自然数立方的规律研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自然数立方的规律研究

我喜欢数学,因为在数学王国里有许多有趣的规律。上学期的一天,我在做正方体体积的计算练习,13=1、23=8、33=27、43=64、53=125……这些答案是否存在什么规律呢?于是我开始仔细地研究。

我把这些答案的各个位数上的数字相加,直到求出的和是个位数时,就发现了一定的规律,于是我列了一张表,如下:

我归纳一下得出这样的普遍规律:自然数n除以3,当余数=1,n3的各个位数上的数字相加,直到求出的和是个位数时,结果得1;当余数=2,n3的各个位数上的数字相加,直到求出的和是个位数时,结果得8;当余数=0,n3的各个位数上的数字相加,直到求出的和是个位数时,结果得9。

这只是偶然吗?后面的自然数立方也遵循这个规律吗?于是我

开始验证我发现的规律。

验证结果让我太高兴了,我立刻把这个发现告诉全家人,大家纷纷拿笔来计算,最后也都符合我发现的这个规律。我太自豪了,这可是我自己动脑筋思考和研究的结果,也许这还是个伟大的发现呢!妈妈笑着提醒我,“你再研究研究,为什么自然数立方会有这样的规律呢?”

对呀,为什么呢?于是,我又进入了新一轮的苦思冥想,经过几番挫折,我都没有成功,后来我逐个突破,先从余数是0的开始,这个自然数n就是3的倍数,即n=3x(x=1,2,3,……),那么,

n3=27x3=9×3x3,也就是说这类自然数的立方一定是9的倍数,9的倍数各个位数之和一定是9的倍数,所以将各个位数上的数字相加,

直到求出的和是个位数时,结果一定是9。啊哈,我越来越接近成功了!

再来看,当余数是1时,这个自然数n就是3的倍数加1,即n=3x+1(x=0,1,2,3,……),那么,n3=(3x+1)3=27x3+27x2+9x+1=9(3x3+3x2+x)+1,也就是说这类自然数的立方一定是9的倍数再加1,那么结果一定是9+1=10,1+0=1,哈哈,第二关闯关成功!

最后看,当余数是2时,这个自然数n就是3的倍数减1,即n=3x-1(x=1,2,3,……),那么,n3=(3x-1)3=27x3-27x2+9x-1=9(3x3-3x2+x)-1,也就是说这类自然数的立方一定是9的倍数再减1,那么结果一定是9-1=8,哈哈,第三关闯关成功!耶!我兴奋地大叫并跳了起来。

学习数学真是一个快乐的过程,自然数立方的规律问题是我自己在平时学习中发现的,我联系所学的数学知识,仔细思考、归纳总结并想办法证明,让我体会到在数学海洋里遨游的无穷乐趣,我要是能掌握更多的数学知识,我一定会收获更多的快乐。

肖老师留言:下周一上交的是方案,类似于我昨天给你的样本那样简写即可。月底交的文章要详尽,可参考我刚才给你发的范文。

生活中的测量

——比例尺的应用与思考我是来自温州市实验小学的杨云涵。今天,能站在这里为大家介绍我的研究课题,我感到无比的荣幸和自豪。在这次“小数学家”评比中,我参赛的课题是《生活中的测量——比例尺的应用与思考》。

说起这个课题,不得不提建于公元前2000多年的金字塔。它是古埃及国王的陵墓,高大雄伟,令人赞叹!但是,在金字塔建成后的1000多年里,人们都无法测量出金字塔的高度——它们实在太高了。约公元前600年,泰勒斯,古希腊的伟大学者从遥远的希腊来到了埃及。为了测量出金字塔的高度,泰勒斯已经观察金字塔很久了。直到有一天,看到金字塔在阳光下的影子时,他突然想到了办法。泰勒斯仔细地观察着金字塔影子的变化,找出金字塔地面正方形的一边的中点,并作了标记。然后他笔直地站立在沙地上,并请人不断测量他的影子的长度。当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的长度,他推断这时金字塔影子的长度也就是金字塔真实的高度。

泰勒斯在2600多年前用于测量金字塔的办法令我十分着迷,我突然想到了松台山上的净光宝塔,是不是也可以像泰勒斯一样测量出它的高度呢?这个问题让我侧夜难眠,于是在一个晴朗的早晨,我和妈妈一起来到了松台山进行实地考察。当我一眼看到净光塔的影子时,我高兴地差点跳了起来,因为按照泰勒斯的方法,当人的高度和影子的高度相等时,净光塔的高度和影子的高度也一定相等。可是这

时,我也发现了一个问题:塔的四周都是郁郁葱葱的大树,无法看到塔完整的影子,怎么测量啊?想到这里,我有点沮丧。在回家的路上,我一边走,一边观察自己的影子。我发现随着太阳照射角度的变化,影子的长度也发生了变化。这时一个灵感从我脑子里蹦了出来:既然无法测量到与塔身长度相等的影子,那么可否在塔身和它的影子成一定比例的时候进行测量呢?我暗自下定决心下次再来试一试。

又是一个周末,我和妈妈再次来到了松台山。这次我带上了一根155厘米长的尖木棍和一把卷尺。我们把木棍插在塔前面的空地上,木棍留在地面以上的长度为150厘米。当塔的影子完全落在塔周边的土地上时,我用卷尺测量出此时木棍影子的长度为5.15厘米。这样计算出来的木棍长度约是木棍影子长度的29.12倍左右。同时,我们测量出塔的影子的长度为223.5厘米,那么塔的高度应该就是223.5 X 29.12 = 6508.3(厘米)≈65米。后来经过了解,净光塔的实际高度是65.46米。虽然测量结果和塔的实际高度大约有40厘米的误差,但我相信如果进行多次测量,误差应该就会相应减少。通过这次试验,我初步判断像我这种用影子测量物体高度的方法是可行的。

净光塔测量的第一次失败说明泰勒斯的方法在实际操作中有一定的难度,它对被测物体的周围环境有一定的要求。而学校操场上的旗杆又让我产生再次尝试的念头。因为旗杆很高,很直,而且操场又大又平,应该符合测量的条件。于是我在假期来到了学校,这次,我没有用棍子而是要求妈妈充当测量的参照物,方法还是和上次一样。

以下是我在不同的时间段记录的各组测量数据,经过计算每次得出的旗杆高度非常接近,分别为9.98米、9.99米和10米,误差不超过两厘米,实验结果比较可靠。我觉得这次实验应该是非常成功的。

可这时有个问题却再次困扰着我,因为不可能总是在晴天通过影子测量物体的高度,如果是阴天又该用什么办法呢?记得去年寒假的一天,我们一家外出旅游,我看到妈妈正好站在一棵大树边上。那天正好是阴天,我又想起了测量的问题。灵机一动,我拿起随身携带的数码相机,拍下了妈妈站在树下的全身像,画面上还有大树的整体图像。

回到家以后,我们马上就把照片冲洗出来。我用尺子量出照片里妈妈的高度为8厘米,树的高度为14.5厘米。我知道妈妈的实际身高是161厘米,也就是说,妈妈的实际身高是相片里的约20倍。那么树的实际高度是不是也是相片里的20倍左右呢?那样的话,树的高度就是290厘米左右了。

那么,这个实验结果可信吗?首先,被测量物体被摄入照片时,不一定总是能找到其最高点;其次,参照物与被测量物体的距离会对测量结果有一定的影响。我想这样测量的结果误差可能会比较大。

在做比例尺研究的时候,因为我们不可能总是在晴天测量物体的高度,而且如果临时没有现成的参照物又该怎么办呢?其实还有一种非常简便实用的,不受天气影响的测量物体高度的方法。就是利用等腰直角三角形的特征,使用我们数学课最常用的等腰直角三角板去测量较高的物体。下面我就举个例子来说明:

相关文档
最新文档