路面结构设计
路面结构设计计算
路面结构设计计算
路面结构设计涉及到许多方面的计算,包括以下几个关键要素:
车辆荷载:需要根据设计车型和交通流量等因素确定路面所需承载的车辆荷载。
常用的计算方法有AASHTO(美国公路与运输官员协会)标准、Pavement ME Design等。
路面材料特性:不同路面材料具有不同的强度、弹性模量等特性。
需要根据路面所使用的材料类型,如沥青混合料、水泥混凝土等,进行相应的材料特性计算。
路面厚度设计:为了确保路面能够承受车辆荷载并具备足够的寿命,需要计算适当的路面厚度。
常用的计算方法包括经验公式、层间抗裂分析、有限元分析等。
基底和地基设计:路面结构的稳定性也依赖于基底和地基的设计。
需要进行地质勘探和土壤力学参数测试,并根据工程要求计算基底和地基的承载能力。
排水设计:良好的排水系统对路面结构的长期稳定性至
关重要。
需要进行降雨径流计算,确定适当的排水设计参数,包括路肩和排水系统的尺寸和材料。
施工工艺选择:路面结构设计还需要考虑施工工艺,包括路面层次、铺设方式、压实方法等。
需要根据具体情况进行合理的选择。
综上所述,路面结构设计涉及到多个方面的计算和分析,需要根据具体情况采用相应的计算方法和标准,以确保设计的路面结构具备足够的承载能力和稳定性。
6种路面结构的具体设计指标
6种路面结构的具体设计指标路面结构是道路工程中至关重要的组成部分,不同类型的路面结构在设计时需要考虑各种因素,以确保道路的安全性、耐久性和经济性。
本文将详细介绍六种常见的路面结构,包括沥青混凝土路面、水泥混凝土路面、碎石路面、沥青封层路面、复合型路面和透水路面的设计指标,并探讨其在不同应用场景中的特点和优势。
一、引言路面结构是道路工程中的一个重要组成部分,其设计需要考虑到交通流量、环境条件、土壤特性等多方面因素。
在不同的道路工程中,选择合适的路面结构对于提高道路的使用寿命、减少维护成本具有关键作用。
本文将详细介绍沥青混凝土路面、水泥混凝土路面、碎石路面、沥青封层路面、复合型路面和透水路面这六种常见路面结构的设计指标,并探讨它们在不同应用场景中的特点和优势。
二、沥青混凝土路面设计指标:沥青层厚度:通常应根据交通流量、车辆类型和地理位置确定,以确保足够的承载能力和耐久性。
基层材料:应选择合适的基层材料,如碎石、沙土,以提供均匀的支撑和排水性能。
沥青配合比:应根据气候条件和交通负荷合理确定,以确保路面的稳定性和耐久性。
应用场景:沥青混凝土路面广泛应用于城市道路、高速公路等场景,适用于中到高交通流量和各种气候条件。
三、水泥混凝土路面设计指标:混凝土强度等级:根据道路等级和交通流量确定,以满足承载要求。
膨胀缝和工程缝设计:以控制混凝土的开裂,提高路面的耐久性。
基层处理:应确保基层的均匀性和稳定性,以防止变形和沉降。
应用场景:水泥混凝土路面适用于需要较高承载能力和较长使用寿命的道路,如高速公路、机场跑道等。
四、碎石路面设计指标:碎石种类和尺寸:应选择合适的碎石种类和尺寸,以提供均匀的支撑和排水。
碎石层厚度:根据交通流量和基层条件确定,以确保路面的稳定性和耐久性。
基层处理:应保证基层的排水性能和稳定性,以防止碎石沉降和泥泞。
应用场景:碎石路面适用于低交通流量和轻型车辆的场景,如农村道路、停车场等。
五、沥青封层路面设计指标:沥青封层厚度:通常较薄,以提供耐水、防护和抗滑的性能。
市政道路路面结构及路基设计
市政道路路面结构及路基设计市政道路是城市交通系统的重要组成部分,路面结构的设计是保障道路安全和使用寿命的关键。
下面将介绍市政道路路面结构及路基设计的主要内容。
市政道路的路面结构由多层不同材料组成,主要包括表面层、基层、底基层和路基。
其设计原则是合理选择材料和层厚,使之能够承受各类车辆的交通荷载,具有良好的抗水、抗冻、抗滑性能。
1. 表面层:表面层是直接与车辆轮胎接触的部分,通常采用沥青混凝土或水泥混凝土铺装。
其厚度一般在3-5厘米之间,可以根据实际情况进行调整。
2. 基层:基层是表面层下方的主要承载层,通常采用碎石、碎石混凝土或沥青混合料。
其厚度一般在10-20厘米之间,提供对表面层的支撑和承载作用。
4. 路基:路基是道路沿线的自然地基或人工填筑的土层,以提供对上层结构的支撑和稳定。
其厚度根据地质条件和设计要求来确定,一般在1-2米之间。
市政道路的路基设计主要包括路基宽度、路基坡度和路基排水等问题。
1. 路基宽度:路基宽度根据道路的设计速度、交通流量和土质条件等来确定。
一般来说,道路设计速度越高、交通流量越大,路基宽度也应相应增加,以保证安全和流畅的交通。
2. 路基坡度:路基坡度是指路基横断面的倾斜程度,用于排水和防止积水。
路基坡度一般为1-2%,即每10-20米距离上升或下降1米,以确保雨水能够顺利排出。
3. 路基排水:路基排水是道路设计中非常重要的问题,过于潮湿的路基会导致路面结构的破坏和变形。
必须合理设计路基的排水系统,包括排水沟、排水管道和渗水沉淀带等,以保证路基的干燥和稳定。
市政道路的路面结构及路基设计是确保道路安全和使用寿命的重要环节。
通过合理选择材料和层厚,确定路基宽度和坡度,并加强排水系统的设计,可以提高道路的承载能力和使用寿命。
还需要充分考虑实际情况,根据地质条件和交通需求进行优化调整,以满足不同地区和场景的需求。
路面结构设计
1沥青路面设计1.1路面设计原则①路面设计应根据使用要求和气候、水文等自然条件,结合当地实际经验进行。
②在满足交通量和使用要求的前提下,应因地制宜,选择合理方案。
③结合当地实际,在路面设计方案中应用有效的新材料、新工艺、新技术。
④路面设计方案应注重环境保护和施工人员的健康安全。
⑤为提高路面工程质量,应进行机械化施工。
⑥高速公路和一级公路的路面不得分期修建。
1.2新建沥青路面设计1.2.1设计标准①由《公路沥青路面设计规范》(JTG D50-2017)可得,路面结构的目标可靠度和目标可靠指标不应低于表1.1的规定1.1目标可靠度和目标可靠指标公路等级 高速公路 一级公路 二级公路 三级公路 四级公路目标可靠度(%) 95 90 85 80 70目标可靠指标β 1.65 1.28 1.04 0.84 0.52②该公路为二级公路,根据《公路沥青路面设计规范》(JTG D50-2017)的规定(如下表1.2所示)路面结构设计年限为12年。
1.2路面结构设计使用年限(年)公路等级 设计使用年限 公路等级 设计使用年限高速公路、一级公路 15 三级公路 10 二级公路 12 四级公路 8③采用下表1.3的参数,标准荷载为BZZ-100。
表1.3设计轴载的参数1设计轴载(KN) 轮胎接地压强(Mpa)单轮接地当量圆直径(mm)两轮中心距(mm)100 0.70 213.0 319.51.2.2交通荷载参数分析①根据《公路沥青路面设计规范》(JTG D50-2017)附录A.1车型分类。
②交通数据调查该项目交通量见表1.4,交通增长率为7.0%,方向系数取0.5,可靠度系数β取为1.04,根据《公路沥青路面设计规范》(JTG D50-2017)采用水平3的车道系数,根据表1.5取为1.0。
表1.4 交通组成交通组成 交通量(辆/日) 车型 交通组成 交通量(辆/日) 车型 小客车 739 小 跃进NJ131105 小66 中大客车 285 大 五十铃NPR595G北京BJ130 250 小 江淮196 中HF140A交通SH361 102 大 江淮HF150155 中太拖拉138 83 大 东风KM340189 中85 特大 金杯SY132 395 小 东风SP9135B46 特大 金杯SY450 345 小 五十铃EXR181L1.5 车道系数单向车道数 1 2 3 ≥4高速公路 - 0.70-0.85 0.45-0.60 0.40-0.50其他等级公路 1.00 0.50-0.75 0.50-0.75 - 各类车型技术参数见表1.6。
4、6、12、15米宽水泥混凝土路面结构设计图
路面结构设计
1沥青路面设计1.1路面设计原则①路面设计应根据使用要求和气候、水文等自然条件,结合当地实际经验进行。
②在满足交通量和使用要求的前提下,应因地制宜,选择合理方案。
③结合当地实际,在路面设计方案中应用有效的新材料、新工艺、新技术。
④路面设计方案应注重环境保护和施工人员的健康安全。
⑤为提高路面工程质量,应进行机械化施工。
⑥高速公路和一级公路的路面不得分期修建。
1.2新建沥青路面设计1.2.1设计标准①由《公路沥青路面设计规范》(JTG D50-2017)可得,路面结构的目标可靠度和目标可靠指标不应低于表1.1的规定1.1目标可靠度和目标可靠指标公路等级 高速公路 一级公路 二级公路 三级公路 四级公路目标可靠度(%) 95 90 85 80 70目标可靠指标β 1.65 1.28 1.04 0.84 0.52②该公路为二级公路,根据《公路沥青路面设计规范》(JTG D50-2017)的规定(如下表1.2所示)路面结构设计年限为12年。
1.2路面结构设计使用年限(年)公路等级 设计使用年限 公路等级 设计使用年限高速公路、一级公路 15 三级公路 10 二级公路 12 四级公路 8③采用下表1.3的参数,标准荷载为BZZ-100。
表1.3设计轴载的参数1设计轴载(KN) 轮胎接地压强(Mpa)单轮接地当量圆直径(mm)两轮中心距(mm)100 0.70 213.0 319.51.2.2交通荷载参数分析①根据《公路沥青路面设计规范》(JTG D50-2017)附录A.1车型分类。
②交通数据调查该项目交通量见表1.4,交通增长率为7.0%,方向系数取0.5,可靠度系数β取为1.04,根据《公路沥青路面设计规范》(JTG D50-2017)采用水平3的车道系数,根据表1.5取为1.0。
表1.4 交通组成交通组成 交通量(辆/日) 车型 交通组成 交通量(辆/日) 车型 小客车 739 小 跃进NJ131105 小66 中大客车 285 大 五十铃NPR595G北京BJ130 250 小 江淮196 中HF140A交通SH361 102 大 江淮HF150155 中太拖拉138 83 大 东风KM340189 中85 特大 金杯SY132 395 小 东风SP9135B46 特大 金杯SY450 345 小 五十铃EXR181L1.5 车道系数单向车道数 1 2 3 ≥4高速公路 - 0.70-0.85 0.45-0.60 0.40-0.50其他等级公路 1.00 0.50-0.75 0.50-0.75 - 各类车型技术参数见表1.6。
路面结构组合设计的概念
路面结构组合设计的概念路面结构组合设计的概念一、引言随着交通运输事业的不断发展,路面工程建设也越来越重要。
路面结构是整个道路系统中最重要的组成部分之一,它直接影响着道路的使用寿命和安全性能。
因此,对于路面结构的设计和施工都需要进行科学合理的规划和组合设计。
本文将从以下几个方面详细阐述路面结构组合设计的概念:定义、意义、原则、方法以及实施过程。
二、定义路面结构组合设计是指根据道路使用功能、地质条件、交通流量等因素,选用不同材料和厚度来组合设计道路表层结构,以提高道路使用寿命和行车安全性能的过程。
三、意义1.提高道路使用寿命:通过科学合理的组合设计,可以使得不同材料在不同层次上发挥最大作用,从而延长道路使用寿命。
2.提升行车安全性能:通过正确选择材料和厚度,并根据交通流量等因素进行科学组合设计,可以有效提升行车安全性能。
3.节约建设成本:对于不同类型的道路,在材料选择上采用合理的组合设计,可以节约建设成本,提高经济效益。
四、原则1.科学性原则:路面结构组合设计必须符合科学性原则,即根据地质条件、交通流量等因素选择不同材料和厚度进行组合设计。
2.经济性原则:路面结构组合设计必须符合经济性原则,即在保证道路使用寿命和行车安全性能的前提下,选择最为经济的材料和厚度。
3.可行性原则:路面结构组合设计必须符合可行性原则,即在实际施工中能够达到预期效果。
五、方法1.了解地质条件:在进行路面结构组合设计之前,需要对道路所处地质条件进行全面了解,并针对不同地质条件采用不同的材料和厚度进行组合设计。
2.考虑交通流量:交通流量是影响道路使用寿命和安全性能的重要因素之一。
在进行路面结构组合设计时,需要根据不同交通流量采用不同材料和厚度进行组合设计。
3.选择适当材料:根据道路使用功能以及地质条件等因素选择适当的材料,并根据其特点进行科学组合设计。
4.确定适当厚度:在进行路面结构组合设计时,需要根据交通流量、材料特性等因素确定适当的厚度,并进行科学组合设计。
路面结构设计方案
路面结构设计方案一、概述路面结构设计是指在道路工程中,根据道路的使用要求和地理环境特点,选择合适的材料和结构形式,设计出适用于不同道路类型和交通量的路面结构。
路面结构设计的主要目标是确保道路的安全、舒适和使用寿命,并减少路面损坏和维护成本。
本文将介绍路面结构设计的一般原则和常用的材料和结构形式,以及一些设计注意事项。
二、路面结构设计的一般原则1.根据交通量和设计使用寿命,确定路面层的厚度和材料。
一般来说,高交通量的道路需要较厚的路面层和耐久性较好的材料,而低交通量的道路可以选择较薄的路面层和经济性较好的材料。
2.根据地理环境特点,确定路面结构形式。
例如,在寒冷地区,需要采用保温层来保护路面免受冻融损坏的影响;在潮湿地区,需要采用排水设施来确保路面排水通畅。
3.根据车辆类型和速度,确定路面的平整度和抗滑性要求。
一般来说,高速公路需要更高的平整度和抗滑性,以适应高速行驶的车辆。
4.考虑施工和维护的便利性。
在设计路面结构时,需要考虑材料的可获得性和施工技术的可行性,以及维护和修复的便利性,以降低维护成本。
三、常用的路面材料和结构形式1.沥青路面沥青路面是一种常用的路面材料,具有良好的弹性和抗水性能,并且施工简便。
沥青路面结构一般由基层、底面、中面和面层组成,其中面层通常采用厚度较大的沥青混凝土,以提供足够的耐久性和抗水性能。
2.混凝土路面混凝土路面是一种耐久性较好的路面材料,适用于承受重载车辆和高交通量的道路。
混凝土路面结构一般由基层、底面和面层组成,其中面层通常采用较高强度的混凝土,以提供足够的承载能力和耐久性。
3.砂石路面砂石路面是一种经济性较好的路面材料,适用于低交通量和低速道路。
砂石路面结构一般由基层和面层组成,其中面层通常采用砾石或碎石,以提供足够的承载能力和排水性能。
四、路面结构设计的注意事项1.考虑径流和排水。
在设计路面结构时,需要充分考虑路面的排水性能,确保雨水能够及时排出,以避免路面因积水而损坏。
市政道路路面结构及路基设计
市政道路路面结构及路基设计市政道路是指城市内的交通道路系统,其设计涉及到路面结构和路基设计。
路面结构是指道路的表层结构,用于承受车辆荷载和提供行车平稳性,而路基设计是指道路基础及其边坡的设计,用于承受道路荷载并保持路基的稳定性。
路面结构设计包括以下几个部分:1. 道路基础层:道路基础层一般由碎石、砂土等材料构成,用以提供路面的稳定性和排水功能。
基础层的厚度和材料的选择应根据地理条件和交通流量来决定。
3. 路面面层:路面面层是道路最上层的材料,通常由沥青混凝土或水泥混凝土构成。
面层应具有耐磨性、抗滑性和排水性能,以确保行车的平稳性和安全性。
4. 路肩:路肩是指道路两侧的边坡,通常由碎石、草坪等材料构成。
路肩的设计应考虑到排水和边坡稳定性,并根据交通流量和道路类型来确定宽度。
路基设计是指道路基础及其边坡的设计,主要包括以下几个方面:1. 车行道路基的设计:车行道路基是指路面结构下方的土层,用以提供支撑和承载能力。
路基设计应考虑到土壤的类型和强度,以及排水和稳定性的要求。
2. 路基边坡设计:路基边坡是指道路两侧的边坡,用以保持路基的稳定性并防止坍塌。
边坡的设计应考虑到土壤的稳定性、水分含量和坡度,并采取相应的措施来加固和保护边坡。
3. 排水系统设计:道路设计中的排水系统是为了确保道路在降雨等情况下的排水能力,防止水泄漏和积水。
排水系统设计应包括雨水收集、排水管道和排水沟等设施的设置。
市政道路的设计涉及到路面结构和路基设计,其中路面结构包括道路基础层、路面底层、路面面层和路肩的设计,而路基设计主要包括车行道路基的设计、路基边坡设计和排水系统设计。
这些设计要素的合理安排能够提高道路的使用寿命和安全性。
路面结构设计
• 低合金钢的强度比碳钢高. 工艺性能接近碳钢. 因此. 选用低合金钢往 往经济效益比较显著. 在选用材料时. 还应立足于我国的资源. 并考虑 我国的生产和供应情况. 例如能用硅锰钢的. 就尽量不要用铬镍钢. 此 外. 对同一企业来说. 所选用的材料种类、规格应尽量少而集中. 以便 于采购和管理. 减少不必要的附加费用.
来衡量.相对来说,表面平整度是一项宏观控制指标.不平整的路面表面 会增大行车阻力,并使车辆产生附加的振动作用.这种振动会造成行车 颠簸,影响行车的速度和安全、驾驶的平稳和乘客的舒适感.同时,振动 作用还会对路面施加冲击力,从而加剧路面和汽车机件的损坏以及轮 胎的磨损,并增大燃油的消耗.另外,不平整的路面还会积滞雨水,加速路 面的破坏.因此,要求路面具有与公路等级相应的足够的平整度. • 4.具有足够的表面抗滑性能
应的承载能力、行车速度、舒适性、安全性的性能.路面结构在行车 荷载和冷热、干湿气候因素的多次重复作用下,路面材料的性能产生 老化衰变,路面使用性能将逐步降低,从而逐渐产生疲劳破坏和塑性形 变累积,缩短路面的使用年限.因此,路面结构必须具备足够的抗疲劳强 度以及抗老化和抗累积形变的能力,以保持或延长路面的使用寿命.
上一页 下一页 返回
第一节 零件的失效形式和选材原则
• (二) 材料的工艺性应满足加工要求 • 材料的工艺性是指材料适应某种加工的能力. 在选材中. 与使用性能比
较. 材料的工艺性能常处于次要地位. 但在某些特殊情况下. 工艺性能 也会成为选材的主要依据. 高分子材料的成形工艺比较简单. 切削加工 性比较好. 但其导热性差. 在切削过程中不易散热. 易使工件温度急剧 升高而使其变焦(热固性塑料) 或变软(热塑性塑料). 陶瓷材料成形后硬 度极高. 除了可以用碳化硅、金刚石砂轮磨削外. 几乎不能进行其他加 工. 金属材料如果用铸造成形. 最好选择共晶成分或接近共晶成分的合 金. 如果用锻造成形. 最好选用组织呈固溶体的合金.
路面结构设计计算书(有计算过程的)
路⾯结构设计计算书(有计算过程的)公路路⾯结构设计计算⽰例⼀、刚性路⾯设计1)轴载分析路⾯设计双轮组单轴载100KN⑴以设计弯沉值为指标及验算⾯层层底拉⼒中的累计当量轴次。
①轴载换算:161100∑=?=ni i i i s P N N δ式中:sN ——100KN 的单轴—双轮组标准轴载的作⽤次数;iP —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN ;i N—各类轴型i 级轴载的作⽤次数; n —轴型和轴载级位数;i δ—轴—轮型系数,单轴—双轮组时,i δ=1;单轴—单轮时,按式43.031022.2-?=i i P δ计算;双轴—双轮组时,按式22.051007.1--?=i i P δ;三轴—双轮组时,按式22.081024.2--?=i i P δ计算。
注:轴载⼩于40KN 的轴载作⽤不计。
②计算累计当量轴次根据表设计规,⼀级公路的设计基准期为30年,安全等级为⼆级,轮迹横向分布系数η是0.17~0.22取0.2,08.0=r g ,则[][]362.69001252.036508.01)08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其交通量在44102000~10100??中,故属重型交通。
2)初拟路⾯结构横断⾯由表3.0.1,相应于安全等级⼆级的变异⽔平为低~中。
根据⼀级公路、重交通等级和低级变异⽔平等级,查表4.4.6 初拟普通混凝⼟⾯层厚度为24cm ,基层采⽤⽔泥碎⽯,厚20cm ;底基层采⽤⽯灰⼟,厚20cm 。
普通混凝⼟板的平⾯尺⼨为宽3.75m ,长5.0m 。
横缝为设传⼒杆的假缝。
3)确定基层顶⾯当量回弹模量tc s E E ,查表的⼟基回弹模量a MP E 0.350=,⽔泥碎⽯a MP E 15001=,⽯灰⼟a MP E 5502= 设计弯拉强度:acm MP f 0.5=,ac MP E 4101.3?=结构层如下:⽔泥混凝⼟24cm ⽔泥碎⽯20cm ⽯灰⼟20cm×按式(B.1.5)计算基层顶⾯当量回弹模量如下:a x MP h h E h E h E 102520.020.055020.0150020.022222221222121=+?+?=++= 12211221322311)11(4)(1212-++++=h E h E h h h E h E D x1233)2.055012.015001(4)2.02.0(122.0550122.01500-?+?++?+?=)(700.4m MN -=m E D h x x x 380.0)10257.412()12(3131=?==165.4)351025(51.1122.6)(51.1122.645.045.00=-=-?=--E E a x786.0)351125(44.11)(44.1155.055.00=?-=-=--E E b xa x bx t MP E E E ah E 276.212)351025(35386.0165.4)(31786.03100===式中:t E ——基层顶⾯的当量回弹模量,aMP ;0E ——路床顶⾯的回弹模量,x E ——基层和底基层或垫层的当量回弹模量, 21,E E ——基层和底基层或垫层的回弹模量, x h ——基层和底基层或垫层的当量厚度, x D ——基层和底基层或垫层的当量弯曲刚度, 21,h h ——基层和底基层或垫层的厚度, b a -——与E E x有关的回归系数普通混凝⼟⾯层的相对刚度半径按式(B.1.3-2)计算为: ()m E E h r tc679.0)276.21231000(24.0537.0)(537.03131=??==4)计算荷载疲劳应⼒p σ按式(B.1.3),标准轴载在临界荷位处产⽣的荷载应⼒计算为: a ps MP h r 060.124.0679.0077.0077.026.026.0=??==--σ因纵缝为设拉杆平缝,接缝传荷能⼒的应⼒折减系数87.0=r K 。
《路面结构设计》课件
考虑材料的成本和来源,尽量选择当 地或易于获取的材料,以降低工程成 本。
03
路面结构分析
路面结构应力的分析方法
有限元法
通过建立路面结构的有限元模型,模拟不同工况 下的应力分布,为路面结构设计提供依据。
边界元法
适用于分析路面结构的应力分布,特别是对于复 杂边界条件下的路面结构。
解析法
基于力学原理和经验公式,对简单路面结构进行 应力分析。
参考和借鉴。
详细描述
典型案例分析
稳定土路面结构设计实例
总结词
成本低、施工方便、适用于交通量较 小的农村公路
总结词
典型案例分析
详细描述
稳定土路面结构设计需要考虑土的性 质、气候条件和施工条件等因素,通 过合理的材料配比和厚度设计,确保 路面的稳定性和耐久性。
详细描述
介绍国内典型的稳定土路面结构设计 案例,包括其设计思路、材料配比和 厚度设计等,为读者提供参考和借鉴 。
路面结构变形的分析方法
弹性力学法
基于弹性力学理论,分析路面结构的变形特性。
有限元法
通过建立路面结构的有限元模型,模拟不同工况下的变形情况,为 路面结构设计提供依据。
实测法
通过实地测量和观测,获取路面结构的变形数据,评Fra bibliotek其变形特性 。
路面结构稳定性的分析方法
1 2
极限平衡法
基于极限平衡理论,分析路面结构的稳定性。
路面结构设计涉及土基、垫层、基层和面层等各个层次的设 计,需要综合考虑材料性能、施工工艺、环境因素等多种因 素。
路面结构设计的目的和意义
提高道路的使用性能
合理的路面结构设计可以减少路面的损坏和维修费用,延长道路 的使用寿命,提高道路的通行能力和舒适性。
路面结构设计
5.路面结构设计5.1沥青路面5.1.1交通量及轴载计算分析路面设计以单轴载双轮组100KN 为标准轴载。
1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算:轴载换算采用如下的计算公式:=N ∑=ki i i P P n C C 135.421)/(计算结果如下表所示:表5.1轴载换算表②累计当量轴次根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。
累计当量轴次:()111365t e N N γηγ⎡⎤+-⨯⎣⎦=()[]189188305.060.430336506449.0365106449.0115=⨯⨯⨯⨯-+=(次)2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i ki i ∑==计算结果如下表所示:表5.2 轴载换算结果(半刚性基层层底拉应力)②累计当量轴次参数取值同上,设计年限是15年,车道系数取0.5。
累计当量轴次:()111365t e N N γηγ⎡⎤+-⨯⎣⎦=()[]321652575.087.731636506449.0106449.0115=⨯⨯⨯-+=(次)5.1.2结构组合设计及材料选取1) 拟订路面结构组合方案根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。
另设20cm 厚的中粗砂垫层。
2) 拟订路面结构层的厚度由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。
采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。
农村公路路面典型结构设计指南
农村公路路面典型结构设计指南农村公路的路面结构设计是农村公路建设的重要环节之一。
良好的路面结构设计能够提高农村公路的通行能力、安全性和经济效益。
下面是农村公路路面典型结构设计指南:一、路面结构层次划分农村公路路面结构主要由基层、底基层、配合层和面层四个部分组成。
1.基层:主要承受车辆荷载,起到分散荷载的作用。
2.底基层:主要是弥补地基基础不足,在路基层中起到承载作用。
3.配合层:在底基层之上,起到抗剪切的作用。
4.面层:顶部的部分,是路面最直接与车辆接触的部分,负责承受车辆荷载和提供舒适的行驶条件。
二、路面结构材料选择在农村公路路面结构设计中,需要根据地区气候和交通流量等因素选择合适的材料。
1.基层:常用的材料有水泥砂、碎石等。
在水土流失严重的区域可以选择加入草席等材料来加强稳定性。
2.底基层:常用的材料有砂砾、碎石、沥青混凝土等。
3.配合层:常用的材料有沥青、水泥等。
4.面层:常用的材料有水泥混凝土、沥青混凝土、碎石、沙石等。
三、路面结构设计指南1.基层厚度:根据不同的路面设计标准,基层厚度会有一定的规范,一般厚度在30-50cm之间。
2.底基层厚度:底基层厚度一般为15-30cm之间,需要根据地基情况和荷载大小进行选择。
3.配合层厚度:配合层厚度要根据实际交通荷载大小、使用年限等进行合理设置,一般在5-10cm之间。
4.面层厚度:根据不同区域的气候和交通流量等因素,面层厚度也会有一定的规范。
一般情况下,沥青混凝土层厚度为4-8cm,水泥混凝土层厚度为10-14cm。
总体来说,农村公路路面结构设计需要综合考虑路面材料、荷载大小、地基条件以及气候等因素,并根据不同的设计标准进行合理的选择和设置。
同时,定期维护和养护也是保证路面性能和使用寿命的关键。
路面结构设计计算
路面结构设计计算路面结构设计是指在公路、高速公路、机场跑道等工程中,根据交通荷载、地基条件等因素,合理设计路面层的厚度、材料和结构形式,以保证路面的承载能力、耐久性和使用寿命,提高路面的舒适性和安全性。
路面结构设计计算涉及到多个主要因素,包括交通荷载、地基支撑能力、材料力学性质等。
首先需要确定交通荷载,包括轮压、车速、车辆类型等因素。
根据交通荷载的大小,可以通过经验公式或软件计算得出所需的路面厚度。
在计算路面厚度时,需要考虑地基的支撑能力。
通过地基的土壤力学性质测试,可以获取地基的承载力指标。
根据地基的承载力和所需的路面荷载,可以计算出所需的路面厚度。
一般情况下,路面厚度需要超过地基的支撑能力,以确保路面的稳定性和安全性。
材料力学性质也是路面结构设计的重要因素之一。
根据不同的材料,其抗拉强度、弯曲强度、抗剪强度等性质是不同的。
在路面结构设计中,需要根据材料的力学性质,计算出所需的材料厚度和强度。
另外,路面结构设计还需要考虑路面的排水性能和抗冻性能。
合理的路面排水系统可以防止积水,避免路面的冰冻和裂缝。
在计算中,需要考虑排水系统的设计和施工要求,以确保路面的排水性能和抗冻性能。
此外,路面结构设计还需要考虑路面的舒适性和噪音控制。
通过采用合适的路面结构形式和材料,可以减少车辆行驶时的噪音和振动,提高驾驶的舒适性和行车的安全性。
综上所述,路面结构设计计算是一项复杂而重要的任务,需要考虑多个因素,包括交通荷载、地基支撑能力、材料力学性质、排水性能、抗冻性能、舒适性等。
通过合理的设计计算,可以保证路面的承载能力、耐久性和使用寿命,提高路面的舒适性和安全性,为行车提供良好的交通条件。
路面结构设计说明
路面结构设计说明路面结构设计是指在路面建设过程中,根据路面的使用条件、荷载要求、地质条件等因素进行综合分析,以确定合理的路面结构形式和材料选择,保证路面的平稳、耐久、安全和经济使用。
以下是关于路面结构设计的详细说明。
一、设计依据1.地理环境:包括地理位置、气象条件、地貌等。
2.地质环境:包括土壤类型、地层情况、地下水位等。
3.交通条件:包括道路类型、设计速度、车流量、车型及荷载要求等。
4.使用条件:包括路面的使用年限、交通组织形式、使用强度等。
二、路面结构形式根据上述设计依据,可以确定适合的路面结构形式。
常见的路面结构形式包括:水泥混凝土路面、沥青混合料路面、水泥稳定碎石路面、砂石路面等。
根据不同地区和要求,选取适合的路面结构形式。
三、材料选择1.水泥混凝土:常用于高等级公路和机场等需要高强度和耐久性的路面。
选用符合设计要求的水泥、砂、石等材料,并进行适当的配合比设计。
2.沥青混合料:常用于中低等级公路、城市道路等路面。
选用适合当地气候条件的沥青及骨料,并进行适当的配合比设计。
3.水泥稳定碎石:采用水泥或其他胶凝材料对碎石进行胶结,常用于低等级公路和农村道路等路面。
4.砂石路面:采用适当级配的砂石作为路面基层,经过夯实和压实后形成路面。
四、路面结构层次1.高等级公路:包括基层、底层、面层和附属层。
基层采用水泥混凝土或砂石,并经过适当的夯实。
底层采用水泥稳定碎石或砂石,并经过适当的压实。
面层采用沥青混合料或水泥混凝土,厚度由设计要求决定。
附属层包括路肩、排水设施等。
2.中低等级公路:包括基层、面层和附属层。
基层一般采用砂石进行夯实,面层采用沥青混合料或水泥混凝土,厚度由设计要求决定。
附属层根据需要设置。
3.城市道路:一般采用沥青混合料作为面层,基层采用砂石夯实,厚度由设计要求决定。
根据城市道路的特点,还需考虑附属层和交通组织等因素。
五、施工工艺根据设计要求和现场条件,制定合理的施工工艺。
包括路面材料的供应和储备、机械设备的选择和使用、施工工艺流程等。
路面结构设计参数
路面结构设计参数路面结构设计参数是指在道路建设过程中,为了提高道路的稳定性、承载能力和耐久性,以及增加驾驶安全性,所需满足的设计要求和限制条件。
合理的路面结构设计参数可以有效地提高道路的使用寿命和运行质量。
下面将从路面基层、路面结构、材料选择、施工工艺等方面介绍路面结构设计参数。
首先,路面基层的设计参数主要包括基层厚度、基层材料、基层强度等。
基层厚度应根据预计交通量、交通荷载及地质条件等因素进行合理设计,以确保稳定承载和排水功能。
基层材料应具有较好的强度和稳定性,常用的基层材料有砂石料、碎石料、再生料等。
基层强度应根据预计交通荷载确定,并经过实际试验和计算验证。
其次,路面结构的设计参数主要包括路面层厚度、路面结构类型、路面层配比等。
路面层厚度应根据设计交通荷载、路面材料的抗压强度和变形要求进行确定,以保证路面结构的承载力和变形性能。
路面结构类型可以根据不同的设计要求和交通条件进行选择,如刚性路面、柔性路面、半刚性路面等。
路面层配比应根据路面材料的性能特点、以及施工和使用条件进行优化,以满足耐久性、抗水剥离和抗应力开裂等要求。
再次,材料选择是路面结构设计参数的重要方面。
对于刚性路面来说,常用的材料有水泥混凝土、沥青混凝土等;对于柔性路面来说,常用的材料有沥青、碎石等。
在材料选择上,应根据路面类型、设计要求和地理环境等因素进行综合考虑,选择适宜的材料。
最后,施工工艺也是路面结构设计参数的重要方面。
不同的施工工艺会对路面结构的性能产生影响,因此合理选择施工工艺对于提高路面质量至关重要。
常见的施工工艺有机械铺设、手工铺设、夯实、碾压等。
其中,机械铺设可以提高施工效率和质量稳定性,手工铺设适用于工期紧张和小面积路段,夯实和碾压是保证路面结构稳定性和密实度的关键工艺。
综上所述,路面结构设计参数是保证道路使用寿命和运行质量的关键因素,包括路面基层设计参数、路面结构设计参数、材料选择和施工工艺等。
合理选择和设计这些参数可以提高路面的稳定性、承载能力、耐久性和驾驶安全性。
路面地面结构设计书
复合式土路面结构设计计算书1.设计依据及规定:«公路路线设计规范»JTJ 011—2006«公路沥青路面设计规范»JTG D50-2006«公路水泥混凝土设计规范»JTG D40-2011«公路路基设计规范» JTJ 034-2000«公路自然区划标准» JTJ 001-1986«公路路基施工技术规范» TJ 033-1995«城市道路工程设计规范» CJJ 37-2012«公路桥涵设计通用规范» JTGD60-20042.设计软件:公路路面设计程序系统 HPDS20113.设计内容:1、新建复合式水泥混凝土路面设计程序(HCPD2)2、基(垫)或加铺层及新建路基交工验收弯沉值计算程序(HCPC)4.设计参数4.1 基本参数公路等级:二级公路路面设计基准期:20年变异水平等级:中级可靠度系数: 1.08地区公路自然区划:IV 面层最大温度梯度: 88 ℃/m接缝应力折减系数:1 混凝土线膨胀系数: 10 10-6/℃4.2 轴载及交通量本工程采用现行路面设计规范中规定的标准轴载BZZ-100KN,设计使用年限为20年。
参照以前厂区交通流量,设计基准期内设计车道上设计轴载累计作用次数取30000次,设计轴载100KN,最重轴载150KN。
4.3 路面结构材料(初拟定材料)5. 计算结果5. 1新建复合式水泥混凝土路面设计程序(HCPD2)水泥混凝土路面设计设计内容 : 新建复合式水泥混凝土路面设计公路等级 : 二级公路变异水平的等级 : 中级可靠度系数 : 1.08上面层类型 : 沥青混凝土上面层下面层类型 : 普通混凝土下面层设计轴载 100 kN最重轴载 150 kN路面的设计基准期 : 20 年设计基准期内设计车道上设计轴载累计作用次数 : 30000路面承受的交通荷载等级 :中等交通荷载等级沥青混凝土上面层厚度 80 mm 下面层混凝土弯拉强度 4.5 MPa下面层混凝土弹性模量 29000 MPa 混凝土下面层板长度 4.5 m地区公路自然区划Ⅳ面层最大温度梯度 88 ℃/m接缝应力折减系数 1 混凝土线膨胀系数 10 10-6/℃基(垫)层类型----新建公路路基上修筑的基(垫)层层位基(垫)层材料名称厚度(mm) 材料模量(MPa)1 水泥稳定粒料 200 15002 石灰土 300 5503 新建路基 60板底地基当量回弹模量 ET= 60 MPa中间计算结果 : ( 下列符号的意义请参看“程序使用说明” )HB= 150 DC= 8.34 DB= 2.33 RG= .68SPS= 2.974 SPM= 4.354 SPR= 5.62 SPMAX= 4.57 CL= .977 BL= .88 STMAX= 1.68 KT= .46STR= .77 SCR= 6.39 GSCR= 6.9 RE= 53.33 % SCM= 6.25 GSCM= 6.75 REM= 50 %HB= 199 DC= 19.48 DB= 2.33 RG= .864SPS= 2.256 SPM= 3.303 SPR= 4.26 SPMAX= 3.47 CL= .814 BL= .566 STMAX= 1.44 KT= .4STR= .58 SCR= 4.84 GSCR= 5.23 RE= 16.22 % SCM= 4.91 GSCM= 5.3 REM= 17.78 %HB= 221 DC= 26.69 DB= 2.33 RG= .95SPS= 2.003 SPM= 2.933 SPR= 3.79 SPMAX= 3.08 CL= .719 BL= .436 STMAX= 1.23 KT= .34STR= .42 SCR= 4.21 GSCR= 4.55 RE= 1.11 % SCM= 4.31 GSCM= 4.65 REM= 3.33 %HB= 226 DC= 28.54 DB= 2.33 RG= .97SPS= 1.952 SPM= 2.858 SPR= 3.69 SPMAX= 3CL= .697 BL= .409 STMAX= 1.18 KT= .32STR= .38 SCR= 4.07 GSCR= 4.4 RE=-2.22 % SCM= 4.18 GSCM= 4.51 REM= .22 %HB= 228 DC= 29.3 DB= 2.33 RG= .977SPS= 1.931 SPM= 2.826 SPR= 3.65 SPMAX= 2.97CL= .689 BL= .398 STMAX= 1.16 KT= .32STR= .37 SCR= 4.02 GSCR= 4.34 RE=-3.56 %SCM= 4.13 GSCM= 4.46 REM=-.89 %混凝土下面层荷载疲劳应力 : 3.65 MPa混凝土下面层温度疲劳应力 : .37 MPa考虑可靠度系数后混凝土下面层综合疲劳应力 : 4.34 MPa (小于或等于面层混凝土弯拉强度)混凝土下面层最大荷载应力 : 2.97 MPa混凝土下面层最大温度应力 : 1.16 MPa考虑可靠度系数后混凝土下面层最大综合应力 : 4.46 MPa (小于或等于面层混凝土弯拉强度)不考虑沥青上面层影响时混凝土下面层的设计厚度 : 228 mm考虑沥青上面层影响折减后的混凝土下面层的设计厚度 : 208 mm通过对设计层厚度取整以及设计人员对路面厚度进一步的修改,最后得到路面结构设计结果如下:---------------------------------------沥青混凝土上面层 80 mm---------------------------------------普通混凝土下面层 150 mm---------------------------------------水泥稳定粒料 200 mm---------------------------------------石灰土 300 mm---------------------------------------新建路基5. 2基(垫)或加铺层及新建路基交工验收弯沉值计算程序(HCPC)新建基(垫)层及路基顶面交工验收弯沉值计算新建基(垫)层的层数 : 2测定车后轴轴重 : 100kN层位基(垫)层材料名称厚度(mm) 回弹模量(MPa) 综合影响系数1 水泥稳定粒料 200 1500 1.52 石灰土 300 550 1.53 新建路基 60 1.5第 1 层顶面交工验收弯沉值 LS= 25.6 (0.01mm)(根据“公路沥青路面设计规范”有关公式计算)第 2 层顶面交工验收弯沉值 LS= 55.1 (0.01mm)(根据“公路沥青路面设计规范”有关公式计算)路基顶面交工验收弯沉值 LS= 103.5 (0.01mm)(根据“公路沥青路面设计规范”有关公式计算)LS= 136.7 (0.01mm)(根据“公路路面基层施工技术规范”有关公式计算)6. 设计结论上述计算结果、考虑到当地的实际情况以及有关规范的规定,路面结构材料及厚度仍按原来的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.路面结构设计5.1沥青路面5.1.1交通量及轴载计算分析路面设计以单轴载双轮组100KN 为标准轴载。
1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算:轴载换算采用如下的计算公式:=N ∑=ki i i P P n C C 135.421)/(计算结果如下表所示:表5.1轴载换算表=i i i 121②累计当量轴次根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。
累计当量轴次:()111365t e N N γηγ⎡⎤+-⨯⎣⎦=()[]189188305.060.430336506449.0365106449.0115=⨯⨯⨯⨯-+=(次)2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i ki i ∑==计算结果如下表所示:表5.2 轴载换算结果(半刚性基层层底拉应力)=i i i 121②累计当量轴次参数取值同上,设计年限是15年,车道系数取0.5。
累计当量轴次:()111365t e N N γηγ⎡⎤+-⨯⎣⎦=()[]321652575.087.731636506449.0106449.0115=⨯⨯⨯-+=(次)5.1.2结构组合设计及材料选取1) 拟订路面结构组合方案根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。
另设20cm 厚的中粗砂垫层。
2) 拟订路面结构层的厚度由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。
采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。
5.1.3设计指标及设计参数确定1) 确定路面等级和面层类型由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。
根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。
2) 确定土基的回弹模量① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。
② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。
③ 查设计规范《公路沥青路面设计规范JTG D50-2006》中“二级自然区划各土组土基回弹模量参考值(MPa)”表并作提高得土基回弹模量为MPa E 0.370=.3)各层材料的设计参数(抗压模量与劈裂强度)查设计规范《公路沥青路面设计规范JTG D50-2006》,得到各层材料的抗压模量和劈裂强度。
抗压模量取20C 和15C 的模量,各值均取规范给定范围的中值,因此得到20C 和15C 的抗压模量:细粒式密级配沥青混凝土为1400MPa 和2000MPa ,中粒式密级配沥青混凝土为1200MPa 和1800MPa ,粗粒式密级配沥青混凝土为1000MPa 和1400MPa ,水泥碎石(20C 或15C )为1500MPa ,石灰土(20C 或15C )为550MPa ,中粗砂(20C 或15C )为90MPa 。
各层材料的劈裂强度:细粒式密级配沥青混凝土为1.2MPa ,中粒式密级配沥青混凝土为1.0MPa,粗粒式密级配沥青混凝土为0.8MPa ,水泥碎石为0.5MPa ,石灰土为0.225MPa 。
5.1.4路面结构厚度计算 1) 根据设计弯沉值计算路面厚度设计指标的确定,对于高速公路,规范要求以设计弯沉值作为设计指标,并进行结构层底拉应力验算。
2) 计算设计弯沉值按照设计规范《公路沥青路面设计规范JTG D50-2006》中路面设计弯沉值公式0.2600de c s b L N A A A 计算。
该项公路为高速公路,公路等级系数为1.0,面层是沥青混凝土,面层类型系数取1.0,半刚性基层,基层类型系数取1.0 。
设计弯沉值为:)01.0(03.21111189188306006002.02.0mm A A A Ne l b s c d =⨯⨯⨯⨯==--3) 计算各层材料的容许层底拉应力由S S R K /σσ=沥青混凝土:035.40.1/3216525709.0/09.022.022.0=⨯==c eS A N K细粒式密级配沥青混凝土:MPa K S S R 297.0035.4/2.1/===σσ中粒式密级配沥青混凝土:MPa K S S R 248.0035.4/0.1/===σσ粗粒式密级配沥青混凝土:MPa K S S R 198.0035.4/8.0/===σσ水泥碎石:344.20.1/3216525735.0/35.011.011.0=⨯==c eS A N KMPa K S S R 213.0344.2/5.0/===σσ石灰土:013.30.1/3216525745.0/45.011.011.0=⨯==c eS A N KMPa K S S R 075.0013.3/225.0/===σσ设计资料总结如下:设计弯沉值为)01.0(03.21mm ,相关设计资料汇总如下表所示。
表5.3设计资料汇总表4)查图法求计算层厚度① 由上述计算可知设计弯沉值)01.0(03.21mm l d =,令d s l l =,求综合弯沉系数F 。
则 36.0038.0200063.1⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=P E L F S δ4902.07.00.3765.10200003.2163.136.038.0=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⨯=② 计算实际弯沉系数s α 974.165.107.02000140003.2120001=⨯⨯⨯==δαp E L s s③ 计算理论弯沉系数L343.44546.0974.1====F sc L ααα④ 查三层体系表面弯沉系数诺谟图对于细粒式密级配沥青混凝土因为 38.065.104==δh86.01400120012==E E031.012003720==E E 由dh、12E E 查图得 3.6=α 由h 、02EE 查图得 64.11=K由dh、20E E 和42.064.13.6343.412=⨯==K K l αα,查图得 8.5=δH ⑤ 计算中层厚度cm H H 77.6165.108.5/=⨯=⨯=δδ⑥ 计算石灰土层厚度 由公式4.22132E E h h H kn k k ∑-=+=得4.254.24.21200550120015002012001000868.62⨯+⨯+⨯+=h 则解得 cm h 55.365= 则取 cm h 375=5.1.5路面结构验算5.1.5.1 验算沥青混凝土各面层及半刚性基层、底基层的层底弯拉应力1)沥青面层层底拉应力验算(此时取15C 抗压模量) ①细粒式密级配沥青混凝土表层验算cm h 4= 由H=9.0111+-+=∑i kn i k k E E h 即cm H 29.38180055037180015002018001400869.09.09.0=⨯+⨯+⨯+= 由38.065.104==δh、60.365.1029.38==δH 、02.018003720==E E 和9.02000180012==E E 查图 图中没有所查的相应数据,即、1m 、2m 均小于零,因此可知层底不产生拉应力,产生压应力,即满足要求。
②中粒式密级配沥青混凝土表层验算 则cm E E h h ik i k k 1.106180020004144=+⨯==∑= cm E E h H n i k i k k 7.42140055037140015002089.09.0119.01=⨯+⨯+==∑-+=+ 由95.065.101.10==δh、01.465.107.42==δH 、03.014003720==E E 和78.01800140012==E E 查图图中没有所查的相应数据,即、1m 、2m 均小于零,因此可知层底不产生拉应力,产生压应力,即满足要求。
③粗粒式密级配沥青混凝土表层验算 则∑==ik ikk E E h h 14cm8.18814001800614002000444=+⨯+⨯= cm E E h H n i k i k k 14.32150055037209.0119.01=⨯+==∑-+=+ 由77.165.108.18==δh、02.365.1014.32==δH 、02.015003720==E E 和07.11400150012==E E 查图 图中没有所查的相应数据,即、1m 、2m 均小于零,因此可知层底不产生拉应力,产生压应力,即满足要求。
2)水泥碎石基层层底拉应力验算 则∑==ik ikk E E h h 14cm 44.3820150014008150018006150020004444=+⨯+⨯+⨯= cm H 37=由61.365.1044.38==δh,47.365.1037==δH 、07.05503720==E E 、和37.0150055012==E E 查图 得MPa 13.0=-σ、36.11=m ,68.02=m ,又有7.0=p则MPa MPa m m p 213.0084.068.036.113.07.021<=⨯⨯⨯==-σσ 即满足要求。
3)石灰土基层层底拉应力验算则∑==ik ikk E E h h 14cm 44.3820150014008150018006150020004444=+⨯+⨯+⨯= cm H 37= 由61.365.1044.38==δh,47.365.1037==δH 、07.05503720==E E 、和37.0150055012==E E 查图 得MPa 22.0=-σ、07.11=n ,35.02=n ,又有7.0=p则MPa MPa n n p 075.0058.035.007.122.07.021<=⨯⨯⨯==-σσ 即满足要求。
5.1.5.2 季节性冰冻地区沥青混凝土路面防冻厚度验算因为该地区土基干湿类型为假定为干燥土基,且设计任务书中相关资料不全,所以不作路面防冻厚度验算。
5.1.6沥青混合料配合比设计热拌沥青棍合料的配合比设计应遵照下列步骤进行:1) 目标配合比的设计阶段,按规范中规定的矿料级配,用工程实际使用的材料计算各种材料的用量比例,进行马歇尔试验,确定最佳沥青用量。