新人教版七年级上册数学导学案

合集下载

人教版七年级数学上册导学案

人教版七年级数学上册导学案

人教版七年级数学上册导学案
课题:有理数的加减法
学习目标:
1. 掌握有理数的加减法法则和运算方法。

2. 能够正确进行有理数的加减法运算。

3. 理解加减法在实际生活中的应用,提高解决问题的能力。

学习重点:有理数的加减法法则和运算方法。

学习难点:理解加减法在实际生活中的应用。

学习过程:
一、导入新课
1. 复习有理数的概念和分类。

2. 通过实例引出有理数的加减法,让学生初步了解加减法的意义和作用。

3. 引导学生观察、思考、归纳有理数的加减法法则。

二、探究新知
1. 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加,仍得这个数。

2. 减法法则:减去一个数,等于加上这个数的相反数。

即a-b=a+(-b)。

3. 通过实例讲解加减法的运算方法,让学生掌握运算步骤和注意事项。

4. 引导学生自主探究例题,并进行讲解和练习。

5. 完成教材中的习题,并对易错题进行讲解和纠正。

三、应用拓展
1. 通过实例讲解加减法在实际生活中的应用,如计算温度差、高度差等。

2. 引导学生思考其他实际应用场景,提高解决问题的能力。

3. 布置相关练习题,让学生自主探究并解决实际问题。

四、小结归纳
1. 回顾有理数的概念、分类、加减法法则和运算方法。

2. 总结加减法在实际生活中的应用和作用。

3. 强调有理数加减法的重要性和实用性,要求学生认真掌握。

人教版七年级上册数学导学案

人教版七年级上册数学导学案

人教版七年级上册数学导学案简介本文档是针对人教版七年级上册数学课程的导学案,旨在帮助学生系统研究和掌握本学期的数学知识。

导学案按照教材的顺序进行编排,结合教材内容和学生的实际情况,设计了一系列课前预和课后巩固的研究任务,以提升学生的数学素养和解题能力。

导学目标1. 了解数的读法和写法,能够熟练地念出任意位数的数。

2. 理解数的比较大小,掌握整数的大小关系,包括整数之间的大小比较、正数和负数的大小比较。

3. 掌握整数的加减法运算,能够灵活运用整数的运算规则解决实际问题。

4. 熟练掌握整数的乘除法运算,能够灵活运用整数的乘除法解决实际问题。

5. 理解并能够灵活运用整数的混合运算,解决复杂的数学问题。

导学内容一、数的认识1. 数的读法和写法- 通过练,熟练念出不同位数的数。

2. 数的比较大小- 理解数的大小比较符号:大于(>)、小于(<)和等于(=)。

- 掌握整数之间的大小比较。

- 了解正数和负数的大小比较。

二、整数的加减法运算1. 整数的加法- 掌握整数相加的规则,包括同号相加、异号相加和绝对值大的数减去绝对值小的数。

- 运用整数的加法解决实际问题。

2. 整数的减法- 掌握整数相减的规则,包括正数减正数、负数减负数和正数减负数的情况。

- 运用整数的减法解决实际问题。

三、整数的乘除法运算1. 整数的乘法- 掌握整数相乘的规则,包括同号相乘得正、异号相乘得负和乘法交换律。

- 运用整数的乘法解决实际问题。

2. 整数的除法- 掌握整数相除的规则,包括同号相除得正、异号相除得负和除法的分配律。

- 运用整数的除法解决实际问题。

四、整数的混合运算1. 整数的加减混合运算- 灵活运用整数的加减法解决复杂的数学问题。

2. 整数的四则混合运算- 灵活运用整数的加减乘除法解决复杂的数学问题。

导学案安排1. 每节课前,读一遍本节课的导学内容,了解本节课的研究目标和重点。

2. 预本节课的教材内容,完成相应的预练,并在导学案上记录自己的疑问和困惑。

七年级上册数学导学案人教版

七年级上册数学导学案人教版

七年级上册数学导学案人教版一、有理数的认识。

1. 正数和负数。

- 同学们,咱们先来说说正数和负数。

你看啊,在生活中,有很多相反意义的量。

比如说温度,零上和零下就不一样。

如果零上5℃,我们就用+5℃表示(这个“+”号有时候可以省略哦),那零下5℃呢,就用 - 5℃表示。

这就像你赚钱和花钱一样,赚钱是好事,就像正数,花钱就是和赚钱相反的,就像负数。

- 那怎么判断一个数是正数还是负数呢?很简单,只要这个数前面有个“ - ”号,那它就是负数,没有“ - ”号或者前面有个“+”号(“+”号常常省略)的就是正数。

不过要注意哦,0既不是正数也不是负数,它就像一个分界点,把正数和负数分开啦。

2. 有理数的分类。

- 有理数就像一个大家庭,里面有整数和分数这两大成员。

整数又包括正整数、0和负整数。

正整数像1、2、3这些,负整数就是 - 1、 - 2、 - 3之类的。

- 分数呢,也有正分数和负分数。

比如说1/2就是正分数, - 1/2就是负分数。

这里有个小秘密,有限小数和无限循环小数都可以化成分数,所以它们也属于分数这个家族,也就都是有理数啦。

二、数轴。

1. 数轴的概念。

- 想象一下,有一条长长的直线,就像一条马路。

这条直线上有一个点,我们规定这个点表示0,这个点就像马路的中间点一样。

然后在0的右边,我们按照一定的距离依次标上1、2、3……这些正整数,就像马路右边的房子编号一样;在0的左边呢,按照同样的距离标上 - 1、 - 2、 - 3……这些负整数。

这条带有方向(规定向右为正方向)、原点(0这个点)和单位长度(相邻两个数之间的距离)的直线就是数轴啦。

- 任何一个有理数都可以在数轴上找到它的位置。

比如说2就在原点右边2个单位长度的地方, - 3就在原点左边3个单位长度的地方。

就像每个小朋友在教室里都有自己的座位一样,有理数在数轴上也有自己的“座位”呢。

2. 数轴上数的大小比较。

- 在数轴上比较数的大小可简单啦。

就像在赛跑一样,在数轴上右边的数总是比左边的数大。

七年级数学上册 第一章 有理数复习导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案

七年级数学上册 第一章 有理数复习导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案

第一章有理数复习复习整理有理数有关概念和有理数的运算法则,运算律以及近似数等有关知识.重点:有理数概念和有理数的运算;难点:对有理数的运算法则的理解.知识回顾(一)正负数、有理数的分类正整数、零、负整数统称整数,试举例说明.正分数、负分数统称分数,试举例说明.整数和分数统称有理数.(二)数轴:规定了原点、正方向、单位长度的直线,叫数轴.(三)相反数的概念,只有符号不同的两个数叫做互为相反数.0的相反数是__0__.一般地:若a为任一有理数,则a的相反数为-a.相反数的相关性质:1.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点0的两边,并且到原点的距离相等;2.互为相反数的两个数,和为0.(四)绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是__0__.一个有理数a的绝对值,用式子表示就是:(1)当a是正数(即a>0)时,∣a∣=a;(2)当a是负数(即a<0)时,∣a∣=__-a__;(3)当a =0时,∣a ∣= 0 .(五)有理数的运算(1)有理数加法法则:______________________; (2)有理数减法法则:______________________;(3)有理数乘法法则:______________________;(4)有理数除法法则:______________________;(5)有理数的乘方:________________________.求n 个相同因数的积的运算,叫做有理数的乘方.即:a n=aa …a (有n 个a ).从运算上看式子a n ,可以读作a 的n 次方;从结果上看式子a n ,可以读作a 的n 次幂. 有理数混合运算顺序:(1)先乘方,再乘除,后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行(六)科学记数法、近似数把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法.1.把下列各数填在相应的大括号内:1,,-789,25,0,-20,,-590,78正整数集{1,25,…};正有理数集{1,25,78…}; ,-789,-20,,-590…};负整数集{-789,-20,-590…};自然数集{1,25,0…};正分数集{78…};,,…}.2.如图所示的图形为四位同学画的数轴,其中正确的是( D )3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来. 4,-|-2|,,1,0.4.下列语句中正确的是( D )A .数轴上的点只能表示整数B .数轴上的点只能表示分数C .数轴上的点只能表示有理数D .所有有理数都可以用数轴上的点表示出来5.-5的相反数是__5__;-(-8)的相反数是-8;-[+(-6)]=__6__;0的相反数是__0__;a 的相反数是-a .6.若a 和b 是互为相反数,则a +b =__0__.7.如果-x =-6,那么x =__6__;-x =9,那么x =-9.8.|-8|=__8__;-|-5|=-5;绝对值等于4的数是±4.9.如果a >3,则|a -3|=__a -3__,|3-a |=a -3. 10.有理数中,最大的负整数是__-1__,最小的正整数是__1__,最大的非正数是__0__.11.33=__27__;(-12)2=__14__;-52=-25;22的平方是__16__. 12.下列各式正确的是( C )A .-52=(-5)2B .(-1)1996=-1996 C .(-1)2003-(-1)=0 D .(-1)99-1=013.用科学记数法表示:1 305 000 000=1.305×109;-1 020=-1.02×103. 14.120万用科学记数法应写成1.20×10624000.15.千万分位;5.47×105精确到__千__位.16.计算:(1)12-(-18)+(-7)-15;解:原式=12+18-7-15=30-22=8;(2)-23÷49×(-23)3; 解:原式=-8×94×(-827) =163; (3)(-1)10×2+(-2)3÷4;解:原式=1×2-8÷4=2-2=0;(4)(-10)4+[(-4)2-(3+32)×2].解:原式=10000+[16-(3+9)×2]=10000+(16-24)=10000-8=9992.。

新版人教版七年级上册数学全册导学案(共128页)

新版人教版七年级上册数学全册导学案(共128页)

新版⼈教版七年级上册数学全册导学案(共128页)初三数学七年级数学第⼀章导学案第1学时内容:正数和负数(1)学习⽬标:1、整理前两个学段学过的整数、分数(⼩数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会⽤符号表⽰正数和负数.3、体验数学发展是⽣活实际的需要,激发学⽣学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学⽅法:引导、探究、归纳与练习相结合教学过程⼀、学前准备1、⼩学⾥学过哪些数请写出来:、、.2、在⽣活中,仅有整数和分数够⽤了吗?有没有⽐0⼩的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例⼦,边阅读边思考)回答上⾯提出的问题:.⼆、探究新知1、正数与负数的产⽣1)、⽣活中具有相反意义的量如:运进5吨与运出3吨;上升7⽶与下降8⽶;向东50⽶与向西47⽶等都是⽣活中遇到的具有相反意义的量.请你也举⼀个具有相反意义量的例⼦:.2)负数的产⽣同样是⽣活和⽣产的需要2、正数和负数的表⽰⽅法1)⼀般地,我们把上升、运进、零上、收⼊、前进、⾼出等规定为正的,⽽与它相反的量,如:下降、运出、零下、⽀出、后退、低于等规定为负的。

正的量就⽤⼩学⾥学过的数表⽰,有时也在它前⾯放上⼀个“+”(读作正)号,如前⾯的5、7、50;负的量⽤⼩学学过的数前⾯放上“—”(读作负)号来表⽰,如上⾯的—3、—8、—47。

2)活动两个同学为⼀组,⼀同学任意说意义相反的两个量,另⼀个同学⽤正负数表⽰.3)阅读P3练习前的内容3、正数、负数的概念1)⼤于0的数叫做,⼩于0的数叫做。

2)正数是⼤于0的数,负数是的数,0既不是正数也不是负数。

3)练习P3第⼀题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,2、举出⼏对(⾄少两对)具有相反意义的量,并分别⽤正、负数表⽰四、应⽤迁移,巩固提⾼(A 组为必做题)A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.⼩明的姐姐在银⾏⼯作,她把存⼊3万元记作+3万元,那么⽀取2万元应记作_______,-4万元表⽰________________. 3.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m 表⽰的意义是………………………() A .向东⾏进50m C .向北⾏进50m B .向南⾏进50m D .向西⾏进50m5.下列结论中正确的是 …………………………………………() A .0既是正数,⼜是负数 B .O 是最⼩的正数C .0是最⼤的负数D .0既不是正数,也不是负数 6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ……………………………………………………() A .2个 B .3个 C .4个 D .5个B 组1.零下15℃,表⽰为_________,⽐O℃低4℃的温度是_________.2.地图上标有甲地海拔⾼度30⽶,⼄地海拔⾼度为20⽶,丙地海拔⾼度为-5⽶,其中最⾼处为_______地,最低处为_______地.3.“甲⽐⼄⼤-3岁”表⽰的意义是______________________. C 组1.写出⽐O ⼩4的数,⽐4⼩2的数,⽐-4⼩2的数.2.如果海平⾯的⾼度为0⽶,⼀潜⽔艇在海⽔下40⽶处航⾏,⼀条鲨鱼在潜⽔艇上⽅10⽶处游动,试⽤正负数分别表⽰潜⽔艇和鲨鱼的⾼度.第2学时内容:正数和负数(2)学习⽬标:1、会⽤正、负数表⽰具有相反意义的量.2、通过正、负数学习,培养学⽣应⽤数学知识的意识.3、通过探究,渗透对⽴统⼀的辨证思想学习重点:⽤正、负数表⽰具有相反意义的量学习难点:实际问题中的数量关系教学⽅法:讲练相结合教学过程⼀、.学前准备通过上节课的学习,我们知道在实际⽣产和⽣活中存在着两种不同意义的量,为了区分它们,我们⽤正数和负数来分别表⽰它们.问题1:“零”为什么即不是正数也不是负数呢?引导学⽣思考讨论,借助举例说明.参考例⼦:温度表⽰中的零上,零下和零度.⼆.探究理解解决问题问题2:(教科书第4页例题)先引导学⽣分析,再让学⽣独⽴完成例(1)⼀个⽉内,⼩明体重增加2kg,⼩华体重减少1kg,⼩强体重⽆变化,写出他们这个⽉的体重增长值;(2)2009年下列国家的商品进出⼝总额⽐上⼀年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意⼤利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出⼝总额的增长率.解:(1)这个⽉⼩明体重增长2kg,⼩华体重增长-1kg,⼩强体重增长0kg.(2)六个国家2009年商品进出⼝总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意⼤利0.2%, 中国7.5%.三、巩固练习从0表⽰⼀个也没有,是正数和负数的分界的⾓度引导学⽣理解.在学⽣的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学⽣通过阅读题中的含义,找出具有相反意义的量,决定哪个⽤正数表⽰,哪个⽤负数表⽰.通过问题(2)提醒学⽣审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)⽤正负数表⽰加⼯允许误差.问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些事件可以⽤正负数表⽰允许误差吗?请举例.五、⼩结1、本节课你有那些收获?2、还有没解决的问题吗?六、应⽤与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,⼄冷库的温度⽐甲冷酷低5°C,则⼄冷库的温度是.2、⼀种零件的内径尺⼨在图纸上是9±0.05(单位:mm),表⽰这种零件的标准尺⼨是9mm,加⼯要求最⼤不超过标准尺⼨多少?最⼩不⼩于标准尺⼨多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少⽶?4、如果规定向东为正,那么从起点先⾛+40⽶,再⾛-60⽶到达终点,问终点在起点什么⽅向多少⽶?应怎样表⽰?⼀共⾛过的路程是多少⽶?5、10筐橘⼦,以每筐15㎏为标准,超过的千克数记作正数,不⾜的千克数记作负数。

七年级数学上册导学案(人教版)

七年级数学上册导学案(人教版)

七年级数学上册导学案(人教版)
目标
本导学案旨在帮助学生在研究七年级数学上册时掌握以下知识和技能:
1. 了解整数、分数和小数的概念和性质;
2. 研究整数、分数和小数的四则运算;
3. 掌握解一元一次方程和一元一次不等式的方法;
4. 理解平行线、垂直线和夹角的概念以及相关性质;
5. 研究解简单的平面图形的计算问题。

导学内容
单元一:整数与小数
1. 整数的概念和性质;
2. 整数之间的比较和排序方法;
3. 小数的概念和性质;
4. 小数的读法和写法。

单元二:分数
1. 分数的概念和性质;
2. 分数的读法和写法;
3. 分数的比较和排序方法;
4. 分数的四则运算。

单元三:线段和角
1. 线段的概念和性质;
2. 线段的比较和排序方法;
3. 角的概念和性质;
4. 角的比较和分类方法。

单元四:平面图形
1. 二维图形的概念和性质;
2. 四边形、三角形和正方形的特征和性质;
3. 二维图形的计算问题。

研究建议
1. 认真阅读教材中的知识点,理解概念和性质;
2. 勤做练题,巩固知识和技能;
3. 积极参与课堂讨论和活动,提出问题并解答问题;
4. 及时向老师请教,解决研究中的困惑。

附加资源
- 人教版七年级数学上册教材
- 题册和练题集
- 网上数学研究资源
祝研究顺利!。

初一上册数学全册导学案(新版人教版)

初一上册数学全册导学案(新版人教版)

初一上册数学全册导学案(新版人教版)4.3.2角的比较与运算【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;2、理解角平分线的概念,会画角平分线。

【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。

【导学指导】一、知识链接回顾线段大小的比较,,怎样比较图中线段AB、BC、CA 的长短?(8)度量法;(2)叠合法。

AB<AC<BC那么怎样比较∠A、∠B、∠C的大小呢?二、自主学习1、比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小。

(2)叠合法:把两个角叠合在一起比较大小。

教师演示:(1)∠AOB<∠AOB′;(2)∠AOB=∠AOB′;(3)∠AOB>∠AOB′。

2、认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?图中共有3个角:∠AOB、∠AOC、∠BOC。

它们的关系是:∠AOC=∠AOB+∠BOC;∠BOC=∠AOC-∠AOB;∠AOB=∠AOC-∠BOC3、用三角板拼角探究:借助三角尺画出150,750的角。

一副三角板的各个角分别是多少度?_________学生尝试画角。

你还能画出哪些角?有什么规律吗?还能画出________________________规律是:凡是的倍数的角都能画出。

4、角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?如图(1)角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。

类似地,还有角的三等分线等。

如图(2)中的OB、OC。

OB是∠AOC的一平分线,可以记作:∠AOC=2∠AOB=2∠BOC或∠AOB=∠BOC=。

5、例题学习例1 如图,O是直线AB上一点,∠AOC=53017′,求∠BOC的度数。

例2 把一个周角7等分,每一份是多少度的角(精确到分)【课堂练习】:课本140-141页1、2、3。

七年级上册数学导学案【精选5篇】

七年级上册数学导学案【精选5篇】

七年级上册数学导学案【精选5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级上册数学导学案【精选5篇】在平日里,心中难免会有一些新的想法,通常就可以写一篇心得体会将其记下来,这样能够培养人思考的习惯。

人教版七年级数学上册全册导学案

人教版七年级数学上册全册导学案

人教版七年级数学上册全册导学案七年级数学章导学案第1学时内容:正数和负数学习目标:整理前两个学段学过的整数、分数知识,掌握正数和负数概念.会区分两种不同意义的量,会用符号表示正数和负数.体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备小学里学过哪些数请写出来:、、.在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?阅读课本P1和P2三幅图回答上面提出的问题:.二、探究新知正数与负数的产生)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.)负数的产生同样是生活和生产的需要正数和负数的表示方法)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”号,如前面的5、7、50;负的量用小学学过的数前面放上“—”号来表示,如上面的—3、—8、—47。

)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.)阅读P3练习前的内容正数、负数的概念)大于0的数叫做,小于0的数叫做。

)正数是大于0的数,负数是的数,0既不是正数也不是负数。

)练习P3题到第四题三、练习读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+,0,—3.1415,200,—754200,举出几对具有相反意义的量,并分别用正、负数表示四、应用迁移,巩固提高A组1.任意写出5个正数:________________;任意写出5个负数:_______________..小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________..已知下列各数:,,3.14,+3065,0,-239.则正数有_____________________;负数有____________________..如果向东为正,那么-50表示的意义是………………………A.向东行进50c.向北行进50B.向南行进50D.向西行进50.下列结论中正确的是…………………………………………A.0既是正数,又是负数B.o是最小的正数c.0是最大的负数D.0既不是正数,也不是负数.给出下列各数:-3,0,+5,,+3.1,,XX,+XX.其中是负数的有……………………………………………………A.2个B.3个c.4个D.5个B组.零下15℃,表示为_________,比o℃低4℃的温度是_________..地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地..“甲比乙大-3岁”表示的意义是______________________.c组.写出比o小4的数,比4小2的数,比-4小2的数..如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.第2学时内容:正数和负数学习目标:会用正、负数表示具有相反意义的量.通过正、负数学习,培养学生应用数学知识的意识.通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:先引导学生分析,再让学生独立完成例一个月内,小明体重增加2g,小华体重减少1g,小强体重无变化,写出他们这个月的体重增长值;XX年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家XX年商品进出口总额的增长率.解:这个月小明体重增长2g,小华体重增长-1g,小强体重增长0g.六个国家XX年商品进出口总额的增长率:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考用正负数表示加工允许误差.问题:1.直径为30.032和直径为29.97的零件是否合格?你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结本节课你有那些收获?还有没解决的问题吗?六、应用与拓展必做题:教科书5页习题4、5、:6、7、8题选做题甲冷库的温度是-12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.一种零件的内径尺寸在图纸上是9±0.05,表示这种零件的标准尺寸是9,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?吐鲁番的海拔是-155,珠穆朗玛峰的海拔是8848,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。

人教版七年级数学上册全册导学案(122页)

人教版七年级数学上册全册导学案(122页)

第一章有理数。

课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

人教版七年级上册数学全册导学案精心整理版 131页

人教版七年级上册数学全册导学案精心整理版 131页

§2.5 有理数的乘法与除法(2)...................................... 27 § 2.5 有理数的乘法与除法(3)..................................... 30 §2.6 有理数的乘方(1).............................................. 32 §2.6 有理数的乘方(2)................................................ 33 §2.7 有理数的混合运算(1)........................................ 36 §2.7 有理数的混合运算(2).......................................... 37 数学活动 算“24” ............................................................... 39 §2.8 小结与思考(1).................................................... 42 §2.8 小结与思考(2).................................................... 43 第二章参考答案................................................................... 45 第三章......................................................................................... 53 §3.1 字母表示数 ..................................................................... 53 §3.2 代数式........................................................................ 55 §3.3 代数式的值(1)...................................................... 57 §3.3 代数式的值(2)...................................................... 58 §3.4 合并同类项(1)...................................................... 60 §3.4 合并同类项(2)...................................................... 62 §3.5 去括号(1).............................................................. 64 §3.5 去括号(2).............................................................. 65 小结与思考(1)................................................................. 67 第四章......................................................................................... 69 4.1 从问题到方程(1).................................................. 69

新人教版七年级上册数学导学案(全册)

新人教版七年级上册数学导学案(全册)

七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】一、:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。

人教版数学七年级上全册导学案(有理数、整式的加减、一元一次方程、几何图形初步)

人教版数学七年级上全册导学案(有理数、整式的加减、一元一次方程、几何图形初步)

人教版数学七年级上全册导学案(有理数、整式的加减、一元一次方程、几何图形初步)人教版数学七年级上导学案第一章有理数1.1 正数和负数(1)学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答上面提出的问题:.二、探究新知1、正数与负数的产生1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. 3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

3)练习P3第一题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示四、应用迁移,巩固提高(A 组为必做题)A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________. 2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________. 3.已知下列各数:51-,432-,3.14,+3065,0,-239. 则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m 表示的意义是………………………( ) A .向东行进50m C .向北行进50m B .向南行进50m D .向西行进50m5.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008. 其中是负数的有 ……………………………………………………( ) A .2个 B .3个 C .4个 D .5个B 组1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________. C 组1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.正数和负数(2)学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:(教科书第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2009年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家2009年商品进出口总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)用正负数表示加工允许误差.问题: 1. 直径为30.032mm和直径为29.97的零件是否合格?2. 你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。

2024秋季新教材人教版七年级上册数学1.2.2 数轴 导学案

2024秋季新教材人教版七年级上册数学1.2.2 数轴 导学案

第一章有理数1.2 有理数1.2.2 数轴教学目标:1. 识记数轴的三要素并会画数轴.2. 能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,会用数轴比较有理数的大小.3. 会用数形结合的思想理解在特定的条件下数与形是可以相互转化的.重点:数轴的概念,在数轴上表示数.难点:正确的画出数轴,有理数和数轴上的点的对应关系.一、知识链接1.回忆正负数的意义并回答以下问题:在一条东西向的马路旁,有一个汽车站牌,汽车站牌东 3 m 和7.5 m 处分别有一棵柳树和一根交通标志杆,汽车站牌西侧3 m 和 4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.一、要点探究知识点1:数轴的画法及概念合作探究探究一怎样用数简明地表示这些树、标志杆、电线杆与汽车站牌的相对位置关系(方向、距离)?合作探究你能联想到生活中的哪些用直线上的点表示数的工具,请举例说明.它们有什么共同特点?像这样,规定了原点、正方向和单位长度的直线叫作数轴.数轴的画法:1.在直线上任取一点表示数0,这个点叫做原点.2.通常规定直线上从原点向右(或上) 为正方向,从原点向左(或下) 为负方向.3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,···;从原点向左,用类似方法依次表示-1,-2,-3,···.4.原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.1.(松北区校级月考改编)关于数轴的图示,画法正确的是()总结:原点、正方向、单位长度一个也不能少.归纳总结:画数轴注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线是水平的;(3)正方向用箭头表示,一般取从左到右;取单位长度应结合实际需要,但要做到刻度均匀.合作探究探究二为了进一步研究马路情境图(数轴),仿照A 点信息填写表格.数轴上的点表示数:一般地,设 a 是一个正数,则数轴上表示数 a 的点在数轴的___半轴上,与原点的距离是___个单位长度;表示数 -a 的点在数轴的___半轴上,与原点的距离是___个单位长度.数轴上与原点的距离是 a 个单位长度的点,简称为数轴上与原点的距离是 a 的点.例1 画出数轴,并在数轴上表示下列各数: 3,-4,4,0.5,0, −52 ,-1.例2 根据下面给出的数轴,解答下列问题:(1) 请你根据图中 A 、B 两点的位置,分别写出它们所表示的有理数,以及 A 、B 两点距离几个单位长度?(2) 从点 A 出发,沿着数轴正方向移动 2 个单位长度达点 C ,在数轴上请画出点 C ,并写出它所表示的数.1. 画出数轴,并用数轴上的点表示下列各数 ( )1.在数轴上,原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非正数D. 非负数2.在数轴上表示-3 的点与表示4 的点之间的距离是( )A. 7B. -7C. 1D. -13. 画出数轴并表示下列有理数:能力提升:4.在数轴上,一只蚂蚁从原点出发,它先向右爬了4 个单位长度到达点A,再向右爬了2 个单位长度到达点B,然后又向左爬了10 个单位长度到达点C.(1) 将A,B,C 三点所表示的数在下图中的数轴上表示出来;(2) 根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度所到达的点?(3) 如果移动点A,B,C 中的两个点,使得三个点重合,你有几种移动方法?请分别求出移动的长度之和.拓展:数轴上有两个固定点A、B,有一动点C,请问点C在什么位置时,动点C到两定点距离之和最小?参考答案自主学习一、新课导入合作探究一、要点探究知识点1:数轴的画法及概念合作探究知识要点:数轴上的点表示数:正a负a【典例精析】解:如下图所示.总结:原点左边的数是负数←→原点右边的数是正数解:(1) 点A 表示3;点B 表示-1.5;点A、点B 距离 4.5 个单位长度.(2)如上图所示,C 点表示5.1. 解:如下图所示:2.C二、课堂小结当堂检测1.D2.A3.解:如下图所示:4.(1)解:如图所示.(2)可以看作蚂蚁从原点向左平移4 个单位长度达到.(3)。

初一上册数学全册导学案(新版人教版)

初一上册数学全册导学案(新版人教版)

初一上册数学全册导学案(新版人教版)432角的比较与运算【学习目标】:1、会比较两个角的大小,能分析图中角的和差关系;2、理解角平分线的概念,会画角平分线。

【重点难点】:角的大小比较和角平分线的概念是重点;从图形中观察角的和差关系是难点。

【导学指导】一、知识链接回顾线段大小的比较,,怎样比较图中线段AB、B、A的长短?(8)度量法;(2)叠合法。

AB<A<B那么怎样比较∠A、∠B、∠的大小呢?二、自主学习1、比较角的大小(1)度量法:用量角器量出角的度数,然后比较它们的大小。

(2)叠合法:把两个角叠合在一起比较大小。

教师演示:(1)∠AB<∠AB′;(2)∠AB=∠AB′;(3)∠AB>∠AB′。

2、认识角的和差思考:如图,图中共有几个角?它们之间有什么关系?图中共有3个角:∠AB、∠A、∠B。

它们的关系是:∠A=∠AB+∠B;∠B=∠A-∠AB;∠AB=∠A-∠B3、用三角板拼角探究:借助三角尺画出10,70的角。

一副三角板的各个角分别是多少度?_________学生尝试画角。

你还能画出哪些角?有什么规律吗?还能画出________________________规律是:凡是的倍数的角都能画出。

4、角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?如图(1)角的平分线:从一个角的_____出发,把这个角分成_______的两个角的射线,叫做这个角的平分线。

类似地,还有角的三等分线等。

如图(2)中的B、。

B是∠A的一平分线,可以记作:∠A=2∠AB=2∠B或∠AB=∠B= 。

、例题学习例1 如图,是直线AB上一点,∠A=3017′,求∠B的度数。

例2 把一个周角7等分,每一份是多少度的角(精确到分)【堂练习】:本140-141页1、2、3。

【要点归纳】:1、角的大小比较的方法和角的和差关系;2、用一副三角板画角;3、角的平分线及表示。

【全册】人教版七年级数学上册 导学案教案

【全册】人教版七年级数学上册  导学案教案

第一章有理数1.1正数和负数1.掌握正数和负数的概念;2.会区分两种不同意义的量,会用正、负数表示具有相反意义的量;3.通过正、负数学习,培养学生应用数学知识的意识;体验数学发展是生活实际的需要,激发学生学习数学的兴趣.用正、负数表示具有相反意义的量.一、温故知新1.小学里学过哪些数请写出来:整数、分数、自然数.2.阅读课本P2三幅图(重点是三个例子,边阅读边思考).3.回答下面提出的问题:在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1.正数与负数的产生:(1)生活中具有相反意义的量:如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:收入1000元与支出800元;(2)负数的产生同样是生活和生产的需要.2.正数和负数的表示方法:(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也可以在它前面放上一个“+”(读作正)号,如前面的5,7,50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3,-8,-47;(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示;(3)阅读P3例题前的内容.3.正数、负数的概念:(1)大于0的数叫做正数,小于0的数叫做负数;(2)正数是大于0的数,负数是小于0的数,0既不是正数也不是负数.一、师生合作(课本P3例题)先引导学生分析,再让学生独立完成.例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.解:这个月小明体重增长2_kg,小华体重增长-1_kg,小强体重增长0_kg;二、跟踪练习(2)2001年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.解:六个国家这一年商品进出口总额的增长率是:美国__-6.4%__; 德国__1.3%____; 法国__-2.4%__; 英国__-3.5%__;意大利__0.2%__; 中国__7.5%____.1.P4练习第1-4题.(直接做在课本上)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作-2万元,-4万元表示支取4万元.3.已知下列各数:-15,-234,3.14,+3065,0,-239.则正数有3.14,+3065;负数有-15,-234,-239. 4.下列结论中正确的是( D )A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,-312,+3.1,-12,2004,+2010.其中是负数的有( B ) A .2个 B .3个 C .4个 D .5个以问题的形式,要求学生思考交流:1.正数、负数的概念:(1)大于0的数叫做正数,小于0的数叫做负数;(2)数0既不是正数,也不是负数,0是正数和负数的分界.2.引人负数后,你是怎样认识数0的,数0的意义有哪些变化?0不仅可以表示没有,还可以表示正数、负数的分界.3.怎样用正负数表示具有相反意义的量?用正数表示其中一种意义的量,另一种量用负数表示;特别在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.1.2.1 有理数1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2.了解分类的标准与集合的含义;3.体验分类是数学上常用的处理的问题的方法.重点:正确理解有理数的概念;难点:正确理解分类的标准和按照一定标准分类.一、温故知新通过上节课的学习,那么你能写出3个不同类的数吗?(4名学生板书)二、自主学习问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类.该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为__五__类,分别是:正数,0,负数,正分数,负分数问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳.三、引导归纳1.正整数,0,负整数统称为整数,整数和分数统称为有理数.2.正数集合与负数集合所有的正数组成正数集合,所有的负数组成负数集合.1.P6练习.(做在课本上)2.把下列各数填入它所属于的集合的圈内:15,-19,-5,215,-138,0.1,-5.32,-80,123,2.333.正整数集合负整数集合正分数集合负分数集合有理数分类⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数或者有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数到现在为止我们学过的大部分数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同.下列说法中不正确的是(C)A.-3.14既是负数、分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2000既是负数,也是整数,但不是有理数D.0是正数和负数的分界1.2.2 数轴1.掌握数轴概念,理解数轴上的点和有理数的对应关系;2.会正确地画出数轴,利用数轴上的点表示有理数;3.领会数形结合的重要思想方法.重点:数轴的概念与用数轴上的点表示有理数;难点:会在数轴上表示有理数,能根据数轴上的点写出有理数.一、温故知新1.观察下面的温度计,读出温度.分别是__5__℃;__-10__℃;__0__℃.2.在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m 和7.5 m 处分别有一棵柳树和一棵杨树,汽车站牌西3 m 和4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境?__________________________________ 东汽车站请同学们分小组讨论,交流合作,动手操作.二、自主学习1.由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗? 可以用直线上的点表示有理数.2.自己动手操作,看看可以表示有理数的直线必须满足什么条件?三、引导归纳(1)画数轴需要三个条件,即原点、正方向和单位长度;(2)数轴.1.请画一条数轴.__________________________________2.利用上面的数轴表示下列有理数:1.5,-2,2,-2.5,29,⎪⎪⎪⎪15,0. 3.写出数轴上的点A ,B ,C ,D ,E 所表示的数.小组讨论交流.1.观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?负数都在原点左边,正数都在原点右边. 2.每个数到原点的距离是多少?由此你又有什么发现?数轴上的点到原点的距离都是非负数.3.进一步引导学生完成P9归纳.1.画数轴需要的三个条件是什么?2.一般地,设a 是一个正数,则数轴上表示数a 的点在原点的__右__边,与原点的距离是__a __个单位长度;表示数-a 的点在原点的__左__边,与原点的距离是__a __个单位长度.3.数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具.1.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有__4__个.2.在数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( A )A .-5B .-4C .-3D .-23.你觉得数轴上的点表示的数的大小与点的位置有什么关系?原点的右边离原点越远的点表示的数越大;原点的左边离原点越远的点表示的数越小.1.2.3 相反数1.掌握相反数的意义;2.掌握求一个已知数的相反数;3.体验数形结合思想.重点:求一个已知数的相反数;难点:根据相反数的意义化简符号.一、温故知新1.数轴的三要素是什么?在下面画出一条数轴:2.在上面的数轴上描出表示5,-2,-5,+2 这四个数的点.3.观察上图并填空: 数轴上与原点的距离是2的点有__2__个,这些点表示的数是+2或-2;与原点的距离是5的点有__2__个,这些点表示的数是+5或-5. 从上面的问题可以看出,一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个表示a ,另一个是 __-a __,它们分别在原点的左边和右边,我们说,这两点关于原点对称.二、自主学习自学课本P9,P10的内容并填空:1.相反数的概念像2和-2,5和-5,3和-3这样,只有符号不同的两个数叫做互为相反数.2.练习(1)2.5的相反数是__-2.5__,-115和__115__互为相反数,-2010的相反数是2010; (2)a 和__-a __互为相反数,也就是说,-a 是__a __的相反数.小组讨论交流,发现规律.例如a =7时,-a =-7,即7的相反数是-7.a =-5时,-a =-(-5),“-(-5)”读作“-5的相反数”,而-5的相反数是5,所以,-(-5)=5.你发现了吗,在一个数的前面添上一个“-”号,这个数就成了原数的相反数.1.简化符号:-(+0.75)=-0.75,-(-68)=__68__,-(-0.5)=0.5,-(+3.8)=-3.8.2.0的相反数是__0__.3.数轴上表示相反数的两个点到原点的距离相等.P10第1,2,3,4题.1.一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个是a ,另一个是-a ,它们分别在原点的右边和左边,我们说,这两点关于原点对称;2.要表示一个数或式子的相反数,只需要在这个数或式子前加“-”.1.在数轴上标出3,-1.5,0各数与它们的相反数:2.-1.6的相反数是__1.6__,2x的相反数是__-2x__,a-b的相反数是__b-a__.3.相反数等于它本身的数是__0__,相反数大于它本身的数是__负数__.4.填空:(1)如果a=-13,那么-a=__13__;(2)如果-a=-5.4,那么a=__5.4__;(3)如果-x=-6,那么x=__6__;(4)如果-x=9,那么x=__-9__.5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数.(±5)1.2.4绝对值(一)1.理解、掌握绝对值概念.体会绝对值的作用与意义;2.会求一个已知数的绝对值,知道一个数的绝对值,会求这个数;3.掌握绝对值的有关性质.重点:给出一个数,会求它的绝对值;难点:理解绝对值的作用和意义.一、温故知新1.什么叫相反数?相反数有什么特点?问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线不相同(填相同或不相同),他们行走的距离(即路程远近)相同.2.如图,小黄狗,小白兔,小灰狗分别位于点A,B,C处,单位长度为1,小黄狗,小白兔,小灰狗分别距原点多远?小黄狗距原点3个单位长度,小白兔距原点1.5个单位长度,小灰狗距原点4.5个单位长度.二、自主学习1.绝对值的概念上面问题中,A,B,C三个点在数轴上分别表示什么数?离原点的距离是多少?归纳:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值.如:2的绝对值等于2,记作:|2|=2,-2的绝对值等于__2__,记作:|-2|=2.跟踪练习1.把下列各数表示在数轴上,并求出它们的绝对值.-4,3.5,-2,0,-3.5,5.2.从上题寻找规律,正数、零、负数的绝对值有什么特点? 一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;零的绝对值等于__零__.互为相反数的两个数绝对值相等. 你能用式子表示上面的意思吗? ①当a >0时,│a │=__a __;②当a =0时,│a │=__0__;③当a <0时,│a │=__-a __.跟踪练习:(1)什么数的绝对值等于它本身?什么数的绝对值等于它的相反数?非负数,非正数.(2)有人说因为2的绝对值等于2,-2的绝对值等于2,所以a 的绝对值等于a ,-a 绝对值也等于a .你认为对吗?你的观点呢?不对,当a 为负数时,a 的绝对值为-a ,-a 的绝对值等于-a .三、拓展提高1.求一个数的绝对值:例1 求下列各数的绝对值:12,-35,-7.5,0. 例2绝对值等于7的有理数有哪些?跟踪练习:(1)|+2|=__2__,|15|=__15__,|+8.2|=__8.2__; (2)|0|=__0__;(3)|-3|=__3__,|-0.2|=__0.2__,|-8.2|=__8.2__.2.与绝对值的意义有关的问题.例3 (1)如果|a |>a ,则a 是什么数?a 为负数.(2)如果a |a |=1,那么__a >__0;如果a |a |=-1,那么a __<__0.P11第1,2,3大题.(直接做在课本上)1.2.4 绝对值(二)1.理解、掌握有理数大小比较法则;2.能熟练运用有理数大小比较法则,结合数轴比较有理数的大小,能利用数轴对多个有理数进行有序排列;3.体验运用直观知识解决数学问题.重点:运用有理数大小比较法则,借助数轴比较两个有理数的大小;难点:利用绝对值比较两个负数的大小.一、温故知新1.比较下列各组数的大小:①2__<__3;②34__>__23; ③12__>__0;④0__<__0.001. 2.引入负数后,对于任意有理数(如-2和-1,-3和0,-2和2)怎样比较大小呢?二、自主学习阅读思考,发现新知.阅读P12,你有什么发现吗?讨论交流在数轴上表示的两个数,右边的数总要大于左边的数.也就是:(1)正数大于0,负数小于0,正数大于负数;(2)两个负数,绝对值大的反而小.自学例题 P13 (教师指导)重点书写格式示范指导三、拓展提高例1 写出3个小于-1并且大于-2的数.如:-1.2,-1.5,-1.8.例2 已知|x |=6,|y |=5,且x <y ,求x ,y 的值.解:∵|x |=6,|y |=5,又∵x <y ,∴x =±6,y =±5.∴x =-6,y =±5.1.比较下列各对数的大小:-3和-5; -2.5和-∣-2.25∣.-3>-5; -2.5<-|-2.25|.1.比较有理数大小的方法有两种:方法一:利用数轴,把数用数轴上的点表示出来,然后根据“数轴上左边的点所表示的数比右边的点所表示的数小”来比较.方法二:利用比较有理数大小的法则“正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的反而小”来进行.2.在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.1.3.1 有理数的加法(一)1.理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2.会利用有理数加法运算解决简单的实际问题.重点:有理数加法法则;难点:异号两数相加.一、温故知新1.比较大小:2__>__-3,-5__>__-7,4__<__|-5|.2.已知a=-5,b=+3,则︱a︳+︱b︱=__8__.3.9+12=__21__,11+0=__11__,4+(-2)=______,(+3)+(-8)=______,怎样计算4+(-2)呢.下面我们一起借助数轴来讨论有理数的加法.二、自主学习1.借助数轴来讨论有理数的加法:(1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了__6__米,这个问题用算式表示就是:4+2=6;(2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了__6__米.这个问题用算式表示就是:-2+(-4)=-6.如图所示:(3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了__2__米,写成算式就是-2+(+4)=2.用数轴表示如下图所示:(4)利用数轴,求以下情况时这个人两次运动的结果:①先向东走3米,再向西走5米,这个人从起点向(西)走了(2)米;②先向东走5米,再向西走5米,这个人从起点向(东)走了(0)米;③先向西走5米,再向东走5米,这个人从起点向(东)走了(0)米.写出这三种情况运动结果的算式:3+(-5)=-2;5+(-5)=0;(-5)+5=0.(5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了__5__米.写成算式就是5+0=5或(-5)+0=-5.2.师生归纳两个有理数相加的几种情况.3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则:(1)同号的两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得__0__;(3)一个数同0相加,仍得这个数.4.新知应用例1(老师演示,书写规范格式)计算:(1)(-3)+(-9);解:原式=-(3+9)=-12;(2)(-4.7)+3.9;解:原式=-(4.7-3.9)=-0.8;(3)(-25)+(+36).解:原式=+(36-25)=11.例2计算:(1)15+(-22);(2)(-13)+(-8);(3)(-0.9)+1.51.1.填空:(口答)(1)(-4)+(-6)=__-10__;(2)3+(-8)=__-5__;(3)7+(-7)=__0__;(4)(-9)+1=__-8__;(5)(-6)+0=__-6__;(6)0+(-3)=__-3__.2.课本P19第1-4题.有理数加法法则简单理解:同号取同号,绝对值相加,异号取(绝对值)大号,绝对值(大-小)相减.计算一般步骤:先确定符号,再算绝对值.1.有理数a,b在数轴上的位置如图所示,则a__<__b,︱a︱__>__︱b︱.1.3.1有理数的加法(二)掌握加法运算律并能运用加法运算律简化运算.灵活运用加法运算律简化运算.一、温故知新1.想一想,小学里我们学过的加法运算律有哪些?先说说,再用字母表示写在下面:2.计算:(1)30+(-20)=10;(-20)+30=__10__;(2)[8+(-5)]+(-4)=-1;8+[(-5)+(-4)]=-1. 思考:观察上面的式子与计算结果,你有什么发现? 二、自主学习1.请说说你发现的规律.2.自己换几个数字验证一下,还有上面的规律吗?3.由上可以知道,小学学习的加法交换律、结合律,在有理数范围内同样适合,即:两个数相加,交换加数的位置,和不变.式子表示为a +b =b +a ;三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为(a +b )+c =a +(b +c ).想想看,式子中的字母可以是哪些数?可以是正数,负数或零.三、新知应用例1 (教师示范书写格式)计算:(1)16+(-25)+24+(-35);解:原式=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(2)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:原式=[(-2.48)+(-7.52)]+[4.33+(-4.33)]=-10+0=-10.四、跟踪练习1.计算:(1)23+(-17)+6+(-22);解:原式=-10;(2)(-2)+3+1+(-3)+2+(-4);解:原式=-3;(3)(-413)+(-417)+413+(-1317). 解:原式=-1.例2 每袋小麦的标准质量为90千克,10袋小麦称重记录如下:91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总质量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下.课本P20练习1,2.运用加法运算律简便运算的步骤:1.互为相反数的先加;2.能凑整的先加;3.同分母的先加;4.同号的放在一起加.1.计算:(1)(-7)+11+3+(-2);解:原式=5;(2)14+(-23)+56+(-14)+(-13).解:原式=-16. 2.绝对值不大于10的整数有__21__个,它们的和是 __0__. 3.填空: (1)若a >0,b >0,那么a +b __>__0;(2)若a <0,b <0,那么a +b __<__0;(3)若a >0,b <0,且│a │>│b │,那么a +b __>__0; (4)若a <0,b >0,且│a │>│b │,那么a +b __<__0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天共增加多少元?解:把取出记为负,存入记为正,得-950+5000-800+12000-10000-2000=3250(元) 答:共增加了3250元.4.课本P21实验与探究.1.3.2 有理数的减法(一)1.经历探索有理数减法法则的过程.理解并掌握有理数减法法则;2.会正确进行有理数减法运算; 3.体验把减法转化为加法的转化思想.有理数减法法则和运算.一、温故知新1.世界上最高的山峰珠穆朗玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为-154米,两处的高度相差多少呢?试试看,计算的算式应该是8844-(-154).能算出来吗,画草图试试;2.长春某天的气温是-2°C ~3°C ,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:℃) 显然,这天的温差是3-(-2).想想看,温差到底是多少呢?那么,3-(-2)=__5__.二、自主学习1.还记得吗,被减数、减数、差之间的关系是:被减数-减数=__差__;差+减数=被减数.2.请你与同桌伙伴一起探究、交流:要计算3-(-2)=?实际上也就是要求?+(-2)=3,所以这个数(差)应该是__5__,也就是3-(-2)=5;再看看,3+2=__5__;所以3-(-2)_=_3+2;由上你有什么发现?请写出来:减去一个数等于加上这个数的相反数.3.换两个式子计算一下,看看上面的结论还成立吗?-1-(-3)=__2__,-1+3=__2__,所以-1-(-3)__=__-1+3;0-(-3)=__3__,0+3=__3__,所以0-(-3)__=__0+3.4.师生归纳(1)法则:减去一个数等于加上这个数的相反数;(2)字母表示:__a -b =a +(-b )__.三、新知应用例1.例题(示范书写格式)计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)-312-514.1.下列运算中正确的是( D )A .3.58-(-1.58)=3.58+(-1.58)=2B .(-2.6)-(-4)=2.6+4=6.6C .0-(+25)-75=(+25)-75=25+(-75)=-1 D.38-145=38+(-95)=-57402.课本P23练习1—2题.1.有理数减法法则:减去一个数,等于加上这个数的相反数.;2.小学时学的减法都是大数-小数,够减,差的符号为正,现在引入了负数后,小数-大数不够减也能减了,差是负数.即:大数-小数=正数,小数-大数=负数.1.计算:(1)(-37)-(-47);解:原式=10(2)(-53)-16;解:原式=-69(3)(-210)-87;解:原式=-297(4)1.3-(-2.7);解:原式=4(5)(-214)-(-1). 解:原式=-1142.分别求出数轴上,下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数-2的点与表示数-3的点.解:(1)8-3=5(2)-2-(-3)=13.若|m -n |=n -m ,|m |=4,|n |=3,则m -n =-1或-7.1.3.2 有理数的减法(二)1.理解加减法统一成加法运算的意义;2.会将有理数的加减混合运算转化为有理数的加法运算.有理数加减法统一成加法运算.一、温故知新1.一架飞机作特技表演,起飞后的高度变化如下表: 高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米 记作 +4.5千米 -3.2千米 +1.1千米 -1.4千米__1__2.你是怎么算出来的,方法是4.5+(-3.2)+(+1.1)+(-1.4)=1.二、自主学习 1.现在我们来研究(-20)+(+3)-(-5)-(+7),该怎么计算呢?还是先自己独立动动手吧!2.怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,老师巡视指导.3.师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法.再把加号记在脑子里,省略不写.如:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7,可以读作:“负20、正3、正5、负7的__和__”或者“负20加3加5减7”.4.师生完整写出解题过程:5.计算:-4.4-(-415)-(+212)+(-2710)+12.4. 解:原式=-4.4+415-212-2710+12.4 =[(-4.4)+12.4]+(4210-2510-2710) =8-1=7.1.下列各式可以写成a -b +c 的是( B )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )2.算式(-7)-9-(-3)+(-5)写成省略加号和括号的形式为-7-9+3-5,读作负7、负9、正3、负5的和,或读作负7减9加3减5.3.计算:(课本P24练习)(1)1-4+3-0.5;解:原式=-0.5;(2)-2.4+3.5-4.6+3.5;解:原式=0;(3)(-7)-(+5)+(-4)-(-10);解:原式=-6; (4)34-72+(-16)-(-23)-1. 解:原式=-3912. 4.数轴上A ,B 两点分别表示数a ,b ,若a =3,b =7,则A ,B 两点间的距离为__4__;若a =-1,b =-5,则A ,B 两点间的距离为__4__;若a =2,b =-6,则A ,B 两点间的距离为__8__;若a =-8,b =-4,则A ,B 两点间的距离为__4__;若a =m ,b =n ,则A ,B 两点间的距离为|m -n |.1.有理数加减混合运算,可以先运用减法法则把加减法统一成加法运算,再写成省略加号和括号形式,然后可运用加法运算律进行简便运算;2.数轴上A ,B 两点分别表示数a ,b ,则两点间的距离为|a -b |或|b -a |.1.4.1 有理数的乘法(一)1.理解有理数的运算法则,能根据有理数乘法运算法则进行有理数的简单运算;2.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力.有理数乘法法则.一、温故知新1.有理数加法法则内容是什么?2.计算:(1)2+2+2=__6__;(2)(-2)+(-2)+(-2)=__-6__.3.你能将上面两个算式写成乘法算式吗?(1)2×3=6;(2)(-2)×3=-6.二、自主学习1.自学课本P28—P29,回答下列问题.观察:3×3=9,3×2=6,3×1=3,3×0=0.发现规律:随着后一乘数逐次递减1,积逐次递减3,这一规律引入负数仍然成立,所以有:3×(-1)=-3,3×(-2)=-6,3×(-3)=-9,3×(-4)=-12.根据乘法的交换律又有:(-1)×3=-3,(-2)×3=-6,(-3)×3=-9,(-4)×3=-12.从符号和绝对值的角度观察发现:正数乘正数积为正数,正数乘负数积为负数,负数乘正数积为负数,积的绝对值等于各乘数的绝对值的积.利用这个规律计算:(-3)×3=__-9__, (-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0____.发现规律:随着后一个数逐次递减1,积逐次增加3按照这个规律填空:(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.可归纳如下结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积. 由上可知:(1)2×4=__8__;(2)(-2)×4=__-8__;(3)(+2)×(-4)=__-8__;(4)(-2)×(-4)=__8__;(5)两个数相乘,一个数是0时,结果为__0__.观察上面的式子,你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得__0__. 例题讲解(教师示范书写步骤,格式)例1 计算:(1)(-3)×9; (2)8×(-1);解:原式=-27; 解:原式=-8;(3)(-12)×(-2). 解:原式=1.1.直接说出下列两数相乘所得积的符号.(1)5×(-3);“-”(2)(-4)×6;“-”(3)(-7)×(-9);“+”(4)0.9×8.“+”2.一个有理数与其相反数的积( C )A .符号必定为正B .符号必定为负C .一定不大于零D .一定不小于零3.书本P30第1题例2 计算:(1)6×16; (2)(-17)×(-7);(3)(-34)×(-43). 在有理数中仍然有:乘积为1的两个数互为倒数.1.课本P30练习1,2,3.(直接做在课本上)2.填空:(1)-7的倒数是__-17__,它的相反数是__7__,它的绝对值是__7__; (2)-225的倒数是-512,-2.5的倒数是-25; (3)倒数等于它本身的有理数是__±1__.3.下列说法错误的是( A )A .任何有理数都有倒数B .互为倒数的两个数的积为1C .互为倒数的两个数同号D .1和-1互为负倒数有理数乘法法则.1.4.1 有理数的乘法(二)1.探索多个有理数相乘的符号确定法则;2.会进行有理数的乘法运算;3.通过对问题的探索,培养观察、分析和概括的能力.重点:多个有理数相乘运算符号的确定;难点:正确进行多个有理数的乘法运算.一、温故知新1.有理数乘法法则:2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-4)+(-6)C .0×(-2)D .(-7)-(-10)3.计算:(1)(-114)×(-45); 解:原式=+(54×45)=1; (2)(-213)×(-6); 解:原式=73×6=14; (3)-320×56.解:原式=-(320×56)=-18. 二、自主学习1.观察:下列各式的积是正的还是负的?2×3×4×(-5);2×3×(-4)×(-5);2×(-3)×(-4)×(-5);(-2)×(-3)×(-4)×(-5).思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.新知应用例题3(P31)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?先确定符号,再算绝对值. 你能看出下列式子的结果吗?如果能,理由几个数相乘,如果其中有因数为0,那么积等于0.7.8×(-8.1)×0×(-19.6).1.计算:(课本P32练习1,2)1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.几个数相乘,如果其中有一个因数为0,积等于0.一、选择题1.若干个不等于0的有理数相乘,积的符号( C )A .由因数的个数决定B .由正因数的个数决定C .由负因数的个数决定D .由负因数和正因数个数的差决定2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15)3.下列运算错误的是( B )A .(-2)×(-3)=6B .(-12)×(+6)=3 C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24二、计算:(1)(-2)×54×(-910)×(-23);解:原式=-32; (2)(-6)×5×(-76)×27; 解:原式=10;(3)(-4)×7×(-1)×(-0.25);解:原式=-7;(4)(-524)×815×(-32)×14; 解:原式=124; (5)(-112)×(-113)×(-114)×(-115)×(-116)×(-117). 解:原式=32×43×54×65×76×87=4.1.4.1 有理数的乘法(三)1.熟练有理数的乘法运算律并能用乘法运算律简化运算;2.学生通过观察、思考、探究、讨论,主动地进行学习.重点:正确运用运算律,使运算简化;难点:运用运算律,使运算简化.一、温故知新1.请同学们计算,并比较它们的结果:(1)(-6)×5=-30, 5×(-6)=-30;(2)[3×(-4)]×(-5)=60, 3×[(-4)×(-5)]=60;(3)5×[3+(-7)]=-20,5×3+5×(-7)=-20.请以小组为单位,相互检查,看计算对了吗?二、自主学习1.下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.2.怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?3.归纳、总结乘法交换律:两个数相乘,交换因数的位置,积相等.即:ab =ba .乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:(ab )c =a (bc ).分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a (b +c )=ab +ac .三、新知应用计算:(1)(-0.4)×(+25)×(-5);解:原式=50;。

新人教版七年级上册数学导学案(全册)之欧阳与创编

新人教版七年级上册数学导学案(全册)之欧阳与创编

七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】一、:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。

3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。

4.下列结论中正确的是…………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级上册数学导学案1.1 正数和负数(一)班级___姓名___家长签名____学习目标:1、体会和认识引入负数的必要性;2、会判断一个数是正数还是负数;3、能用正负数表示生活中具有相反意义的量;4、锻炼自己分析问题和解决问题的能力。

学习重点:运用正负数表示相反意义的量。

学习难点:正、负数的意义与对“基准”的理解。

学法指导:先阅读课本上天气预报、地形图、足球比赛净胜球数等实际问题,再体会正数和负数的描述性定义,最后结合实际意义学会用正负数表示生活中具有相反意义的量。

☆预习导航☆一、知识链接:举例说明小学数学中我们学过哪些数?看谁举得全?。

二、教材导读阅读课本第3页—第4页,并完成以下问题:1、图1-1中某天北京的温度为-3-7℃,哈尔滨温度是。

2、同学们仔细观察图1-2,看看珠穆朗玛峰的高度以及吐鲁番盆地的高度分别是多少?。

3、2003—2004年西班牙足球甲级联赛净胜球统计表中三个球队净胜球数分别是:。

4、某镇办4家企业今年第一季度的产值与去年同期相比的增长情况表中,他们的增长率分别是:。

5、这几个问题中出现了一种新数:如-3,-14,-155,-5,-1.5,-2.8等,你6、举出具有相反意义量的生活实例?三、预习小结像等大于0的数叫做正数;像等在正数前面加上“-”(读作负)号的数,叫做负数,即在以前学过的0以外的数前面加上“-”(读作负)号的数就叫做负数;请想一想:数0是正数,还是负数呢?数0既不是,也不是。

在大千世界中,有上就有下,有升就有降,有收入就有支出,有赢就有输,因此,相反意义的量是普遍存在的,我们要学会用正负数表示生活中具有相反意义的量.四、预习检测完成课本第5页的练习。

五、我的困惑☆合作探究☆一、合作·解惑(我们共同解决预习中存在的问题)二、探究·提升1、(1)与去年相比,某乡今年的水稻种植面积增加了10hm2(公顷),小麦的种植面积减少了5 hm2,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)在某市“12315”中心2010年国庆期间受理的各类消费投诉件数中,日用百货类比上年同期增加了10%,家用电器类比上年同期减少了20%,写出这两类消费商品投诉件数的增长率.2、一个物体沿着东西两个相反的方向运动,如果把向东的方向规定为正方向,那么向东运动5m,向西运动6.8m各应记作什么?运动了6m,运动了-15m,运动了0m各表示什么意义?3、全国2001年、2002年两年废水及主要污染物(COD)排放量统计如下,以2001年作为“基准”,请填出2002年比2001年的增加量,增加量是负数时,表示什么意思?归纳反思☆☆达标检测☆1、填空:(1)球赛记分时,如果胜2局记作+2,那么-2表示;(2)把保险锁按逆时针方向转1圈记作+1圈,那么-2圈表示按转圈;(3)质量检测中,把一只乒乓球超出标准质量0.01g记作+0.01g,那么-0.02g 表示乒乓球的质量标准质量 g;2、光盘的质量标准中规定:它的厚度为(1.2±0.1)mm是合格品,说说1.2mm和±0.1mm所表示的意思?3、下表是某日公布的部分债券行情表,试说明各债券当天的涨跌情况?4、湖边一段堤岸高出湖面4m,附近有一建筑物,其顶端高出湖面20m,湖底有一沉船在湖面下8m处,现以湖边堤岸为“基准”,那么建筑物顶端的高度及沉船的深度各应如何表示?1.1 正数和负数(二)班级___姓名___家长签名____ 学习目标: 1、理解有理数的意义;2、能把给出的有理数按要求分类;3、了解0在有理数分类中的作用;4、锻炼自己的类比能力,培养自己的审美情趣。

学习重点:有理数的概念。

学习难点:有理数的两种分类方法。

学法指导:结合上节课引入的负数,我们可以先给出整数、分数的结构图,然后再来理解有理数的定义和分类。

☆ 预习导航 ☆一、知识链接1、你还记得负数的定义吗?2、到目前为止,你已经认识了哪些类型的数?请举例说明 。

二、教材导读阅读课本第5页—第6页,并完成以下问题: 1、请你观察下列各数,并说一说这些数的特点?3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…2、引入负数后,数的范围扩大了,那么整数可以分类为 ;分数可以分类为 。

三、预习小结(1) 和 统称为有理数 (2)有理数的两种分类方法如下:正整数 整数 零有理数 负整数 ( 按整数和分数来分类) 正分数分数负分数有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(按正负性来分类)四、预习检测完成课本第7页的第6、7两题。

二、探究·提升1、所有正数组成正数集合,所有负数组成负数集合,把下列各数分别填入相应的集合框里:12 7,3.1416,0,2004,-85,-0.23456,10%,10.l,0.67,-89正数集合负数集合整数集合分数集合2、请你在下图的圈中填上适合的数,使得圈内的数依次为整数、•有理数、正数、分数、负数.3、下列各数中,哪些是正整数、负整数、正分数、负分数?其中是否存在这样的数,它既不是正数,也不是负数?8,-8.34,12,-312,302,0,-207,-6.5,28☆ 达标检测 ☆1、以下是两位同学对有理数的分类方法,你认为他们的分类正确吗?为什么?有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数 有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零2、把下列各数分别填入相应圈内:-0.1、12、-9、2、+1、-2、3.5、-85、0、0.001整数集合 负数集合分数集合 有理数集合3、下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?分数集合负数集合1.2 数轴(一)班级___姓名___家长签名____学习目标:1、理解数轴的概念;2、知道数轴的三要素,并能正确画出数轴;3、能说出数轴上已知点所表示的数,能将已知数在数轴上表示出来;4、培养自己的动手能力。

学习重点:数轴的概念.学习难点:从直观认识到理性认识,从而形成数轴概念.学法指导:理解好数轴的三要素是学习数轴概念的关键,原点是基准,它对应数0,也是计量的起点;正方向规定它的正负性,单位长度是计量单位,将这三点与前面的正负数的意义联系起来理解,理解数轴的本质就不难了。

☆预习导航☆一、知识链接:回忆正负数的意义并回答以下问题:在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和东200m处分别有一个邮局和医院,分别用A、B、C、D、O表示书店、超市、邮局、医院和学校,用1cm表示50m,并把向东记作“+”,向西记作“-”,你能用一直线表示这一情境吗?本题的哪一点是“基准”呢?二、教材导读:阅读课本第8页—第9页,并完成以下问题:1、你能自己画一条数轴吗?试一试!2、如何画数轴?画数轴分为几个步骤?3、你能把这些数:4,1.5,-5,-72,0在问题(1)中的数轴上表示出来吗?三、预习小结:1、数轴的定义:规定了的直线叫数轴;2、画数轴分为几个步骤?3、任意一个有理数,都可以用数轴上的一个点来表示吗? 四、预习检测完成课本第9页练习。

五、我的困惑☆ 合作探究 ☆一、合作·解惑(我们共同解决预习中存在的问题)二、探究·提升1、写出数轴上点A,B,C,D,E 所表示的数:2、画出数轴并表示下列有理数:1, 2.5, -2.2, -3.5,29, 32, 0.3、一条直线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M4、M 5表示,如图:5M 4M 3M 2M 1(1)点M 1和M 2所表示的有理数是什么? (2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明; (4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?☆ 归纳反思 ☆☆ 达标检测 ☆1、下列语句:①数轴上的点只能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( ) A.1个 B.2个 C.3个 D.4个2、一个蜗牛在数轴上从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 .3、下列四个数中,在-2到0之间的数是( ) A .-1 B .1 C .-3 D .34、画一条数轴并画出表示下列各数的点 -5,0,+3.2,-1.4,29,321.2 数轴(二)班级___姓名___家长签名____学习目标:1、借助数轴理解相反数的概念;2、知道互为相反数在数轴上的位置关系;3、会熟练地求出一个数的相反数;4、培养自己的理解能力。

学习重点:掌握相反数的概念。

学习难点:理解并掌握双重符号简化的规律。

学法指导:预习时应注意相反数的概念有代数与几何两种定义。

☆预习导航☆一、知识链接:1、做一做:请你站起来先向前走5步,再向后退5步;如果向前走为正,那向前走5步与向后退5步分别记作什么?2、观察下列数:6和-6,223和-223,7和-7,57和-57,并把它们在数轴上标出.二、教材导读阅读课本第10页,并完成以下问题:想一想 1、上述各对数之间有什么特点?2、表示这两对数的点在数轴上有什么特点?3、你还能够写出具有上述特点的数吗?三、预习小结1、像上题这样只有符号不同的两个数叫做.2、两个互为相反数的数,在数轴上的对应点(0除外),是在两旁,•并且是距离相等的两个点,规定0的相反数就是。

即:我们把a的相反数记为-a,这里的a表示任意一个数,它可以是正数也可以是或。

四、预习检测完成课本第11页练习。

☆ 合作探究 ☆一、合作·解惑(我们共同解决预习中存在的问题)二、探究·提升1、写出下列各数的相反数:3、-7、-2.1、0、20、313、-432、填空:正数的相反数是 ,负数的相反数是 , 的相反数是它本身;与原点距离为3.5个单位长度的点有 个,它们分别是 和 .3、化简下列各符号:① -[-(-2)] ② +{-[-(+5)]} ③ -[+(-9)]☆ 达标检测 ☆1、填空: -5.8是 的相反数, 的相反数是-(+3),a 的相反数是 ,a-b 的相反数是 ,0的相反数是 .2、选择题:(1)若一个数的相反数不是正数,则这个数一定是( ) A .正数 B .正数或0 C .负数 D .负数或0 (2) 一个数比它的相反数小,这个数是( ) A .正数 B .负数 C .非负数 D .非正数3、王亮说:“一个数总比它的相反数大”,你认为正确吗?你能举例说明吗?4、若数轴上表示互为相反数的两点之间的距离为26.8,求这两个数?1.2 数轴(三)班级___姓名___家长签名____学习目标:1、借助数轴理解绝对值的概念;2、会求一个有理数的绝对值;3、通过应用绝对值解决简单的实际问题,从而体会绝对值的意义和作用;4、培养自己分析问题和解决问题的能力。

相关文档
最新文档