动态最优化第10讲 具有约束的最优控制问题

合集下载

最优控制问题的优化算法设计

最优控制问题的优化算法设计

最优控制问题的优化算法设计在现实生活中,我们经常面临着需要做出最优决策的问题。

而最优控制问题正是其中的一个重要研究领域。

最优控制的目标是通过在给定约束条件下,找到使指定性能指标最佳化的控制策略。

为了达到这一目标,研究者们不断探索和发展各种优化算法。

一、最优控制问题的基本形式最优控制问题可以表述为在一段时间内,通过调整系统状态的控制量,使得性能指标达到最优。

通常情况下,最优控制问题由动力学方程和性能指标的约束条件组成。

动力学方程描述了系统的演化过程,它通常采用微分或差分方程的形式来表示。

而性能指标可以是各种形式的约束条件,如最小化系统能耗、最大化系统输出品质等。

最优控制问题的目标是找到一种控制策略,使得性能指标达到最优。

二、优化算法的设计原则优化算法的目的是通过搜索和评估控制策略的性能来找到最优解。

针对最优控制问题,设计优化算法需要遵循以下原则:1. 算法的可行性:算法必须能够在给定的约束条件下求解最优控制问题。

2. 算法的收敛性:算法必须能够收敛到最优解,即使在复杂的问题和高维空间中也能够得到稳定的结果。

3. 算法的效率:算法应该具有较高的求解效率,能够在合理的时间内得到满意的结果。

4. 算法的鲁棒性:算法应该对于问题的参数变化和扰动具有一定的鲁棒性,能够适应不同的环境条件。

基于以上原则,研究者们开发了多种优化算法来解决最优控制问题。

三、最优控制问题的常见优化算法1. 数学规划算法:数学规划算法是最优控制问题求解中最常用的方法之一。

它通过建立目标函数和约束条件,并利用数学规划理论和算法来求解最优解。

2. 动态规划算法:动态规划算法是一种通过将原问题分解为子问题来求解最优控制问题的方法。

它具有较高的求解效率和鲁棒性,在一些特定的问题中表现出色。

3. 遗传算法:遗传算法是一种模拟生物进化过程的优化算法。

通过模拟遗传、变异和选择等过程,遗传算法可以在大规模搜索空间中找到最优解。

4. 粒子群优化算法:粒子群优化算法基于群体智能的原理,通过模拟鸟群寻找食物的过程来求解最优控制问题。

动态最优化第10讲 具有约束的最优控制问题

动态最优化第10讲 具有约束的最优控制问题





最大值原理的其它条件(运动方程):
dy H (状态变量的运动方程) dt d H g 1 g 2 1 2 (共态变量的运动方程) dt y y y y
加适当横截条件
第十讲 具有约束的最优控制问题

(一)涉及控制变量的约束
0 0
Γ T G t , y, u dt k
T 0
第十讲 具有约束的最优控制问题

(一)涉及控制变量的约束

(3)等周问题
问题重新表述为:(两个状态变量的一个无约束问题)
Max S .T .
F t , y, u dt
T 0
dy f t , y, u dt dΓ G t , y, u dt y 0 y0 Γ 0 0 y T 自由 (y0 , T给定) Γ T k (k给定)
0 u1 0 u 2 0 i 0 3
0 3u1 0 3
第十讲 具有约束的最优控制问题

(一)涉及控制变量的约束

(2)不等式约束
如果构造拉格朗日函数为:
F f 1 c1 g 1 2 c2 g 2 即: 0 3u1
dy f t , y, u1 , u 2 dt g t , y, u1 , u 2 c1
1
S .T .

dy f t , y, u1 , u 2 dt g 1 t , y, u1 , u 2 c1 g 2 t , y, u1 , u 2 c2 u1 0
加适当横截条件
第十讲 具有约束的最优控制问题

最优控制问题介绍

最优控制问题介绍

最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。

这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。

通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。

一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。

在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。

这个性能指标可以是时间最短、能量消耗最小、误差最小等。

为了解决这个问题,我们首先需要建立系统的数学模型。

这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。

然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。

最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。

二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。

其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。

1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。

这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。

2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。

这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。

3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。

这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。

三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。

1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。

动态规划原理与最优控制(2024版)

动态规划原理与最优控制(2024版)

式中
Ut
Ut {u(s), t s t f }
t f [x(s),u(s), s]ds
t
(4) (5)
而x(s)是在区间[t,t f ] 上和最优控制函数有关的轨线,
其中
t ,s 且t f
给x(t定0 ) 。
34
显然
V[x(t f ), t f ] [x(t f ), t f ]
(6)
加法次数: 4 * (n-2) + 2 次 n = 4时, 4 * (4-2) + 2 = 10 次
13
各个状态到终点的最短距离
J*[S] = 13 J*[X1(1) ] = 10 J*[X2(1) ] = 8 J*[X1(2) ] = 4 J*[X2(2) ] = 5 J*[X1(3) ] =4 J *[X2(3)] =3
(9)
上式称为Hamilton-Jacobi方程
或者称为 Hamilton-Jacobi-Bellman方程
38
对于所给最优控制问题,重复以上讨论,导致
V [ x(t ), t ] t
[
x(t
V
[
x(t t
),
t
]
t
V [ x(t ), t x(t)
]
T
f [x(t),u(t),t]t H.O.T.(t)}
36
min V[x(t),t] Ut
[x(t f ),t f ]
t f [x(s),u(s), s]ds
t
V
[
x(t
),t
]
V
[
x(t t
),
t
]
t
min u( )
J
*k

最优控制问题的动态规划法

最优控制问题的动态规划法

最优控制问题的动态规划法动态规划法是一种常用的最优控制问题求解方法。

它通过将问题分解为子问题,并保存子问题的最优解,最终得到整体问题的最优解。

本文将介绍最优控制问题的动态规划法及其应用。

一、概述最优控制问题是指在给定控制目标和约束条件下,通过选择一组最优控制策略来实现最优控制目标。

动态规划法通过将问题分解为若干个阶段,并定义状态和决策变量,来描述问题的动态过程。

并且,动态规划法在求解过程中通过存储子问题的最优解,避免了重复计算,提高了计算效率。

二、最优控制问题的数学模型最优控制问题通常可以表示为一个关于状态和控制的动态系统。

假设系统的状态为$x(t)$,控制输入为$u(t)$,动态系统可以表示为:$$\dot{x}(t) = f(x(t), u(t))$$其中,$\dot{x}(t)$表示状态$x(t)$的变化率,$f$为状态方程。

此外,系统还有一个终止时间$T$,以及初始状态$x(0)$。

最优控制问题的目标是找到一个控制策略$u(t)$,使得系统在给定时间$T$内,从初始状态$x(0)$演化到最终状态$x(T)$,同时使得性能指标$J(x,u)$最小化。

性能指标通常表示为一个积分的形式:$$J(x,u) = \int_0^T L(x(t), u(t)) dt + \Phi(x(T))$$其中,$L$表示运动代价函数,$\Phi$表示终端代价函数。

三、最优控制问题的动态规划求解最优控制问题的动态规划求解包括两个主要步骤:状态方程的离散化和动态规划递推。

1. 状态方程的离散化将状态方程离散化可以得到状态转移方程。

一般来说,可以使用数值方法(如欧拉方法、龙格-库塔方法)对状态方程进行离散化。

通过选择适当的时间步长,可以平衡计算精度和计算效率。

2. 动态规划递推动态规划递推是最优控制问题的关键步骤。

假设状态函数$V(t,x)$表示从时刻$t$起,状态为$x$时的最优性能指标。

动态规划递推过程通常可以描述为以下几个步骤:(1)递推起点:确定最终时刻$T$时的值函数$V(T,x)$,通常可以根据终端代价函数$\Phi$直接得到。

第十章_具有约束的最优控制问题

第十章_具有约束的最优控制问题

G ( t , y , u ) [ 的运动方程
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为:T 最优控制问题: 最大化 0 F ( t , y , u ) dt
T
例2 解以下最优控制问题:

最大化 0 1 dt y yu 满足
y (0) 5 y ( T ) 11 T 自由
T


u ( t ) [ 1,1]
它具有一个受约束的控制变量,该控制集合可视为 两个不等式约束:
1 u (t ) 和 u (t ) 1
汉密尔顿函数: H 拉格朗日函数:
u
对于所有 t [ 0 , T ]
]
H y [ 的运动方程 ]
y
H
[ y 的运动方程
(t ) 常数
( T ) 0 [ 横截条件 ]
四、不等式积分约束 T 最优控制问题: 最大化 0 F ( t , y , u ) dt y f (t, y , u ) 满足
y H H
u
F (t, y , u ) f (t, y , u ) G (t, y , u )
[ y 的运动方程
[ 的运动方程
]


[ 的运动方程
]
[ 的运动方程
]
( T ) 0 [ 横截条件 ]
上页的最大值原理可简化为:
Max H
]
]
( T ) 0 , ( T ) k 0 , ( T )[ ( T ) k ] 0 [ 的横截条件

第十章_具有约束的最优控制问题

第十章_具有约束的最优控制问题

对于给定的 ,或者 关于( y , u ) 对所有t [ 0 , T ] 是凹 的,或者 H 0 关于 y 对于所有t [ 0 , T ] 是凹的。
如果是无限水平问题,充分性定理仍然适用,但是要 加上一个补充性条件:
T
lim ( t )[ y ( t ) y ( t )] 0
G ( t , y , u ) [ 的运动方程
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为:T 最优控制问题: 最大化 0 F ( t , y , u ) dt
]
H y [ 的运动方程 ]
y
H
[ y 的运动方程
( T ) 0 [ y 的横截条件
( t ) 常数 0

]
k
G ( t , y , u ) dt
0
T
0
k
G ( t , y , u ) dt 0 0
T
]
(t )
在计划时期内的初始值和终结值是:
0 0
( 0 ) G ( , y , u ) d 0
(T ) G ( , y , u ) d k
0
上页的最优控制问题变为: 最优控制问题: 最大化 F ( t , y , u ) dt 0 y f (t, y , u ) 满足
(10 . 43 ) (10 . 44 ) (10 . 45 ) (10 . 47 )

动态最优化 徐高的笔记

动态最优化 徐高的笔记
T ∂F T dV (ε ) =∫ dt = ∫ Fy p (t ) + Fy′ p ′(t ) dt = 0 0 ∂ε 0 dε
[
]
(2.1.3)
又由分部积分法可得

T
0
Fy′ p ′(t )dt = Fy′ p (t ) 0 − ∫ p (t )
T 0
[
]
T
T d d Fy′ dt = − ∫ p (t ) Fy′ dt 0 dt dt
]
(2.2.13)
此式可以通过画一个图看出。详见蒋中一《动态最优化基础》76 页图 3.1 4
XG’s 动态最优化笔记
由于 ∆T 是任意的,可得横截条件为
[F + (φ ′ − y ′)F ]
y ′ t =T
=0
(2.2.14)
再加上 yT = φ (T ) 可确定曲线。 情形 IV:截断垂直(水平)终结线: 。做法是,先按照垂直终结线(水平终结线)方法 有终结约束 yT ≥ y min (或 T ≤ Tmax ) 求出最优曲线。检查是否符合约束,若是,则结束。否则按照固定终点问题 (T , y min ) (或
(2.1.4)
T dV (ε ) d = ∫ p (t ) Fy − Fy′ dt = 0 0 dε dt
(2.1.5)
由于 p (t ) 是任意函数,要上式成立,则必须有
Fy −
d Fy′ = 0 ,对于所有 t ∈ [0, T ] dt
y′
[欧拉方程]
(2.1.6)
欧拉方程的其它形式
s.t.
m
g (t , y1 ,L, y n ) ≤ c m
F = F + ∑ λi (t ) ci − g i

最优控制动态求解

最优控制动态求解

tf t0
t f vdu
t0
J
tf t0
F x
d dt
(
F x
)xdt
F x
x
tf t0
(4)
J取极值的必要条件是 J 等于零。因 x 是 任意的,要使(3-2)中第一项(积分项)为 零,必有
F x
d dt
(
F x
)
0
(5)
(4)式中第二项即为结论中的式(3).
举例: 利用上面的结论求得
H (x,u, ,t) L(x,u,t) T (t) f (x,u,t) (15)
它称为哈密顿(Hamilton)函数,在最优控制中 起着重要的作用。
(1) 末端时刻固定时的最优解 对于如下最优控制问题:
x Rn , u Rm无约束且在[t0,tf]上连续, Rr , r n.在[t0,tf]
(11)
2) 末端状态受约束时的横截条件 设受约束方程为 x(tf)=c(tf) ,由(7)可知
代入(11) ,并考虑 t f 任意,得到tf自由、x(tf)受约束的横
截条件和边界条件为
(11.1)
如果t0也自由、x(t0)受约束,即沿着曲线g(t) 则应满足以下横截条件
x(t0 ) g(t0 )
J tf dt
J
tf
uT
t0
(t)u(t)dt
t0
J
tf t0
m
u j (t) dt
j 1
II. 末值型性能指标 J [x(t f ),t f ]
III. 复合型性能指标
J [x(t f ),t f ]
tf F x(t), x(t),tdt
t0
4.1 用变分法解最优控制 ➢ 4.1.1 泛函与变分 ➢ 4.1.2 欧拉方程 ➢ 4.1.3 横截条件 ➢ 4.1.4 变分法解最优控制问题

胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(动态系统的最优控制方法)【圣才出品】

胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(动态系统的最优控制方法)【圣才出品】
二、最优控制中的变分法 (1)泛函 如果变量 J 对于某一类函数{x(t)}中的每一个函数 x(t),都有一个确定的值与之对 应,那么就称变量 J 为依赖于函数 x(t)的泛函,记为:J[x(t)]。
1 / 32
圣才电子书

(2)变分和变分法
十万种考研考证电子书、题库视频学习平台
t
tx t dt
试求:
(1)δJ 的表达式;
(2)当 x(t)=t2,δx=0.1t 和 δx=0.2t 时的变分 δJ 的值。
解:(1)由泛函变分规则可知:
4 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)由(1)可知,δx=0.1t 时:
δx=0.2t 时:
10-6 试求下列性能指标的变分 δJ。
J tf t2 x2 x&2 dt t0
解:由泛函变分规则,求得:
10-7 已知性能指标为: 求 J 在约束条件 t2+x12=R2 和边界条件 x1(0)=-R,x2(0)=0,x1(R)=0,x2 (R)=π 下的极值。 解:构造广义泛函为:
5 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 10 章 动态系统的最优控制方法
10.1 复习笔记
考研初试一般不考查本章内容,下文为最优控制问题的基础理论部分。
一、最优控制的基本概念 (1)最优控制 概念:在系统状态方程和约束条件给定的情况下,寻找最优控制律,使衡量系统的某一 性能指标达到最优(最小或最大)。 (2)最优控制问题 任何一个最优控制问题均应包含四方面内容:①系统数学模型;②边界条件与目标集; ③容许控制;④性能指标。 (3)最优控制的研究方法 包括:解析法;数值计算法;梯度型法。

最优控制总结

最优控制总结

/系统的数学模型,物理约束条件及性能指标。

数学描述:设被控对象的状态方程及初始条件为()[(),(),],(0)0x t f x t u t t x t x ==;其中,()x t X Rn ∈⊂为状态向量,X 为状态向量的可容许集;()u t Rm ∈Ω⊂为控制向量,Ω为控制向量的可容许集。

试确定容许的最优控制*()u t 和最优状态轨迹*()x t ,使得系统实现从初始状态(0)x t 到目标集[(),]0x tf tf ψ=的转移,同时使得性能指标0[(),][(),(),]tft J x tf tf L x t u t t dt ϕ=+⎰达到极值。

系统状态方程形式(连续,离散)(2)最优控制形式(开环,闭环) (3)实际应用(时间,燃料,能量,终端) (4)终端条件(固定,自由) (5)被控对象形目标函数及约束条件组成的静态优化问题可以描述为:在满足一系列约束条件的可行域中,确定一组优化变量,(极大值或极小值)。

数学描述:min (),,:n nf x x R f R R ∈→,..()0,:;()0,:n m n l s tg x g R R h x h R R =→≥→静态最优化问题,也称为参数最优化问题,它的三个基本要素是优化变量、目标函数和约束条件,其本质是解决函数,也称为最优控制问题,它的三个基本要素是被控对象数学模型、物理约束条件和性能指标,其本质是解 多变量目标函数沿着初始搜索点的负梯度方向搜索,函数值下降最快,又称最速下降法;(2)多变量无约束。

根据具体的最优换问题构造合适的惩罚函数,将多变量有约束最优化问题转换为一系列多变量无约束最优化问题,从而采用合适;(2)多变量有约束(外点法:等式约,不等式约束;内点法:不等式约束)。

通过构造拉格朗日函数,将原多变量有约束最优化问题转化为一个多变量无约束最优化问题,从而采用合适的无约束方法继(等式约束,不等式约束)。

梯度定义12()()()()f x x f x f x f x xx ∂⎡⎤⎢⎥∂∂⎢⎥=∇=⎢⎥∂∂⎢⎥∂⎣⎦,Hessian 矩阵22221212222212()()f f x x x f x H x x f f x x x ⎡⎤∂∂⎢⎥∂∂∂∂⎢⎥==⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦,最优梯度法(无约束):迭代(1)()()()()k k k k x x f x α+=-∇,()()()()()()()()()()()k T k k k T k k f x f x f x H x f x α∇∇=∇∇,终止误差()()()k p k f x ε=-∇≤ 例:(),(0),()f x f x H x ∇∇;(0)[(0)(0)]f x T f x α=∇•∇/[(0)(0)]T f x H f x ∇••∇;(1)(0)(0)(0)x x f x α=-•∇;()f xk ε∇<,()x k 是极()0,()0x x =≥g h (1) 等式约束:(,)()()T H x f x x λ=+λg ,利用1210,0,0,0,0n mH H H H Hx x xλλ∂∂∂∂∂=====∂∂∂∂∂解出极大值点或极小值点。

第十章 动态系统的最优控制方法

第十章 动态系统的最优控制方法

其中 x Rn , u R p ,求 u* J min max
构造Harmilton函数:
H x, u,,t L x, u,t T t f x, u,t
式中: Rn ——拉格朗日乘子分量
Modern Control Theory
Page: 20
变分法求解最优控制问题
求 最 优 解 的 必要条 件
Page: 21
变末分法端求固解定最终优端控制自问由题



一、末端时刻 t f 固定, x t f 任意(终端自由)
制 理
定理:对于最优控制问题

min J x
tf
tf L x, u,t dt
t0
s.t. xt f x,u,t, xt0 x0
最优解的必要条件:
1. xt t 满足正则方程
t0 x
x
Modern Control Theory
Page: 8
最优控制中的变分法



制 理 论
[例] J tf x2 (t)dt J ? t0
解: J[x] 1 x2 (t)dt 0
J
1
[
F
x]dt
0 x
1
[2x x]dx
0
Modern Control Theory
Page: 9
记作J x t
(2)函数的变分
泛函J x t 的变量x t 变分 x : x x t x0 t , 它表示x t 与x0 t 之间的差
Modern Control Theory
Page: 5
线性泛函

代 (3)泛函的连续性: 控
制 理
对 于 任 意 给 定 的 0, 存 在 0, 当 x x0 时 ,

最优控制与最优化问题中的动态规划方法

最优控制与最优化问题中的动态规划方法

最优控制与最优化问题中的动态规划方法动态规划方法是一种在最优控制和最优化问题中常用的方法。

它通过将问题分解为子问题,并利用子问题的最优解来求解整体问题的最优解。

本文将介绍动态规划方法的基本原理和应用,以及其在最优控制和最优化问题中的具体应用案例。

一、动态规划方法的基本原理动态规划方法的基本原理是将原问题分解为若干个子问题,并通过求解子问题的最优解来求解整体问题的最优解。

具体来说,动态规划方法有以下几个基本步骤:1. 定义状态:将问题的解表示为一个或多个状态变量。

2. 确定状态转移方程:根据问题的特点和约束条件,确定状态之间的转移关系。

3. 确定边界条件:确定问题的边界条件,即最简单的情况下的解。

4. 递推求解:利用状态转移方程和边界条件,递推求解问题的最优解。

二、动态规划方法在最优控制中的应用动态规划方法在最优控制中有广泛的应用。

最优控制问题的目标是找到一种控制策略,使得系统在给定的约束条件下达到最优性能。

动态规划方法可以用来求解最优控制问题的控制策略。

以倒立摆控制为例,倒立摆是一种常见的控制系统,其目标是使摆杆保持竖直位置。

动态规划方法可以将倒立摆控制问题分解为一系列子问题,每个子问题都是在给定状态下选择最优的控制动作。

通过递推求解子问题的最优解,最终可以得到整个控制过程的最优策略。

三、动态规划方法在最优化问题中的应用动态规划方法在最优化问题中也有广泛的应用。

最优化问题的目标是找到一组变量的最优取值,使得目标函数达到最小或最大值。

动态规划方法可以用来求解最优化问题的最优解。

以旅行商问题为例,旅行商问题是一个经典的最优化问题,其目标是找到一条路径,使得旅行商能够经过所有城市并且总路程最短。

动态规划方法可以将旅行商问题分解为一系列子问题,每个子问题都是在给定状态下选择最优的下一个城市。

通过递推求解子问题的最优解,最终可以得到整个旅行路径的最优解。

四、动态规划方法的优缺点动态规划方法有以下几个优点:1. 可以求解复杂的最优控制和最优化问题,具有较高的求解效率。

(完整word版)最优控制讲义

(完整word版)最优控制讲义

第一章 绪论§1。

1最优控制问题静态最优化问题:输入—输出—代数方程 动态最优化问题:输入—输出-微分方程 确定性最优控制:系统参数确定,无随机输入 随机性最优控制:系统参数确定,有随机输入⎩⎨⎧=+=)()()()()(t Cx t Y t Bu t Ax t x⎩⎨⎧+=++=)()()()()()()(t v t Cx t Y t w t Bu t Ax t x例:飞船的月球软着陆问题推力 dtdmkf -= 运动方程 mg dt dmk mg f dtx d m --=-=22 )()(][00f t t t m t m dt dtdmJ f-=-=⎰ 初始条件 ⎩⎨⎧======0)(,)(,00f f t x x t t ht x x t t约束条件为 0≤≤-dtdmα求min J§1.2最优控制的数学模型一 控制系统的数学模型(集中参数系统)直接法建立:动力学、运动学的基本定律,即解析法.间接法建立:通过“辩识"的途径确定系统的结构与参数.)),(),(()(t t u t x f t x= 其中 T n t x t x t x t x )](,)(),([)(21 =,T r t u t u t u t u )](,)(),([)(21 =,],,[21n f f f f = )(t x 为n 维状态向量,)(t u 为r 维控制向量,f 为n 维函数向量。

二 目标集通过)(t u 使)(t x 由)(0t x 到)(f t x ,其中)(0t x 为初始状态,并且通常为已知;)(f t x 为终端状态,即控制所要求达到的目标。

一般来说对终端状态的要求可用如下的约束条件表示:0)),((,0)),((21≤=f f f f t t x g t t x g 。

三 容许控制i u 具有不同的物理属性,一般有r 1,2i u i ,,=≤α,即在控制域U 内。

最优控制问题求解方法综述

最优控制问题求解方法综述

最优控制问题求解方法综述最优控制问题方法综述班级:姓名:学号:最优控制问题方法综述一、最优控制(optimal control)的一般性描述:最优控制是现代控制理论的核心,它研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定的要求运行,并使给定的某一性能指标达到最优值。

使控制系统的性能指标实现最优化的基本条件和综合方法。

可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。

这类问题广泛存在于技术领域或社会问题中。

例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。

最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。

美国学者R.贝尔曼1957年动态规划和前苏联学者L.S.庞特里亚金1958年提出的极大值原理,两者的创立仅相差一年左右。

对最优控制理论的形成和发展起了重要的作用。

线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。

从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。

解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。

最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。

研究最优控制问题有力的数学工具是变分理论,而经典变分理论只能够解决控制无约束的问题,但是工程实践中的问题大多是控制有约束的问题,因此出现了现代变分理论。

现代变分理论中最常用的有两种方法。

一种是动态规划法,另一种是极小值原理。

它们都能够很好的解决控制有闭集约束的变分问题。

值得指出的是,动态规划法和极小值原理实质上都属于解析法。

最优控制(动态求解)

最优控制(动态求解)

06
最优控制在现实生活中的应 用
经济问题
投资组合优化
通过最优控制理论,投资者可以 确定最佳的投资组合策略,以最 大化收益或最小化风险。
生产调度
在生产过程中,企业可以使用最 优控制理论来优化生产调度,以 提高生产效率并降低成本。
商业决策
商业决策者可以使用最优控制理 论来制定最佳的商业策略,例如 定价、库存管理和营销策略。
内点法
内点法是一种基于梯度下降的求解方法,通过迭代逼近最优解,适用 于大规模的优化问题。
最优控制的线性规划问题
最优控制问题可以转化为线性规划问 题,通过建立状态方程、目标函数和 约束条件,利用线性规划求解方法找 到最优控制策略。
在实际应用中,最优控制的线性规划 问题广泛应用于生产调度、物流优化、 金融投资等领域。
03
其中,V(x)表示状态x的价值函数,R(x,a)表示在状态x采取 行动a的即时奖励,p(x′∣x,a)表示从状态x采取行动a转移到 状态x′的概率。
递归求解方法
01
02
03
递归求解方法是动态规划的常用求解 方法,通过递归地求解子问题来得到 原问题的最优解。
递归求解方法的基本步骤是:将原问 题分解为若干个子问题,分别求解每 个子问题的最优解,然后利用子问题 的最优解来求解原问题的最优解。
03
状态方程的解可以给出系统在 任意时刻的状态,是进行最优 控制的基础。
性能指标函数
01
性能指标函数用于衡量控制策略的效果,通常表示为系统状态 和控制输入的函数。
02
性能指标函数的目标是最小化或最大化,例如控制能量、时间、
误差等。
性能指标函数的选取应根据具体问题的需求来确定,不同的性
03

最优化理论与最优控制.ppt

最优化理论与最优控制.ppt
例题分析:[数学描述] 登月火箭到达月球表面时的软着陆问题:
火箭飞行的最后阶段,进入了月球的引力范围,当火箭 垂直自由降落到距离月球表面为h的地方时,要求火箭 速度为0,并且燃料消耗为最小。
t=t0
mg 火箭
F(制动力)
月球表面 分析:在火箭速度降为0之前,
制动力 F K dm 与燃料消耗成正比 dt
J是控制u(t)的函数,通常表示为:J [u (t )]
J[u] 的几种形式:
<1> 积分型性能指标:
J[u] t f L[x(t), u(t), t]dt t0
<2> 末值型性能指标:
J[u] [x(t f ), t f ]
<3> 综合型性能指标:
J[u] [x(t f ), t f ]
版社
第一章
绪论
最优控制属于现代控制技术的核心内容,是现代理论的一个 研究热点和中心话题。
现代控制理论:以多变量系统控制、最优控制、系统辩识为 主要内容,最优控制发展早。20世纪60年 代,现代控制理论才得以迅速发展。我国 著名学者:钱学森 1945年编著的《工程
控 制论》直接促进了最优控制理论的发展和 形成。
确定变量,列出约束条件,确定目标函数(性能指标) 2) 模型分析,选择合适的最优化求解方法。 3)根据选定的最优化算法,编程,求解 。
最优化的基本问题: 就是寻找一个最优的控制方案或控制规律,使所研究
的对象(或系统)能最优地达到预期的目标。
例如:1 温度控制系态。
缺点:系统设计不是最优的,所得结果不是唯一解。
改进:解析法:力求使设计的系统按一定指标要求来达到 最 二) 解析法:
优,从这个意义上讲,解析法比古典法更前进一步 。核心:目标函数为最小。

动态最优化控制

动态最优化控制

连续时间的最优控制
• 5、横截条件 • 所谓横截条件,就是可以把状态变量的最优路径 与其他允许路径区别开来的条件。类似于微分方 程中的初始条件,横截条件确定了状态变量的具 体路径,即决定了状态变量和控制变量的最优轨 线(optimal trajectory)。 • 最简单的横截条件是固定始点和固定终点条件, 即: x(t0)=x0,x(T)=xT 许多经济问题都有一个给定的出发点x0,当其终 点值xT本身就是优化问题的一部分。
式中St称为状态变量,ct称为控制变量。
• 3、“Cake-eating”问题的求解 • 假设行为人并没有留有遗产的动机,则有: S3=0,c3=S2,c2+c3=S1,c1+c2+c3=S0 • 使用拉格朗日乘子法,得: Max L=u(c1)+u(c2)/(1+ρ)+u(c3)/(1+ρ)2+λ(S0-c1-c2-c3) • 使L最大化的一阶条件为: L/c1=u´(c1)-λ=0 L/c2=u´(c2)/(1+ρ)-λ=0 L/c3=u´(c3)/(1+ρ)2-λ=0 即有: u´(c1)=u´(c2)/(1+ρ)=u´(c3)/(1+ρ)2
连续时间的最优控制
• 10、汉密尔顿(Hamilton)函数 • 在最优控制问题的拉格朗日函数中,与控制 变量u(t)有关的只有其前两项,因此可单独 列出此两项为: H=f(x,u,t)+λg(x,u,t) 此式就称为汉密尔顿函数。 • 对于拉格朗日函数细加分析,可以看出汉密 尔顿函数的经济含义。
连续时间的最优控制
• 11、庞特里雅金(Pontryagin)最大值原理 • 由上述一阶条件和状态变量的运动方程,还可导出控 制变量的运动方程。一阶条件方程对时间求导,得: fuuu'+fuxx'+λguuu'+λguxx'+λׂgu+fut+λgut=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大值原理条件:
0 对于所有的t 0,T
u
c g 0, 0, 0
dy dt
d
dt y
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(5)现值哈密尔顿函数和拉格朗日函数
引入新的乘子: m et (隐含 met)
n et (隐含 net)
汉密尔顿函数和拉格朗日函数:
Gt,
y, u dt
0
Γ
T
T
0
Gt,
y,
u
dt
k
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(4)不等式积分约束
问题重新表述为:
(2个状态变量的无约束问题,新变量具有截断终结线)
Max
T
0
F
t,
y,
u
dt
S.T. dy f t, y,u
dt
dΓ Gt, y,u
dt
y0 y0 yT 自由 (y0 ,T给定)
dt
又由于:汉密尔顿函数H独立于Γ ,
所以有:d H 0 t 常数
dt Γ 最大值原理条件重新表述为:
Max H u
dy H
dt
对于所有的t 0,T
d H t 常数
dt y
T 0
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(3)等周问题
等周问题简便解法:
构造拉格朗日函数(增广汉密尔顿函数):
u1
0
u1
3
0
0 0 0
u2
u2
0 i
0,i
0,i
0 i
0
i
0,i
0,i
i
0
(i 1,2)
0 3
u1
0,3
0,3
0 3
3u1
0
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(2)不等式约束
对于 F f 1 c1 g1 2 c2 g 2 的最大化一阶条件:
Γ 0 0 Γ T k (k给定)
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(4)不等式积分约束
汉密尔顿函数: H Ft, y,u f t, y,u Gt, y,u
最大值原理条件:
Max H 对于所有的t 0,T u
dy H (y的运动方程) d H
dt
dt y
(的运动方程)
Max T Gt, y, uet dt 0 S.T. dy f t, y,u dt gt, y,u c 边界条件
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(5)现值哈密尔顿函数和拉格朗日函数
正常汉密尔顿函数和拉格朗日函数:
H Gt, y,uet f t, y,u
Gt, y,uet f t, y,u c gt, y,u
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(1)等式约束
Ft, y,u1,u2 t f t, y,u1,u2 tc gt, y,u1,u2
最大化拉格朗日函数的一阶条件:
u
j
F u j
f
u j
g u j
0
对于所有的t 0,T( j 1,2)
c gt, y,u1,u2 0
H Gt, y,uet f t, y,u
Gt, y,uet f t, y,u c gt, y,u
汉密尔顿函数和拉格朗日函数的现值形式:
Hc Het Gt, y,u mf t, y,u
F t, y,u f t, y,u Gt, y,u (把看作常数处理)
然后,利用以下最大值原理条件求解:
Muax
dy
dt
横截条件
对于所有的t 0,T
d
dt y
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(4)不等式积分约束
1个不等式积分约束:
Max
T
0
F
t
,
y,
1个状态变量,1个控制变量,1个积分约束问题:
Max
T
0
F
t
,
y,
u
dt
S.T. dy f t, y,u
dt
T
0
Gt,
y,
u dt
k
y0 y0 yT 自由 (y0 ,T给定)
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(3)等周问题
引入1个新的状态变量,使得积分约束可以用这个
状态变量表示的1个条件代替:
可直接把拉格朗日函数设为不包含此非负性约束的形式:
F f 1 c1 g1 2 c2 g 2
并把最大化拉格朗日一阶条件的:
0 ui
直接替换为:
ui
0,ui 0,ui ui
0
其它条件跟没有变量非负性约束形式的条件一致
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(2)不等式约束
dΓ H (Γ的运动方程) d H (的运动方程)
dt
dt Γ
T 0 (y的横截条件)
T 0, Γ T k 0, T Γ T k 0 (Γ的横截条件)
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(4)不等式积分约束
由于汉密尔顿函数H独立于Γ ,
所以有:d H 0 t 常数
dy H (y的运动方程) d H
dt
dt y
(的运动方程)
dΓ H (Γ的运
dt Γ
T 0 (横截条件)
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(3)等周问题
由于Γ变量是人为引入,它的时间路径没有直接意义
所以可省略Γ的运动方程:dΓ H
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(1)等式约束
2个控制变量u1和u2满足1个约束条件:
gt, y,u1,u2 c
最优控制问题: Max
T 0
F
t,
y,
u1,
u2
dt
S .T .
dy dt
f t, y, u1, u2
gt, y, u1, u2 c
边界条件
要求:约束条件个数需小于控制变量个数
d
dt
y
H y
1
g1 y
2
g 2 y
(共态变量的运动方程)
加适当横截条件
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(2)不等式约束
如果模型存在控制变量的非负性约束:ui t 0
最优控制问题如:
Max
T 0
F
t,
y, u1, u2
dt
S .T .
dy dt
f
t, y, u1, u2
拉格朗日函数: F f 1 c1 g1 2 c2 g 2
最大值原理的其它条件(运动方程):
dy H (状态变量的运动方程) dt
d
dt
y
H y
1
g1 y
2
g 2 y
(共态变量的运动方程)
加适当横截条件
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(3)等周问题
g1t, y, u1, u2 c1
Max
T 0
F
t,
y,
u1,
u2
dt
S .T .
dy dt
f t, y, u1, u2
g1t, y, u1, u2 c1
g 2 t, y, u1, u2 c2
g 2 t, y, u1, u2 c2
u1 0
u1 0
第十讲 具有约束的最优控制问题
dt y y y
加适当的横截条件
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(2)不等式约束
2个控制变量和2个不等式约束:
Max
T 0
F
t,
y,
u1,
u2
dt
S .T .
dy dt
f t, y, u1, u2
g1t, y, u1, u2 c1
g 2 t, y, u1, u2 c2
(j 1,2)
i
ci
gi
0,i
0,i
i
0
(i 1,2)
对于所有的t 0,T
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(2)不等式约束
F f 1 c1 g1 2 c2 g 2
最大值原理的其它条件(运动方程):
dy H (状态变量的运动方程) dt
0 i
0
(i 1,2)
0 3
u1
0,3
0,3
0 3
3u1
0
第十讲 具有约束的最优控制问题
(一)涉及控制变量的约束
(2)不等式约束
如果构造拉格朗日函数为:
F f 1 c1 g1 2 c2 g 2 即: 0 3u1
最大化拉格朗日函数 0 的一阶条件等价为:
0
(一)涉及控制变量的约束
(2)不等式约束
0 F f 1 c1 g1 2 c2 g 2 3u1
最大化拉格朗日函数 0 的一阶条件:
0
u1
F u1
f u1
1
g1 u1
2
g 2 u1
3
0
0
u2
F u2
f u2
1
g1 u2
2
g 2 u2
0
0
i
ci
gi
相关文档
最新文档