回归模型函数形式
第5章 回归模型的函数形式
E
Y的变动百分数 X的变动百分数
=
Y X
Y 100 = Y X 100 X
X Y
=slope
X Y
因此,如果Y代表了商品的需求量,X代表了单 位价格,E就是需求的价格弹性。
图 5-1
双对数模型的假设检验
双对数模型的假设检验与线性模型的检验 方法没有什么不同。
• 5.2线性模型与双对数回归模型的比较 (1)根据弹性定义公式,我们可以得出这 样的结论:对于线性模型,弹性系数是一 个变量;对于对数模型,其弹性系数为一 常量。
• 在实际经济活动中,经济变量的关系是复杂的, 直接表现为线性关系的情况并不多见。
• 如著名的Cobb- Dauglas生产函数表现为幂函数 曲线形式、宏观经济学中的菲利普斯曲线 (Pillips cuves)表现为双曲线形式等。
• 但是,大部分非线性关系又可以通过一些简单的 数学处理,使之化为数学上的线性关系,从而可 以运用线性回归模型的理论方法。
• 例5-2:柯布-道格拉斯生产函数
– 反应了产出与劳动力和资本投入之间的关系函 数。
– 劳动投入弹性+资本投入弹性=规模报酬参数
(1)规模报酬递增—规模报酬参数>1 (2)规模报酬递减—规模报酬参数<1 (3)规模报酬不变—规模报酬参数=1
• 例5-3:对能源的需求(P107)
二、半对数模型(semilog model)
对数-线性模型——测量增长率
例5-4:以时间t作为解释变量模型—增长模型
我们来研究一下在货币、银行及金融等课程中
介绍过的复利计算公式:
等式两端取对数:
Yt Y0 (1 r)t
ln Yt ln Y0 t ln(1 r)
回归模型的函数形式
回归模型的函数形式回归模型是一种描述自变量和因变量之间关系的数学模型。
它可以用来预测因变量的值,基于给定的自变量值。
回归模型可以是线性的或非线性的,具体选择哪种形式取决于数据的特点和研究的目标。
以下是一些常见的回归模型的函数形式:1.线性回归模型:线性回归模型假设因变量与自变量之间存在线性关系。
最简单的线性回归模型称为简单线性回归模型,可以使用一条直线来描述自变量和因变量之间的关系:Y=β0+β1X+ε其中,Y表示因变量,X表示自变量,β0表示Y截距,β1表示X的系数,ε表示误差项。
2.多元线性回归模型:多元线性回归模型用于描述多个自变量与因变量之间的线性关系。
它的函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量,Xi表示第i个自变量,βi表示Xi的系数,ε表示误差项。
3.多项式回归模型:多项式回归模型用于描述自变量和因变量之间的非线性关系。
它可以通过引入自变量的幂次项来逼近非线性函数:Y=β0+β1X+β2X^2+...+βnX^n+ε4.对数回归模型:对数回归模型适用于自变量与因变量之间存在指数关系的情况。
它可以将自变量或因变量取对数,将非线性关系转化为线性关系:ln(Y) = β0 + β1X + ε5. Logistic回归模型:Logistic回归模型用于描述分类变量的概率。
它的函数形式是Sigmoid函数,将自变量的线性组合映射到0和1之间的概率值:P(Y=1,X)=1/(1+e^(-β0-β1X))以上是几种常见的回归模型的函数形式。
回归模型的选择取决于数据的特征和研究的目标,需要考虑线性或非线性关系、自变量的数量、相关性等因素。
根据实际情况,可以选择合适的模型进行建模和预测。
回归函数公式范文
回归函数公式范文回归函数是指通过统计方法分析相关数据的数值关系,进而构建一个函数来描述这种关系的数学模型。
一般来说,回归函数用于描述一个或多个自变量与因变量之间的线性或非线性关系。
在简单线性回归中,回归函数的一般形式为:y=β0+β1*x+ε其中,y表示因变量,x表示自变量,β0和β1表示线性模型的系数,ε表示误差项。
在多元回归中,回归函数的一般形式为:y = β0 + β1 * x1 + β2 * x2 + ... + βn * xn + ε其中,n表示自变量的个数。
回归函数的目的是根据观测数据拟合出最佳的模型,使得预测值与实际值之间的误差最小化。
常用的方法包括最小二乘法、梯度下降法等。
最小二乘法是一种常用的回归分析方法,通过最小化残差平方和来估计回归系数。
简单线性回归中的最小二乘法可以通过以下公式计算回归系数:β1 = Σ((xi - x̄)(yi - ȳ)) / Σ((xi - x̄)^2)β0=ȳ-β1*x̄其中,xi表示自变量的第i个观测值,yi表示因变量的第i个观测值,x̄和ȳ分别表示自变量和因变量的均值。
梯度下降法是一种优化算法,通过迭代的方式逐步调整回归系数的值,使得损失函数逐渐减小。
在梯度下降法中,回归系数的更新公式为:βj = βj - α * Σ(yi - ȳ) * xi其中,α表示学习率,控制每次迭代的步长。
除了线性回归,还有许多其他形式的回归函数,比如多项式回归、指数回归、对数回归等。
这些回归函数可以更好地描述数据的非线性关系。
总之,回归函数是一种用于分析和描述变量之间关系的数学模型。
通过构建回归函数,可以基于已有数据进行预测和推断,从而帮助我们理解和解释复杂现象。
4 回归模型的函数形式b
多元双对数模型: 多元双对数模型:两个实例
P185
ln Yi = B1 + B2 ln X 2i + B3 ln X 3i + ui
B2:保持X3不变,X2每变化1%,Y变化B2* 1% B3:保持X2不变,X3每变化1%,Y变化B3* 1% 偏弹性。 它们分别度量了Y对 X2和X3变化的偏弹性 偏弹性
B2度量了Y对X的弹性: 的弹性: 度量了 对 的弹性 X变化 ,Y将变化 2×1% 变化1%, 将变化 将变化B 变化
关于弹性
d ln Y dY / Y Y / Y X E= = = = (斜率) ( ) d ln X dX / X X / X Y
当E的绝对值大于1,Y对X有弹性 有弹性 当E的绝对值小于1,Y对X缺乏弹性 缺乏弹性 当E的绝对值等于1,Y对X有单位弹性 有单位弹性
若B2+B3 >1,规模报酬递增 (increasing returns to scale) 若B2+B3 <1,规模报酬递(decreasing) 若B2+B3 =1,规模报酬不变(constant) 表9-2:墨西哥生产函数(1955-1974) :墨西哥生产函数( - )
例9-3 OECD国家的能源需求 国家的能源需求
P191,9.5
关键:解释斜率系数B 关键:解释斜率系数B2的含义
ln Yi = B1 + B2 X i + ui
d ln Y Y / Y B2= = dX X
log-lin:X变化一单位,Y会变(100×B2)%
Yi = B1 + B2 ln X i + ui
dY Y B2= = d ln X X / X
虽然双对数模型改变了变量xy的函数形式但由于仍是参数线性模型模型的参数估计假设检验tfp值预测等都与第67章介绍的方法类似可直接套用
计量经济学_詹姆斯斯托克_第8章_非线性的回归模型
Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)
计量经济学课件 第5章 回归模型的函数形式
• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E
Y X
X Y
B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等
logistic回归模型方程
logistic回归模型方程Logistic回归模型方程是一种常用的分类算法,它可以将数据分为两个或多个类别。
在这篇文章中,我们将介绍Logistic回归模型方程的基本概念和应用。
Logistic回归模型方程是一种基于概率的分类算法,它可以将数据分为两个或多个类别。
在Logistic回归模型中,我们使用一个S形函数来将输入变量映射到输出变量。
这个S形函数被称为Logistic 函数,它的形式如下:$$P(y=1|x)=\frac{1}{1+e^{-\beta_0-\beta_1x_1-\beta_2x_2-...-\beta_px_p}}$$其中,$P(y=1|x)$表示当输入变量为$x$时,输出变量为1的概率。
$\beta_0,\beta_1,\beta_2,...,\beta_p$是模型的参数,$x_1,x_2,...,x_p$是输入变量。
Logistic回归模型的训练过程是通过最大化似然函数来确定模型参数的。
似然函数是一个关于模型参数的函数,它描述了给定模型参数下观察到数据的概率。
在Logistic回归模型中,似然函数的形式如下:$$L(\beta)=\prod_{i=1}^{n}P(y_i|x_i;\beta)^{y_i}(1-P(y_i|x_i;\beta))^{1-y_i}$$其中,$n$是样本数量,$y_i$是第$i$个样本的输出变量,$x_i$是第$i$个样本的输入变量。
最大化似然函数的过程可以使用梯度下降等优化算法来实现。
Logistic回归模型可以应用于许多分类问题,例如垃圾邮件分类、疾病诊断等。
在这些问题中,我们需要将输入变量映射到输出变量,以便进行分类。
Logistic回归模型可以通过学习输入变量和输出变量之间的关系来实现这一目标。
Logistic回归模型方程是一种常用的分类算法,它可以将数据分为两个或多个类别。
在Logistic回归模型中,我们使用一个S形函数来将输入变量映射到输出变量。
回归分析模型
定义
TSS y i y
i 1
n
2
称因变量 y 的总变差平方。它刻画了因变量取值总的波动程度。
TSS 作适当分解 y 波动的两方面原因对 我们希望能根据导致
ˆi y ˆ i y RSS SS回 TSS y i y y i y
这表明回归函数 f x1 , x 2 , , x p 实质上就是在自变量 x1 , x 2 , , x p
根据回归函数 f x1 , x 2 , , x p 的不同数学形式,对回归模型可作 如下大致分类: 若 f x1 , x 2 , , x p 是自变量的线性函数,称线性回归模型
b0 b1 x1 b2 x 2 b p x p
能最大限度地解释
就第i 次试验而言,因变量的实际观测值yi 与可以通过回归函数加以解释的量
b0 b1 x i1 b2 x i 2 b p x ip 之间的偏差为 y i b0 b1 x i1 b2 x i 2 b p x ip .
R b0 , b1 , , b p y i b0 b1 xi1 b2 xi 2 b p xip
n i 1
2
y 的取值,很自然地取使残差平方和 为了使回归函数能最大限度地解释因变量 ˆ ,b ˆ ,b ˆ , , b ˆ R b0 , b1 , , b p b 0 1 2 p 达到最小的 作为回归系数的估计。 这种方法称最小二乘
回归方程的显著性检验 从 回 归 系 数 的 求 法 , 原 则 上 , 对 任 何n 组 观 测 数 据 xi1 , xi 2 , , xip ; yi ,i 1,2,, n (无论 y 与x1 , x 2 , , x p 是否有 线性相关关系)都可以得到一个经验回归方程。但是,只有 当 y 与 x1 , x 2 , , x p 确实具有线性相关关系时,相应的经验回 y 与x1 , x 2 , , x p 是否确实具有 归方程才有意义。因此,考查 线性相关关系, 是能否进一步将所得经验回归方程用于预测 或控制的前提。
5、计量经济学【多元线性回归模型】
二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
回归模型的函数形式(非线性回归模型的估计)
表3.4.1 1980-2003年中国GDP、劳动投入与资本投入数据 年份
1980 1981 1982 1983 1984 1985 1986
GDP
4517.8 4862.4 5294.7 5934.5 7171.0 8964.4 10202.2
L
42361 43725 45295 46436 48197 49873 51282
K
910.9 961.0 1230.4 1430.1 1832.9 2543.2 3120.6
年份 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
GDP 11962.5 14928.3 16909.2 18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74462.6 78345.2 82067.5 89442.2 95933.3 102398.0 117251.9
,称这类模型为可线性化模型。
1.对数模型(或对数-对数模型) 模型形式:
lnY=b0+b1lnX+u (对数-对数模型)
lnY=b0+b1lnX+u (对数-对数模型)
对数-对数模型特点: b1表示当X每变动1个相对量时
(而X变动1个相对量,用符号表达就是ΔX/X,用数
据表达就是 1% ), Y将变动一个相对量,这个相对
L 52783 54334 55329 63909 64799 65554 66373 67199 67947 68850 69600 69957 71394 72085 73025 73740 74432
回归模型的函数形式
图5-2数学S.A.T分数的双对数模型散点图
9-12
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归过程
9-13
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归结果
ˆ InYi 4.887712773 0.1258045149InX i se (0.1573)(0.0148) t (31.0740)(8.5095) p (0.0000)(0.0000)
第5章 回归模型的函数形式
Essentials of Econometrics
第5章回归模型的函数形式
本章讨论以下几种形式的回归模型
(1) 双对数线性模型或不变弹性模型 (2) 半对数模型 (3) 倒数模型 (4) 多项式回归模型 (5) 过原点的回归模型,或零截距模型
9-2
5.1 如何度量弹性:双对数模型
ˆ ˆ ˆ B B B 1 2 ˆ Y e L K 3
9-28
5.3 多元对数线性回归模型
例5-2 excel原始数据表
9-29
5.3 多元对数线性回归模型
例5-2 取对数后Eviews数据表
9-30
5.3 多元对数线性回归模型
例5-2 C-D函数Eviews回归过程
9-31
5.3 多元对数线性回归模型
令变量 Yi ln Yi , X ki ln X ki
* *
, B1 LnA 则回归函数可变为:
* Yi* B1 B2 X * B X ui 3 2i 3i
根据解释变量的观测值,进行OLS估计,得到:
ˆ* B ˆ B ˆ X* B ˆ X ˆ* Y 1 2 3 i 2i 3i
回归模型的函数形式
回归模型的函数形式回归模型是一种用于研究变量之间关系的统计模型。
它可以帮助我们理解自变量和因变量之间的关系,并用于预测未来的观测值。
回归模型的函数形式通常包括线性回归和非线性回归两种。
一、线性回归模型线性回归模型是回归分析中最常见的一种模型,它假设自变量和因变量之间存在线性关系。
线性回归模型的函数形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn 是回归系数,ε是误差项。
线性回归模型假设误差项ε服从正态分布,且均值为0,方差为常数σ^2、回归系数β表示自变量对因变量的影响程度,其值越大表示影响越大。
二、非线性回归模型当自变量和因变量之间的关系不是简单的线性关系时,我们可以使用非线性回归模型。
非线性回归模型的函数形式可以是各种形式的非线性函数,常见的形式包括指数函数、幂函数、对数函数等。
例如,指数函数形式的非线性回归模型可以表示为:Y=β0+β1e^(β2X)+ε幂函数形式的非线性回归模型可以表示为:Y=β0+β1X^β2+ε对数函数形式的非线性回归模型可以表示为:Y = β0 + β1ln(X) + ε需要注意的是,非线性回归模型的参数估计一般不像线性回归模型那样可以用最小二乘法直接求解,通常需要使用迭代算法。
三、多元回归模型多元回归模型用于研究多个自变量对因变量的影响。
多元回归模型的函数形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是多个自变量,β0,β1,β2,...,βn是对应的回归系数,ε是误差项。
多元回归模型可以通过估计回归系数,来衡量每个自变量对因变量的影响。
通过比较不同自变量的回归系数,我们可以判断它们之间的影响大小。
总结:回归模型是一种用于研究变量关系的统计模型。
线性回归模型假设自变量和因变量之间存在线性关系,可以用线性函数表示。
Logistic回归模型
Logistic 回归模型一、 分组数据的Logistic 回归模型针对0-1型因变量产生的问题,我们对回归模型应该作两个方面的改进。
第一, 回归函数应该用限制在[0,1]区间内的连续曲线,而不能再沿用沿用直线回归方程。
限制在[0,1]区间内的连续曲线很多,例如所有连续变量的分布函数都符合要求,我们常用的是Logistic 函数与正如分布函数,Logistic 函数的形式为:()1xxe f x e =+Logistic 函数的中文名称逻辑斯蒂函数,简称逻辑函数 第二、因变量y 本身只取0、1两个离散值,不适合直接作为回归模型中的因变量,由于回归函数01()i i i E y x πββ==+表示在自变量为i x 的条件下i y 的平均值,而i y 是0-1型随机变量,因而()i i E y π=就是在自变量为i x 的条件下i y 等于1的比例.这就提示我们可以用i y 等于1的比例代替i y 本身作为因变量.二,例子 在一次住房展销会上,与房地产商签订初步购房意向书的共有325n =名顾客,在随后的3个月的时间内,只有一部分顾客确实购买了房屋.购买了房屋的顾客记为1,没有购买房屋的顾客记为0,以顾客的年家庭收入为自变量x,对下面表所示的数据,序号年家庭收入(万元)x 签订意向书人数n 实际购房人数m 实际购房比例p逻辑变换p′=ln(p/(1-p))权重w=np(1-p)1 1.52580.32-0.7537718 5.442 2.532130.40625-0.37948967.718753 3.558260.448276-0.207639414.344834 4.552220.423077-0.310154912.692315 5.543200.465116-0.139761910.697676 6.539220.5641030.257829119.58974477.528160.5714290.287682076.85714388.521120.5714290.287682075.14285799.515100.6666670.693147183.333333建立Logistic 回归模型:c i x x p i i i,,2,1,)exp(1)exp(1010 =+++=ββββ,其中,c 为分组数据的组数,本例中c=9.将以上回归方程作线性变换,令)1ln(iii p p p -=' 该变换称为逻辑变换,变换后的线性回归模型为 i i i x p εββ++='10该式是一个普通的一元线性回归模型。
第9章回归的函数形式
第9章回归的函数形式在统计学和机器学习中,回归是一种预测任务,目标是找到输入变量与输出变量之间的关系。
回归问题中,输入变量通常被称为特征,输出变量通常被称为目标变量。
在回归的函数形式中,我们试图找到一个可以预测目标变量的函数。
这个函数可以是线性的,也可以是非线性的。
在本章中,我们将介绍几种常见的回归函数形式,包括线性回归、多项式回归和非线性回归。
线性回归是回归问题中最简单的形式之一、在线性回归中,我们假设目标变量是输入变量的线性组合加上一个误差项。
我们可以使用最小二乘法来找到最佳的线性拟合。
线性回归模型的形式如下:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是目标变量,X1,X2,...,Xn是输入变量,β0,β1,β2,...,βn是回归系数,ε是误差项。
我们的目标是找到最佳的回归系数,使得预测值与观测值之间的残差平方和最小化。
多项式回归是线性回归的一种变形,它将输入变量的幂次作为特征。
多项式回归可以更好地拟合非线性关系。
多项式回归模型的形式如下:Y = β0 + β1X1 + β2X2 + ... + βnXn + β11X1^2 + β22X2^2 + ... + βnnXn^n + ε其中,X1, X2, ..., Xn是输入变量的幂次,β0, β1, β2, ..., βn是回归系数,β11, β22, ..., βnn是多项式回归的系数。
非线性回归是回归问题中最灵活的形式之一,它不限制目标变量与输入变量之间的关系。
非线性回归可以采用各种不同的函数形式,如指数函数、对数函数、幂函数等。
非线性回归模型的形式如下:Y=f(X1,X2,...,Xn;β)+ε其中,Y是目标变量,X1,X2,...,Xn是输入变量,β是回归系数,f 是一个非线性函数,ε是误差项。
我们的目标是找到最佳的回归系数,使得预测值与观测值之间的残差平方和最小化。
在实际应用中,选择适当的回归函数形式非常重要。
线性回归模型及其函数形式
S
总体回归函数和样本回归函数
o 总体回归函数的另一种表述
o 误差(error)的来源 ❖其他解释变量的影响 ❖测量误差 ❖人类行为的随机性
总体回归函数和样本回归函数
o 总体回归函数图解
Wi E(W|Si)
A
ui
PRF C
Si
总体回归函数和样本回归函数
样本回归函数(sample regression function,SRF) o 样本:从上述总体中随机抽取了100人 o 问题:根据样本数据估计总体中工资W与受教育年限S的关系
variable
variable
回归分析中的常用术语
相关与回归(co目r的relation变&量r间eg的r关es系sion变)量的性质 指标
相关分析 分析变量之间 对称的
都是随机变量 相关系数
(correlation 的线性关联程 analysis) 度
回归分析 根据自变量的 不对称的
因变量是随机 回归系数
variable variable
Exogenous Predictor variable
Regressor
因变量
被解释变量 响应变量 内生变量
预测子
回归子
Dependent Explained Response Endogenous Predictand Regressand
variable
variable
o 请用最小二乘法估计出以D为因变量的样本回归方程 o 计算回归标准误和回归系数估计量的标准误
年份 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
P 0.77 0.74 0.72 0.73 0.76 0.75 1.08 1.81 1.39 1.20 1.17 D 2.57 2.50 2.35 2.30 2.25 2.20 2.11 1.94 1.97 2.06 2.02
第五章回归模型的函数形式
第五章回归模型的函数形式1.引言回归分析是统计学中一种重要的数据分析方法,用于研究自变量与因变量之间的关系。
在回归分析中,我们需要确定一个合适的函数形式来描述变量之间的关系,这个函数形式即为回归模型的函数形式。
本章将介绍回归模型的函数形式的基本概念和常用的函数形式。
2.线性回归模型线性回归模型是最简单的回归模型之一,其函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,Xi是自变量,βi是参数,ε是误差项。
线性回归模型假设自变量与因变量之间的关系是线性的,并且误差项服从正态分布。
3.多项式回归模型多项式回归模型是线性回归模型的一种扩展形式,其函数形式为:Y=β0+β1X+β2X^2+...+βnX^n+ε多项式回归模型允许自变量的幂次大于1,通过引入幂项和交互项,可以更好地拟合非线性关系。
4.对数回归模型对数回归模型是一种特殊的回归模型,其函数形式为:ln(Y) = β0 + β1X1 + β2X2 + ... + βnXn + ε对数回归模型适用于因变量为正数且取值范围较广的情况,通过取对数可以将因变量的范围缩小,使得模型更易拟合。
5.非线性回归模型除了线性回归模型和多项式回归模型外,还存在许多其他形式的非线性回归模型。
非线性回归模型的函数形式通常不容易直接确定,需要通过试验和拟合来确定参数。
常见的非线性回归模型包括指数模型、幂函数模型、对数模型等。
在实际应用中,选择适当的函数形式是回归分析的一个重要问题。
选择不合适的函数形式可能导致模型的预测效果较差。
为了选择适当的函数形式,可以通过观察变量之间的散点图、拟合曲线图、残差图等进行初步判断,然后利用统计方法进行模型的比较和选择。
7.总结回归模型的函数形式是回归分析的基础,选择合适的函数形式对于模型的拟合和预测效果至关重要。
线性回归模型、多项式回归模型、对数回归模型和非线性回归模型是常用的函数形式。
选择适当的函数形式需要综合考虑变量之间的实际关系和统计分析的要求,可以通过观察图形和利用统计方法进行模型的比较和选择。
(李子奈计量经济学配套课件)3.5 回归模型的其他函数形式
中国城镇居民消费支出( 表 3.5.1 中国城镇居民消费支出(元)及价格指数
X X1 GP FP XC (1990年价) 646.1 659.1 672.2 690.4 772.6 826.6 899.4 1085.5 1262.5 1278.9 1344.1 1459.7 1694.7 2118.4 2474.3 2692.0 2775.5 2758.9 2723.0 2744.8 2764.0 Q (1990年价) 318.3 325.0 337.0 350.5 408.4 437.8 490.3 613.8 702.2 693.8 731.3 809.5 943.1 1265.6 1564.3 1687.9 1689.6 1637.2 1566.8 1529.2 1539.9 P0 (1990=100) 70.7 71.5 75.3 81.0 87.1 96.7 98.3 101.7 95.9 100.0 108.2 114.5 124.6 134.6 143.0 145.6 150.8 157.0 169.5 182.1 192.1 P1 (1990=100) 132.1 132.9 137.7 146.7 86.1 95.7 96.5 92.4 94.0 100.0 107.0 109.3 112.2 112.4 112.9 112.8 115.0 117.7 123.3 128.1 130.8
半对数模型( 半对数模型(2)
在线性模型中,B2表示X增加一个单位,Y的绝 对量的平均增量,即Y增加B2个单位。 在半对数模型中,B2表示X增加一个单位,Y的 相对量的平均增量,即Y增加100*B2 %。
半对数模型( 半对数模型(3)
例:以时间t作为解释变量模型—增长模型 我们来研究一下在货币、银行及金融等课程中 介绍过的复利计算公式:
回归模型的函数形式
如果用符号 Y 代表Y的一个微小变动,X 代表X的一个微 小变动,则弹性E定义为:
E Y 变动的百分数 Y / Y •100 Y • X slop( X )
X变动的百分数 X / X •100 X Y
Y
从图形上看,变量线性的回归模型的图形是一条直线,而 双对数模型的图形是一条曲线,并且对于不同的X值来说, 都具有相同的弹性。所以,双对数模型又称为不变弹性模 型。
倒数模型的一个显著特征是,随着X 的无限增大,(1/ Xi ) 趋于零,Y 接近渐进值或极限值 B1 。因此,当变量 X 无限增大 时,倒数模型中的应变量的取值将逐渐靠近其渐进线或极值。
下图描绘了倒数模型的一些曲线形状: 倒数模型:Yi B1 B2 (1/ X i )
上图a)中,若Y表示生产的平均固定成本(AFC),X代表产出,则 根据经济理论,随着产出的不断增加,平均固定成本将逐渐降低,最 终接近产出轴。
4.线性-对数模型:解释变量是对数形式
考虑如下例子:个人总消费支出与服务支出的关系 (1993.1~1998.3,1992年美元价,10亿美元),数据见下表:
1993.1~1998.3个人总消费支出与各类支出的季度数据(10亿美元)
以个人总消费支出X与服务支出Y的关系为例,得到线性- 对数模型如下:
Variable Coefficient
C
0.420412
DASSET 0.054930
Std. Error t-Statistic 0.012858 32.69715 0.022099 2.485610
Prob. 0.0000 0.0322
R-squared
0.381886
Adjusted R-squared 0.320075
多元回归模型
1个单位时,因变量的均值如何变化。 j体现了
X j对Y的均值的“直接”或“净”的影响。
4
二元回归实例
研究美国非农业未偿还抵押贷款余额与个人收 入和抵押贷款费用的关系。 Y :美国非农业未偿还抵押贷款余额(亿美元)。 X2 :个人收入总水平(亿美元)。 X3 :抵押贷款费用(%)
多元线性回归分析
1
多元回归分析
多元回归分析是研究因变量对两 个或两个以上解释变量的统计依 赖关系。 多元回归模型是具有两个或两个 以上解释变量的回归模型。
2
多元线性回归分析
很少有经济现象能够只用一个解释 变量来解释。比如:消费水平、股票 价格、工资水平、破产率、新生婴儿 死亡率等等。因此,要解释这些复杂 经济现象或经济相关现象,那么在建 立回归模型的时候必须纳入多个解释 变量,以充分反映多种因素对因变量 的影响。
ˆ j 为偏回归系数 j的估计量。
Yˆi为Y的条件均值的估计量,也是样本拟合值。 uˆi为残差。
13
Y1 ˆ1 ˆ2 X 21 ˆ3 X 31 ...... ˆk X k1 uˆ1 Y2 ˆ1 ˆ2 X 22 ˆ3 X 32 ...... ˆk X k 2 uˆ2
3
多元回归模型的一般形式
总体回归函数的随机形式
Yi 1 2 X 2i 3X3i ...... k X ki ui
总体回归函数的确定形式
E Yi X2i ,..., Xki 1 2 X2i 3X3i ...... k Xki
j称为偏回归系数,( partial regression coefficient)
Y1
一元线性回归模型
一元线性回归模型1.一元线性回归模型有一元线性回归模型(统计模型)如下,y t = 0 + 1 x t + u t上式表示变量y t 和x t之间的真实关系。
其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项, 0称常数项, 1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t) = 0 + 1 x t,(2)随机部分,u t。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。
回归模型存在两个特点。
(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。
(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。
通常线性回归函数E(y t) = 0 + 1 x t是观察不到的,利用样本得到的只是对E(y t) = 0 + 1 x t 的估计,即对 0和 1的估计。
在对回归函数进行估计之前应该对随机误差项u t做出如下假定。
(1) u t 是一个随机变量,u t 的取值服从概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-2数学S.A.T分数的双对数模型散点图
9-12
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归过程
9-13
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归结果
ˆ InYi 4.887712773 0.1258045149InX i se (0.1573)(0.0148) t (31.0740)(8.5095) p (0.0000)(0.0000)
9-21
5.2 比较线性和双对数回归模型
注意2 !!!
对线性模型而言,其弹性系数随着需求曲 线上的点的不同而变化,而对双对数模型而言, 它在需求曲线上任何一点的弹性系数都是相同 的。因此,在这两类模型之间进行选择模型时, 我们可以根据这个特点作出判断。
9-22
5.2 比较线性和双对数回归模型
对于线性模型的弹性通常用平均弹性系数来计算 :
9-14
r 2 0.900513
5.1 如何度量弹性:双对数模型
双对数线性模型的假设检验
就假设检验而言,线性模型与对数线性模型并没有 什么不同。在随机误差项服从正态分布 ( 均值为 0 ,方 差为 2)的假定下,每一个估计的回归系数均服从正态 分布。或者,如果用 2 的无偏估计量代替它,则每一 个估计的回归系数服从自由度为(n-k)的t分布,其中k 为包括截距在内的参数的个数。
9-20
5.2 比较线性和双对数回归模型
注意1!!!
2 R 即使两个模型中的因变量相同,两个 值可以直接比较,
我们也建议不要根据最高值这一标准选择模型。而应该首 先考虑进入模型中的解释变量之间的相关性、解释变量系 数的预期符号、统计显著性以及类似弹性系数这样的度量 工具。(也就是根据理论推理,得出模型具体形式)
Yi* LnYi X i* LnX i 则InYi B1 B2 InXi u i 可写成: Yi* B1 B2 X i* u i 与前面讨论的模型相似 :它不仅是参数线性的 ,而且也是变量线性的 。
9-5
1 如何度量弹性:双对数模型
双对数模型中斜率 B2的经济意义:
LnYi B1 B2 LnX i ui
dLnY B2 dLnX
B2 dY / Y Y的相对变化量 (Y / Y) 100 dX / X X 的相对变化量 (X / X ) 100
在双对数模型中,X变化1%引起Y变化 B2 %
9-6
5.1 如何度量弹性:双对数模型
双对数线性模型的特点---不变弹性模型
斜率B2 度量了Y对X的弹性,即X的一个(微小) 变动引起Y变动的百分比。
定义弹性E为:
Y Y 变动的% Y X Y 100 E = X 变动的% X X Y X 100 X X 斜率 slope( ) Y Y
9-7
5.1 如何度量弹性:双对数模型
9-8
图5-1 不变弹性模型 (后面讲解)
5.1 如何度量弹性:双对数模型
例5.1 数学S.A.T分数函数
9-9
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的Excel数据
9-10
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的Eviews数据
9-11
5.1 如何度量弹性:双对数模型
9-19
5.2 比较线性和双对数回归模型
能否用判定系数R2来选择模型?
如果两个模型的被解释变量形式是相同的,可用 R 作 为选择标准。 但下列两模型, R 2度量的意义不同
2
Y B B X u
i 1 2 i
i
InY i B 1 B2 InXi ui
2 不能根据最高 R 2值这一标准(high r value criterion)来 选择模型
第5章 回归模型的函数形式
Essentials of Econometrics
第5章回归模型的函数形式
本章讨论以下几种形式的回归模型
(1) 双对数线性模型或不变弹性模型 (2) 半对数模型 (3) 倒数模型 (4) 多项式回归模型 (5) 过原点的回归模型,或零截距模型
9-2
5.1 如何度量弹性:双对数模型
回顾数学S.A.T函数一例,建立了家庭收入(x)与数 学S.A.T成绩(Y)的双变量线性回归模型: EYi B2 B2 X i
对于变量之间是线性的模型来说,解释变量每
变动一个单位,因变量的变化率为一常数。
9-3
5.1 如何度量弹性:双对数模型
能否使用如下的指数形式来描述数学S.A.T成绩(Y) 与家庭收入(X)的关系呢?
t= (25.5774)(0.0006) r2=0.7869
9-18
P值=(5.85*10-9)(0.0006) d.f.=8
5.2 比较线性和双对数回归模型
如何来选择模型 规律之一是根据数据作图。如果散点图表 明两个变量之间的关系近似线性的 (也即是一 条直线),那么假定模型是线性的就比较合适。 但如果散点图表明变量之间的关系是非线 性的,则需要作 logY对 logX的图形,如果这 个图形表明它们之间是近似线性的,则假定 模型是对数线性模型就比较合适。(只适用于 双变量的情况)
9-15
5.2 比较线性和双对数回归模型
回归模型的函数形式成为一个经验性问题。 在模型选择过程中,要遵循哪些经验规律呢?
数学S.A.T的原始数据
9-16
5.2 比较线性和双对数回归模型
9-17
5.2 比较线性和双对数回归模型
ˆ Y i
= 432.4138+0.0013Xi
Se= (16.9061)(0.000245)
Y X 平均弹性系数 X Y
9-23
5.2 比较线性和双对数回归模型
数学S.A.T分数函数
两边求对数:
Yi AX
B2 i
InYi InA B2 InXi
令 B1 LnA
InYi B1 B2 InXi
9-4
5.1 如何度量弹性:双对数模型
得到模型---“双对数线性模型”
InYi B1 B2 InXi ui
问题:这样一个非线性模型是如何通过适当变换成为 线性模型的呢? 下面进行对数变换,令