几道解析几何高考试题的别解

合集下载

高三数学总复习专题10 解析几何(答案及解析)

高三数学总复习专题10 解析几何(答案及解析)

高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。

(整理)解析几何的3个高考热点与例题分析

(整理)解析几何的3个高考热点与例题分析

圆锥曲线考点——例题考点一 求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法. ●典例探究 [例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端点,B 、B ′是下底直径的两个端点,已知AA ′=14 m ,CC ′=18 m,BB ′=22 m,塔高20 m.建立坐标系并写出该双曲线方程. [例2]过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.[例3]如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.考点二 直线与圆锥曲线 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. ●典例探究[例1]如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.[例2]已知双曲线C :2x 2-y 2=2与点P (1,2)(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点.(2)若Q (1,1),试判断以Q 为中点的弦是否存在.[例3]如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该弦椭圆的方程; (2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.考点三 圆锥曲线综合题 圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.●典例探究[例1]已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C :y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦.(1)试问MN 的长是否随圆心k 的运动而变化?(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系?[例2]如图,已知椭圆122-+m y m x =1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||(1)求f (m )的解析式; (2)求f (m )的最值.[例3]舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g千米/秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?[学法指导]怎样学好圆锥曲线 圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始.高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到:1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容.2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等.3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查.4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程.(1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量.(2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a ,b ,c ,e 之间构成函数关系,函数思想在处理这类问题时就很有效.(3)掌握坐标法坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练.圆锥曲线考点——例题解析考点一 【例题1】 命题意图:本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题。

解析几何历年高考真题试卷--带详细答案

解析几何历年高考真题试卷--带详细答案

解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。

解析几何大题及答案

解析几何大题及答案

解析几何大题及答案解析几何是数学中的一个重要分支,研究的是空间图形的性质和变换。

在高中数学中,解析几何是一个关键的考点,也是学生容易遇到的难点之一。

本文将解析几何中的几个大题进行解析,并给出详细的答案。

一、平面直角坐标系与向量1. 设平面上一直线的方程为3x-y+4=0,求该直线的斜率及与坐标轴的交点坐标。

答案:首先将直线的方程转化为斜截式的形式,即y=3x+4。

由此可得该直线的斜率为3。

与x轴的交点坐标可通过令y=0,解得x=-4/3;与y轴的交点坐标可通过令x=0,解得y=4。

因此,该直线与x轴的交点坐标为(-4/3,0),与y轴的交点坐标为(0,4)。

2. 已知平面内的向量a=(4,3),求向量2a的模和方向角。

答案:向量2a=(2*4,2*3)=(8,6)。

模可以通过向量的标准模公式计算:|2a|=√((8)^2+(6)^2)=√100=10。

方向角可以通过向量的方向角公式计算:tanθ=y/x=6/8=3/4,所以θ=arctan(3/4)。

因此,向量2a的模为10,方向角为arctan(3/4)。

二、直线的方程与位置关系1. 设直线L1过点A(1,3)且与直线L2:2x+3y-7=0相交于点B,求线段AB的中点坐标。

答案:首先求直线L1的方程,由过点A(1,3),设斜率为k,则直线L1的方程为y-3=k(x-1)。

将直线L2的方程与直线L1的方程联立,可求出点B的坐标。

解方程组得到B的坐标为(-1,3)。

线段AB的中点坐标可以通过两点坐标的平均值计算:((1+(-1))/2,(3+3)/2)=(0,3)。

因此,线段AB的中点坐标为(0,3)。

2. 设直线L1:x+2y-3=0与直线L2:2x-y-1=0相交于点A,直线L1与直线L3:2x+3y-4=0平行,求直线L3的方程。

答案:由直线L1与直线L2的方程可解得直线L1与直线L2的交点A的坐标为(1,1)。

由直线L1与直线L3平行可得其斜率相等,即2=3k,解得k=2/3。

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)

全国卷历年高考解析几何解答题真题归类分析(含答案)一、椭圆(2015年2卷)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值.(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.分析:(1)将直线y=kx+b(k≠0,b≠0)与椭圆C:9x 2+y 2=m 2(m>0)联立,结合根与系数的关系及中点坐标公式证明.(2)由四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分求解证明. 解析】:(1)设直线l :y=kx+b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故92221+-=+=k kbx x x M , 992+=+=k b b k y M M .于是直线OM 的斜率kx y k M M OM 9-== 即k OM ·k=-9,所以直线OM 的斜率与l 的斜率的积是定值.(2)四边形OAPB 能为平行四边形,因为直线l 过点(,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)得OM 的方程为y=-x. 设点P 的横坐标为x p .由⎪⎩⎪⎨⎧=+-=22299m y x x k y ,得8192222+=k m k x p ,即932+±=k km x p . 将点),3(m m 的坐标代入l 的方程得3)3(k m b -=,因此)9(3)3(2+-=k k k x M 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相评分,即P M x x =2.=,解得k k 12==因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.(2016年1卷)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE ∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E 的轨迹为一个椭圆,方程为2x 4+2y 3=1(y≠0);(2)C 1: 2x 4 +2y 3=1;设l :x=my+1,因为PQ ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C 1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m 2+4)y 2+6my-9=0; 则|MN|=M -y N |==()2212m13m 4++;圆心A 到PQ 距离d==,所以=,∴S MPNQ =12|MN|·|PQ|=12·()2212m 13m 4+⋅+=24[12,8).(2016年2卷)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=解得2x =-或228634k x k -=-+21234k + 因为AM AN ⊥,所以21212413341AN k kk ==⋅⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >212124343k k k=++, 整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得, ()222223230tk x x t k t +++-=,解得x =或x =所以AM =,所以AN =因为2AM AN =,所以2=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.(2017年1卷)已知椭圆()2222:=10x y C a b a b +>>,四点()111P ,,()201P ,,3–1P ⎛ ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过点2P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,求证:l 过定点.解析:(1)根据椭圆对称性,必过3P ,4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点.将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =, 21b =,所以椭圆C 的方程为2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,,联立22440y kx bx y =+⎧⎨+-=⎩, 消去y 整理得()222148440k x kbx b +++-=,122814kb x x k -+=+,21224414b x x k -⋅=+, 则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=22228888144414kb k kb kbk b k --++==-+ ()()()811411k b b b -=-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.所以直线l 的方程为21y kx k =--.当2x =时,1y =-,所以l 过定点()21-,.(2017年2卷)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.求证:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设点()P x y ,,易知(0)N x ,,(0)NP y =,,又0NM NP ⎛== ⎝,所以点M x y ⎛⎫ ⎪⎝⎭.又M 在椭圆C上,所以2212x +=,即222x y +=. (2)由题知()1,0F -,设()3,Q t -,(),P m n ,则()3,OQ t =-,()1,PF m n =---,33OQ PF m tn ⋅=+-,(),OP m n =,()3,PQ m t n =---,由1O P P Q ⋅=,得2231m m tn n --+-=.又由(1)知222m n +=,所以330m tn +-=,从而0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线的垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过曲线C 的左焦点()1,0F -. 二、抛物线(2015年1卷)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x --0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.(2016年3卷)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l 1:y=a,l 2:y=b 且ab≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭P 1,a 2⎛⎫-⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭,记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0,因为点F 在线段AB 上,所以ab+1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,所以k 1=2a b1a -+,k 2=b 1122--=-b,又因为ab+1=0, 所以k 1=22a b a b 1aba a 1a a abb ---====-+-,所以k 1=k 2,即AR ∥FQ. (2)设直线AB 与x 轴的交点为D ()1x ,0,所以S △ABF =1111a b FD a b x 222-=--, 又S △PQF =a b 2-,所以由题意可得S △PQF =2S △ABF 即:a b 2- =2×12·11x 2a b ⋅--,解得x 1=0(舍)或x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2ya b x 1=+-(x≠1).而21a b y=+,所以y 2=x-1(x≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1.(2017年3卷)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.解析:(1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. ⋅1212OA OB x x y y ⋅=+u u r u u u r 1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++= 24(1)2240m m m -++⋅+=,所以⊥,即点O 在圆M 上.(2)若圆M 过点P ,则⋅,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ =,则圆229185:4216M x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. ②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径r OQ =22:(3)(1)10M x y -+-=.。

往年解析几何高考题分析(带答案)

往年解析几何高考题分析(带答案)

往年解析几何高考题分析1 (湖北卷)已知平面区域D由以A(1,3), B(5,2), C(3,1)为顶点的三角形内部&边界组成。

若在区域D上有无穷多个点(x, y)可使目标函数z= x+ my取得最小值,则m =A. —2B.—1C. 1D. 41解:依题意,令z= 0,可得直线x+ my= 0的斜率为—,结合可行域可知当直线x+ mym=0与直线AC平行时,线段AC上的任意一点都可使目标函数z= x+ my取得最小值,而直线AC的斜率为—1,所以m= 1,选C2.(湖南卷) 若圆x2■ y2 -4x -4y -10 = 0上至少有三个不同点到直线l : ax ■ by = 0的距离为22则直线I的倾斜角的取值范围是()-■■'■' 5 二A.[ , ]B.[ , ]C.[ , ]D. [0,]12 4 12 12 6 3 2解析:圆x2 y2—4x -4y _10 =0整理为(x -2)2• (y -2)2= (3'、2)2, •••圆心坐标为(2, 2),半径为3 . 2,要求圆上至少有三个不同的点到直线I : ax • by二0的距离为2 2 ,则圆心到直线的距离应小于等于2, • |2X b2|--空,•弟吟1 <0,• 一2 一< (-a) < 一2 •、一3 , k - -(a), • 2 - .3 < k < 2 • '.3,直线l 的倾斜角的b b取值范围是[二],选B.12 123. (江西卷) 已知圆M : (x+ COST1)2+( y —si nr) 2= 1,直线l:y= kx,下面四个命题:(A)对任意实数k与二直线I和圆M相切;(B)对任意实数k与二直线I和圆M有公共点;(C)对任意实数匕必存在实数k,使得直线I与和圆M相切(D)对任意实数k,必存在实数乙使得直线I与和圆M相切其中真命题的代号是________________ (写出所有真命题的代号)解:选(B) (D)圆心坐标为(—cos0, sinT), d =|—kcos日一si_ J1 + k2|sin(日+ ®)|丁1 + k2『1+ k2= |sin(,+ )| 乞1x v4. (湖北理10)已知直线 1 ( a, b是非零常数)与圆a b公共点的横坐标和纵坐标均为整数,那么这样的直线共有( 2 2x y =100有公共点,且)A. 60 条B. 66 条C. 72 条D. 78 条答案:选A解析:可知直线的横、纵截距都不为零,即与坐标轴不垂直,不过坐标原点,而圆2 2x y =100上的整数点共有12个,分别为 6,_8 , -6, _8 , 8, _6,-8, _6 , _10,0 , 0, _10,前8个点中,过任意一点的圆的切线满足,有8条;122个点中过任意两点,构成 C 12 =66条直线,其中有 4条直线垂直x 轴,有4条直线垂 直y 轴,还有6条过原点(圆上点的对称性),故满足题设的直线有 52条。

解析几何高考题及解析,高考解析几何解题技巧(理科)

解析几何高考题及解析,高考解析几何解题技巧(理科)

返回导航
第一部分 专题讲练
椭圆的标准方程与几何性质
例2 (2019年新课标Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C
交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
A.x22+y2=1
B.x32+y22=1
C.x42+y32=1
D.x52+y42=1
y2 b2
=1(b>0)经过点(3,4),所以32-
42 b2
=1,解得b=
2.
又a=1,所以双曲线的渐近线方程是y=± 2x.
高考二轮专题析与练 ·数学 ( 理科 )
返回导航
第一部分 专题讲练
4.(2019年新课标Ⅲ)设F1,F2为椭圆C:
x2 36

y2 20
=1的两个焦点,M为C上一点
且在第一象限,若△MF1F2为等腰三角形,则M的坐标为________.
抛物线的简 单几何性质
卷Ⅱ,8
卷Ⅰ,8,卷Ⅱ,19 卷Ⅲ,16
2017年 卷Ⅰ,15,卷
Ⅱ,9 卷Ⅲ,10
卷Ⅲ,5
卷Ⅰ,15,卷 Ⅱ,9 卷Ⅲ,5
卷Ⅰ,10,卷 Ⅱ,16
考纲解读
考查直线与圆的 位置关系,椭 圆、双曲线、抛 物线的方程和简 单的几何性质(范 围、顶点、焦 点、离心率、渐 近线、准线),以 选择题、填空题 为主.
x2=2py
x2=-2py
(p>0)
(p>0)
(p>0)
(p>0)
p的几何意义:焦点F到准线l的距离
焦点
离心率 准线 方程
Fp2,0 x=-p2
F-p2,0
F0,p2

高考解析几何试题赏析

高考解析几何试题赏析

高考解析几何试题赏析高考解析几何试题赏析题目:已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.(Ⅰ)求动圆圆心的轨迹C的方程;(Ⅱ)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.答案:(Ⅰ)轨迹C的方程为:y2=8x;(Ⅱ)直线l过定点(1,0).一、初步推广图1证明:如图1,易知t与p异号,不妨设p > 0. 由PQ不垂直于两坐标轴得直线TP与直线TQ都不是抛物线C的切线,即直线TP 与抛物线有另一交点Q′,直线TQ与抛物线有另一交点P′.由于x轴是∠PTQ的角平分线,结合抛物线C的对称性得:P′与P关于x轴对称,Q′与Q关于x轴对称.故PQ,P′Q′和x轴三线共点D.代入①得,x0=-t.即直线l过定点D(-t,0).类似地,可以证明结论2和结论3.结论2已知点T(t,0),设不垂直于x轴的直线l与椭圆C:x2[]m+y2[]n=1(m > 0,n > 0)交于不同的两点P,Q,若x轴是∠PTQ的角平分线,则直线l过定点m[]t,0.结论3已知点(T,t,0),设不垂直于x轴的直线l与双曲线C:x2[]m+y2[]n=1(mn < 0)交于不同的两点P,Q,若x轴是∠PTQ 的角平分线,则直线l过定点m[]t,0.二、追根溯源1. 广阔的背景笛卡尔(1596-1650)认为欧氏几何“使人在想象力大大疲乏的情况下,去练习理解力”,代数则是“用来阻碍思想的艺术,不像一门改进思想的科学”,于是他“寻求另外一种包括这两门科学的优点而没有它们的缺点的方法”,并最终获得了建立解析几何的线索.平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,从而实现了几何方法与代数方法的结合,她的研究对象之一就是圆锥曲线的性质.十五六世纪,由于作画、作图的需要而产生了透视法,笛沙格(1591―1661)首先对图形及其影像的几何性质进行研究,引入了无穷远点和无穷远直线、调和点列等概念,给出了著名的笛沙格定理,逐步创立了射影几何.射影几何的内容之一是从极点和极线的视角研究圆锥曲线的性质.今天,几何学已经有了十余个分支,它们既相互区别又相互联系,不断地发展和完善,交织成一幅绚丽多姿的画卷.这时,我们无法用简短的文字述说几何学的灿烂历史,却能以一道高考试题为窗,探视数与形共舞出的奇妙世界.2.圆锥曲线的极点与极线关于圆锥曲线的极点与极线,已经证得下列定理:定理2如图2,P为不在圆锥曲线C上的点,过点P引两条割线依次交曲线C于四点E,F,G,H,连接EH,FG交于N(当EH与FG 平行时,N为无穷远点),连接EG,FH交于M,则MN为点P对应的极线.则PA、PB为曲线C的切线若P为圆锥曲线上的'点,过点P的切线即为极线.由定理1,在图中,PN为点M对应的极线,PM为点N对应的极线,故MNP为自极三点形.定理3若过点P可作圆锥曲线C的两条切线,A,B为切点,则直线AB为点P对应的极线;定理4(配极原则)如果P点的极线通过点Q,则Q点的极线也通过点P.图2图33.结论再探设直线x=-t交抛物线于A,B,由每个点对应的极线唯一和定理3得,直线TA、TB为抛物线的切线.三、试题之美1.结构对称正是依题设所作图形的“不完整”,使得我们产生“补美”的心理趋向,进而作出图1,获得解题突破口.在图3中,抛物线关于x轴对称,直线PQ与直线P′Q′、直线TA与直线TB分别关于x轴对称,且点T与点D关于y轴对称.而根据定理4得:点T与点D分别在对方的极线上.这些对称关系通过极点和极线的性质相互联系,形成整体.德国数学家魏尔斯特拉斯指出“美和对称性紧密相连”,数学中的对称,不仅仅是视觉上的和谐,更是一种解题方法,常常使得我们追求整体的秩序井然,进而预见数学结论.2.结论统一四、解题断想视野. 欲穷千里目,更上一层楼. 用高等数学的思想来审视中学数学内容,有利于教师“高屋建瓴”,把握知识模块之间的深层联系;从高等数学的观点探析试题的背景,有利于教师拓广视角,增强问题探究能力;以高等数学的方法来指导教学实践,有利于帮助学生跳出题海,提升学习效益.意境. 数学美在哪里?众里寻他千百度,蓦然回首,那人却在,灯火阑珊处.通过一道高考试题,我们看到图形结构的对称,曲线性质的统一,还有数学方法的异曲同工. 做数学,就是欣赏美,就是在实证探究的基础上,在悠远的意境中感悟深邃的数学之美.。

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

高考解析几何解答题题型分析及解答策略。

©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。

全国卷历年高考解析几何解答题真题分类解析2019

全国卷历年高考解析几何解答题真题分类解析2019
(1)当 , 时,求△AMN的面积;
(2)当 时,求k的取值范围.
【解析】⑴当 时,椭圆E的方程为 ,A点坐标为 ,则直线AM的方程为 .联立 并整理得,
解得 或 ,则
因为 ,所以
因为 , ,所以 ,
整理得 , 无实根,所以 .
所以 的面积为 .
⑵直线AM的方程为 ,联立 并整理得,
,解得 或 ,
所以 ,所以
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线 交C1于M,N两点,过B且与 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
【解析】(1)圆A整理为(x+1)2+y2=16,点A坐标为(-1,0),如图,∵BE∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|,
= ,∴S四边形MPNQ= |MN|·|PQ|= · = =24
∈[12,8 ).
【小结】这类题所解决的问题不需要对交点坐标进行转换,主要考查弦长公式的应用,圆锥曲线的统一弦长公式是:斜率为k的直线与圆锥曲线交于 两点,联立直线与圆锥曲线方程消元后得关于x或y的一元二次方程的二次项系数为a,判别式为△,则
因此,四边形ADBE的面积 .
设M为线段AB的中点,则 ,
由于 ,而 , 与向量 平行,所以 ,解得 或 .
当 时, ;当 时
因此,四边形 的面积为3或 .
【小结】这类题将所要证的结论(或给的条件)转化为交点坐标关系时候,经过变形化简没能完全化为韦达定理中的两根之和与两根之积的结构,此时,必需将x转化为y(或y转化为x),这在高考中是比较常见的。多数情况下用直线方程转换,此时,影响到运算处理难度关键在于直线方程的假设与消去x还是消去y的选择。一般来说,假设直线方程时首先考虑直线过的定点是x轴上的点还是y轴上的点,若过定点(t,0),则设为 运算较简便,若过定点(0,t),则设为 运算较简便。此外,还需要注意对特殊情形进行讨论,直线系 不包平行x轴的直线,直线系 不包垂直x轴的直线,对特殊情况讨论往往能帮助我们找到解题的突破口。直线圆锥曲线有两个交点时,把直线方程和圆锥曲线方程联立后是消去x还是消去y,关键在于将所要证的结论(或给的条件)转化为交点坐标关系经过变形化简的结果来定。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习及答案解析版

交于点 A ,与 C 的一个交点为 B .若 AM MB ,则 P 的值为(

( A) 1
( B) 2
( C) 3
( D) 4
35.若动圆与圆 (x-2) 2+y2=1 外切,又与直线 x+1=0 相切,则动圆圆心的轨迹方程是
() A. y2=8 x
B. y2=-8 x
C.y2=4x
D.y2=-4x
3 的直线交
A. 3 B. 2 3 C. 1 3 D. 2 3
3.已知过抛物线 y2 =2px( p>0)的焦点 F 的直线 x-my+m=0 与抛物线交于 A,B 两点,
且△ OAB( O 为坐标原点)的面积为 2 2 ,则 m 6+ m4 的值为(

A. 1
B. 2
C. 3
D.4
4.若直线经过 A(0,1), B(3,4) 两点,则直线 AB 的倾斜角为
42.已知直线 l 经过坐标原点,且与圆 x2 y2 4x 3 0 相切,切点在第四象限,则
直线 l 的方程为 ( )
试卷第 5 页,总 24 页
A. y 3x B . y
3x
C .y
3x
D .y
3x
3
3
43.当曲线 y 1 4 x2 与直线 kx y 2k 4 0 有两个相异的交点时,实数 k 的
B 、圆心 P 1,3 ,半径 r 10 ;
C 、圆心 P 1, 3 ,半径 r 10 ;
D 、圆心 P 1, 3 ,半径 r 10 。
29. F1、 F2 是双曲线
C: x 2-
y2
2
=1的两个焦点,
P 是 C 上一点,且△F 1PF2 是等腰直

高考数学解析几何专题汇编及详细答案

高考数学解析几何专题汇编及详细答案

解析几何专题汇编1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:选C.由e =52,得c a =52,∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,∴所求渐近线方程为y =±12x . 2. O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2 B .22C .2 3 D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42,∴x 0=32,∴y 20=42x 0=42×32=24,∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.3.已知椭圆E :x 2a 2+y2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 解析:选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1.②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2).∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.4.设椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点, PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13C.12 D.33解析:选D.如图,由题意知s in 30°=|PF 2||PF 1|=12, m ∴|PF 1|=2|PF 2|.又∵|PF 1|+|PF 2|=2a ,∴|PF 2|=2a3. ∴tan 30°=|PF 2||F 1F 2|=2a32c =33.∴c a =33.故选D.5.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)解析:选C.设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p ,∴13|BF |+1|BF |=1,∴|BF |=43,|AF |=4,∴|AB |=163. 又由抛物线焦点弦公式:|AB |=2p sin 2θ,∴163=4sin 2θ,∴s in 2θ=34,∴s in θ=32,∴k =tan θ=±3.故选C.6.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]解析:选B.由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P (2619,2419),此时直线P A 1的斜率k =38.同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P (27,127),此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是[38,34].7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1解析:选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.8.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2 D .2解析:选D.抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k 2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2.9.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .2x +y -3=0 B .2x -y -3=0C .4x -y -3=0 D .4x +y -3=04解析:选A.设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+(y -12)2=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.10.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( A.316 B.38C.233 D.433解析:选D.∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p 2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2 B.3C.32 D.62解析:选D.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.12.)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2C.83 D.1623解析:选C.∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 312⎪⎪⎪20=4-43=83. 13.已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线与抛物线y 2=2p x (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2 D .3解析:选C.由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p 2,于是A ⎝⎛⎭⎫-p 2,-3p 2,B ⎝⎛⎭⎫-p 2,3p 2,从而△AOB 的面积为12·3p·p 2=3,可得p =2.14.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是()A .m>12B .m ≥1C .m>1D .m>2解析:选C.∵双曲线x 2-y 2m=1的离心率e =1+m ,又∵e>2,∴1+m>2,∴m>1. 15.双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25 B.45C .255 D.455解析:选C.双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255.16.已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线a x -y +1=0垂直,则a =( )A .-12B .1C .2 D.12解析:选C.由题意知圆心为(1,0),由圆的切线与直线a x -y +1=0垂直,可设圆的切线方程为x +ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a , ∴|1-2-2a|1+a2=5,解得a =2. 17.(2)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )A .12 B.22C .1 D. 2解析:选B.双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线为y =±x ,∴x ±y =0,∴顶点到渐近线的距离为d =|±1±0|2=22.18在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 发射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1C .83 D.43解析:选D.分别以AB ,AC 所在直线为x 轴,y 轴,A 为原点建立如图所示的平面直角坐标系.因为AB =AC =4,故B(4,0),C(0,4).设P(t,0)为线段AB 上的点,点P 关于AC 的对称点P ′(-t,0).点P 关于直线BC 的对称点为M(4,4-t).由光的反射定理知,点P ′,M 一定在直线RQ 上.又△ABC 的重心坐标为G(43,43),由题意知点G 在线段RQ 上,即P ′,G ,M 三点共线.∵P ′G →=(43+t ,43),MP ′→=(-4-t ,t -4),P ′G →∥MP ′→,∴(43+t)(-4+t)-43(-4-t)=0,解得t =43,即|AP →|=43. 19.已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0D .|b -a 3|+|b -a 3-1a |=0解析:选C.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意; 若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a=-1,所以a(a 3-b)=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件.20.已知点M(a ,b)在圆O :x 2+y 2=1外, 则直线a x +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.21.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A .33 B .-33C .±33 D .- 3解析:选B.由于y =1-x 2,即x 2+y 2=1(y ≥0),直线l 与x 2+y 2=1(y ≥0)交于A ,B 两点,如图所示,S △AOB =12·s in ∠AOB ≤12,且当∠AOB =90°时,S △AOB 取得最大值,此时AB =2,点O 到直线l 的距离为22,则∠OCB =30°,所以直线l 的倾斜角为150°,则斜率为-33.22.已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D.双曲线C 1的焦点在x 轴上,a =co s θ,b =s in θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =s in θ,b =s in θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ.故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等.23.已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5 B .1∶2C . 1∶ 5 D .1∶3 解析:选C.如图所示,由抛物线定义知|MF|=|MH|,所以|MF|∶|MN|=|MH|∶|MN|.由于△MHN ∽△FOA ,则|MH||HN|=|OF||OA|=12,则|MH|∶|MN|=1∶5,即|MF|∶|MN|=1∶ 5. 24.已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相B .虚轴长相等C .离心率相等D .焦距相等解析:选D.双曲线C 1和C 2的实半轴长分别是s in θ和co s θ,虚半轴长分别是co s θ和s in θ,则半焦距c 都等于1,故选D.25.抛物线y 2=8x 的焦点到直线x -3y =0的距离是( )A .2 3 B .2C . 3 D .1 解析:选D.抛物线y 2=8x 的焦点为F(2,0),则d =|2-3×0|12+(-3)2=1.故选D.26.从椭圆x 2a 2+y 2b2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .24 B.12C .22 D.32解析:选C.设P(-c ,y 0),代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e.由题意设P(-c ,y 0),将P(-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a 2=b 4a 2.∴y 0=b 2a 或y 0=-b 2a (舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac. ∵A(a,0),B(0,b),∴k AB =b -00-a =-b a .又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac ,∴b =c.∴e =ca=c b 2+c 2=c 2c 2=22.故选C. 27.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12 B.32C .1 D. 3 解析:选B.由题意可得抛物线的焦点坐标为(1,0), 双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32 或d 2=|3×1+0|(3)2+12=32. 28.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A .52-4 B.17-1C .6-2 2 D.17解析:选A.设P(x ,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC 1|-1,|PN|=|PC 2|-3,∴|PM|+|PN|=|PC 1|+|PC 2|-4≥52-4.29.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6 B .4C .3 D .2 解析:选B.如图,圆心M(3,-1)与定直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.30.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -2=0 B .x +y +1=0C .x +y -1=0 D .x +y +2=0解析:选A.与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b|12+12=1,故b =±2.因为直线与圆相切于第一象限,故结合图形分析知b=-2,故直线方程为x +y -2=0,故选A.31.已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B.x 24-y 25=1C .x 22-y 25=1 D.x 22-y25=1 解析:选B.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,故选B.32.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1 B.x 24+y 23=1C .x 24+y 22=1 D.x 24+y23=1 解析:选D.右焦点为F(1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y23=1,故选D.33.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6 解析:选C.圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1.在Rt △ACP 中,|AP|=R 2-d 2=2,故直线被圆截得的弦长|AB|=4.34.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.解析:设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦. |CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2.∴最短弦长为2 2.答案:2 235.已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:设C(x ,x 2),由题意可取A(-a ,a),B(a ,a), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a)x 2+a 2-a =0,即y 2+(1-2a)y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.答案:[1,+∞)36.双曲线x 216-y 29=1的两条渐近线的方程为________.解析:由双曲线方程可知a =4,b =3,所以两条渐近线方程为y =±34x .答案:y =±34x37.在平面直角坐标系x Oy 中,椭圆C 的标准方程为x 2a 2+y2b2=1(a>b>0),右焦点为F,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.解析:依题意,d 2=a 2c -c =b 2c .又BF =c 2+b 2=a ,所以d 1=bca.由已知可得b 2c =6·bca,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e=c a =33.答案:3338 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________. 解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 539若抛物线y 2=2p x 的焦点坐标为(1,0),则p =________;准线方程为________.解析:∵ 抛物线y 2=2p x 的焦点坐标为(p 2,0),∴准线方程为x =-p2.又抛物线焦点坐标为(1,0),故p =2,准线方程为x =-1.答案:2;x =-140.设F 为抛物线C :y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于________.答案:±141.已知抛物线y 2=8x 的准线过双曲线x 2a 2-y2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.解析:由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.答案:x 2-y 23=1 42.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-143.已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|AF|=6,co s ∠ABF =45,则椭圆C 的离心率e =________.解析:设椭圆的右焦点为F 1,因为直线过原点,所以|AF|=|BF 1|=6,|BO|=|AO|.在△ABF 中,设|BF|=x ,由余弦定理得36=100+x 2-2×10x ×45,解得x =8,即|BF|=8.所以∠BFA =90°,所以△ABF 是直角三角形,所以2a =6+8=14,即a =7.又因为在Rt △ABF 中,|BO|=|AO|,所以|OF|=12|AB|=5,即c =5.所以e =57.答案:5744.双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:x 216-y 2m =1中,a =4,b =m ,∴c =16+m.而e =54,∴16+m 4=54,∴m =9.答案:945.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-146.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.解析:由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a ,|QF|-|QA|=2a ,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a ,则|PF|+|QF|=4a +|PQ|=4×3+16=28,故△PQF 的周长为28+16=44.答案:4447.双曲线x 216-y 29=1的离心率为________.解析:由题意a 2=16⇒a =4.又b 2=9,则c 2=a 2+b 2=16+9=25⇒c =5,故e =c a =54.答案:5449.设F 1,F 2是双曲线C :x 2a 2-y2b2=1(a>0,b>0)的两个焦点,P 是C 上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:设点P 在双曲线右支上,F 1为左焦点,F 2为右焦点,则|PF 1|-|PF 2|=2a.又|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a.∵在双曲线中c>a ,∴在△PF 1F 2中|PF 2|所对的角最小且为30°.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|co s 30°,即4a 2=16a 2+4c 2-83ac ,即3a 2+c 2-23ac =0.∴(3a -c)2=0,∴c =3a ,即ca = 3.∴e = 3.答案: 350.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF为等边三角形,则p =________.解析:由于x 2=2py(p>0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF 为等边三角形,得32AB =p ,解得p =6.答案:6 51.椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.解:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x24+y 2=1.(2)证明:法一:因为B(2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎫k ≠0,k ≠±12,①①代入x 24+y 2=1,解得P ⎝⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).法二:设P(x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0, 联立,得⎩⎪⎨⎪⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝ ⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4 =4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).52.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.② 由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4).答案:(2,4)53.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB|.解: 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=4.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP||QM|=R r 1,可求得Q(-4,0),所以可设l :y =k(x +4).由l 与圆M 相切得|3k|1+k 2=1,解得k =±24.当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627,所以|AB|=1+k 2|x 2-x 1|=187.当k =-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.54.在平面直角坐标系x Oy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1,此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.55.已知双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的左、右焦点分别为F 1、F 2,离心率为3,直线y=2与C 的两个交点间的距离为 6.(1)求a 、b ; (2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB|、|BF 2|成等比数列.解:(1)由题设知ca =3,即a 2+b 2a2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,将其代入①并化简,得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|,得-(3x 1+1)=3x 2+1,即x 1+x 2=-23,故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16,因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列.56.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)法一:设P(x 0,y 0)(y 0≠0),又F 1(-3,0),F 2(3,0),所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0,lPF 2:y 0x -(x 0-3)y -3y 0=0. 由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2.由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|(32x 0+2)2=|m -3|(32x 0-2)2.因为-3<m<3,-2<x 0<2,可得m +332x 0+2=3-m2-32x 0,所以m =34x 0.因此-32<m<32.法二:设P(x 0,y 0),当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P(3,-12).若P(3,12),则直线PF 1的方程为x -43y +3=0.由题意得|m +3|7=3-m ,因为-3<m<3,所以m =334.若P(3,-12),同理可得m =334.②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22,所以(m +3)2(m -3)2=1+1k 211+1k 22.因为x 204+y 20=1,且k 1=y 0x 0+3,k 2=y 0x 0-3,所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+83x 0+163x 20-83x 0+16=(3x 0+4)2(3x 0-4)2,即|m +3||m -3|=|3x 0+4||3x 0-4|.因为-3<m<3,0≤x 0<2且x 0≠3,所以3+m 3-m =4+3x 04-3x 0,整理得m =3x 04,故0≤m<32且m ≠334.综合①②可得0≤m<32.当-2<x 0<0时,同理可得-32<m<0. 综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2k x 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0.由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k (1k 1+1k 2)=(-4y 0x 0)·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.57.在平面直角坐标系x Oy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得⎩⎪⎨⎪⎧a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m. 由题意得-2<m<0或0<m< 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|=2-m 22. 所以 S △AOB =|m|·2-m 22=64.解得m 2=32或m 2=12.①因为OP →=tOE →=12t(OA →+OB →)=12t(2m,0)=(mt,0),又P 为椭圆C 上一点,所以(mt )22=1.②由①②,得t 2=4或t 2=43,又t>0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =k x +h. 将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4kh x +2h 2-2=0.设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh 1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2, 所以|AB|=1+k 2×(x 1+x 2)2-4x 1x 2=22×1+k 2×1+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d =12×22×1+k 2×1+2k 2-h 21+2k 2×|h|1+k2=2×1+2k 2-h 21+2k 2×|h|.又S △AOB=64, 所以2×1+2k 2-h 21+2k 2×|h|=64.③令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0. 解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④因为OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=(-2kht 1+2k 2,ht 1+2k 2),又P 为椭圆C 上一点,所以t 2[12(-2kh 1+2k 2)2+(h 1+2k 2)2]=1,即h 2t 21+2k 2=1.⑤ 将④代入⑤,得t 2=4或t 2=43.又t>0,故t =2或t =233.经检验,适合题意.综合(ⅰ)(ⅱ),得t =2或t =233.58.如图,在平面直角坐标系x Oy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =k x +3. 由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO , 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理,得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为[0,125].59.已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2|84-x 1-84-x 2|=82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 225t 2+6t +1>2 2. 当t <0时,|MN |=2 2 (5t +35)2+1625≥852.综上所述,当t =-253,即k =-43时,|MN |的最小值是85 2.60.设椭圆E :x 2a 2+y21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明:设出点P 的坐标,并求出其横、纵坐标的关系式. 注意点在直线上时,点的坐标满足直线方程. 设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c,直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c (x -c ).当x =0时,y =cy 0c -y 0,即点Q 坐标为(0,cy 0c -x 0).因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2, 即点P 在定直线x +y =1上.61.直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 互相垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t =±3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2, 所以AC 的中点为M (-4km 1+4k 2,m1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·(-14k )≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.62.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解:(1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D(x 2,y 2),由F (-1,0)得直线C D 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.63.如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△AB D 面积取最大值时直线l 1的方程.解:(1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D(x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k 2,所以|P D|=8k 2+14+k2. 设△AB D 的面积为S ,则S =12|AB |·|P D|=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1.64.如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N . (1)若点C 的纵坐标为2,求|MN |;(2)若|AF |2=|AM |·|AN |,求圆C 的半径.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2.又|CO |=5,所以|MN |=2|CO |2-d 2=25-4=2.(2)设C ⎝⎛⎭⎫y 204,y 0,则圆C 的方程为⎝⎛⎭⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0.设M (-1,y 1),N (-1,y 2),则⎩⎨⎧Δ=4y 20-4⎝⎛⎭⎫1+y 202=2y 20-4>0,y 1y 2=y22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4,所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝⎛⎭⎫32,6或⎝⎛⎭⎫32,-6,从而|CO |2=334,|CO |=332,即圆C 的半径为332. 65.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解:(1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |= 3.(2)四边形OABC 不可能为菱形.理由如下:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.。

高考中解析几何问题的题型与方法

高考中解析几何问题的题型与方法

解析几何问题的题型与方法例1、椭圆22221(,0)x y a b a b+=>的两个焦点F 1、F 2,点P 在椭圆C 上,且P F 1⊥F 1F 2,,| P F 1|=34,,| P F 2|=314.(I )求椭圆C 的方程;(II )若直线L 过圆x 2+y 2+4x-2y=0的圆心M 交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线L的方程。

解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt △PF 1F 2中,,52212221=-=PF PF F F 故椭圆的半焦距c =5,从而b 2=a 2-c 2=4,所以椭圆C 的方程为4922y x +=1. (Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2). 由圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y =k (x +2)+1, 代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.因为A ,B 关于点M 对称. 所以.29491822221-=++-=+kk k x x 解得98=k , 所以直线l 的方程为,1)2(98++=x y 即8x -9y +25=0. (经检验,符合题意) 解法二:(Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且,1492121=+yx① ,1492222=+yx②由①-②得.04))((9))((21212121=+-++-y y y y x x x x③因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2,代入③得2121x x y y --=98,即直线l 的斜率为98, 所以直线l 的方程为y -1=98(x+2),即8x -9y +25=0.(经检验,所求直线方程符合题意.) 例2、 直线1:+=kx y l 与双曲线12:22=-y x C 的右支交于不同的两点A 、B .(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆恰好过双曲线的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(I )由方程组⎩⎨⎧=-+=12122y x kx y 消去y 得022)2(22=++-kx x k . 设),,(),,(2211y x B y x A 由题意,直线l 与双曲线C的右支交于不同两点,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>--=+>--=∆≠-∴0220220)2(8)2(02221221222k x x k k x x k k k ).2,2(--∈⇒k(II )假设存在实数k ,使得以线段AB 为直径的圆恰好过)0,(c F ,则FB FA ⊥,0=⋅∴,))((2121=+--∴y y c x c x ,即)1)(1())((2121=+++--kx kx c x c x ,整理得01))(()1(221212=+++-++c x x c k x x k .将26=c 及22221--=+k k x x ,22221-=k x x 代入并化简可得066252=-+k k .解得566--=k 或566+-=k (舍去). 故存在566--=k 满足题意. 例 3 设经过点),0(m Q 且倾斜角为4π的直线l 与椭圆4422=+y x 交于不同的两点A 、B ,O 为坐标原点.(I )若QB AQ 23-=,求m 的值;(II )当AOB ∆的面积最大时,求m 的值.解:(I )直线l 的方程为m x y +=,由⎩⎨⎧=++=4422y x m x y 得0)1(48522=-++m mx x .由题意,0)1(80)8(22>--=∆m m ,∴55<<-m .设),,(),,(2211y x B y x A 则有5821mx x -=+①,5)1(4221-=m x x ②.由23-=可得,2123x x -=-③.由①②③联解可得291455±=m ,且满足0>∆.故m 的值为291455±. (II )结合图形可知AOB ∆的面积21221124)(121x x x x m x x m S AOB -+⋅⋅=-⋅⋅=∆ 5)1(16)58(2122---⋅⋅=m m m )5(5222m m -= 24552m m +-=.易知当252=m 时,AOB S ∆取得最大值, 此时m 的值为210±. (注:求AOB S ∆的表达式时,题解中用的是图形的割补思想,若用点O 到直线AB 的距离2m d =及弦长122x x AB -=来处理,可得到同样的结果.)例4 已知椭圆1222=+y x .(I)求斜率为2的平行弦中点的轨迹方程;(II)过)1,2(N 的直线l 与椭圆相交,求被l 截得的弦的中点轨迹方程;(III)求过点)21,21(P 且被P 点平分的弦所在直线的方程.解:设弦的两端点为),(),,(2211y x B y x A ,中点为),(00y x M ,则有210212,2y y y x x x =+=+.由122121=+y x ,122222=+y x 两式作差得:1))((2))((12121212=+-++-y y y y x x x x ,00121212122)(2y x y y x x x x y y -=++-=--∴.即002y xk AB -=.①I )设弦中点为),(y x M ,由①式,yx22-=,∴04=+y x .故所求的轨迹方程为04=+y x (在已知椭圆的内部). (II )不妨设l 交椭圆于A 、B ,弦中点为),(y x M .由①式,yxk k AB l 2-==,又∵12--==x y k k MN l ,122--=-∴x y y x .整理得,04222=--+y x y x 此即所求的轨迹方程. (III )由①式,弦所在的直线的斜率21200-=-=y x k ,故其方程为)21(2121--=-x y ,即0342=-+y x .例5、设双曲线C :线222x -y =1(a>0)与直l:x+y =1a相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).2e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为例6、已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值. 解:∵(1),332=a c 原点到直线AB :1=-b y a x 的距离.3,1.2322==∴==+=a b c abb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k . 设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210k x y k k kx y k k x x x BE -=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又故所求k=±7. 例7、O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||AC AB ++=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( )(A )外心 (B )内心 (C )重心 (D )垂心分析:因为||||AB AC AB AC AB AC 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||AB ACAB AC +是与∠ABC 的角平分线(射线)同向的一个向量,又()AB ACOP OA AP AB ACλ-==+,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。

解析几何高考真题分类解析

解析几何高考真题分类解析
因此l的方程为y=x-1.
(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程
为y-2=-(x-3),即y=-x+5.
设所求圆的圆心坐标为(x0,y0),则
解得 或
因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
题型三 直线与圆的综合问题
【例5】(2020全国Ⅰ卷)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )
A. B. C.2D.
解析:设 点坐标为 ,则以 为直径的圆的方程为 -----①,圆的方程 -----②,则①-②,化简得到 ,代入②式,求得 ,则设 点坐标为 , 点坐标为 ,故 ,又 ,则 化简得到 , ,故 .故选A.
【例10】(2017全国Ⅰ卷)已知F是双曲线C:x2- =1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为()
【例1】(2017全国Ⅲ卷)双曲线 的一条渐近线方程为 ,则 。
解析:渐近线方程为 ,由题意知 ,所以 .
题型二双曲线的几何性质
【例2】(2020全国Ⅲ卷)设双曲线 的一条渐近线为 ,则 的离心率为______.
解析:由双曲线的方程可得渐近线的方程为: ,由题意可得 ,
所以离心率 ,故答案为: .
【例3】(2019全国Ⅰ卷)双曲线C: ﹣ =1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为( )
A.2B.3C.4D.8
解析:抛物线 的焦点是 ,椭圆 的焦点是 ,∴ ,∴ .故选D.
【例3】(2017全国Ⅱ卷)过抛物线C:y2=4x的焦点F,且斜率为 的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档