解直角三角形讲义全
第十七讲 解直角三角形讲义
第十七讲 解直角三角形一、课标下复习指南 1.锐角三角函数的定义如图17-1,在△ABC 中,∠C 为直角,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ;把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ;把锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A .图17-1的斜边的对边A A A ∠∠=sin ;的斜边的邻边A A A ∠∠=cos ;的邻边的对边A A A ∠∠=tan2.三角函数值(1)特殊角的三角函数值角度三角函数0° 30°45°60°90° sin α 0 2122 23 1 cos α 1 23 2221 0tan α3313 不存在(2)会用计算器求0°~90°的任意角的三角函数值 (3)锐角三角函数值的性质当0°<α<90°时,0<sin α<1,且正弦值随着角度的增大而增大;0<cos α<1,且余弦值随着角度的增大而减小;tan α>0,且正切值随着角度的增大而增大. 3.互余角的三角函数间的关系sin(90°-α)=cos α;cos(90°-α)=sin α;⋅=-ααtan 1)90tan( 4.同角三角函数间的关系⋅==+αααααcos sin tan ;1cos sin 22 5.解直角三角形由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形. 6.解直角三角形相关的知识如图17-2,在Rt △ABC 中,∠C =90°,图17-2(1)三边之间的关系: a 2+b 2=c 2;(2)两锐角之间的关系:∠A +∠B =90°; (3)边与角之间的关系:c a B A ==cos sin ,⋅====Bb a Ac b B tan 1tan ,sin cos (4)如图17-3,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则图17-3由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ; 由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 的面积,得ab =ch .(5)如图17-4,若CD 是直角三角形ABC 中斜边上的中线,则图17-4①CD =AD =BD =;21AB ②点D 是Rt △ABC 的外心,外接圆半径.21AB R =(6)如图17-5,若r 是直角三角形ABC 的内切圆半径,则2c b a r -+=⋅++=c b a ab图17-5(7)直角三角形的面积:①如图17-3,S △ABC 21=.sin 2121B ac ch ab ⋅== ②如图17-5,S △ABC ).(21c b a r ++=图17-57.直角三角形的可解条件及解直角三角形的基本类型已知条件 解法一条边和斜边c 和锐角A B =90°-A ,a =c ²sin A , b =c ²cos A 一个锐角直角边a 和锐角AB =90°-A ,,tan Aab =Aac sin =两条边两条直角边a 和b 22b a c +=,由b a A =tan求角A ,B =90°-A直角边a 和斜边c22a c b -=,由caA =sin求角A ,B =90°-A8.测量中的常用概念:仰角、俯角、坡度、坡角、水位、方向角、倾斜角、株距、坡距等二、例题分析例1 解答下列各题:(1)化简求值:45cos 45sin 30cos 60sin 45tan 60tan -+-+sin30°;(2)若,sin cos ,232sin αβα==(2α,β为锐角),求)32tan(β的值; (3)在△ABC 中,∠C =90°,化简A A cos sin 21-.分析 第(3)题可以先利用关系式sin 2A +cos 2A =1对根号内的式子进行变形,配成完全平方的形式.解 (1)30sin 45cos 45sin 30cos 60sin 45tan 60tan +-+- 211333212222232313+--=+-+-=⋅-=6323(2)232sin =α ,且2a 为锐角,∴2α=60°,α=30°.,2221sin cos ===∴αβ ⋅==∴=∴3330tan )32tan(.45 ββ(3)∵A A cos sin 21-A A A A cos sin 2cos sin 22-+=|,cos sin |)cos (sin 2A A A A -=-=A A cos sin 21-∴⎪⎩⎪⎨⎧<<-<<-=)9045(cos sin )450(sin cosA A A A A A . 说明:由第(3)题可得到今后常用的一个关系式:1±2sin a cos a =(sin a ±cos a )2.例如,若设sin a +cos a =t ,则).1(21cos sin 2-=t αα 例2 (1)如图17-6,在△ABC 中,若∠C =90°,∠B =50°,AB =10,则BC 的长为( ).图17-6A .10²tan50°B .10²cos50°C .10²sin50°D .50tan 10(2)如图17-7,在△ABC 中,∠C =90°,sin A =53,求cos A +tan B 的值.图17-7(3)如图17-8所示的半圆中,AD 是直径,且AD =3,AC =2,则sin B 的值等于______.图17-8分析 (1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的大小,可以用比例系数k 表示各边.(3)要求sin B 的值,可以将∠B 转化到一个直角三角形中. 解 (1)选B .(2)在△ABC 中,⋅===∠53sin ,90A AB BC C设BC =3k ,则AB =5k (k >0).由勾股定理可得AC =4k ,⋅=+=+∴15323454tan cos k k k k B A (3)由已知,AD 是半圆的直径,连接CD ,可得∠C =90°. 而∠B =∠D ,所以⋅===32sin sin AD AC D B 说明 已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,根据三角函数值,用比例系数表示三角形的边长;(2)题求cos A 时,还可以直接利用同角三角函数之间的关系式sin 2A +cos 2A =1,读者可自己尝试完成.例3 如图17-9,在△ABC 中,∠BAC =120°,AB =10,AC =5,求sin B ²sin C 的值.图17-9分析 为求sin B ,sin C ,需将∠B ,∠C 分别置于直角三角形之中,另外已知∠A 的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B ,C ,向CA ,BA 的延长线作垂线段,即可顺利求解.解 过点B 作BD ⊥CA 的延长线于点D ,过点C 作CE ⊥BA 的延长线于点E . ∵∠BAC =120°,∴∠BAD =60°.;5211060cos =⨯=⋅=∴ AB AD .35231060sin =⨯=⋅= AB BD又∵CD =CA +AD =10,,7522=+=∴CD BD BC⋅==∠∴721sin BCBD BCD 同理,可求得⋅=∠1421sin ABC 1421721sin sin ⨯=∠⋅∠∴BCD ABC ⋅=143 说明 由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4 (1)如图17-10,在△ABC 中,∠ACB =105°,∠A =30°,AC =8,求AB 和BC 的长;图17-10(2)在△ABC 中,∠ABC =135°,∠A =30°,AC =8,如何求AB 和BC 的长? (3)在△ABC 中,AC =17,AB =26,锐角A 满足1312sin =A ,如何求BC 的长及△ABC 的面积?若AC =3,其他条件不变呢?分析 第(1)题的条件是“两角一夹边”.由已知条件和三角形内角和定理,可知∠B =45°;过点C 作CD ⊥AB 于D ,则Rt △ACD 是可解三角形,可求出CD 的长,从而Rt △CDB 可解,由此得解;第(2)题的条件是“两角一对边”;第(3)题的条件是“两边一夹角”,均可用类似的方法解决.解 (1)过点C 作CD ⊥AB 于D .∵∠A =30°,∠ACD =105°,∴∠B =45°. ∵AC ²sin A =CD =BC ²sin B ,.2445sin 30sin 8sin sin ==⋅=∴BA AC BC ∴AB =AD +BD =AC ²cos A +BC ²cos B .43445cos 2430sin 8+=+=(2)作CD ⊥AB 的延长线于D ,则AB =.24,434=-BC(3)作BD ⊥AC 于D ,则BC =25,S △ABC =204.当AC =3时,∠ACB 为钝角,BC =25,S △ABC =36.说明 对一个斜三角形,通常可以作一条高,将它转化为两个直角三角形,并且要尽量使直角三角形中含有特殊的锐角(如30°、45°、60°的角),然后通过解直角三角形得到原来斜三角形的边、角的大小.例5 在△ABC 中,∠A =30°,BC =3,AB =33,求∠BCA 的度数和AC 的长.分析 由于∠A 是一个特殊角,且已知AB ,故可以作AC 边上的高BD (如图17-11),可求得233=BD .由于此题的条件是“两边一对角”,且已知的对角边小于邻边,因此需要判断此题的解是否唯一,要考虑对边BC 与AC 边上的高BD 的大小,而33233<<BC ,所以此题有两解.图17-11解 作BD ⊥AC 于D .(1)C 1点在AD 的延长线上. 在△ABC 1中,233,31==BD BC , ⋅=∴23sin 1C ∴∠C 1=60°.由勾股定理,可分别求得⋅==29,231AD DC .6232911=+=+=∴DC AD AC (2)C 2点在AD 上.由对称性可得,∠BC 2D =∠C 1=60°,⋅==2312D C D C .32329,12022=-==∠∴AC A BC 综上所述,当∠BCA =60°时,AC =6;当∠BCA =120°时,AC =3.说明 由条件“两边一对角”确定的三角形可能不是唯一的,需要考虑第三边上的高的大小判断解是否唯一.例6 如图17-12,某船向正东航行.在A 处望见灯塔C 在东北方向,前进到B 处望见灯塔C 在北偏西30°方向,又航行了半小时到D 处,望见灯塔C 恰在西北方向,若船速为每小时20海里,求A ,D 两点间的距离(结果保留根号).图17-12解 作CE ⊥AD 于E ,设CE =x (海里), ∵∠CAD =∠CDA =45°, ∴CE =AE =DE =x .在Rt △CEB 中,∠CEB =60°,BE =DE -BD =x -10..360tan 10===-∴BECFx x 解得.35153330+=-=x)31030(2+==∴x AD (海里).答:A ,D 两点间的距离为)31030(+海里.说明 已知斜三角形中的SSS ,SAS ,ASA ,AAS 以及SSA 条件,求三角形中的其他元素是常见问题,注意划归为常见的两个基本图形(高在三角形内或高在三角形外)(如图17-13):图17-13例7 如图17-14,河流两岸a ,b 互相平行,C ,D 是河岸a 上间隔50m 的两个电线杆,某人在河岸b 上的A 处测得∠DAB =30°,然后沿河岸走了100m 到达B 处,测得 ∠CBF =60°,求河流的宽度CF 的值(结果精确到个位).图17-14解 过点C 作CE ∥AD 交AB 于E . ∵CD ∥AE ,CE ∥AD ,∴四边形AECD 是平行四边形.∴AE =CD =50,EB =AB -AE =50, ∠CEB =∠DAB =30°.又∵∠CBF =60°,故∠ECB =30°. ∴CB =EB =50.在Rt △CFB 中,CF =CB ²sin ∠CBF =).m (4332560sin 50≈=答:河流的宽度约为43m .例8 如图17-15所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).图17-15分析 这是求四边形一边长的问题,可以通过添加辅助线构造直角三角形来解. 解 如图17-16,延长CD 交PB 于F ,则DF ⊥PB .图17-16∴DF =DB ²sin15°≈50³0.26=13.0, CE =BF =DB ²cos15°≈50³0.97=48.5. ∴AE =CE ²tan10≈48.5³0.18=8.73.∴AB =AE +CD +DF =8.73+1.5+13.0≈23.2(m). 答:树高约为23.2m .说明 一些特殊的四边形,可以通过切割补形的方法将其转化为若干个三角形来解.例9 如图17-17,D 是AB 上一点,且CD ⊥AC 于C ,S △ACD ∶S △CDB =2∶3,,54cos =∠DCB AC +CD =18,求tan A 的值和AB 的长.图17-17解 作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°. ∵,54cos =∠=DCE CE CD 设CD =4k (k >0),则CE =5k ,由勾股定理得DE =3k . ∵△ACD 和△CDB 在AB 边上的高相同, ∴AD ∶DB =S △ACD ∶S △CDB =2∶3.⋅=+==∴35DB DB AD DB AB DE AC 即.533535k k DE AC =⨯==⋅===∴5454tan k k AC CD A∵AC +CD =18,∴5k +4k =18.解得k =2..4124122==+=∴k CD AC AD.41523=+=+=∴AD AD DB AD AB说明 本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例10 如图17-18,正三角形ABC 的边长为2,点D 在BC 的延长线上,CD =3.图17-18(1)动点P 在AB 上由A 向B 移动,设AP =t ,△PCD 的面积为y ,求y 与t 之间的函数关系式及自变量t 的取值范围;(2)在(1)的条件下,设PC =z ,求z 与t 之间的函数关系式. 解 (1)作PE ⊥BC 于E ,则BP =AB -AP =2-t (0≤t <2). ∵∠B =60°,∴S △PCD =⋅⋅=⋅=B BP CD PE CD sin 2121,23)2(23⋅-t即).20(233433<≤+-=t t y (2)由(1)不难得出,BE t PE ),2(23-=).2(21t -= ).2(21)2(212t t BE BC EC +=--=-=∴∵22222)2(41)2(43t t EC PE PC ++-=+=422+-=t t ).20(422<≤+-=∴t t t z说明 锐角三角函数及解直角三角形的内容经常与函数、圆等知识进行综合.三、课标下新题展示例11 (2009济宁市)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖砌八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高.图17-19为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶(M )的仰角α=35°,在点A 和塔之间选择一点B ,测出看塔顶(M )的仰角β=45°,然后用皮尺量出A ,B 两点间的距离为18.6m ,量出自身的高度为1.6m .请你利用上述数据帮助小华计算出塔的高度(tan35°≈0.7,结果保留整数).图17-19(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m(如图17-20),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:图17-20①在你设计的测量方案中,选用的测量工具是:_________; ②要计算出塔的高,你还需要测量哪些数据? ____________.解 (1)设CD 的延长线交MN 于E 点,MN 长为x m ,则ME =(x -1.6)m . ∵β=45°,∴DE =ME =x -1.6.∴CE =x -1.6+18.6=x +17. ∵,35tan tan ==αCE ME7.0176.1=+-∴x x ,解得x =45. ∴太子灵踪塔MN 的高度为45m . (2)①测角仪、皮尺;②站在P 点看塔顶的仰角、自身的高度(注:答案不唯一).例12 (2009泰安市)如图17-21,△OAB 是边长为2的等边三角形,过点A 的直线y =m x +-33与x 轴交于点E .求点E 的坐标.图17-21解 作AF ⊥x 轴于F .∴OF =OA ²cos60°=1°, AF =OF ².360tan =∴点A 坐标为)3,1(.代入直线解析式,得,3133=+⨯-m ⋅=∴334m ⋅+-=∴33433x y 当y =0即033433=+-x 时,x =4. ∴点E 坐标为(4,0).四、课标考试达标题 (一)选择题1.已知Rt △ABC 中,∠C =90°,AC =2,BC =3.下列各式中,正确的是( ).A .32sin =B B .32cos =B C .23tan =BD .32tan =B2.如图17-22,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sin B 的值是( ).图17-22A .32 B .23 C .43D .343.已知在Rt △ABC 中,∠C =90°,=B cos 32,则tan A 的值为( ). A .352B .35C .55 D .552 4.如果α是锐角,且54sin =α,那么cos(90°-α)=( ). A .54 B .43 C .53D .51 5.已知α是锐角,且cos α的值小于21,那么∠α( ).A .大于60°B .大于30°C .小于30°D .小于60°6.如图17-23,P 为⊙O 外一点,P A 切⊙O 于点A ,OP =5,P A =4,则sin ∠APO 的值等于( ).图17-23A .54 B .53 C .34D .437.如图17-24,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 相交于点C ,CD ⊥OA ,垂足为D ,则tan ∠AOB 的值等于( ).图17-24A .ODB .OAC .CD D .AB8.如图17-25,要在离地面5m 处引拉线固定电线杆,使拉线和地面成60°,若考虑既要符合设计要求,又要节省材料,则在库存的l 1=5.2m ,l 2=6.2m ,l 3=7.8m ,l 4=10m .4种备用拉线材料中,拉线AC 最好选用( ).图17-25A .l 1B .l 2C .l 3D .l 4(二)填空题9.若03sin 32=-⋅α,α为锐角,则α=______.10.在△ABC 中,∠C =90°,,53,15==AC BC 则∠A =________,AB =_______,S △ABC =______.11.如图17-26,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于______.图17-2612.把两块含有30°的相同的直角尺按如图17-27所示摆放,使点C ,B ,E 在同一条直线上,连接CD ,若AC =6cm ,则△BCD 的面积是______cm 2.图17-2713.如图17-28,在平面直角坐标系中,四边形OABC 是正方形纸片,A 点坐标为(0,2),E 是线段BC 上一点,且∠AEB =60°,将纸片沿AE 折叠后B 点落在点F 处,那么点F 的坐标是______.图17-28(三)解答题14.计算30cos 90sin 0tan 60cos 145tan 22++-+sin 245°.15.如图17-29,在四边形ABCD 中,∠B =∠D =90°,AB =BC ,AD =7,tan A =2,求CD 的长.图17-2916.如图17-30,已知正方形纸片ABCD 中,E 为BC 上一点,将正方形折叠起来,使A点和E 点重合,折痕为MN ,若tan ∠AEN =31,DC +CE =10.求:(1)△ANE的面积;(2)sin∠ENB的值.图17-3017.为防水患,在漓江上游修筑了防洪堤,其横截面为一梯形(如图17-31).堤的上底宽AD和堤高DF都是6 m,其中∠B=∠CDF.图17-31(1)求证:△ABE∽△CDF;(2)如果tan B=2,求堤的下底BC的长.参考答案第十七讲 解直角三角形1.D . 2.C . 3.D . 4.A . 5.A . 6.B .7.D . 8.B . 9.60°.10.30°,⋅2315,152 11.2.4. 12.27. 13.)32,1(--. 14.⋅4115.37=CD .提示:分别延长AD ,BC 相交于点O .16.(1)△ANE 的面积为310;(2)⋅=∠53sin ENB17(1)略;(2)BC 长21米.。
解直角三角形讲义
解直角三角形初三下册第一章: 知识点总结:1. 解直角三角形:在直角三角形中,由已知元素求位置元素的过程,就是解直角三角形。
(1) 三边关系:222c b a (2) 锐角关系:∠A+∠B=90°; ( 3 ) 边角关系:正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记sinA ,即sinA =c a余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记cosA ,即cosA=c b;正切:锐角A 的对边与邻边的比叫做∠A 的正切,记tanA ,即tanA=ba;特殊锐角的三角函数值① 同角三角函数的关系:平方关系:1cos sin 22 A A ; 商数关系:tanA=AAcos sin ②互余两角的三角函数关系:sinA=cosB; sinA=cos(90°-A) ; cosA=sin (90°-A ); tanA=cot(90°-A )2.实际问题仰角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线上方时叫做仰角。
俯角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线下方时叫做俯角。
坡度(坡比):坡面的铅垂高度和水平宽度的比叫做坡面的坡度,记作i=h:l。
坡角:坡面与水平面的夹角叫做坡角,记作a,即i=h:l=tana.方位角:从某点的正北方向沿顺时针方向旋转到目标方向所形成的角叫做方位角。
方向角:从正北方向或正南方向到目标方向形成的小雨90°的角叫做方向角。
典型例题:题型一:特殊三角函数值1、计算2sin30°-sin245°+cot60°的结果是()A、B、C、D、2、已知a=3,且(4tan 45°-b)2+=0,以a,b,c为边组成的三角形面积等于()A、6B、7C、8D、93、已知a为锐角,且sin(a-10°)=,则a等于()A、50°B、60°C、70°D、80°4、在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A、B、C、D、5、如图,如果∠A是等边三角形的一个内角,那么cosA的值等于()A、B、C、D、16、△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A、直角三角形B、钝角三角形C、锐角三角形D、不能确定7、计算:sin213°+cos213°+sin60°-tan30°.8、求下列各式的值:(1)a、b、c是△ABC的三边,且满足a2=(c+b)(c-b)和4c-5b=0,求cosA+cosB的值;(2)已知A为锐角,且tanA=,求sin2A+2sinAcosA+cos2A的值.题型二:解直角三角形1、如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为()A、2B、C、2D、42、等腰三角形的顶角为120°,腰长为2cm,则它的底边长为()A、cmB、cmC、2cmD、cm3、如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=8cm,则DC的长为()A、cmB、cmC、cmD、8cm4、如图,在Rt△ABC中,∠ACB为90°,CD⊥AB,cos∠BCD=,BD=1,则边AB的长是()A、B、C、2 D、5、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、6、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A、B、C、D、7、如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A、5B、5C、5D、108、如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A、B、2 C、D、9、如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A、1B、C、D、10、如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是()A、16B、18C、6D、711、如图,在梯形ABCD中,∠A=∠B=90°,AB=,点E在AB上,∠AED=45°,DE=6,CE=7.求:AE的长及sin∠BCE的值.12、如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC 于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,求EF的长.题型三:解直角三角形的应用1、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A、450a元B、225a元C、150a元D、300a元2、如图,AB是斜靠在墙上的长梯,D是梯上一点,梯脚B与墙脚的距离为1.6m(即BC的长),点D与墙的距离为1.4m(即DE的长),BD长为0.55m,则梯子的长为()A、4.50mB、4.40mC、4.00mD、3.85m3、如图,太阳光线与地面成60°角,一棵倾斜的大树AB与地面成30°角,这时测得大树在地面的影长BC为10m,则大树的长为()m.A、5B、10C、15D、204、如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A 处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为()A、60米B、45米C、30米D、45米5、如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)6、如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)7、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)8、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:3.7,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,≈1.7,tan15°=)题型四:坡度坡角问题及仰角俯角问题1、如图,是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为()A、B、C、D、2、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A、5mB、6mC、7mD、8m3、周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A、36.21米B、37.71米C、40.98米D、42.48米4、一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的∠AOP=60°(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的∠EO′P′=45°,那么小山的高度CD约为()(注:数据≈1.732,≈1.414供计算时选用)A、68米B、70米C、121米D、123米5、如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为m,下列结论中,正确的是()A、由楼顶望塔顶仰角为60°;B、由楼顶望塔基俯角为60°;C、由楼顶望塔顶仰角为30°;D、由楼顶望塔基俯角为30°6、已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45°向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30°向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(=1.414,=1.732结果保留三个有效数字)()A、22.1米B、26.0米C、27.9米D、32.8米7、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B 处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于多少度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).8、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为(即AB:BC=),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).题型五:方向角问题1、如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A、7海里B、14海里C、7海里D、14海里2、在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A、北偏东20°方向上B、北偏西20°方向上C、北偏西30°方向上D、北偏西40°方向上3、如图,小亮家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()A、100米B、米C、米D、米4、综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5、如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=0.75).6、如图所示,一艘轮船以30海里/小时的速度向正北方向航行,在A处得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处时测得灯塔C在北偏西45°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73).7如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C 处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时,参考数据≈1.41,≈1.73)8、(2010•陕西)在一次测量活动中,同学们要测量某公园的码头A与他正东方向的亭子B之间的距离,如图他们选择了与码头A、亭子B在同一水平面上的点P在点P处测得码头A位于点P北偏西方向30°方向,亭子B位于点P北偏东43°方向;又测得P与码头A之间的距离为200米,请你运用以上数据求出A与B的距离.练习作业:1、在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A、7sin35°B、C、7cos35°D、7tan35°2、Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.那么c等于()A、acos A+bsin BB、asin A+bsin BC、D、3、如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A、B、C、D、4、如图,已知一坡面的坡度i=1:,则坡角α为()A、15°B、20°C、30°D、45°5、如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是()A、B、C、D、6、如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55度.要使A,C,E成一直线.那么开挖点E离点D的距离是()A、500sin55°米B、500cos55°米C、500tan55°米D、500cot55°米7、如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A、3 B、C、D、8、如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.(1)求sin∠DBC的值;(2)若BC长度为4cm,求梯形ABCD的面积.9、路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD 与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)10、如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m).11、如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.。
(完整版)解直角三角形讲义
∠A的邻边b∠A的对边a 斜边c CBA(1)34CB A解直角三角形24.1锐角三角函数锐角三角函数概念:规定:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦, 记作sinA ,即sinA= =ac. sinA =A a A c ∠=∠的对边的斜边 把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA= = ;把∠A 的对边与邻边的比叫做∠A 的正切,= ab .记作tanA ,即tanA=例1 如图,在Rt △ABC 中,∠C=90°,求值.sinA= cosA=tanA= sinB=cosB= tanB=sinA= cosA=tanA= sinB=cosB= tanB=特殊角的三角函数值:A ∠的邻边斜边acA A ∠∠的对边的邻边_( 2 ) _ 13_5 __C_B _A30°45°60°siaAcosAtanA例2:求下列各式的值.(1)cos260°+sin260°.(2)cos45sin45︒︒-tan45°.练习:1、2、计算:解直角三角形:直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有以下等量关系 (1)边角之间关系a b A b a A c b A c a A ====cot ;tan ;cos ;sin b aB a b B c a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系(3)锐角之间关系∠A+∠B=90°. a 2 +b 2 =c 2 (勾股定理)以上三点正是解直角三角形的依据.例3:在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;(3)已知:32sin =A ,6=c ,求a 、b ;(4)已知:,9,23tan ==b B 求a 、c ;。
精品 九年级数学 下册解直角三角形同步讲义+练习16页
解直角三角形第01课 三角函数的定义知识点:解直角三角形的概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即=A sin∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即=A cos∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即=A tan即锐角A 的正弦、余弦和正切统称∠A 的三角函数.注意:sinA,cosA,tanA 都是一个完整的符号,单独的"sin ”没有意义,其中A 前面的“∠”一般省略不写。
各锐角三角函数之间的关系:(1)互余关系:若∠A+∠B=900,则sinA=cos =cos ( ),cosA=sin =sin ( ) (2)平方关系:1cos sin 22===+=+A A ⇒1cos sin 22=+A A(3)倒数关系:1tan tan ,tan tan =⋅=⋅==B A B A ,⇒=⋅B A tan tan(4)弦切关系:=A sin ,=A cos ,=AAcos sin ⇒=A tan例1.如图,在Rt △ABC 中,∠C=900,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切.例2.探索300、450、600角的三角函数值.例3.计算:(1)(1)cos600+ sin 2450-tan340·tan560(2)已知tanA=2,求AA AA cos 5sin 4cos sin 2+-的值.例4.如图,在Rt △ABC 中,∠C=900,135sin =B ,D 在BC 边上,且∠ADC=450,AC=5.求∠BAD 的正切值.例5.如图,在△ABC 中,AB=AC ,∠A=135°求tanB 的值.课堂练习:1.填表:已知一个角的三角函数值,求这个角的度数(逆向思维)2.在Rt △ABC 中,∠C=900,31tan =A ,AC=6,则BC 的长为( ) A.6 B.5 C.4 D.23.在Rt △ABC 中,∠C=900,AC=4,BC=3,cosB 的值为 ( )A.51 B.53 C.54 D.434.在△ABC 中,∠C=900,tanA=1,则sinB 的值是 ( )A.3B.2C.1D.22 5.在正方形网格中,△ABC 的位置如图所示,则cos B ∠的值为( ) A.12 B.22C.32D.33第5题图 第6题图6.在Rt △ABC 中,∠C=90º,∠A=15º,AB 的垂直平分线与AC 相交于E 点,则CE :EB 等于( ) A.2:3 B.3:2 C.3:1 D.1:37.在△ABC 中,∠A=30º,tan B=13,BC=10,则AB 的长为 8.计算:084sin 45(3)4-︒+-π+-= ; 9.锐角A 满足3)15sin(20=-A ,则∠A= 10.已知tanB=3,则sin 2B = ; 11.已知32sin =α,则αcos = ,αtan =12.已知31cos =α,则α2sin 1-= ;13.已知42cos sin =⋅a a ,则aaa a sin cos cos sin += 14.计算:(1)245cos 260sin 30sin 000-+⋅ (2)000020253tan 37tan 45tan 60cos 60sin ⋅+-+(3)︒⋅︒-︒⋅+︒60tan 60sin 45cos 230sin (4)000030tan )30cos 260(sin 345sin 2+--15.如图,在△ABC 中,∠C=900,AC=5cm ,∠BAC 的平分线交BC 于D,3310=AD cm,求∠B ,AB 及BC.16.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC= . 17.在Rt △ABC 中,∠C=900,tanA=34,BC=8,则△ABC 的面积为 . 18.如图,某山坡的坡面AB=200米,坡角∠BAC=300,则该山坡的高BC 的长为______米.19.如图,在矩形ABCD 中,E 是BC 边上的点,AE=BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:△ABE ≌△DFA ;(2)如果AD=10,AB=6,求sin ∠EDF 的值.20.某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF (如图所示),已知立杆AB 的高度是3米,从侧面D 点测到路况警示牌顶端C 点和底端B 点的仰角分别是600和450,求路况警示牌宽BC 的值.21.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由450降为300,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.求:改善后滑滑板会加长多少?22.如图,为了测量某风景区内一座塔AB 的高度,小明分别在塔的对面一楼房CD 的楼底C,楼顶D 处,测得塔顶A 的仰角为450和300,已知楼高CD 为10m ,求塔的高度.23.某型号飞机的机翼形状如图所示,AB ∥CD ,根据数据计算AC 、BD 和CD 的长度.24.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF,∠F=∠ACB=900, ∠E=450,∠A=600,AC=10,试求CD 的长.25.如图,在△ABC 中,∠C=900,sinA=54,AB=15,求tanA 和△ABC 的周长.1.计算:2cos 45tan 60cos30+等于( )A.1B.2C.2D.32.A (cos600,-tan300)关于原点对称的点A 1的坐标是( )A.1323⎛⎫- ⎪ ⎪⎝⎭,B.3323⎛⎫- ⎪ ⎪⎝⎭, C.1323⎛⎫-- ⎪ ⎪⎝⎭, D.1322⎛⎫- ⎪ ⎪⎝⎭, 3.三角形在方格纸中的位置如图所示,则tan α的值是( )A.35B.43 C.34 D.454.如图,在Rt △ABC 中,∠ACB=900,BC=1,AB=2,则下列结论正确的是( )A.3sin 2A =B.1tan 2A = C.3cos 2B = D.tan 3B =5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则sin B 的值是( )A.23B.32C.34D.436.如图,在△ABC 中,∠ACB=900,CD ⊥AB 于D ,若AC=32,AB=23,则tan BCD ∠的值为( )A.2B.22C.63D.337.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD=300,在C 点测得∠BCD=600,又测得AC=50米,则小岛B 到公路l 的距离为( )米.A .25B.253C.10033D.25253+8.已知△ABC 的外接圆O 的半径为3,AC=4,则sinB=( )A.13错误!未找到引用源。
解直角三角形(仰角和俯角)讲义
解直角三角形(仰角和俯角)一、知识点讲解1、仰角和俯角的定义:在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
二、典例分析利用解直角三角形解决仰角、俯角问题例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)变式练习:1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A、50B、51C、50+1D、101第1题第2题第3题2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点A、D、B在同一直线上,则AB两点间距离是米。
3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)反馈练习 基础夯实1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1200m D 、 2400m第1题 第2题 第3题 第4题2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。
《解直角三角形》 讲义
《解直角三角形》讲义一、直角三角形的基本概念直角三角形是指其中一个角为 90 度的三角形。
在直角三角形中,90 度角所对的边称为斜边,另外两条边称为直角边。
二、解直角三角形的定义解直角三角形就是已知直角三角形中的除直角外的两个元素(至少有一个是边),求出其余的未知元素。
三、解直角三角形的依据1、三边关系(勾股定理):在直角三角形中,两条直角边的平方和等于斜边的平方。
即 a²+ b²= c²,其中 a、b 为直角边,c 为斜边。
2、锐角关系:直角三角形的两个锐角互余,即∠A +∠B =90°。
3、边角关系:正弦(sin):对边与斜边的比,即 sinA = a/c,sinB = b/c。
余弦(cos):邻边与斜边的比,即 cosA = b/c,cosB = a/c。
正切(tan):对边与邻边的比,即 tanA = a/b,tanB = b/a。
四、解直角三角形的基本类型1、已知两条直角边 a、b,求斜边 c 及两个锐角。
先利用勾股定理求出斜边 c =√(a²+ b²),然后根据三角函数求出锐角。
例如:已知直角三角形的两条直角边分别为3 和4,求斜边和锐角。
斜边 c =√(3²+ 4²) = 5sinA = 3/5,则∠A ≈ 3687°sinB = 4/5,则∠B ≈ 5313°2、已知一条直角边 a 和斜边 c,求另一条直角边 b 及两个锐角。
利用勾股定理求出 b =√(c² a²),再通过三角函数求出锐角。
比如:直角边为 6,斜边为 10,求另一直角边和锐角。
b =√(10² 6²) = 8sinA = 6/10 = 06,∠A ≈ 3687°sinB = 8/10 = 08,∠B ≈ 5313°3、已知一条直角边 a 和一个锐角 A,求其他元素。
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
解直角三角形复习讲义
解直角三角形复习讲义知识要点:一、直角三角形的元素(边与角)的对应关系。
Eg :在Rt △ABC 中,∠C=90°得:直角边: AC BC 斜边: AB 图形: .b a c锐角: ∠ B ∠A 直角:∠C二、直角三角形的相关性质:如图(1):在Rt △ABC 中,∠C=90° 1、 两锐角的关系:直角三角形的两个锐角互余。
∠A+∠B=90°2、 三边关系:勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
BC 2+ AC 2 =AB 2 或(a 2+b 2=c 2)变形式子:BC 2 =AB 2- AC 2,AC 2 =AB 2 -BC 2……等的应用。
勾股定理逆定理:如果一个三角形的两条较短边的平方和等于较长边的平方,那么这个三角形是直角三角形。
若:BC 2+ AC 2 =AB 2 或(a 2+b 2=c 2),则:△ABC 是直角三角形,且∠C=90°3、 直角三角形斜边上的中线等于斜边的一半。
4、 直角三角形中30°角所对的直角边等于斜边的一半。
5、直角三角形被斜边上的高分成的两个直角三角形与原来的直角三角形相似。
若:在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D则:△ACD ∽△CBD ∽△ABC 对应边成比例6、射影定理:△ACD ∽△ABC AC 2=AD ·AB△CBD ∽△ABC BC 2=BD ·AB△ACD ∽△CBD CD 2=AD ·DB7、边角关系:锐角三角函数(1)锐角∠A 、∠B (∠A+∠B=90°)的三角函数: 互余两角的三角函数关系 取值范围 全称 简写锐角∠A 的正弦sinA=斜边的对边A ∠=cosB 0<sinA <1 Sine sin锐角∠A 的余弦cosA=斜边的邻边A ∠=sinB 0<cosA <1 Cosine cos锐角∠A 的正切tanA=的邻边的对边A A ∠∠=cotB tanA >0 Tangent tan(或tg)锐角∠A 的余切cotA=的对边的邻边A A ∠∠=tanB cotA >0 Cotangent cot(或 ctg 、ctn)注:对于锐角∠A 的每一个确定的度数,其对应的三角函数值也是唯一确定的。
解直角三角形讲义
解直角三角形24.1 锐角三角函数锐角三角函数概念:B规定:在Rt△BC 中,∠C=90 ,斜边c∠A的对边 a ∠A 的对边记作a,∠B 的对边记作b,∠C 的对边记作c.A C∠A的邻边b 在Rt△BC 中,∠C=90°,我们把锐角 A 的对边与斜边的比叫做∠ A 的正弦,记作sinA,即sinA= =ac .sinA =A的对边 aA的斜边 c把∠A的邻边与斜边的比叫做∠A的余弦,A的邻边 a记作cosA ,即cosA= = ;斜边c把∠A的对边与邻边的比叫做∠A的正切,记作tanA ,即tanA= A的对边A的邻边=ab .例1 如图,在Rt△ABC 中,∠C=90 °,求值.B sinA= cosA=3 tanA= sinB=A4 C cosB= tanB=(1)sinA= cosA=_BtanA= sinB=__C_A_特殊角的三角函数值:130°45°60°siaAcosAtanA例2:求下列各式的值.(1)cos260°+sin260°.(2)260°+sin260°.(2)c os 45sin 45-tan45°.练习:1、2、计算:解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
直角三角形ABC 中,∠C=90°,a、b、c、∠A、∠B 这五个元素间有以下等量关系(1)边角之间关系sina b aA ; cos A ; tan A ; cotc c bAbasinb a bB ; cos B ; tan B ; cotc c aBab如果用表示直角三角形的一个锐角,那上述式子就可以写成.sin 的对边斜边;cos的邻边斜边;tan的对边的邻边;cot的邻边的对边(2)三边之间关系(3)锐角之间关系∠A+∠B=90°.2 2 2a +b =c (勾股定理)以上三点正是解直角三角形的依据.例3:在Rt△ABC 中,∠C=90°.(1)已知:a=35,c 35 2 ,求∠A、∠B,b;(2)已知:a 2 3 ,b 2 ,求∠A、∠B,c;2sin A(3)已知: 3,c 6,求a、b;3(4)已知:tan B , b 9, 求a、c;2(5)已知:∠A=60°,△ABC 的面积S12 3,求a、b、c 及∠B.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.例4、如图,大海中某岛C 的周围25km 范围内有暗礁.一艘海轮沿正东方向航行,在 A 处望见C 在北偏东60°处,前进20 km 后到达点B,测得C在北偏东45°处.如果该海轮继续沿正东方向航行,有无触礁危险?请说明理由.(参考数据:≈ 1.41,≈ 1.73)练一练:1、某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B 两个探测点探测到 C 处有生命迹象.已知A、B 两点相距 6 米,探测线与地面的夹30°和45°,试确定生命所在点 C 的深度.(精确到0.1 米,参考数据:≈ 1.41,角分别是≈ 1.73)2、如图,一艘轮船航行到 B 处时,测得小岛 A 在船的北偏东60°的方向,轮船从 B 处继续向正东方向航行200 海里到达 C 处时,测得小岛 A 在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈ 1.732)例5、如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥P D ,在小道上测得如下数据:AB =60 米,∠PAB =45°,∠PBA =30°.请求出小桥PD 的长.练一练:1、如图,A,B,C 分别表示三所不同的学校,B,C 在东西向的一条马路边, A 学校在 B 学校北偏西15°方向上,在 C 学校北偏西60°方向上,A,B 两学校之间的距离是1000 米,请求出∠BAC 的度数以及A,C 两学校之间的距离.2、如图,小明在楼顶处测得对面大楼楼顶点处的仰角为52°,楼底点处的俯角为13°.若两座楼与相距60 米,则楼的高度约为米.(结果保留三个有效数字)(,,,,,)坡度与坡角坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),即坡角的正切值「即tan ∠α」。
《解直角三角形》-完整版PPT课件
整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
初中数学解直角三角形综合讲义
1 B 初中数学解直角三角形综合讲义一、理解概念1.产生的背景:直角三角形中三边和三角的数量关系2 明确概念:解直角三角形阐述概念:在直角三角形中,除直角外,一共有5个元素,即三条边和2个锐角。
由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形定对象:特殊的求解过程定角度:已知元素新事物:求出未知元素举例:在△举例:在△ABC ABC 中,∠中,∠C C 为直角,∠为直角,∠A A ,∠,∠B B ,∠,∠C C 所对的边分别为a ,b ,c ,且c=287.4c=287.4,,∠B=42B=42°°6′,解这个直角三角形。
解:(1)∠)∠A=90A=90A=90°°- 42- 42°°6′=47=47°°5454′′(2)∵)∵ cosB= cosB=c a, , ∴∴a=c cosB=287.4a=c cosB=287.4××0.74200.7420≈≈213.3 (3)∵)∵ sinB= sinB=cb, , ∴∴b=c sinB=287.4b=c sinB=287.4××0.67040.6704≈≈192.7二、研究概念1.1.条件:条件:直角三角形2.2.构成和本质构成和本质 [ [边边] ] 两条直角边两条直角边 [ [角角] ] 有一个直角有一个直角 [ [角角]] 两锐角互余两锐角互余3.3.特征:特征: [[角角] ] 两锐角互余,∠两锐角互余,∠两锐角互余,∠A+A+A+∠∠B=90B=90°°[边] ] 勾股定理,勾股定理,勾股定理,a a 2+b 2=c2[等式的性质等式的性质] a ] a 2 =c 2—b2b 2=c 2—a2勾股定理逆定理[ [边、角边、角边、角] ] ] 锐角三角函数锐角三角函数 [ [重要线段重要线段重要线段] ] ] 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半[圆] ] 直角三角形三顶点共圆,圆心是斜边的中点直角三角形三顶点共圆,圆心是斜边的中点 [ [特殊角特殊角特殊角] 30] 30] 30°角所对的直角边是斜边的一半°角所对的直角边是斜边的一半 45 45°角所对的直角边是斜边的°角所对的直角边是斜边的22倍4.4.下位下位无5.5.应用:应用:三、例题讲解1、在R t R t△△ABC 中,中,AD AD 是斜边BC 上的高,如果BC= a BC= a,∠,∠,∠B=B=α,那么AD 等于等于 (( )) ((A 级)级) A A、、 asin 2α B B、、acos 2α C C、、asin αcos α D D、、asin αtan α 对象:对象:对象:R t R t R t△△ABC 中,中,AD AD AD 角度:角度:角度: 三角函数三角函数三角函数分析:分析:R t R t R t△△ABC cosB=BC AB cos α= aAB AB= a AB= a··cos αR t R t△△ABD sin α=ABADAD= sin α·AB AD= asin αcos α2、 正方形ABCD 中,对角线BD 上一点P ,BP∶PD=1∶2,且P 到边的距离为2,则正方形的边长是,则正方形的边长是 ,BD=对象:正方形ABCD 对角线BD 上的点P P 角度:角度:角度: 直角三角形直角三角形 分析:设P 到边的距离为PE PE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∠A的邻边b ∠A的对边a 斜边c C
B
A
(1)
3
4C
B A
解直角三角形
24.1锐角三角函数
锐角三角函数概念:
规定:在Rt △BC 中,∠C=90,
∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .
在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,
记作sinA ,即sinA= =
a
c
. sinA =
A a A c ∠=∠的对边的斜边 把∠A 的邻边与斜边的比叫做∠A 的余弦,
记作cosA ,即cosA= = ;
把∠A 的对边与邻边的比叫做∠A 的正切,
= a
b .
记作tanA ,即tanA=
例1 如图,在Rt △ABC 中,∠C=90°,求值.
sinA= cosA=
tanA= sinB=
cosB= tanB=
sinA= cosA=
tanA= sinB=
cosB= tanB=
特殊角的三角函数值:
A ∠的邻边斜边a
c
A A ∠∠的对边
的邻边
_( 2 ) _ 13
_5 _
_C
_B _A
例2:求下列各式的值.
(1)cos260°+sin260°.(2)cos45
sin45
︒
︒
-tan45°.
练习:1、
2、计算:
解直角三角形:
直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有以下等量关系 (1)边角之间关系
a b A b a A c b A c a A ====
cot ;tan ;cos ;sin b a
B a b B c a B c b B =
===cot ;tan ;cos ;sin
如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边
的邻边
;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=
∠∠=∠=∠=
cot tan cos sin
(2)三边之间关系
(3)锐角之间关系∠A+∠B=90°. a 2 +b 2 =c 2
(勾股定理)
以上三点正是解直角三角形的依据.
例3:在Rt △ABC 中,∠C =90°.
(1)已知:a =35,235=c ,求∠A 、∠B ,b ;
(2)已知:32=a ,2=b ,求∠A 、∠B ,c ;
(3)已知:
32
sin =
A ,6=c ,求a 、b ;
(4)已知:,9,2
3
tan ==
b B 求a 、
c ;
(5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .
仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.
例4、如图,大海中某岛C的周围25km范围内有暗礁.一艘海轮沿正东方向航行,在A处望见C在北偏东60°处,前进20km后到达点B,测得C在北偏东45°处.如果该海轮继续沿正东方向航行,有无触礁危险?请说明理由.
(参考数据:≈1.41,≈1.73)
练一练:1、某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角
分别是30°和45°,试确定生命所在点C的深度.(精确到0.1
米,参考数据:
≈1.41,≈1.73)
2、如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170
海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)
例5、如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请求出小桥PD 的长.
练一练:1、如图,A,B,C分别表示三所不同的学校,B,C在东西向的一条马路边,A学校在B学校北偏西15°方向上,在C学校北偏西60°方向上,A,B两学校之间的距离是1000米,请求出∠BAC的度数以及A,C两学校之间的距离.
2、如图,小明在楼顶处测得对面大楼楼顶点处的仰角为52°,楼底点处的俯角为13°.若
两座楼与相距60米,则楼的高度约为米.(结果保留三个有效
数字)(,,,,
,)
坡度与坡角
坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),即坡角的正切值「即tan ∠α」。
通常用“i”表示。
例5同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图
6-33 水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,求坝底宽AD和斜坡AB的长(精确到0.1m)
练一练:1、如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的
坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:
≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比).
2、如图,一楼房AB 后有一假山,其坡度为i=1:
,山坡坡面上E 点处有一休息亭,测
得假山坡脚C 与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)
中考题欣赏:(2013年泸州)22.如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30O
,在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上),用测角仪测得塔顶D 的仰角为75O ,且AB 间距离为40m . (1)求点B 到AD 的距离;
(2)求塔高CD (结果用根号表示)。
(2014年泸州)22.海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)。