±1o)(图21 左)。
图21- 有关焊接电极的合格与不合格的支撑表面 4 焊接点数的计算 4.1基本原理 根据一个构件的结构形状(第2.4节)出现不同的应力现象:? 剪拉力(图22) ? U型拉力(图23) ? 削拉力(图24) ? 扭转(图25) 根据施工可能性,点焊连接应仅经受在剪切力上的作用,因为在这样的受力形式中,每个焊点均能够承受到最高的力。
必须避免发生单U型拉力和削拉力以及扭应力现象。
4.1.1最小的剪拉力 在进行单切口连接时,剪拉力,随着应力增长(直至。
这时图22- 剪拉力 由于检验结果的实际要求的证明和微小变化的原因,按照PV 6702,以从剪拉力试验中得出的最小剪拉力相一致的是=不受影响的基本材料【kN】的实际抗拉强度。
4.1.2 U型拉力 图23- U型拉力 在这种受力情况下,所允许负荷的60%。
按照DVS 2902-3(材料按照DIN 1623-1)是图24- 削拉力 在这种受力情况下,从表6和DVS 2902-3得出,所允许负荷的20%4.1.4 扭转(旋转)图25- 扭转 通过最小的两个焊点达到一个可保持的连接,因为在围绕一点进行旋转时所传输的力矩图26- 负荷振幅 -优先选择单行单切口连接-由于极少允许张力缘故,避免使用动态U型拉力,削拉力和扭应力。
-进一步说明(也是有关简单的结构零件的计算方法)包括在DVS 2902-3的划有横杠的记号处。
4.2静态负荷的计算 计算静态负荷的目的是在图中标注的额定点数n,以便保证达到符合要求的连接。
这里涉及到两个重要性的不同的规范:1.强度规范 要求的强度在一定的焊接点数上达到。
为此,每个焊点所承受的力,即:计算允许的剪拉力的计算是以最小延伸段力求得。