2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

合集下载

2017年第十五届小学“希望杯”全国数学邀请赛试卷(五年级第2试)后附答案解析

2017年第十五届小学“希望杯”全国数学邀请赛试卷(五年级第2试)后附答案解析

2017年第十五届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题:每小题5分,共60分。

1.(5分)计算:(2.016+201)×201.7﹣20.16×(20.17+2010)= .2.(5分)定义a*b=a×b+a﹣2b,若3*m=17,则m= .(5分)在表中,8位于第3行第2列,2017位于第a行第b列,则a﹣b= .3.4.(5分)相同的3个直角梯形的位置如图所示,则∠1= .5.(5分)张超和王海在同一家文具店买同样的练习本和铅笔,张超买了5个练习本和4支铅笔,付了20元,找回3.5元;王海买了2个练习本和2支铅笔,正好7元整,则练习本每个元.6.(5分)数a,b,c,d的平均数是7.1,且2.5×a=b﹣1.2=c+4.8=0.25×d,则a×b×c×d= .7.(5分)如图,小正方形的面积是1,则图中阴影部分的面积是.8.(5分)将2015,2016,2017,2018,2019这五个数字分别填入如图中写有“D,O,G,C,W”的五个方格内,使得D+O+G=C+O+W,则共有种不同的填法.9.(5分)不为零的自然数a满足以下两个条件:(1)0.2a=m×m;(2)0.5a=n×n×n.其m,n为自然数,则a的最小值是.10.(5分)如图是一个玩具钟,当时针每转一圈时,分针转9圈,若开始时两针重合,则当两针下次重合时,时针转过的度数是.11.(5分)若六位数能被11和13整除,则两位数= .12.(5分)甲、乙、丙三人相互比较各自的糖果数.甲说:“我有13颗,比乙少3颗,比丙多1颗.”乙说:“我不是最少的,丙和我差4颗,甲有11颗.”丙说:“我比甲少,甲有10颗,乙比甲多2颗.”如果每人说的三句话中都有一句是错的,那么糖果数最少的人有颗糖果.二、解答题:每小题15分,共60分,每题都要写出推算过程。

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。

2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。

3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。

2017新希望杯六年级初赛试题(含答案解析)

2017新希望杯六年级初赛试题(含答案解析)

2017年新希望杯全国数学大赛六年级试题·初试试卷(A 卷)一、填空题(每小题7分,共70分)1.计算11(1)(1775%)_____.132+⨯-+=【答案】18【解析】1431=(171342⨯-+原式14651134236218=⨯+==2.按照轨道交通第四期建设规划,在未来9年内,武汉将新建14条地铁线路,其中12号线为武汉首条地铁环线,全线长度约为59.4km ,其中高架线长度约为11.1km ,则在12号线中,高架线占全长的______%。

(结果保留一位小数。

)【答案】18.7【解析】11.159.418.7%÷≈3.如图,将一张正方形纸片连续折叠3次,在折叠所得的长方形纸片边缘剪下一个半圆形的部分,将纸片完全打开后,圆形小孔共有______个。

【答案】4【解析】如下图所示,4个4.把1332的分子加上a ,分母减去a ,分数的值就变为23,则a =________。

【答案】80人【解析】13+2323a a =-,解得:5a =5.某地区参加“枫叶新希望杯”全国数学夏令营的代表队由领队老师和学员组成,每名领队老师带5名低年级学员或者10名高年级学员。

若地区派出的代表队一共118人,其中领队老师13人,那么高年级学员由_______人。

【答案】80【解析】设有x 个老师带低年级,则有(13)x -个老师带高年级510(13)11813510(135)80()x x x +-=-=⨯-=人6.如图,14个相同的小方块堆积在一起,对于每个小方块,若其底面悬空的部分不超过一半,这个小方块就不会动,在保证阴影小方块不动的前提下,最多可以拿掉______个小方块。

【答案】9【解析】第二层可取两个,第三层可取7个(如图阴影部分),最多可取9个7.港口有一些集装箱,数量在200到250个之间。

如果用一艘大船运输,每趟能装25个,且最后一趟只装20个;如果用一艘小船运输,每趟能装15个,且最后一趟只装10个,这些集装箱一共有_______个。

第十五届小学“希望杯”全国数学邀请赛六年级

第十五届小学“希望杯”全国数学邀请赛六年级

第十五届小学“希望杯”全国数学邀请赛六年级 第2试试题1.计算:43299.750.142857975%747⨯+⨯+⨯=__________. 【答案】394【解析】分百小综合43299.750.142857975%747⨯+⨯+⨯ 433213999744774=⨯+⨯+⨯ 342194777⎛⎫=⨯++ ⎪⎝⎭ 3914=⨯ 394=.2.若质数a ,b 满足52027a b +=,则a b +=__________.【答案】2019【解析】数论.由题可知,b 为质数,当b 为偶数,即为2时,推出405a =,不符合题意,故b 为奇数, 因2027为奇数,故5a 必须是偶数,所以2a =,从而推出2027522017b =-⨯=,因此220172019a b +=+=.3.如图,一只玩具蚂蚁从O 点出发爬行,设定第n 次时,它先向右爬行n 个单位,再向上爬行n 个 单位,到达点n A ,然后从点n A 出发继续爬行,若点O 记为(0,0),点1A 记为(1,1),点2A 记为(3,3),点3A 记为(6,6),,则点100A 记为__________.【答案】(5050,5050)【解析】等差数列.由题可知(123,123)n A n n =++++++++; 故100(123100,123100)(5050,5050)A =++++++++=.4.按顺时针方向不断取如图中的12个数字,可组成不超过1000的循环小数x ,如23.067823,678.30678 等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x = __________. 321O 123A 2A 3A 1【答案】78.230678【解析】周期问题.按顺时针方向观察可发现,不管起始数字是几,循环小数的循环节均由6,7,8,2,3,0这 六个数字组成,因2017(678230)77÷+++++=(组)15,1578=+,因此78.230678x =.5.若25:1:436A B =,12:2:353C A =,则::A B C 用最简整数比表示是__________. 【答案】10:29:6【解析】化连比通过化简比可得,:10:29A B =,:5:310:6A C ==,故::10:29:6A B C =.6.若将算式987654321⨯⨯⨯⨯⨯⨯⨯⨯中的一些“⨯”改成“÷”使得最后的计算结果还是自然数,记为N ,则N 最小是__________.【答案】70【解析】最值问题.要使最后的结果还是自然数,可把9、8、6分解质因数,再根据分解质因数的情况来确定把多少个乘号换成除号.因:987654321⨯⨯⨯⨯⨯⨯⨯⨯(33)(222)7(32)5(22)321=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯(33222)75(32223)21=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯所以可变化为98765432170⨯⨯÷⨯÷÷⨯⨯=.7.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重 量的12,14,15倒入第四个空杯子中,则第四个杯子中溶液的浓度是__________%. 【答案】20 【解析】浓度问题.将三个杯子中的溶液均看成1份,则第四个杯子中溶液浓度为:11110%120%145%1245100%100%20%111245⨯⨯+⨯⨯+⨯⨯⨯=⨯=++溶质溶液.8.如图,设定E ,F 分别是ABC △的边AB ,AC 上的点,线段CE ,BF 交于点D ,若CDF △,BCD △, BDE △的面积分别为3,7,7,则四边形AEDF 的面积是__________.328766087320【答案】18【解析】几何.连接AD ,因3CDF =△,7BCD =△,故:3:7FD DB =,则可将AFD △和ABD △分别可看成3份、7份,因7BDE =△,故ADE △为7份7-,又因为7BCD =△,7BDE =△,故CD DE =,故ACD ADE =△△,为7份7-,又因为3CDF =△,因此AFD △为7份73--,即3份,故一份 2.5=,而四边形AEDF 共有10份7-,即25718-=.9.如图,六边形ABCDEF 的周长是16厘米,六个角都是120︒,若3AB BC CD ===,则EF =__________ 厘米.【答案】5【解析】几何.如图,延长并反向延长AF ,BC ,DE ,因六边形ABCDEF 的每个内角都是120︒,所以60G H N ∠=∠=∠=︒,所以GHN △,GBA △,HCD △、NEF △都是等边三角形,因为3AB BC CD ===,所以3GB BC CH ===厘米,故三角形GHN 的边长3339=++=厘米,因此9AB AF EF ++=厘米,即163391DE =---=厘米,又因为9CD DE EF ++=厘米,因此9315EF =--=厘米.F ECBA D D A BCEF10.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是__________立方分米.【答案】9.42【解析】立体图形.等地等高的圆柱体和圆锥体,圆柱体是圆锥体体积的3倍,因此圆锥的体积为:15.7(113) 3.14÷++=立方分米,则圆柱体体积为:3.1439.42⨯=立方分米.11.若一个十位数20162017ab 是99的倍数,则a b +=__________.【答案】8【解析】整除特征.根据能被99整除的特征,可将这个十位数从低位到高位进行两位一截断,即2016201799ab ++++=,则26ab =,因此8a b +=.12.如图是甲乙丙三人单独完成某项工程所需天数的统计图.根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用__________天.【答案】9【解析】工程问题.设工作总量为单位“1”, 则从图可知甲的工作效率110=,乙的工作效率112=,丙的工作效率115=, 由题可知,最后丙的工作时间为1111124310121515⎡⎤⎛⎫-⨯-+⨯÷= ⎪⎢⎥⎝⎭⎣⎦(天), NF ECBA HGD 图5图6因此共用:2439++=(天).13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这个三位数.【答案】963(或936),875,124【解析】数论.最大的数最高位为:9,次大的数最高位为:8,最小的数最高位为:1,因次大的数被3除余2,且要尽可能的大,所以为875,最小的数被3除余1,且要尽可能的小,所以为124,因此,最大的数为963.14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图8所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满图9所示的三个不同的容器,各需要多长时间?【答案】①3小时;②1.5小时;③2小时【解析】由题可知,这个长方体容器的体积为1010303000⨯⨯=立方厘米,接水口面积为1030300⨯=平方厘米,因为3000300110÷÷=立方厘米,故容器接水口每1平方厘米每1小时可接10立方厘米的雨水,因此:①101030(101010)3⨯⨯÷⨯⨯=小时;②由图可知,容器体积为3000立方厘米,故3000(102010) 1.5÷⨯⨯=小时,③由图可知,底面圆的半径为1厘米,故3.141120(3.141110)2⨯⨯⨯÷⨯⨯⨯=小时.15.对大于0的自然数n 规定一种运算“G ”:①当n 是奇数时,()31G n n =+.②当n 是偶数时,()G n 等于n 连续被2除,直到商是奇数.将k 此“G ”运算记作k G ,如1(5)35116G =⨯+=,21(5)(16)1622221G G ==÷÷÷÷=,3(5)3114G =⨯+=,4(1)4221G =÷÷=.计算:(1)1(2016)G 的值.(2)5(19)G 的值.(3)2017(19)G 的值.图810cm10cm30cm图9①②③10cm 10cm 10cm 10cm20cm20cm30cm10cm【答案】①63;②34;③4【解析】定义新运算.①1(2016)20162222263G =÷÷÷÷÷=;②1(19)319158G =⨯+=;2(19)58229G =÷=;3(19)329188G =⨯+=;4(19)8822211G =÷÷÷=; 5(19)311134G =⨯+=.③6(19)17G =;7(19)52G =;8(19)13G =;9(19)40G =;10(19)5G =;11(19)16G =;12(19)1G =;13(19)4G =;14(19)1G =;15(19)4G =因(201711)21003-÷=,故2017(19)4G =.16.根据如图的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?【答案】玫瑰:10枝;康乃馨:15枝;百合:3枝【解析】比.玫瑰:康乃馨2:310:15=,玫瑰:百合10:3=,因此玫瑰:康乃馨:百合10:15:3=,解:设玫瑰,康乃馨,百合分别为10x ,15x ,3x 枝,则由图可得:3201561015300x x x ⨯+⨯+⨯=,解得1x =,因此玫瑰10枝,康乃馨15枝,百合3枝. 玫瑰与百合的枝数比是10:3玫瑰与康乃馨的枝数比是2:3共300元。

【奥数真题】2021年第十五届小学六年级希望杯全国数学邀请赛试题(第二试)

【奥数真题】2021年第十五届小学六年级希望杯全国数学邀请赛试题(第二试)

【奥数真题】2021年第十五届小学六年级希望杯全国数学邀请赛试题(第二试)学校:姓名:班级:考号:一、填空题1.计算:-x 9-+9J5 X-+ 0.142857 X 975%= _________________ .7 4 72.若质数a, b满足5a + b = 2027,则a + b =.3.如图,一只玩具蚂蚁从。

点出发爬行,设定第〃次时,它先向右爬行〃个单位,再向上爬行〃个单位,到达点4,然后从点4出发继续爬行,若点。

记为(0,0),点A 记为(1,1),点外记为(3,3),点4记为(6,6), ..................... ,则点A]。

记为.4------------3 力2|———A\ 2 2。

尸4.按顺时针方向不断取如图中的12个数字,可组成不超过1000的循环小数X,如23,067823,678.3067&等,若将x的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则工=.5.若三,C:A = 2-:3-,则4 B: C用最简整数比表示是_______________________ .3 6 5 36.若将算式9x8x7x6x5x4x3x2xl中的一些“X”改成“土”使得最后的计算结果还是自然数,记为N,则N最小是 ___________ .7.有三杯重量相等的溶液,它们的浓度依次是10%, 20%, 45%,如果依次将三个杯子中的溶液重量的g,g倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.8.如图,设定E,尸分别是△ASC的边A5, AC上的点,线段CE, 5尸交于点。

,若△CDF, dBCD,△瓦坦的面枳分别为3, 7, 7,则四边形尸的面枳是9.如图,六边形尸的周长是16厘米,六个角都是120。

,若A5 = 5C = CD = 3,则上尸二__________ 厘米.10.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体枳是___________ 立方分米.11.若一个十位数2016ab2017是99的倍数,则a + b =.12.如图是甲乙丙三人单独完成某项工程所需天数的统计图.根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.A单位:天二、解答题13.用1, 2, 3, 4, 5, 6, 7, 8, 9九个数字组成三个三位数(每个数字只能用1次), 使最大的数能被3整除:次大的数被3除余2,且尽可能的大:最小的数被3除余1,且尽可能的小,求这个三位数.14.某口是台风天气,雨一直均匀地下着,在雨地里放一个如图8所示的长方体容器, 此容器装满雨水需要1小时.请问:雨水要下满图9所示的三个不同的容器,各需要多长时间?30cm-- l/lOcm 10cm①2cm 20cm15.对大于0的自然数九规定一种运算"G”:①当?I是奇数时,G⑺=3九+ 1.②当一是偶数时,G5)等于九连续被2除,直到商是奇数.将k此“G” 运算记作 G^,如 G1(5) = 3 x5+ 1 = 16, G2(5) = G1(16) = 16 3 2 + 2 + 2+2 = 1, G3(5) = 3xl + 1 = 4, G4(1) = 4 + 2 + 2 = 1.计算:(1)G](2016)的值.(2)G5(19)的值.(3)G2O17(19)的值.16.根据如图的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?②价目表ERF"tt M:留枝15元废乃暮:用枝6元百合:每枝20元玫瑰与康乃馨的枝数比是2工敢瑰与百合的枝数比是10:3一 X 9- + 9.75 X- + 0.142857 X 975% 7 4 743 3 2 1 3 =-x9-+9-x-+-x9- 74 4 7 743 /4 2 1\ = 94X (7 + 7 + 7) 3 =9-x 1 4=吟2. 2019【解析】数论.由题可知,b 为质数,当b 为偶数,即为2时,推出a = 405,不符合题意, 故b 为奇数, 因2027为奇数,故5a 必须是偶数,所以a = 2,从而推出b = 2027 - 5 X 2 = 2017,因此a + b = 2 + 2017 = 2019.3. (5050,5050)【解析】 等差数列.由题可知 A = (1 + 2 + 3+, • •+〃』+ 2 + 3 + , • •+ 〃); 故 A OO =(1 + 2 + 3 + ・・・+1OO,1+2 + 3 + ・・・+1OO)=(5O5O,5O5O).4. 78.230678【解析】 周期问题.按顺时针方向观察可发现,不管起始数字是几,循环小数的循环节均由6, 7, 8, 2, 3, 0这六个数字组成,因2017+(6+7 + 8+2+3 + 0) = 77 (组) x=78.230678.5. 10:29:6【解析】化连比【解析】分百小综合参考答案15, 15 = 7 + 8,因此通过化简比可得,48=10:29, 40 = 5:3 = 10:6,故A & C = 10: 29: 6.6. 70【解析】最值问题.要使最后的结果还是自然数,可把9、8、6分解质因数,再根据分解质 因数的情况来确定把多少个乘号换成除号.因:9x8x7x6x5x4x3x2xl= (3x3)x(2x2x2)x7x(3x2)x5x(2x2)x3x2xl= (3x3x2x2x2)x7x5x(3x2x2x2x3)x2xl 所以可变化为9 x 8x7 + 6 x 5 + 4 + 3x2 x 1 = 70.7. 20【解析】浓度问题.将三个杯子中的溶液均看成,1份,则第四个杯子中溶液浓度为:8. 18 【解析】因ziC 。

2017六年级希望杯100题答案--全无水印

2017六年级希望杯100题答案--全无水印

第十五届(2017 年)希望杯 100 题 · 六年级
Байду номын сангаас
2 2 2 2 1 2 1 2 1 2 5 1 7 1 9 1 99 1 2 2 2 2 = 48 4 6 6 8 8 10 98 100 1 1 1 1 1 1 1 1 = 48 4 6 6 8 8 10 98 100 1 1 = 48 4 100 6 = 48 . 25 27 3 9.(1) 0.2 7 = = . 99 11 1206 12 199 = (2) 0.12 0 6 = . 9900 1650 428571 571428 999999 = =1. 10.原式 = 999999 999999 999999 3 4 7 1 , 0.571428 = ,所以 0.4 28571 0.5 71428 = 1 . 另解 0 . 4 2 8 5 = 7 7 142857 1 35 = 35 = 5 . 11.原式 = 999999 7 4 7 12.原式 = = 1 . 7 4 16 1 2 999 16 1 = 13.原式 = 2 16 1 19 34 999 20 999 2 22 90 90 90 2000 16 2 90 10 = = . 999 2014 111 234 2 84 232 168 400 495 = 990 990 = 990 = 10 . 14.原式 = 990 568 56 56 512 112 400 11 900 450 900 900 900 15.原式 = 1 2 3 9 0.12 0.23 0.34 0.90 0.01 90 1 12 23 34 = 45 99 99 99 99 99 495 = 45 = 45 5 = 50 . 99 3 n 11 3 n 11 27 33 3 1 16. ,即 72 72 72 , 27 4n 66 , n , 6 n 16 ,所以满 8 18 12 8 18 12 4 2 4 2 3 n 11 足 的自然数 n 有 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ,共 10 个. 8 18 12 = 1

2020年第十五届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

2020年第十五届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)二、以下每题6分,共120分)1.(6分)计算:2017×+=.2.(6分)计算:0.4285×6.3﹣0.2857×1=.3.(6分)定义:a☆b=,则2☆(3☆4)=.4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.5.(6分)已知A是B的,B是C的,若A+C=55,则A=.6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有个.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析二、以下每题6分,共120分)1.(6分)计算:2017×+=2016.【解答】解:2017×+=(2016+1)×+=2016×++=2015+(+)=2015+1=2016;故答案为:2016.2.(6分)计算:0.4285×6.3﹣0.2857×1=.【解答】解:因为0.4285=,0.2857=,所以0.4285×6.3﹣0.2857×1=×6.3﹣×1=﹣=﹣=.故答案为:3.(6分)定义:a☆b=,则2☆(3☆4)=2.【解答】解:3☆4==2☆(3☆4)=2☆()==2;故答案为:2.4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有111个点.【解答】解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.5.(6分)已知A是B的,B是C的,若A+C=55,则A=15.【解答】解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。

第十五届六年级希望杯100题培训题

第十五届六年级希望杯100题培训题

2017第十五届六年级希望杯100题培训题17.已知a=2015×2017,b==2014×2018,c==2016×2016,将a、b、c从大到小排列。

18、在9个数:..70.,3.75,15,21.,1,45,7.8,52中,取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,请写出3个算式。

(答案不唯一)19、定义:b 1a a@b +=,求2@(3@4)。

20、若n个互不相同的质数的平均数是15,求n的最大值。

21、若一位数c(c不等于0)是3的倍数,两位数____bc是7的倍数,三位数____abc是11的倍数,求所有符合条件的三位数____abc的和。

22、用a 、b 、c 可以组成6个无重复数字的三位数,且这6个数的和是4662,这6个数都是3的倍数吗23、已知n !=1×2×3×…×n ,计算:1!×3-2!×4-4!×6+…+2015!×2017-2016!。

24、一串分数:,...131,101...,,108,109,...,103,102,101,71,72,73,74,75,76,75,74,73,72,71,41,42,43,42,41 求第2016个分数。

25、在不大于循环小数.912.的自然数中有几个质数26、设n!=1×2×3×…×n,问2016!的末尾有多少个连续的027、四位数_______abcd,若_______abcd-10(a+b+c+d)=1404,求a+b+d。

28、A ,a ,b 都是自然数,且A+50=2a ,A+97=2b ,求A.29、求20167的十位数字。

30、若A 是B 的31,B 是C 的52,求CA 。

31、求17个自然数的平均数,结果保留两位小数,甲得,这个数百分位上的数字错了,求正确答案。

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、(以下每题6分,共120分)1.(6分)计算:2017×+= .2.(6分)计算:0.4285×6.3﹣0.2857×1= .3.(6分)定义:a☆b=,则2☆(3☆4)= .4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.5.(6分)已知A是B的,B是C的,若A+C=55,则A= .6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有个.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO= 度.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a= .19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、以下每题6分,共120分)1.(6分)计算:2017×+= 2016 .【分析】把2017看作2016+1,然后根据乘法的分配律与加法的结合律简算即可.【解答】解:2017×+=(2016+1)×+=2016×++=2015+(+)=2015+1=2016;故答案为:2016.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.(6分)计算:0.4285×6.3﹣0.2857×1= .【分析】根据0.4285=,0.2857=把原式化为×6.3﹣×1,再根据混合运算顺序计算即可.【解答】解:因为0.4285=,0.2857=,所以0.4285×6.3﹣0.2857×1=×6.3﹣×1=﹣=﹣=.故答案为:【点评】本题考查了小数的巧算,关键是把原式化为×6.3﹣×1,还用到混合运算顺序.3.(6分)定义:a☆b=,则2☆(3☆4)= 2 .【分析】根据已知的算式a☆b=可得运算法则:计算结果等于☆号前面的数与1的差,然后再除以☆号后面的数,据此解答.【解答】解:3☆4==2☆(3☆4)=2☆()==2;故答案为:2.【点评】定义新运算:这种新运算其实只是变了形的求式子值的问题,只要弄清新的运算法则,然后再分步求值就可得出答案.4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有111 个点.【分析】根据给出的几幅图的点数,我们可以得到:第②比第①多4;第③比第②多6;第④比第③多8;由此可得每一幅图比前一幅图多的点数成等差数列.【解答】解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.【点评】考查等差数列规律的灵活应用.5.(6分)已知A是B的,B是C的,若A+C=55,则A= 15 .【分析】A是B的,B是C的,则:A是C的×=,即A=C,把A+C=55中的A代换成C,然后解这个方程即可得出C,从而得出A.【解答】解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.【点评】解决本题先根据一个数乘分数的意义,得出A和C的关系,再运用代换法和解方程的方法求解.6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.【分析】按题意,要求只有一位整数的最大的数,显然个位最大为9,再看小数点后面第一位数最大的为5,故小数点后第二位即可确定,再依此确定后面的数,即可确定最大的循环小数.【解答】解:根据分析,先确定整数部分的数,显然9是最大的,再确定小数点后第一位的数,9后面最大的为5,再确定第三位,因为是按顺时针排列,7为最大,故此数可以确定为:故答案是:【点评】本题考查了最大与最小,本题突破点是:先确定整数部分,依此确定其它位上的数.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票45 张.【分析】把不变的量,即邮票的总张数看成单位“1”,根据“甲、乙两人拥有邮票张数的比是5:4,”可得:甲原来是总张数的;有根据“如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.”可得:甲现在是总张数的,则()对应的数量就是甲减少的5张,由此用除法求出总张数.【解答】解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.【点评】本题关键是找出不变的量,把单位“1”统一到不变的数量邮票的总张数上,再根据数量关系求解.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是1009 .【分析】按题意,1~2016数中,有奇数1008个,偶数1008个,若取的个数小于1008,则有可能取的数都是偶数,就不能出现至少有两个数互质的情况,故n不能小于1008,而当n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况,故n至少是1009.【解答】解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.【点评】本题考查了最大与最小,本题突破点是:利用奇数和偶数的个数以及互质的特征,求出n的最小值.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是90 度.【分析】等腰三角形的两底角相等,本题应分为当顶角较小时和当顶角较大时两种情况,当两底角都为1份时,顶角最大,即顶角度数为内角和180°的【解答】解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.【点评】此题主要考查了等腰三角形的性质及三角形内角和定理.注意分清顶角占的份数大则顶角就大的情况.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有 6 个.【分析】先将6分解质因数:2×3,故这个三位数既要符合被5整除的数的特征,又要符合被2整除的数特征,同时又要满足被3整除的数特征,故结合含有6的数就能求出这样的三位数的个数【解答】解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.【点评】本题考查了数的整除知识,突破点是:分解质因数,分析出被这几个数同时整除的特征.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是20.25 元.【分析】把每个笔记本的售价看作单位“1”,则小红买1支钢笔和3个笔记本共用的36.45元,就相当于单位“1”的(3+),由此用除法即可求出每个笔记本的售价,然后进一步即可求出1支钢笔的售价.【解答】解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.【点评】本题关键是找具体数量对应的分率,即统一单位“1”,然后根据分数除法和乘法的意义解答即可.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .【分析】先原来的分数x是,根据变化,用b和c分别表示出两次变化后的分数,它们分别与和相等,这样就可以把这两个等量关系式看成比例式,再根据比例的性质,得出a、b、c三个数之间的关系,然后运用代换法,把b 和c都用a代换,从而得出原来分数是多少.【解答】解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.【点评】解决本题先设出原来的分数,再根据比例的性质和代换法求解.13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是4080 .【分析】根据和一定,要使a,b,c的乘积最大,那么a,b,c三个互不相等的自然数必须尽可能的接近,据此解答即可.【解答】解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.【点评】此题考查了这样一个规律:当三个数的和一定时,三个数越接近积越大.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有60 道.【分析】本题从后向前逆推,先把第二小时做完后余下的看作单位“1”,此时有24÷(1﹣)=36道;再把第一小时做完全部的后余下的看作单位“1”,此时有36÷(1﹣)=48道;同理,再把全部的练习题看作单位“1”,有48÷(1﹣)=60道;据此解答即可.【解答】解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.【点评】解答此题的关键是,根据题意,运用逆推的方法,求出每次做完后余下的练习题的道数,由此即可得出答案.解题思路:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=30 度.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,得出△OCD是等边三角形,折叠前后角相等以及三角形的内角和定理,求出∠BFC的度数,再根据平角是180度求得∠EFO的度数.【解答】解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是80 平方厘米.【分析】在七巧板中平行四边形的面积等于正方形的面积等于中三角形的面积,最小的两个三角形的面积和等于中三角形的面积,中三角形的面积等于大三角形面积的一半,即最小的三角形的面积是七巧板面积的,平行四边形的面积、正方形的面积和中三角形的面积是七巧板面积的,大三角形的面积是七巧板面积的,兔子图形的面积就是七巧板的面积,据此解答.【解答】解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.【点评】本题的重点是让学生掌握各个板占了七巧板面积的几分之几,然后再根据已知一个数的几分之几是多少,求这个数的方法进行解答.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是1000 立方分米.【分析】首先分析长方体木块锯成6段需要5次横截面增加10个面,求出一个横截面的面积再乘以长度即可.【解答】解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:1000【点评】本题考查对立方体的体积的理解和运用,关键是找到100平方分米对应的是10个面.问题解决.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a= 300 .【分析】浓度问题中两种溶液混合可用十字交叉法解题,即可求出a的值.【解答】解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:300【点评】本题考查对浓度问题的理解和综合运用,同时关键问题理解十字交叉法的做差和比例关系.问题解决.19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了40 分钟.【分析】首先分析分针落后时针的格数,找到时针和分针的路程差然后除以速度差即可.【解答】解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.【点评】本题考查时间和钟面的理解和运用,关键是找到时针和分针的两次路程差.再除以速度差问题解决.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行40 千米.【分析】首先分析两人两次在同一地点相遇那么需要两人的速度比例是不变的,根据当甲提高时,乙也同样需要提高即可求解.【解答】解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:40【点评】本题考查对相遇问题的理解和运用,关键问题是找到两者的速度比例是不变的,问题解决.。

2024年希望杯六年级竞赛数学试卷培训题+答案

2024年希望杯六年级竞赛数学试卷培训题+答案

2024年希望杯竞赛六年级数学培训题1 .计算: .2 . 计算: .3 .计算: .4 .计算:.5 .等式中的和都是自然数,.6 . .7 .的积不到,里最大填 .8 .以表示不超过的最大整数,若要,则自然数的最小值是 .9 .如果正整数使得,则为 .(其中表示不超过的最大整数) 10 .的整数部分是 .11 .不等式,时的解为 ,时的解为 ,时的解为 .12 .甲、乙两个两位数,甲数的等于乙数的,这两个数的和最大是 . 13 .一个三位数加或者乘的结果都是完全平方数,这个三位数是 . (注:一个自然数与自身相乘的积叫做完全平方数.) 14 .已知是数字到中的一个,若循环小数,则.15 .下面竖式中,相同的图标表示相同的数字,不同的图标表示不同的数字.那么,., .17 .将至填入右图的网格中,要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍,已知左右格子已经填有数字和,问:标有字母的格子所填的数字最大是 .18 .各位数字均不大于,且能被整除的六位数共有 个. 19 .八位数(中的数字可重复出现)是的倍数,这样的八位数共有 个.20 .把的所有自然数连写在一起,可以得到这样的一个多位数,它是 位数.21 .某日,可可到动物园里去观赏动物,他看了猴子,熊猫和狮子三种动物,这三种动物的总量在到只之间,根据下面的情况: ①猴子和狮子的总数要比熊猫的数量多, ②熊猫和狮子的总数要比猴子的两倍还多, ③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.22 .儿童节的早上,方玲去图书馆看了一会儿书后到游泳馆游泳.她每天去一次图书馆,每天去游泳一次.方玲下一次既到图书馆看书,又到游泳馆游泳的时间是 月 日.23 .五名选手在一次数学竞赛中共得分,每人得分互不相等且都是整数,并且得分最高的选手得了分,那么得分最低的选手至少得 分,至多得 分. 24 .被除余,被除余,被除余的最小两位数是 。

15届希望杯六年级二试

15届希望杯六年级二试

S三角形ACD=S三角形ADE S三角形ADF:S三角形ADB=3:7


S三角形CDF=3,S三角形BDE=7
设S三角形ADB=7X,则S三角形ADF=3X 即S三角形ADE=7X-7=S三角形ACD=S三角形ADF+S三角形CDF=3X+3 即7X-7=3X+3 解得X=2.5
S四边形AEDF=S三角形ADF+S三角形ADB-S三角形BDE=3X+7X-7=18
第 7 题
本题考点
浓度问题
浓度=
溶质 ×100% 溶液
假设三杯溶液的质量都是a 则第四杯的浓度=
1 1 1 a * 0.1* a * 0.2 * a * 0.45* 2 4 5 1 1 1 a* a* a* 2 4 5
化简=20%
15届希望杯六年级二试
第 8 题
解析 本题考点 比例模型 连接AD 因为三角形CDF:三角形BCD=3:7 所以DF:DB=3:7 同理可得CD:DE=1:1
__ __ __
15届希望杯六年级二试
第 12 题
解析 本题考点 工程问题 由图表知甲乙丙的工作效率分别是
1 1 1 1÷10= ,1÷12= 12 ,1÷15= 15 10 1 1 1 1 [1×2-( + )×4]÷ 12 10 15 15
解得=3 2+4+3=9天
15届希望杯六年级二试
第 13 题
所以,a+b=2+2017=2019
15届希望杯六年级二试
第 3 题
解析 本题考点 等差数列 等差数列求和公式=(首项+末项)×项数÷2
由题意得知
A A
n =(1+2+3+......+n,1+2+3+......+n)

2017年第15届希望杯六年级第1试试题及参考答案(最新整理)

2017年第15届希望杯六年级第1试试题及参考答案(最新整理)

2017年小学第十五届“希望杯”全国数学邀请赛六年级 第1试试题以下每题6分,共120分。

1、计算:2017×+= 。

20152016120162、计算:×6.3—×1= 。

0.142857g g 0.428571g g 233、定义a ☆b =,则2☆(3☆4)= 。

a b —14、如下图所示的点阵图中,图1中有3个点,图2中有7个点,图3中有13个点,图4中有21个点,按此规律,图10中有 个点。

5、已知A 是B 的,B 是C 的,若A +C =55,则A = 。

12346、如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如,。

在所有这样只有一位整数的循环小数中,最大的是 。

1.395791g g 3.957913gg7、甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5,两人共有邮票 张。

8、从1,2,3,……2016中任意取出n 个数,若取出的数中至少有两个数互质,则n 的最小值 。

9、等腰三角形ABC 中,有两个内角的度数的比是1:2,则三角形ABC 的内角中,角度最大可以是 度。

10、能被5和6整除,并且数字中至少有一个6的三位数有 个。

11、小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的154售价相等,则1支钢笔的售价是 元。

12、已知X 是最简真分数,若它的分子加a ,化简得;若它的分母加a ,化简得,则X 1314= 。

13、a ,b ,c 是三个互不相等的自然数,且a +b +c =48,那么a ,b ,c 的最大乘积是 。

14、小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小1514时做完了余下的,这时,余下24道题没有做,则这份练习题共有 题。

1315、如图,将正方形纸片ABCD 折叠,使点A ,B 重合于O ,则∠EFO = 度。

2017年“希望杯”全国数学邀请赛试卷(附答案及讲解)

2017年“希望杯”全国数学邀请赛试卷(附答案及讲解)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(本大题共12小题,每小题5分,共60分)1.(5分)计算:1100÷25×4÷11=.2.(5分)有15个数,他们的平均数是17,加入1个数后,平均数变为20,则加入的数是.3.(5分)若和是两个三位数,且a=b+1,b=c+2,×3+4=,则=.4.(5分)已知a+b=100,若a除以3,余数是2,b除以7,余数是5,则a×b的值最大是.5.(5分)如图所示,两个完全相同的等腰三角形中各有一个正方形,图乙中的正方形面积为36平方厘米,则图甲中的正方形面积为平方厘米.6.(5分)边长为20的正方形的面积恰好等于边长为a和边长为b的两个正方形的面积的和,若a和b都是自然数,则a+b=.7.(5分)今年是2017年,年份的数字和是10,则本世纪内,数字和是10的所有年份的和是.8.(5分)在纸上画2个圆,最多可得到2个交点,画3个圆,最多可得到6个交点,那么,如果在纸上画10个圆,最多可得到个交点.9.(5分)小红带了面额50元,20元,10元的人民币各5张,6张,7张,她买的230元的商品,那么,有种付款方式.10.(5分)甲、乙、丙三个数的和是2017,甲比乙的2倍少3,乙比丙的3倍多20,则甲是.11.(5分)篮球比赛中,三分线外投中一球可得3分,三分线内投中一球可得2分,罚蓝投中一球得1分,某球队在一次比赛中共投进32个球,得65分,已知二分球的个数比三分球的个数的4倍多3个,则这个球队在比赛中罚篮共投中球.12.(5分)在如图的乘法算式中,A、B、C、D、E、F、G、H、I分别表示彼此不同的一位数,则“FIGAA”表示的五位数是.二、解答题:每小题15分,共60分。

每题都要写出推算过程。

13.(15分)甲、乙两人同时从A、B两地出发,相向而行,甲每分钟走70米,乙每分钟走60米,两人在距离中点80米的地方相遇,求A、B两地之间的距离.14.(15分)老师给学生水果,准备了两种水果,其中橘子的个数比苹果的个数的3倍多3个,每人分2个苹果,则余下6个苹果;每人分7个橘子,最后一人只能分得1个橘子,求学生的人数.15.(15分)两个相同的正方形重合在一起,将上层的正方形向右移动3厘米,再向下移动5厘米,得到如图所示的图形,已知阴影部分的面积是57平方厘米,求正方形的边长.16.(15分)商店推出某新款手机的分期付款活动,有两种方案供选择.方案一:第一个月付款800元,以后每月付款200元.方案二:前一半的时间每月付款350元,后一半的时间每月付款150元.两种方案付款总数与时间都相同,求这款手机的价格.2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(本大题共12小题,每小题5分,共60分)1.(5分)计算:1100÷25×4÷11=16.【分析】先算1100÷11÷25,得4,再算4×4【解答】解:1100÷25×4÷11=1100÷11÷25×4=100÷25×4=4×4=16故答案是:16【点评】本题考查了乘除的混合运算,本题突破点:交换乘除数的位置,即可巧算出结果2.(5分)有15个数,他们的平均数是17,加入1个数后,平均数变为20,则加入的数是65.【分析】首先根据题意,可得:原来15个数的和是255(15×17=255),后来16个数的和是320(16×20=320);然后用后来16个数的和减去原来15个数的和,求出加入的数是多少即可.【解答】解:16×20﹣15×17=320﹣255=65答:加入的数是65.故答案为:65.【点评】此题主要考查了平均数问题,要熟练掌握,解答此题的关键是求出原来15个数以及后来16个数的和各是多少.3.(5分)若和是两个三位数,且a=b+1,b=c+2,×3+4=,则=964.【分析】显然a比c大3,a最小是3,b最小是2,c最小是0,而×3+4=,d 最大为9,只有当a=3时才满足题意,故可以求出.【解答】解:根据分析,a=b+1=c+2+1=c+3,又a、b、c均为一位数,故a的最小值为3,b最小是2,c最小是0,又∵×3+4=,∴d最大为9,此时a=3,b=2,c=0即=320,则=×3+4=320×3+4=964;故答案是:964.【点评】本题考查了最大与最小的知识,本题突破点是:根据已知确定a,b,c的最小值以及d的最大值,从而可以求出结果.4.(5分)已知a+b=100,若a除以3,余数是2,b除以7,余数是5,则a×b的值最大是2491.【分析】要求a×b最大值,则要使a、b的差尽可能小,而两者的和一定,即可缩小范围,求出最大值.【解答】解:根据分析,a除以3,余数是2,b除以7,余数是5,可设a=3m+2,b=7n+5,又∵a+b=100,由于和不变,差小积大,则要求a与不得差尽可能小,得a=53,b=47,a×b=53×47=2491,此时a×b的值最大.故答案是:2491.【点评】本题考查了最大与最小,本题突破点是:根据最大最小的特征,和不变,差小积大,故而可以求得最大值.5.(5分)如图所示,两个完全相同的等腰三角形中各有一个正方形,图乙中的正方形面积为36平方厘米,则图甲中的正方形面积为32平方厘米.【分析】根据正方形的对角线性质及等腰直角三角形的性质作图如下:将乙中的等腰直角三角形平均分成了4份,则三角形的面积是36÷2×4=72平方厘米,图甲将三角形平均分成了9个相同的小三角形,正方形占了4个,它的面积是三角形面积的,据此可求出正方形的面积是多少,据此解答.【解答】解:如图:三角形的面积:36÷2×4=18×4=72(平方厘米)图甲中正方形的面积:72×=32(平方厘米)答:图甲中的正方形面积为32平方厘米.故答案为:32.【点评】本题的重点是把等腰直角三角形平均分成若干份,再根据正方形占的份数进行解答.6.(5分)边长为20的正方形的面积恰好等于边长为a和边长为b的两个正方形的面积的和,若a和b都是自然数,则a+b=28.【分析】按题意,边长为20的正方形的面积恰好等于边长为a和边长为b的两个正方形的面积的和,即可列一个关系式,a2+b2=20,再根据a和b都是自然数确定a和b的值.【解答】解:根据分析,可以得到:a2+b2=20,∵a和b都是自然数,且32+42=52⇒122+162=202,∴a=12,b=16∴a+b=28.故答案是:28.【点评】本题考查了完全平方数性质,本题突破点是:根据完全平方数的性质和自然数的条件,确定a和b的值,从而再求和.7.(5分)今年是2017年,年份的数字和是10,则本世纪内,数字和是10的所有年份的和是18396.【分析】按题意,本世纪即:2000~2100之间找出数字和为10的数,然后再加起来即可,而这些数百位均为0,可以从十位开始算起.【解答】解:根据分析,在2000~2100数字中,由于千位为2,百位为0,十位与个位数字之和等于8即可,故满足条件的有:2008,2017、2026、2035、2044、2053、2062、2071、2080;和为:2008+2017+2026+2035+2044+2053+2062+2071+2080=18396.故答案是:18396.【点评】本题考查了数字问题,突破点是:确定千位和百位上的数字,只须确定十位与个位上的数字和即可.8.(5分)在纸上画2个圆,最多可得到2个交点,画3个圆,最多可得到6个交点,那么,如果在纸上画10个圆,最多可得到90个交点.【分析】当已经有n个圆时,再画一个圆,圆与其他n个圆的交点最多的情况是:这个圆与其他每个圆都相交于两点.【解答】解:递推分析:画第1个圆,交点为0个,画第2个圆,它与第1个圆交于两点,交点有0+2=2个,画第3个圆,它与前两个圆分别相较于两点,交点有0+2+4=6个,…画第10个圆,它与前面9个圆分别交于两点,交点个数:0+2+4+6+…+18=90个;故本题答案为:90.【点评】每两个圆之间交点最多的情况是两圆相交,交点最多为2个,本题也可以用排列组合来解答:2×=90个.9.(5分)小红带了面额50元,20元,10元的人民币各5张,6张,7张,她买的230元的商品,那么,有11种付款方式.【分析】要用50,20,10凑成230,用枚举法列举出所有方式.【解答】解:根据50元面额由大到小的顺序,枚举出所有可能的组合,如下表:面额张数50元4433332222120元1043216543610元130********共有11种组合方式.故本题答案为:11.【点评】枚举法列举即可,注意避免遗漏,题目较简单.10.(5分)甲、乙、丙三个数的和是2017,甲比乙的2倍少3,乙比丙的3倍多20,则甲是1213.【分析】乙比丙的3倍多20,那么乙数可以表示为丙数×3+20,甲比乙的2倍少3,那么甲数就是丙数的2×3倍多20×3,那么三数的和就是丙数的1+2×3+3倍多(20×3﹣3),用三数的和减去(20×3﹣3)得到丙数的(1+2×3+3)倍,进而求出丙数,从而得到乙数和甲数.【解答】解:丙数:(2017﹣20×3+3)÷(1+2×3+3)=(2017﹣57)÷10=1960÷10=196,乙数:196×3+20=608,甲数:608×2﹣3=1213,答:甲是1213.故答案为:1213.【点评】解决本题关键是通过代换,得出甲数是丙数的几倍多几,进而得出三数的和是丙数的几倍多几,从而求出丙数,进而求解.11.(5分)篮球比赛中,三分线外投中一球可得3分,三分线内投中一球可得2分,罚蓝投中一球得1分,某球队在一次比赛中共投进32个球,得65分,已知二分球的个数比三分球的个数的4倍多3个,则这个球队在比赛中罚篮共投中4球.【分析】设三分球有x个,则两分球有(4x+3)个,一分球有(32﹣4x﹣3﹣x)个,各种球投中的个数乘对应分数,表示出各种球的得分,再相加就是全部的得分65分,由此列出方程求出3分球的个数,进而求出一分钱(罚篮)的个数.【解答】解:设三分球有x个,则二分球有(4x+3)个,一分球有(32﹣4x﹣3﹣x)个,则:3x+(4x+3)×2+(32﹣4x﹣3﹣x)=65x=5一分球有:32﹣4×5﹣3﹣5=4(球)答:这个球队在比赛中罚篮共投中4球.故答案为:4.【点评】解决本题先设出三分球的个数,再根据倍数关系表示出两分球的个数,再根据投中球的个数表示出一分球的个数,然后根据乘法的意义分别得出3类球的得分数,再相加得到总分65分,由此等量关系列出方程求解.12.(5分)在如图的乘法算式中,A、B、C、D、E、F、G、H、I分别表示彼此不同的一位数,则“FIGAA”表示的五位数是15744.【分析】首先找到题中的特殊情况,根据第一个乘积是三位数,尾数相同可以枚举排除,再根据A和C确定B,然后就可以求解.【解答】解:依题意可知:A、B、C、D、E、F、G、H、I共9个数字,题中没有数字0.再根据结果是三位数,那么首位字母可以是C=2,A=4或者C=3,A=9不满足三位数的条件.所以A=4,C=2.再根据进位B=9,E=8.根据E+H=A=4那么H=6,A加上进位等于I=5.所以D=3,F=1.即:49×32=15744.故答案为:15744.【点评】本题考查凑数谜的理解和运用,突破口就是字母C和第一个乘积是三位数限制了百位数字不能太大,问题解决.二、解答题:每小题15分,共60分。

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

2017年小学第十五届“希望杯”全国数学邀请赛六年级 第1试试题以下每题6分,共120分。

1、计算:2017×20152016+12016= 。

2、计算:0.142857g g ×6.3—0.428571g g ×123= 。

3、定义a ☆b =a b —1,则2☆(3☆4)= 。

4、如下图所示的点阵图中,图1中有3个点,图2中有7个点,图3中有13个点,图4中有21个点,按此规律,图10中有 个点。

5、已知A 是B 的12,B 是C 的34,若A +C =55,则A = 。

6、如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如1.395791g g ,3.957913g g。

在所有这样只有一位整数的循环小数中,最大的是 。

7、甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5,两人共有邮票 张。

8、从1,2,3,……2016中任意取出n 个数,若取出的数中至少有两个数互质,则n 的最小值 。

9、等腰三角形ABC 中,有两个内角的度数的比是1:2,则三角形ABC 的内角中,角度最大可以是 度。

10、能被5和6整除,并且数字中至少有一个6的三位数有 个。

11、小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的154与每支钢笔的售价相等,则1支钢笔的售价是元。

12、已知X是最简真分数,若它的分子加a,化简得13;若它的分母加a,化简得14,则X=。

13、a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的最大乘积是。

14、小丽做一份希望杯练习题,第一小时做完了全部的15,第二小时做完了余下的14,第三小时做完了余下的13,这时,余下24道题没有做,则这份练习题共有题。

15、如图,将正方形纸片ABCD折叠,使点A,B重合于O,则∠EFO=度。

16、如图4,由七巧板拼成的兔子形状,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米。

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试).doc

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试).doc

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)7 2017 年第十五届小学希望杯全国数学邀请赛试卷(六年级第 2 2 试)一、填空题 1.计算: 9 +9.75 +0. 4285 975%= . 2.若质数 a,b 满足 5a+b=2027,则 a+b= . 3.如图,一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(3,3),点 A 3 记为(6,6),,则点 A 100 记为. 4.按顺时针方向不断取如图中的 12 个数字,可组成不超过 1000 的循环小数 x,如23.067823,678.30678 等,若将 x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到 2017,则 x= . 5.若 A:B=1 :4 ,C:A=2 :3 ,则 A:B:C 用最简整数比表示是. 6.若将算式 987654321 中的一些改成使得最后的计算结果还是自然数,记为 N,则 N 最小是. 7.有三杯重量相等的溶液,它们的浓度依次是 10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是 %.8.如图,设定 E、F 分别是△ABC 的边 AB、AC 上的点,线段 CE,BF 交于点 D,若△CDF,△BCD,△BDE 的面积分别为 3,7,7,则四边形AEDF 的面积是. 9.如图,六边形 ABCDEF 的周长是 16 厘米,六个角都是 120,若 AB=BC=CD=3厘米,则 EF= 厘米. 10.如图所示的容器中放入底面相等并且高都是 3 分米的圆柱和圆锥形铁块,根据图 1 和图 2 的变化知,圆柱形铁块的体积是立方分米. 11.若一个十位数是 99 的倍数,则a+b= . 12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做 2 天,接着乙丙两人合作了 4 天,最后余下的工程由丙 1 人完成,则完成这项工程共用天.二、解答题 13.用 1,2,3,4,5,6,7,8,9 九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被 3 整除;次大的数被 3 除余 2,且尽可能的大;最小的数被 3 除余 1,且尽可能的小,求这三个三位数. 14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图 1 所示的长方体容器,此容器装满雨水需要 1 小时.请问:雨水要下满如图 2 所示的三个不同的容器,各需要多长时间? 15.对大于 0 的自然数 n 规定一种运算G:①当 n 是奇数时,G(n)=3n+1;②当 n 是偶数时,G(n)等于 n 连续被 2 除,直到商是奇数;将 k 次G运算记作 Gk ,如 G 1 (5)=35+1=16,G 2 (5)=G 1 (16)=162222=1,G3 (5)=31+1=4,G 4 (5)=422=1.计算:(1)G1 (2016)的值;(2)G5 (19)的值;(3)G2017 (19)的值. 16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?7 2017 年第十五届小学希望杯全国数学邀请赛试卷(六年级第 2 2 试)参考答案与试题解析一、填空题 1.计算: 9 +9.75 +0. 4285 975%= 9 .【分析】先把 0. 4285 化成,再提取公因数 9 ,然后根据乘法的分配律简算.【解答】解: 9 +9.75 +0. 4285 975% = 9 +9 + 9 =9 () =9 1 =9 ;故答案为:9 .【点评】完成本题要注意分析式中数据,运用合适的简便方法计算. 2.若质数 a,b 满足 5a+b=2027,则 a+b= 2019 .【分析】质数的和为奇数,那么一定有一个是偶数,讨论即可解决.【解答】解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是 2.当 b=2 时,5a+2=2027,a=405 不符合题意.当 a=2 时,10+b=2027,b=2017 符合题意,a+b=2+2017=2019.故答案为:2019.【点评】本题考查对奇偶性的理解和运用,两数字和为奇数,必然有一个是偶数,问题解决. 3.如图,一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(3,3),点 A 3 记为(6,6),,则点 A 100 记为(5050,5050).【分析】一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(1+2,1+2),点 A 3 记为(1+2+3,1+2+3),,则点 A n 记为(1+2+3++n,1+2+3++n).【解答】解:根据分析可知 A 100 记为(1+2+3++100,1+2+3++100);因为 1+2+3++100=(1+100)1002=5050,所以 A 100 记为(5050,5050);故答案为:A 100 记为(5050,5050).【点评】根据等差数列原理,分别对向右和向上爬行的距离求和. 4.按顺时针方向不断取如图中的 12 个数字,可组成不超过 1000 的循环小数 x,如 23.067823,678.30678 等,若将 x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到 2017,则 x= 78. 3067 .【分析】首先分析数字的周期发现数字周期为 6,7,8,2,3,0.找到对应组数和余数即可.【解答】解:依题意可知:按照顺时针方向观察可发现,不管起始数字是几,循环小数的循环节均由 6,7,8,2,3,0 这六个数字组成.因 2017(6+7+8+2+3+0)=77(组)15. 15=7+8,因此 x=78. 3067 故答案为:78. 3067 【点评】本题考查对周期问题的理解和运用,关键问题是找到数字和的周期数字.问题解决. 5.若 A:B=1 :4 ,C:A=2 :3 ,则 A:B:C 用最简整数比表示是 10:29:6 .【分析】先根据比的基本性质,把 A:B=1 :4 ,C:A=2 :3 化简,从而得出三个数的比.【解答】解:A:B =1 :4 = :=( 6):( 6) =10:29 C:A =2 :3 = : =( 15):( 15) =33:55 =3:5 =6:10 这样 A 的份数都是 10,所以 A:B:C=10:29:6.故答案为:10:29:6.【点评】本题主要是考查了比的基本性质的运用:比的前项和后项同时乘或除以相同的数(0 除外),比值不变. 6.若将算式 987654321 中的一些改成使得最后的计算结果还是自然数,记为 N,则 N 最小是 70 .【分析】要使最后的结果还是自然数,可把 9、8、6 分解质因数,再根据分解质因数的情况来确定把多少个乘号换成除号,最后再求出结果.【解答】解:根据分析,先分解质因数 9=33,8=222,6=23,故有: 987654321=(33)(222)7(32)5(22)321,所以可变换为:987654321=70,此时 N 最小,为 70,故答案是:70.【点评】本题考查了最大与最小的知识,本题突破点是:分解质因数,再确定把多少个乘号换成除号. 7.有三杯重量相等的溶液,它们的浓度依次是 10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是 20 %.【分析】首先看三杯溶液的浓度是已知的,重量相同也是相当于已知的,可以求出混合后溶质的重量和溶液的重量即可.【解答】解:依题意可知:设三杯溶液的重量为 a.根据浓度= 100%= 100%=20% 故答案为:20% 【点评】本题考查对浓度的理解和运用.浓度问题关键从浓度的定义出发,表示出溶质和溶液的量即可,问题解决. 8.如图,设定 E、F 分别是△ABC 的边 AB、AC 上的点,线段 CE,BF 交于点 D,若△CDF,△BCD,△BDE 的面积分别为 3,7,7,则四边形AEDF 的面积是 18 .【分析】连接 AD 因△CDF 和△BCD 的高相等,所以它们面积的比等于它们底边的比,所以 FD:DB=3:7,所△AFD 和△ABD 的面积比也是 3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,又因S △BCD =7,S △BDE =7,所以CD=DE,因这两个三角形的高相等,面积的比等于底边的比,从而可得出 S △ACD =S △ADE ,S△ACD +S △BDE =S △ABD ,即 S △ACD +S △BDE =7 份,S △AFD +S △CDF +S △BDE =7 份,3 份+3+7=7 份,从面可求出每份是 2.5,从而根据四边形 AEDF 的面积=10 份﹣7 求出它的面积,据此解答.【解答】解:连接 AD,因△CDF 和△BCD 的高相等,所以 FD:DB=3:7,所△AFD 和△ABD 的面积比也是 3:7,即可把△AFD 的面积看作是 3 份,△ABD 的面积看作是 7 份, S △BCD =7,S △BDE =7 所以 CD=DE, S △ACD =S △ADE ,S △ACD +S △BDE =S △ABD , S △ACD +S △BDE =7 份, S △AFD +S △CDF +S △BDE =7 份, 3 份+3+7=7 份,则 1 份=2.5, S 四边形 AEDF =10 份﹣7 =102.5﹣7 =25﹣7 =18 答:四边形 AEDF 的面积是 18.故答案为:18.【点评】本题的重点是根据三角形的高一定面积的比等于底边的比,求出△AFD中每份是多少,从而解决问题. 9.如图,六边形 ABCDEF 的周长是 16 厘米,六个角都是 120,若 AB=BC=CD=3厘米,则 EF= 5 厘米.【分析】如图延长并反向延长 AF,BC,DE,分别相交与点 G、H、N,因六边形ABCDEF的每个角是120,所以可得出G=H=N=60,所以△GHN,△GAB,△HCD,△EFN 都是等边三角形,AB=BC=CD=3 厘米,所以△GHN 边长是 3+3+3=9厘米,可得出 AN=9﹣3=6 厘米,AN=AF+EF,所以 DE=六边形 ABCDEF 的周长﹣AB﹣BC﹣CD﹣(AF+EF),据此可求出 DE 的长,进而可求出 EN 的长,即 EF 的长,据此解答.【解答】解:如图延长并反向延长 AF,BC,DE,分别相交与点 G、H、N,因六边形 ABCDEF 的每个角是 120 所以G=H=N=60 所以△GHN,△GAB,△HCD,△EFN 都是等边三角形 AB=BC=CD=3 厘米,△GHN 边长是 3+3+3=9(厘米) AN=9﹣3=6(厘米) AN=AF+EF DE=六边形 ABCDEF 的周长﹣AB﹣BC﹣CD﹣(AF+EF) =16﹣3﹣3﹣3﹣6=1(厘米) EF=EN=9﹣3﹣1=5(厘米)答:EF=5 厘米.故答案为:5.【点评】本题的重点是延长并反向延长 AF,BC,DE,得到一个等边三角形,再根据等边三角形的性质和已知条件进行解答. 10.如图所示的容器中放入底面相等并且高都是 3 分米的圆柱和圆锥形铁块,根据图 1 和图 2 的变化知,圆柱形铁块的体积是 15.42 立方分米.【分析】根据等底等高的圆柱的体积是圆锥体积的 3 倍,可知放入一个圆柱和两个圆锥后溢出水的体积是 25.7 立方分米,即是一个圆柱和两个圆锥的体积是25.7 立方分米,据此可求出圆锥的体积,进而可求出圆柱的体积.据此解答.【解答】解:25.7(1+1+3) =25.75 =5.14(立方分米) 5.143=15.42(立方分米)答:圆柱形铁块的体积是 15.42 立方分米.故答案为:15.42.【点评】本题重点考查了学生对等底等高的圆柱是圆锥体积的 3 倍这一知识的灵活运用.11.若一个十位数是 99 的倍数,则 a+b= 8 .【分析】根据 99 的整除特性为从右向左两位截断求和是 99 的倍数即可.【解答】解:根据 99 的整除特性可知: 20+16+ +20+17=99.. a+b=8.故答案为:8.【点评】本题考查是 99 的整除特性,同时注意的顺序是从右向左的顺序.此题和为 99.相加即可解决问题. 12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做 2 天,接着乙丙两人合作了 4 天,最后余下的工程由丙 1 人完成,则完成这项工程共用 9 天.【分析】首先找到甲乙丙的工作效率,然后求出甲工作 2 天的量和乙丙 4 天工作量,剩余的就是丙的工作天数,相加即可.【解答】解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为: 2+ 4= ;丙的工作天数为:(1﹣) =3(天);共工作2+4+3=9 故答案为:9 【点评】本题是考察对工程问题的理解和运用,多人合作关键求出剩余的工作量除以工作效率问题解决.二、解答题13.用 1,2,3,4,5,6,7,8,9 九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被 3 整除;次大的数被 3 除余 2,且尽可能的大;最小的数被 3 除余 1,且尽可能的小,求这三个三位数.【分析】最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是 1,因此可以根据已知缩小范围,最后确定这三个数.【解答】解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是 1,次大的数倍 3 除余 2,且要尽可能的大,则次大的三位数为:875;最小的数被 3 除余 1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.【点评】本题考查了数字问题,突破点是:通过已知确定三位数的最高位上的数字,再求出三个数. 14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图 1 所示的长方体容器,此容器装满雨水需要 1 小时.请问:雨水要下满如图 2 所示的三个不同的容器,各需要多长时间?【分析】因为装雨水的单位面积的数量是一定,所以要根据图 1 所示的长方体容器求出每平方厘米每小时接水的体积,然后再根据图 2 所示的三个不同的容器的接水口的面积求各需要多长时间即可.【解答】解:图 1 所示的长方体容器的容积:101030=3000(立方厘米)接水口的面积为:1030=300(平方厘米)接水口每平方厘米每小时可接水:30003001=10(立方厘米)所以,图①需要:101030(101010)=3(小时)图②需要:(101020+101010)(101020)=1.5(小时)图③需要:22=1(厘米)3.141120(3.14110)=2(小时)答:容器①需要 3 小时,容器②需要 1.5 小时,容器③需要 2 小时.【点评】本题考查了长方体圆柱体体积公式的灵活应用,关键是求出不变的单一量,即每平方厘米每小时接水的体积. 15.对大于 0 的自然数 n 规定一种运算G:①当 n 是奇数时,G(n)=3n+1;②当n 是偶数时,G(n)等于 n 连续被 2 除,直到商是奇数;将 k 次G运算记作 Gk ,如 G 1 (5)=35+1=16,G 2 (5)=G 1 (16)=162222=1,G3 (5)=31+1=4,G 4 (5)=422=1.计算:(1)G1 (2016)的值;(2)G5 (19)的值;(3)G2017 (19)的值.【分析】首先对定义的理解当 n=5 为奇数G1(5)=35+1=16,当计算 G2(5)时,转化成 G1 (16)=162222=1 两步相关的计算.再继续推理即可.【解答】解:依题意可知(1)、G1 (2016)=201622222=63 (2)、 G1 (19)=319+1=58. G2 (19)=582=29. G3 (19)=329+1=88. G4 (19)=88222=11. G5 (19)=311+1=34.(3)、 G6 (19)=17 G8 (19)=13. G9 (19)=40. G10 (19)=5. G11 (19)=16.G12 (19)=1. G13 (19)=4. G14 (19)=1. G15 (19)=4. G16 (19)=1.周期规律总结:大于 11 的数字中奇数项结果为 4,偶数项结果为1.故 G2017 (19)=4.答:G1 (2016)=63,G 5 (19)=34,G 2017 (19)=4.【点评】本题考查对新定义的理解和运用,突破口就是对 G3 (5)形式的计算,把数字根据题意代入即可,最后求 G2017 (19)时一定是有规律的,找到循环的周期对应 2017 即可,问题解决. 16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?【分析】首先把花数量简化成连比,然后与价格相乘,再根据扩倍关系即可求解.【解答】解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:320+156+1510=300;正好是 1 倍关系.答:购买玫瑰 10 枝,康乃馨 15 枝,百合 3 枝.【点评】本题是考察对比例应用题的理解和运用,关键的问题是化连比求出数量的比例,问题解决.。

希望杯六年年级二试试题及答案

希望杯六年年级二试试题及答案

第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()÷⨯÷⨯÷⨯⨯÷⨯÷=32435420122011201320122. 计算:1+++=1.5 3.1657.05123. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。

某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。

(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。

5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。

如:27333,33327=⨯⨯++=+,即27是史密斯数。

那么,在4,32,58,65,94中,史密斯数有个。

6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。

7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。

8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 20132013201320132013++++除以5,余数是。

(注:2013a表示2013个a相乘)1234510. 从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是152,7那么去掉的数是。

11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题1.计算:×9+9.75×+0.4285×975%= .2.若质数a,b满足5a+b=2027,则a+b= .3.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点An ,然后从点An出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.4.按顺时针方向不断取如图中的12个数字,可组成不超过1000的循环小数x,如23.067823,678.30678等,若将x的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x= .5.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.6.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.7.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.8.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.9.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF= 厘米.10.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.11.若一个十位数是99的倍数,则a+b= .12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.二、解答题13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?15.对大于0的自然数n规定一种运算“G”:①当n是奇数时,G(n)=3n+1;②当n是偶数时,G(n)等于n连续被2除,直到商是奇数;将k次“G”运算记作G k,如G1(5)=3×5+1=16,G2(5)=G1(16)=16÷2÷2÷2÷2=1,G3(5)=3×1+1=4,G4(5)=4÷2÷2=1.计算:(1)G1(2016)的值;(2)G5(19)的值;(3)G2017(19)的值.16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题1.计算:×9+9.75×+0.4285×975%= 9.【分析】先把0.4285化成,再提取公因数9,然后根据乘法的分配律简算.【解答】解:×9+9.75×+0.4285×975%=×9+9×+×9=9×()=9×1=9;故答案为:9.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.若质数a,b满足5a+b=2027,则a+b= 2019 .【分析】质数的和为奇数,那么一定有一个是偶数,讨论即可解决.【解答】解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.【点评】本题考查对奇偶性的理解和运用,两数字和为奇数,必然有一个是偶数,问题解决.3.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点An ,然后从点An出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为(5050,5050).【分析】一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点An ,然后从点An出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(1+2,1+2),点A3记为(1+2+3,1+2+3),…,则点An记为(1+2+3+…+n,1+2+3+…+n).【解答】解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).【点评】根据等差数列原理,分别对向右和向上爬行的距离求和.4.按顺时针方向不断取如图中的12个数字,可组成不超过1000的循环小数x,如23.067823,678.30678等,若将x的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x= 78.3067.【分析】首先分析数字的周期发现数字周期为6,7,8,2,3,0.找到对应组数和余数即可.【解答】解:依题意可知:按照顺时针方向观察可发现,不管起始数字是几,循环小数的循环节均由6,7,8,2,3,0这六个数字组成.因2017÷(6+7+8+2+3+0)=77(组)…15.15=7+8,因此x=78.3067故答案为:78.3067【点评】本题考查对周期问题的理解和运用,关键问题是找到数字和的周期数字.问题解决.5.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是10:29:6 .【分析】先根据比的基本性质,把A:B=1:4,C:A=2:3化简,从而得出三个数的比.【解答】解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.【点评】本题主要是考查了比的基本性质的运用:比的前项和后项同时乘或除以相同的数(0除外),比值不变.6.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是70 .【分析】要使最后的结果还是自然数,可把9、8、6分解质因数,再根据分解质因数的情况来确定把多少个乘号换成除号,最后再求出结果.【解答】解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.【点评】本题考查了最大与最小的知识,本题突破点是:分解质因数,再确定把多少个乘号换成除号.7.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是20 %.【分析】首先看三杯溶液的浓度是已知的,重量相同也是相当于已知的,可以求出混合后溶质的重量和溶液的重量即可.【解答】解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%【点评】本题考查对浓度的理解和运用.浓度问题关键从浓度的定义出发,表示出溶质和溶液的量即可,问题解决.8.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是18 .【分析】连接AD因△CDF和△BCD的高相等,所以它们面积的比等于它们底边的比,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,又因S△BCD =7,S△BDE=7,所以CD=DE,因这两个三角形的高相等,面积的比等于底边的比,从而可得出S△ACD =S△ADE,S△ACD +S△BDE=S△ABD,即S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,从面可求出每份是2.5,从而根据四边形AEDF的面积=10份﹣7求出它的面积,据此解答.【解答】解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD =7,S△BDE=7所以CD=DE,S△ACD =S△ADE,S△ACD+S△BDE=S△ABD,S△ACD +S△BDE=7份,S△AFD +S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.【点评】本题的重点是根据三角形的高一定面积的比等于底边的比,求出△AFD中每份是多少,从而解决问题.9.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF= 5 厘米.【分析】如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°,所以可得出∠G=∠H=∠N=60°,所以△GHN,△GAB,△HCD,△EFN都是等边三角形,AB=BC=CD=3厘米,所以△GHN边长是3+3+3=9厘米,可得出AN=9﹣3=6厘米,AN=AF+EF,所以DE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF),据此可求出DE的长,进而可求出EN的长,即EF的长,据此解答.【解答】解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.【点评】本题的重点是延长并反向延长AF,BC,DE,得到一个等边三角形,再根据等边三角形的性质和已知条件进行解答.10.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是15.42 立方分米.【分析】根据等底等高的圆柱的体积是圆锥体积的3倍,可知放入一个圆柱和两个圆锥后溢出水的体积是25.7立方分米,即是一个圆柱和两个圆锥的体积是25.7立方分米,据此可求出圆锥的体积,进而可求出圆柱的体积.据此解答.【解答】解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.【点评】本题重点考查了学生对等底等高的圆柱是圆锥体积的3倍这一知识的灵活运用.11.若一个十位数是99的倍数,则a+b= 8 .【分析】根据99的整除特性为从右向左两位截断求和是99的倍数即可.【解答】解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.【点评】本题考查是99的整除特性,同时注意的顺序是从右向左的顺序.此题和为99.相加即可解决问题.12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用9 天.【分析】首先找到甲乙丙的工作效率,然后求出甲工作2天的量和乙丙4天工作量,剩余的就是丙的工作天数,相加即可.【解答】解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:9【点评】本题是考察对工程问题的理解和运用,多人合作关键求出剩余的工作量除以工作效率问题解决.二、解答题13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.【分析】最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,因此可以根据已知缩小范围,最后确定这三个数.【解答】解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.【点评】本题考查了数字问题,突破点是:通过已知确定三位数的最高位上的数字,再求出三个数.14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?【分析】因为装雨水的单位面积的数量是一定,所以要根据图1所示的长方体容器求出每平方厘米每小时接水的体积,然后再根据图2所示的三个不同的容器的接水口的面积求各需要多长时间即可.【解答】解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.【点评】本题考查了长方体圆柱体体积公式的灵活应用,关键是求出不变的单一量,即每平方厘米每小时接水的体积.15.对大于0的自然数n规定一种运算“G”:①当n是奇数时,G(n)=3n+1;②当n是偶数时,G(n)等于n连续被2除,直到商是奇数;将k次“G”运算记作G k,如G1(5)=3×5+1=16,G2(5)=G1(16)=16÷2÷2÷2÷2=1,G3(5)=3×1+1=4,G4(5)=4÷2÷2=1.计算:(1)G1(2016)的值;(2)G5(19)的值;(3)G2017(19)的值.【分析】首先对定义的理解当n=5为奇数G1(5)=3×5+1=16,当计算G2(5)时,转化成G1(16)=16÷2÷2÷2÷2=1两步相关的计算.再继续推理即可.【解答】解:依题意可知(1)、G1(2016)=2016÷2÷2÷2÷2÷2=63(2)、G1(19)=3×19+1=58.G2(19)=58÷2=29.G3(19)=3×29+1=88.G4(19)=88÷2÷2÷2=11.G5(19)=3×11+1=34.(3)、G6(19)=17G8(19)=13.G9(19)=40.G10(19)=5.G11(19)=16.G12(19)=1.G13(19)=4.G14(19)=1.G15(19)=4.G16(19)=1.…周期规律总结:大于11的数字中奇数项结果为4,偶数项结果为1.故G2017(19)=4.答:G1(2016)=63,G5(19)=34,G2017(19)=4.【点评】本题考查对新定义的理解和运用,突破口就是对G3(5)形式的计算,把数字根据题意代入即可,最后求G2017(19)时一定是有规律的,找到循环的周期对应2017即可,问题解决.16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?【分析】首先把花数量简化成连比,然后与价格相乘,再根据扩倍关系即可求解.【解答】解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.【点评】本题是考察对比例应用题的理解和运用,关键的问题是化连比求出数量的比例,问题解决.。

相关文档
最新文档