纳米压痕实验培训资料.ppt
纳米压痕技术实验及其应用
纳米压痕技术实验及其应用简介纳米压痕技术(Nanoindentation)是一种用于研究材料力学性质的精密技术。
通过在材料表面施加一定载荷,然后测量载荷与压痕深度之间的关系,可以得到材料的硬度、弹性模量等力学性质。
本文将介绍纳米压痕技术的基本原理、实验步骤以及在材料科学领域中的应用。
基本原理纳米压痕技术基本原理是利用钢球或金刚石尖端通过纳米压头在被测材料表面施加载荷,然后测量载荷与压痕深度的关系。
通过分析载荷-压痕深度曲线,可以获得材料的硬度、弹性模量等力学参数。
实验步骤1.样品制备:制备需要进行纳米压痕实验的材料样品,通常是块状的金属、陶瓷、聚合物等材料。
2.仪器校准:校准纳米压头的载荷传感器和位移传感器,确保实验数据准确可靠。
3.压痕实验:在样品表面选取合适的位置进行压痕实验,在一定载荷范围内施加载荷并记录载荷-压痕深度曲线。
4.数据处理:通过数据处理软件对实验数据进行分析,计算得到材料的硬度、弹性模量等力学参数。
应用领域纳米压痕技术在材料科学领域中有着广泛的应用,主要包括:•材料硬度测试:纳米压痕技术可以准确测量材料的硬度,对于评估材料的力学性能非常重要。
•薄膜力学性质研究:对于薄膜材料而言,纳米压痕技术可以有效地评估其力学性质。
•生物材料力学性质研究:在生物材料研究领域,纳米压痕技术可以帮助科研人员了解生物材料的力学性能,如骨骼、牙齿等。
结论纳米压痕技术作为一种精密的材料力学测试方法,在材料科学领域有着广泛的应用前景。
通过实验分析,可以更准确地评估材料的力学性能,为材料设计和研发提供重要参考。
以上就是关于纳米压痕技术实验及其应用的文档内容,希术能对您有所帮助。
新测试技术和方法课件
20
20
15
15
10
1.20.0012 1.00.0010
0.0008
1
10
10
100
Indentation load, P (N)
玻璃
50 40 30 20
(a)
2.0
1.6
1.2
0.8
10
100
Indentation load, P (N)
细晶高纯氧化铝
LEM模型的修正
P/c3/2随荷载的增大而呈降低趋势的根本原因在于硬度H的荷载依赖性。
p 的实验校正值得到了广泛应用,但所得到的压痕韧
性值经常出现偏差;因而关于这一公式的适应性学术 界一直存在着争论
残余应力的应用--裂纹缓慢扩展
根据有限元分析,半椭圆型压痕裂纹尖端应力场为:
Ktol = Kapp + Kres
Kapp Ya a
Kres
E H
P c3
crack depth, a, half surface crack length, c, specimen thickness and width, t and b, geometric factor, Y, and remote (outer surface) tensile bending stress, sa:
K IC (MPa m0.5)
实验验证
数据取自文献报道,真实硬 度取最高荷载下的硬度测试 结果
10
8
6
4
2
0
0
50
100
150
200
(E / H0)0.5 (a2 / c3/2) (MPa m0.5)
KR
k
纳米压印技术PPT模板
4.3.3压印胶中的缺 陷
4纳米压印 结果分析
4.4正交法对纳米压印 工艺的优化
壹
4.4.1正交法的意义与原 理
贰
4.4.2热压印工艺中正交 法的因子和水平
叁
4.4.3正交法对工艺的优 化研究
4纳米压印结果分析
4.5石英模具室温压印 hybrane
4.5.1hy brane胶
介绍
4.5.2hy brane胶
印印章的制备
3章纳米印 制备新方法
3.6旋涂法制备pdms 印章
3.6.1旋涂法制 备pdms印章的 原理和工艺流程
3.6.2旋涂法制 备pdms印章的
具体实例
3.6.3旋涂法制 备pdms印章的
实验结果
3章纳米印制备新方法 3.7热压法大规模制备pdms印章的新方法
9,300 million
单击此处添加标题
2
7.7.2纳米压印技术加工探针
8
纳 米 压 景印 发 展 前
8纳米压印发展前景
8.1纳米压印技术面临的挑战 8.1.1纳米压印自身技术面临的挑战
8.1.2纳米压印技术面临的其他技术挑战 8.2纳米压印技术的发展前景
8.2.1纳米压印技术的创新技术 8.2.2纳米压印技术的研究方向 8.2.3纳米压印技术展望
202x
纳米压印技术
演讲人
2 0 2 x - 11 - 11
目录
01. 1绪论
02. 2纳米压印工艺概述
03. 3章纳米印制备新方法 04. 4纳米压印结果分析
05. 5纳米压印理论
06. 6纳米压印仿真
07. 7纳米压印技术的应用 08. 8纳米压印发展前景
1
绪 论
纳米压痕实验报告(一)2024
纳米压痕实验报告(一)引言概述:纳米压痕实验是一种常用的材料力学测试方法,通过对材料进行微小压痕,可以研究材料的力学性能和变形行为。
本文将对纳米压痕实验的方法、实验装置、实验步骤、测试参数和结果进行详细介绍和分析,以期为深入了解纳米压痕实验提供参考。
正文:一、纳米压痕实验方法1.1 传统压痕法与纳米压痕法的区别1.2 纳米压痕实验的优势与应用场景1.3 实验材料的选择与准备二、纳米压痕实验装置2.1 纳米压痕仪器的组成与工作原理2.2 纳米压头的结构与功能2.3 实验中所需的辅助设备及其作用三、纳米压痕实验步骤3.1 样品的加工与制备3.2 实验前的样品表面处理3.3 压痕参数的设置与调整3.4 压痕实验的操作步骤3.5 实验后样品的处理与测量四、纳米压痕实验参数与理论分析4.1 压痕深度与硬度的关系分析4.2 压痕直径与弹性模量的计算方法4.3 弹性回弹与塑性变形的测定4.4 扩展失效与压痕形变的研究4.5 温度对压痕行为的影响五、纳米压痕实验结果与讨论5.1 实验样品的压痕图像与参数5.2 不同材料的压痕行为对比5.3 纳米压痕实验的数据可靠性与重复性5.4 工程应用中的纳米压痕实验案例5.5 纳米压痕实验的未来发展趋势总结:通过本次纳米压痕实验,我们深入了解了纳米压痕实验的方法、实验装置、实验步骤、测试参数和结果。
纳米压痕实验在材料力学研究和工程应用中具有重要的价值,通过对材料的微小压痕分析,可以获得材料的力学性能、变形行为等关键信息。
随着纳米技术的不断发展,纳米压痕实验将在材料科学、纳米材料、生物材料等领域的应用得到更广泛的拓展和深入研究。
第四章纳米压印技术 ppt课件
为便于脱模应尽量减小有机溶剂和模板间的粘附力,常用方法 有:
1. 在光刻胶中添加一种特殊的氟化物材料(如用三乙氧基硅烷 作氟基添加剂),以减小光刻胶与模板的粘附作用;
2. 预先在基片底部涂一层与基底粘接性好的聚合物(如PMGI: 聚甲基戊二酞亚胺),这样既有利于脱模,又可使基底平整化;
3. 用一种高抗粘连的材料涂镀在模板内表面,以利于脱模;
MicroNano Sy光ste胶m R线ese宽arc、h C残ent余er 厚度和热压(50bar)温度、时间之间的关系
模仁尺寸:44 mm PMMA厚度:270 nm
MicroNano System Research Center PMMA热压后形状松弛
熱壓溫度:175C 熱壓時間:30min
为避免压印时有机溶剂与模板腔体之间残留气孔,最好在真空 状态下工作。多层结构压印依靠模板四角标记对准,对准精度比 较差,通常在微米级,故多用于单层结构压印。
MicroNano System Research Center
图案转移技术:
1. 刻蚀技术:刻蚀技术以聚合物为掩模,对聚合物层进行选择
性刻蚀,从而得到图案;
MicroNano System Research Center
3. 紫外光固化压印技术(UV-NIL)
M.Bender和M.Otto提出一种在室温、低压环境下利用紫外光 硬化高分子的压印光刻技术,其前处理与热压印类似。
MicroNano System Research Center 紫外纳米压印示意图
由于不同压印工艺对模板材料的要求不同,为了寻找使用周期更 长的模板材料作为大规模生产,研究人员研究更具灵活性和适应性 的材料作为模板材料。一般通过实验来测试这些通过纳米加工技术 得到的模板的耐用性。
纳米压痕试验
浙江大学力学实验中心
5
• • • • • • • •
载荷分辨率:50nN 标准测试最大载荷:500mN 高载荷测试最大载荷:10N Z方向的位移分辨率:<0.01nm 最大压入深度:>500μm X-Y Table位移分辨率:1μm 行程范围:100 ×100mm 显微镜放大倍数: Video Screen :25X Objective :10X&40X
浙江大学力学实验中心
传感器
光学显微镜 样品台
3
Vibration Isolation Cabinet 隔热和隔音 Computer Monitor
CSM Controller 连续刚度测量
Keyboard
NanoSwift Controller 控制和采集位移和力的变化
浙江大学力学实验中心
4
Schematic of the Nano Indenter G200
浙江大学力学实验中心
2
• 一、TriboIndenter®是Hysitron公 司生产的低载荷原位纳米力学 测试系统,可进行压入和划入 测试。右上图为其核心部分。 • Hysitron公司:1992年成立于美 国明尼苏达州,是一家专门致 力于原位纳米力学测试系统设 计、生产和销售的公司。 • 二、Nano Indenter®是最早研制 的压入测量仪器。右下图为其 核心部分。 • 1983年Nano Instruments公司在 美国田纳西州成立并开始研发 Nano Indenter®,1998年被MTS 公司收购,MTS公司2008年被 Agilent公司收购。
利用纳米压痕技术研究材料力学性能的实验方法和数据处理
利用纳米压痕技术研究材料力学性能的实验方法和数据处理纳米压痕技术是一种用于研究材料力学性能的重要实验方法,它可以通过在纳米尺度下对材料进行压痕测试,得到材料的硬度、弹性模量等力学性能参数。
本文将介绍纳米压痕技术的实验方法,并讨论如何进行数据处理和分析。
一、纳米压痕实验方法纳米压痕实验通常采用纳米硬度计进行。
纳米硬度计具有一个具有知名几何形状的金刚石扣、压头、压头和试样间的距离控制装置类似恒定速率模式(法的独特设计和控制技术。
实验步骤如下:1.样品制备:将所要测试的材料制备成平整的样品。
通常可以使用机械研磨、电子抛光等方法对样品进行制备和表面处理。
2.样品安装:在纳米硬度计的测试平台上安装样品。
确保样品表面垂直于压头的运动方向,以获得准确的测试结果。
3.压痕力的选择:根据所要研究的材料的硬度,选择合适的压痕力。
通常,压痕力在几微牛到几百微牛之间。
4.压痕测试:将压头缓慢逼近试样表面,直到产生明显的弹性变形。
然后继续加大压痕力,直到达到设定的最大力值。
此过程中,纳米硬度计会实时记录压头的位置和力值。
5.压头退休:当压痕测试结束后,压头会逐渐从试样表面移开,直到与试样分离为止。
6.数据记录:在测试过程中,纳米硬度计会实时记录测试数据,包括压头的位置和力值。
这些数据可以用于后续的数据处理和分析。
二、数据处理和分析1.压头形状校正:由于压头的几何形状可能会对测试结果产生影响,因此需要对测试数据进行压头形状校正。
常见的方法是通过使用已知硬度和弹性模量的标准材料进行校正计算。
2.压痕深度测量:根据压头的位置和试样的厚度,可以计算出压痕的深度。
压痕深度与试样的硬度和弹性模量相关联,可以用于后续的力学性能参数计算和分析。
3.力位曲线分析:力位曲线是指在测试过程中纳米硬度计记录的压头位置和力值的曲线。
通过分析力位曲线,可以获得材料的硬度、弹性模量、塑性变形等力学性能参数。
4. 转化计算:通过引入相关的力学模型和计算公式,可以将压痕测试得到的数据转化为所研究材料的力学性能参数。
纳米压痕原理
纳米压痕原理纳米压痕技术是一种用于材料表面硬度和弹性模量测量的先进技术。
它是由威廉姆斯和奥利弗在1992年首次提出的,通过在纳米尺度下施加压痕来研究材料的力学性能。
纳米压痕技术已经被广泛应用于材料科学、纳米材料、薄膜材料、生物材料、金属材料等领域。
纳米压痕原理基于弹性理论和塑性变形理论,通过在纳米尺度下施加压痕来研究材料的硬度、弹性模量和塑性变形行为。
纳米压痕技术主要包括压头和样品的接触、加载、保持和卸载四个阶段。
在压头和样品接触阶段,压头逐渐接触到样品表面直到建立稳定的接触。
在加载阶段,压头施加载荷并逐渐形成压痕,记录载荷和压头位移的关系。
在保持阶段,保持载荷不变,使压头停留在最大载荷位置,记录载荷和时间的关系。
最后在卸载阶段,卸载载荷并记录载荷和压头位移的关系。
纳米压痕技术的原理是通过对压头载荷和位移的关系进行分析,可以得出样品的硬度和弹性模量等力学性能参数。
硬度是材料抵抗外界力量侵入的能力,是材料表面的一个重要力学性能参数;弹性模量是材料在弹性阶段的应力和应变关系,是材料的一个重要弹性参数。
通过纳米压痕技术可以实现对材料力学性能的定量分析和表征。
纳米压痕技术具有高分辨率、无损伤、样品制备简单、操作方便等优点,已经成为研究材料力学性能的重要手段。
它在材料科学、纳米材料、薄膜材料、生物材料、金属材料等领域有着广泛的应用前景。
通过对纳米压痕原理的深入理解和研究,可以推动材料力学性能表征技术的发展,为材料设计和制备提供重要的理论和实验基础。
总之,纳米压痕原理是一种重要的材料力学性能表征技术,通过对压头载荷和位移的关系进行分析,可以得出样品的硬度和弹性模量等力学性能参数。
纳米压痕技术具有高分辨率、无损伤、样品制备简单、操作方便等优点,已经成为研究材料力学性能的重要手段。
通过对纳米压痕原理的深入理解和研究,可以推动材料力学性能表征技术的发展,为材料设计和制备提供重要的理论和实验基础。
纳米压痕仪PPT Nanoindentation
Title Page
Page 10 of 48 Go back Full Screen Close Quit
Hysitron Tribolab Features a : • In-situ SPM imaging Jiˇ r´ ı Nˇ emeˇ cek CTU Prague • nanoDMA 0-300Hz • Modulus mapping • Scratch test • Pyramidal indentation (Berkovich) • Load range 100nN- 30mN (@3nN) • Z-resolution 0.2 nm • Load/depth control • Active anti-vibration
Title Page
Conical Jiˇ r´ ı Nˇ emeˇ cek CTU Prague Conospherical
(tip
angle
Page 8 of 48 Go back Full Screen Close Quit
Indentation test data
Jiˇ r´ ı Nˇ emeˇ cek CTU Prague
Title Page
Page 6 of 48 Go back Full Screen Close Quit
PRINCIPLE OF NANOINDENTATION The principle of nanoindentation lies in bringing a very small tip to the material surface producing an imprint.
a
Jiˇ r´ ı Nˇ emeˇ cek CTU Prague
Title Page
纳米压痕技术及其实验研究
图5 相关度量与旋转因子增量的关系平移因子增量、旋转因子增量、外轮廓相关度量的计算结果见表2,相关度量与平移因子增量、旋转因子增量的关系见图4、图5。
从图4、图5和表2可以看出,在确定平移和旋转因子初值之后再进行搜索,搜索数量不大,速度很快;沿X和Y方向分别只平移了012个像素和1个像素,并旋转了0106度,此时相关度量最大。
根据多次试验的经验,我们把平移因子的步长设定在012像素。
5 结论本文设计了基于图像处理的汽车密封条测量系统的硬件系统,利用牛顿插值函数实现了亚像素细分,建立了仿射变换模型。
测试试验证明:利用边界直径和公差要求确定图像平移和旋转初值、然后进行最大相关搜索的方法是行之有效的。
经过大量的试验结果统计,整个系统的长度不确定度在0102mm以内。
参考文献1 L Angrisani,P Daponte,A Pietrosanto,C Liguori.An image based measurement system for the characterization of autom otive gaskets.Measurement25(1999):169~1812 李庆利,张少军,李忠富等.一种基于多项式插值改进地亚像素细分算法.北京科技大学学报,2003,25(3):280~2833 钟家强,王润生.基于边缘的图像配准改进算法.计算机工程与科学,2001,23(6):25~294 曾文峰,李树山.图像配准参数的自适应求取方法.海军工程大学学报,2001,13(1):45~485 William C,Hasenplaugh,Mark A Neifeld.Image binarization techniques for correlation based pattern recognition.Opt Eng.1999,38(11):1907~1917第一作者:马 强,哈尔滨工业大学自动测试与控制系, 150001哈尔滨市收稿日期:2004年3月纳米压痕技术及其试验研究朱 瑛 姚英学 周 亮哈尔滨工业大学摘 要:介绍纳米压痕技术的基本原理和计算方法,从定义、适用范围和压痕面积的获得方法等三个方面指出纳米硬度与常规硬度之间的重要区别,对硬度的概念做了进一步讨论。
纳米压痕技术
纳米压痕技术(英:Nanoindentation),也称深度敏感压痕技术(英:Depth-Sensing Indentation, DSI),是最简单的测试材料力学性质的方法之一,可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量(Elastic Modulus)、硬度(Hardness)、断裂韧性(Frac ture Toughness)、应变硬化效应(Strain Hardening Effect)、粘弹性使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
晶体管,本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
能隙(Bandgap energy gap)或译作能带隙,在固态物理学中泛指半导体或是绝缘体的价带(valenc e band)(价带[1](valenc e band)或称价电带,通常是指半导体或绝缘体中,在绝对零度下能被电子占满的最高能带。
对半导体而言,此能带中的能级基本上是连续的。
全充满的能带中的电子不能在固体中自由运动。
但若该电子受它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充带中留下的电子可在固体中自由运动。
)顶端至传导带(传导带(conduction band)系指半导体或是绝缘体材料中,一个电子所具有能量的范围。
这个能量的范围高于价带(valence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流)(conduction band)底端的能量差距, 对一个本征半导体(intrinsic semic onduc tor)而言,其导电性与能隙的大小有关,只有获得足够能量的电子才能从价带被激发,跨过能隙并跃迁至传导带。
纳米压痕仪资料PPT Nanoindenter
March 26 2010
Fused Silica indentation curves
Height
Amplitude
Fused silica indentation force curves for different maximum forces. Arrays of 36 to 64 indentation force curves at different maximum load were performed to calibrate the diamond Berkovich tip used according to the Oliver-Pharr method.
What is Nanoindentation?
Depth sensing indentation Static Indentation Force, Indentation Depth
Force Depth
Fused Silica Scan 2.5 um Vert. scale: 50 nm radius of 30 to 50nm March 26 2010
Combining AFM and instrumented indentation for mechanical characterization at the nanoscale
Flavio Alejandro Bonilla, Staff Scientist March 26 2010
Outline
March 26 2010
Fused Silica tip area function calibration
Height
Amplitude
Area function calibration with Oliver Pharr method. Red markers correspond to the area such that E=72 GPa for individual indentations at different depth. Blue trace is a parabolic fit (Ap=C0*h^2 + C1*h) to red markers with C0= 50.55 and C1= -1.357e-06. Green trace is a Berkovich theoretical C0*h^2 area with C0=24.5.
第四章纳米压印技术 ppt课件
工成一个压模: 然后在用来绘制纳米
图案的基片上旋涂一层聚合物薄膜,
将其放人压印机加热并且把压模压在
基片上的聚合物薄膜上,再把温度降
低到聚合物凝固点附近并且把压模与
聚合物层相分离,就在基片上做出了
凸起的聚合物图案(还要稍作腐蚀除去
热压印示意图
凹处残留的聚合物)
热压印法的工艺过程分三步: MicroNano System Research Center 压模制备、压印过程、图形转移。
2007年当选为美国国家工程院院士,被称为改革开放后中国 大陆高校毕业生获取美国国家工程院院士的第一人。
MicroNano System Research Center
主要内容
1.纳米压印技术简介 1.1 压印技术 1.2 纳米压印技术 1.3 纳米压印关键工艺步骤
2.纳米压印工艺 2.1 热压印技术 2.2 紫外光固化压印(步进-闪光工艺) 2.3 软模板压印技术(SCIL) 2.4 逆压印技术 2.5 滚筒压印技术
由于不同压印工艺对模板材料的要求不同,为了寻找使用周期更 长的模板材料作为大规模生产,研究人员研究更具灵活性和适应性 的材料作为模板材料。一般通过实验来测试这些通过纳米加工技术 得到的模板的耐用性。
MicroNano System Research Center
1)硬度: 分别进行不同的硬度试验测试,包括硬度划痕试验 和压痕硬度试验. 在硬度划痕试验中,测试莫式硬度。在压痕硬 度试验中,测试维氏硬度和努普硬度。
2) 导热性: 必须考虑到模板和基片这两种材料导热性的差异 。在降温过程中,两者导热性过大的差异,会使图形产生扭曲 变形。通常的选用原则是,导热性越强越好,可以缩短整个加 工周期,这有利于产量的提高. 模板材料随压印工艺而不同:
纳米压痕法
Measurements of mechanical properties and number of layers of graphene from nano-indentationYupeng Zhang a ,Chunxu Pan a ,b ,⁎a School of Physics and Technology and Key Laboratory of Arti ficial Micro-and Nano-structures of Ministry of Education,Wuhan University,Wuhan,430072,PR China bCenter for Electron Microscopy,Wuhan University,Wuhan 430072,PR Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 13October 2011Received in revised form 12January 2012Accepted 25January 2012Available online 9February 2012Keywords:GrapheneNumber of layersMechanical properties NanoindentationIn this paper,we introduce an approach to simply and effectively determine the mechanical property and number of layers of graphene simultaneously from one indentation by using an instrumented nano-indenter.The results reveal that the elastic modulus of a single layer graphene is 0.89TPa after correction of the effect of substrate,which is coincident to the experimental and theoretical data from other researches.In addition,it is found that there exist a linear relationship between the number of layers and the hardness of graphene,which provide a novel and also effective method for judging the number of graphene layers.©2012Elsevier B.V.All rights reserved.1.IntroductionGraphene is a two-dimensional (2D)crystal which is made up of sp2–hybridized carbon atom.The recent researches have revealed that graphene possesses many remarkable properties,such as high thermal conductivity (5000Wm –1K –1),[1]high charge carrier mo-bility (15,000cm 2V –1s –1)at room temperature [2]and the calculat-ed value of speci fic surface area up to 2630m 2g –1,[3]which promise the wide potential applications in graphene-based composites [4],nano devices [5],energy storage materials [6]and so on.In general,less than 10layers of graphite are all de fined as gra-phene,different layers of graphene exhibit variant band structure,and the physical,chemical and mechanical properties of graphene are strongly related to the number of layers [7,8].Therefore,a simpler and more accurate method for characterizing the layer of graphene is crucial to determine its properties and further applications.So far,the layers of graphene can be accurately characterized by using approaches involving Raman spectrum or high-resolution transmis-sion electronic microscopy (HRTEM).In Raman spectrometry,the number of graphene layers is determined according to the G peak and D peak second order (2D peak)changing in shape,width,and position [9–11].When using the HRTEM observation,the number of graphene layers can be directly con firmed by counting lines at the graphene edge [12,13].In addition,the regular optical microscopehas also been used for revealing the thickness variation of graphene layers when the graphene is deposited upon the Si substrate with a 300nm SiO 2film,because of a strong amplitude modulation of re flec-tion at the air –graphene-SiO 2interface [14–16].Compared to evaluation for physical and chemical properties of graphene,the measurement of mechanical property including elastic modulus,breaking strength,bending stiffness,elastic deformation,failure,hardness and flexibility are much more dif ficult due to limita-tion of the present techniques.So far,the theoretical calculations for monolayer graphene have con firmed the elastic modulus from 0.8to 1.1TPa [17–19].Meanwhile the experimental test of graphene was performed by nano-indentation using an atom force microscope (AFM)tip upon a free-standing graphene sheets [20–24].The elastic modulus is calculated from a load –displacement curve,and the re-sults show that modulus could achieve 1.0±0.1TPa similarly [20,21].All of these researches demonstrated that graphene is the strongest material and may be a promising reinforcement of nano-composites [25,26].In recent years,the instrumented nano-indentation techniques have been widely used in the characterization of small scale mechan-ical behavior of materials [27–29].It can continuously measure the load and displacement as small as 1nN and 0.1nm respectively.From the load –displacement data,the mechanical properties includ-ing hardness and elastic modulus can be determined without imaging the indentation.In addition,compared with AFM,the instrumented nano-indentation adopts the continuous stiffness measurement (CSM)technique to collect a continuous data with thickness.CSM is accomplished by imposing a small,sinusoidal varying signal on top of a DC signal that drives the motion of the indenter.This allows the measurement of contact stiffness at any point along the loadingDiamond &Related Materials 24(2012)1–5⁎Corresponding author at:School of Physics and Technology and Key Laboratory of Arti ficial Micro-and Nano-structures of Ministry of Education,Wuhan University,Wuhan,430072,PR China.Tel.:+862768752481x5201.E-mail address:cxpan@ (C.Pan).0925-9635/$–see front matter ©2012Elsevier B.V.All rights reserved.doi:10.1016/j.diamond.2012.01.033Contents lists available at SciVerse ScienceDirectDiamond &Related Materialsj o u r n a l h om e p a g e :ww w.e l s e v i e r.c o m /l o c a t e /d i a m o n dcurve and obtains the hardness and elastic modulus at exceedingly small penetration depths.Thus,this technique provides an ideal ap-proach for measuring nano-films upon a substrate.Obviously,the graphene sheets should respond to the instrumen-ted nano-indentation due to its high strength and elastic modulus, which is not reported in any literature up to now.In this paper,we intend to simply obtain the information such as the number of graphene layers,hardness and elastic modulus from the response of graphene to the instrumented nano-indenter.2.Experimental detailsIn this work,graphene oxide(GO)was synthesized by a modified Hummers method[30,31]:the graphite powder(0.3g)was putintoFig.1.The micrograph of indentation location and the experiment results acquired from the instrumented nano-indenter.a,Optical microscope image of graphene on the Si sub-strate with a285nm thick SiO2film,graphene with different apparent colors was marked with A B C D and E.b,The experimental result of AFM,from which the change of graphene layers can be more clearly identified,there are1,2,3,4and above4layers respective.c,The hardness–displacement curves of different layers graphene,inset in c shows the hard-ness change in the range of20–50nm.d,The elastic modulus–displacement curves of different layers graphene,inset in d shows the modulus change in the range of20–50nm. e,The continuous stiffness measurement(CSM)of different layers graphene,inset in e shows the change of continuous stiffness in the range of0–30nm.f,The load–displacement curves of different layers graphene,inset in f shows the load change in the range of0–50nm.2Y.Zhang,C.Pan/Diamond&Related Materials24(2012)1–5the solution contained2–4mL concentrated H2SO4,0.5g K2S2O4and 0.5g P2O5.The resultant dark blue mixture was kept stirring for4h at 80°C,and then was carefully diluted with distilled water,the initial product was obtained byfiltering and drying at ambient temperature. Subsequently,the initial product was re-dispersed into12mL con-centrated H2SO4,and1.5g KMnO4was added laggardly.An ice bath should be used in order to avoid the temperature increasing over 20°C.The mixture was stirred at35°C for2h,and25mL distilled water was added.70mL distilled water and2mL30%H2O2solution were added and the reaction was terminated in15minutes.Then the color of the mixture was changed from snuff color to bright yel-low.At last,the mixture was washed by HCl solution and distilled water in turn until the PH value of rinse water became neutral,and the GO was obtained after drying.Ethanol suspensions of the GO were spin-coated the Si substratewith a300nm thick SiO2film.The GO sheets were charged into a quartz tube and purged with argon,and then reduced to graphene at1000°C in vacuum with the heating rate100°C/min.The graphene thickness was evaluated using an optical micro-scope(Olympus,cover–018,Japan)for determining the position of nanoindentation.The corresponding number of graphene layers was characterized using an AFM(Seiko,SPI4000PROBE STASTM,Japan).Nano-indentation experiments were carried out on an instrumen-ted nano-indenter(Agilent,nano indenter G200,USA)with the meth-od of continues stiffness measurement(CSM).A diamond Berkovich indenter with a tip radius R≈20nm was used.Experiment parame-ters are as follows:the constant value of Poisson ratio is0.17 [32,33],the vibration frequency of indenter is45Hz and the maxi-mum indentation depth is500nm.3.Results and discussionFig.1(a)shows an optical image of the graphene.According to the different color contrast,the thickness of graphene can be clearly identi-fied and marked as A,B,C,D and E.AFM experiment reveals the corre-sponding number of graphene layers at the area,as shown in Fig.1(b).Fig.1(c)and(d)illustrates the hardness–displacement and elastic modulus–displacement curves at different graphene layers by using the nano-indentation.It is found that a large dip appears in the range of depth less than10nm,and then the curves increase gradual-ly to a stable values.Further continuous stiffness measurement(CSM) indicates that there is an inflexion around the depth of10nm,as shown in Fig.1(e),which is correspond to the points of the peaks in Fig.1(c)and(d).In addition,the load–displacement curve clearly reveals that the load on the graphene decreases with the number of layers increasing at the same indentation depth,as shown in Fig.1(f).Similarly,the phenomenon also appears in Fig.1(c)and(d),in which the hardness and the elastic modulus of the graphene decrease with the increase of the layers.3.1.Measurement of the elastic modulus of grapheneIn the present graphene/SiO2system such as a hardfilm on a soft substrate,the hardness and elastic modulus decrease with an increasing of contact depth.Therefore,the peak in the hardness–displacement and elastic modulus–displacement curves,as shown in Fig.1(c)and (d),indicates the response of high hardness and modulus of graphene to the indenter.However,due to the very thin thickness of graphene, it is impossible to obtain the value of hardness and elastic modulus of pure graphene directly from the curves,the effect of soft SiO2film below graphene must be considered during indenting.Fig.2illustrates the variant of monolayer graphene sheet under different loads.When indenter contact graphene,the deformation of graphene start in the axial direction.And then,carbon network of graphene will be broken as indentation depth increasing.Therefore,hardness and modulus could be obtained through the load–displace-ment curve.However,the measured value of hardness and modulus involves two portions,SiO2substrate and graphene.For example,in the case of a monolayer graphene,when the indentation depth reaches to 8nm,the total energy of indenter acted upon the surface can be cal-culated from the load–displacement curve of monolayer graphene,as show in Fig.3(a).The value is from the following Eq.(1):W¼∫80:00207xþ2:13933EÀ4x2dx¼10:1E−14Jð1ÞFig.2.The deformation of monolayer graphene sheet under different loads.a,graphene sheet under no load.b,deformation under the pressure P.c,crack under the maximal pressure P m.Fig.3.a,Thefitting curve to the load–displacement curve of monolayer graphene, though which the total energy provided by indenter can be calculated.b,The variation-al trend of bond energy in the proportion of total energy as the indentation displace-ment increase.3Y.Zhang,C.Pan/Diamond&Related Materials24(2012)1–5At this time,the portion of the energy for breaking C–C bonds will be7.48E−14J,which is calculated based on the hypothesis:1)The indentation area is A c=24.5h c2,where the depth h c=8nm,and then A c=1568nm2;2)The C–C bond length is0.14nm,and the energy for breaking one C–C bond is650kJ/mol;3)The total energy to break C–C bonds in the area is equal to A c divided by one area of the carbon honeycomb network.Obviously,the total energy is larger than the energy to break pure graphene,and the rest value is from the SiO2film.The calculation according to Fig.3(a)and Eq.(1)roughly illustrates that the portion of energy to break the graphene bond decreases with the depth in-crease from2nm to200nm,and there is a rapid reduction before around10nm,as shown in Table1and Fig.3(b),which actually cor-responds to the peak forms in the hardness–displacement and elastic modulus–displacement curves,as shown in Fig.1(a)and(b).After the peaks,the curves increase gradually with increasing of the depth in the range of10–200nm andfinally reach a nearly con-stant value,which is the typical profile of a soft SiO2film on a hard Si substrate[34].The above discussion demonstrates that the value of elastic mod-ulus of graphene can be experimentally and simply obtained from the elastic modulus–displacement curve.Considering to the effect of sub-strate,the corrected value can be calculated from the following Eq.(2)[35]:1 r ¼1−v2iiþ1−v2ff1−e−αtþ1−v2sse−αt;ð2Þwhere E r is the reduced elastic modulus,E i,E f,E s are elastic modulus of the indenter,film(graphene)and SiO2substrate,respectively.v i, v f and v s are Poisson's ratio of the indenter,film and substrate,respec-tively.αis a constant related with the indenter geometry,according to King's method[36],selectingα=1.3.t is thefilm(graphene) thickness under the indenter and a is the square root of the projected contact area.The results show,for example,that for a monolayer graphene,the experimental value of elastic modulus is0.3TPa,and the modified value is0.89TPa,as listed in Table2,which is consistent with the value of1.0TPa reported in current literatures[17,18].Therefore, the present instrumented nano-indentation provides an effective and simple approach for measure mechanical properties of graphene.3.2.Measurement of the number of graphene layersFrom Fig.1(c),(d),(f)and the corresponding Table2,we can clearlyfind that the heights of the curves changed with the increase of number of graphene layers.The divergences between the graphene with different number of layers are listed in Table3.It is interested to note that there exists an approximate linear relationship according to the above data,as shown in Fig.4.Relatively,Fig.4(a)exhibits a bet-ter linear phenomenon from the hardness–displacement curve.This softening effect also was observed in Changgu Lee et al.'s work,an AFM probe tip indents upon a free-standing graphenefilm [18].They proposed a possible explanation for the phenomenon base on the slip between the graphene layers,and not from plastic de-formation.That is to say,when the tip indents the multilayer mem-brane,the slight bending in the membrane under the tip causes a difference of elongation between the layers.Slip will occur when the elongation difference between the layers is equal to the C–C bond length,which is about0.14nm.Table1The value of bond energy of graphene and the total energy provided by indenter.Depth(nm)2582050100200Bond energy(J) 4.68E−15 2.92E−147.48E−14 4.68E−13 2.92E−12 1.17E−11 4.68E−11 Total energy(J) 4.73E−15 3.45E−1410.1E−149.53E−1310.95E−127.72E−11 5.75E−10 %98.986.674.149.126.715.28.1Table2Hardness and elastic modulus of different layers graphene using nano indentation,themodified value of elastic modulus calculated exclude the substrate effect.Monolayer (A)Bilayer(B)Trilayer(C)Tetralayer(D)Multilayerabove4(E)Hardness (TPa)Exp.data0.950.270.230.190.10 Modified data–––––Modulus (TPa)Exp.data0.3050.1200.700.410.37 Modified data0.8910.3930.0510.0270.027Table3The average variation of elastic modulus and hardness between different layers gra-phene in the range of10–500nm.△(A–B)△(B–C)△(C–D)△(D–E)△H(GPa) 1.138692 1.2338110.7891060.992468△G(GPa) 5.5645947.947053 4.6135635.781371Fig.4.The mechanical properties variational trend of different layers graphene ac-quired from Table3.Hardness(a)and elastic modulus(b)are linearly decreased as the layer of graphene increase in the range of10–500nm.4Y.Zhang,C.Pan/Diamond&Related Materials24(2012)1–5In this work,the graphene sheets are located upon a solid sub-strate.The maximum indentation depth for all graphene sheets were kept in the same value as500nm during indenting.Therefore, it can be confirmed that only the different number of graphene layers caused these variety in the curves,as shown in Fig.1(c),(d)and(f). We agree the above slip mechanism for explaining the present re-sults.But the linear proportion of the number of layers to the soften-ing effect on mechanical property of graphene provides us a very simple and effective method to obtain the number of graphene layers by using instrumented nanoindentation.4.ConclusionComparing to the approaches for measuring mechanical property using AFM and number of layers of graphene sheets using Raman and HRTEM,etc.,the present instrumented nano-indenter provides a simple and effective possibility to measure the mechanical property of graphene and the number of graphene layers simultaneously from one indentation.It can be applied to evaluate the graphene character (number of layers)during preparations and properties of the gra-phene enhanced composites.AcknowledgementThis work was supported by the National Basic Research Program of China(973Program)(No.2009CB939705),the National Natural Science Foundation of China(No.11174227),the Chinese Universities Scientific Fund,and Ph.D candidates self-research(including1+4) program of Wuhan University in2011(2011202020003). References[1] A.A.Balandin,S.Ghosh,W.Bao,I.Calizo,D.Teweldebrhan,F.Miao,ul,Nano Lett.8(2008)902.[2]K.I.Bolotin,K.J.Sikes,Z.Jiang,M.Klima,G.Fudenberg,J.Hone,P.Kim,H.L.Stormer,Solid State Commun.146(2008)351.[3]P.Steurer,R.Wissert,R.Thomann,R.Mulhaupt,Macromol.Rapid Commun.30(2009)316.[4]S.Stankovich,D.A.Dikin,G.H.B.Dommett,K.M.Kohlhaas,E.J.Zimney,E.A.Stach,R.D.Piner,S.T.Nguyen,R.S.Ruoff,Nature442(2006)282.[5]P.Blake,P.D.Brimicombe,R.R.Nair,T.J.Booth, D.Jiang, F.Schedin,L.A.Ponomarenko,S.V.Morozov,H.F.Gleeson,E.W.Hill,A.K.Geim,K.S.Novoselov, Nano Lett.8(2008)1704.[6] F.Ji,Y.Li,J.Feng,D.Su,Y.Wen,Y.Feng,F.Hou,J.Mater.Chem.19(2009)9063.[7] B.Partoens,F.M.Peeters,Phys.Rev.B74(2006)075404.[8]M.Klintenberg,S.Lebegue,C.Ortiz,B.Sanyal,J.Fransson,O.Eriksson,J.Phys.Condens.Matter21(2009)335502.[9] A.C.Ferrari,J.C.Meyer,V.Scardaci,C.Casiraghi,zzeri,F.Mauri,S.Piscanec,D.Jiang,K.S.Novoselov,S.Roth,A.K.Geim,Phys.Rev.Lett.97(2006)187401. [10] D.Graf,F.Molitor,K.Ensslin,C.Stampfer,A.Jungen,C.Hierold,L.Wirtz,SolidState Commun.143(2007)44.[11] D.Graf,F.Molitor,K.Ensslin,C.Stampfer,A.Jungen,C.Hierold,L.Wirtz,NanoLett.7(2007)238.[12]J.C.Meyer,A.K.Geim,M.I.Katsnelson,K.S.Novoselov,D.Obergfell,S.Roth,C.Girit,A.Zettl,Solid State Commun.143(2007)101.[13] A.Reina,X.Jia,J.Ho,D.Nezich,H.Son,V.Bulovic,M.S.Dresselhaus,J.Kong,NanoLett.9(2009)30.[14]P.Blake,E.W.Hill,o,K.S.Novoselov,D.Jiang,R.Yang,T.J.Booth,A.K.Geim,Appl.Phys.Lett.91(2007)063124.[15]S.Roddaro,P.Pingue,V.Pellegrini,F.Beltram,Nano Lett.7(2007)2707.[16]L.Gao,W.Ren,F.Li,H.Cheng,ACS Nano2(2008)1625.[17] C.Lee,X.Wei,J.W.Kysar,J.Hone,Science321(2008)385.[18] C.Lee,X.Wei,Q.Li,R.Carpick,J.W.Kysar,J.Hone,Phys.Status Solidi B246(2009)2562.[19]I.W.Frank,D.M.Tanenbaum,A.M.van der Zande,P.L.McEuen,J.Vac.Sci.Technol.,B25(2007)2558.[20]M.Poot,H.S.J.van der Zant,Appl.Phys.Lett.92(2008)063111.[21]G.Cristina,M.Burghard,K.Kern,Nano Lett.8(2008)2045.[22]J.W.Jiang,J.S.Wang,B.Li,Phys.Rev.B80(2009)113405.[23] C.D.Zeinalipour-Yazdi,C.Christofides,J.Appl.Phys.106(2009)054318.[24]R.Rasuli,A.Iraji zad,M.M.Ahadian,Nanotechnology2(1)(2010)185503.[25]H.Kim,C.W.Macosko,Polymer50(2009)3797.[26]X.Ji,Y.Cao,X.Feng,Modell.Simul.Mater.Sci.Eng.18(2010)045005.[27]W.C.Oliver,G.M.Pharr,J.Mater.Res.7(1992)1594.[28]W.C.Oliver,G.M.Pharr,J.Mater.Res.19(2004)3.[29]X.D.Li,B.Bhushan,Mater.Charact.48(2002)11.[30]W.S.Hummers,R.E.Offeman,J.Am.Chem.Soc.80(1958)1339.[31]N.I.Kovtyukhova,P.J.Ollivier, B.R.Martin,T.E.Mallouk,S.A.Chizhik, E.V.Buzaneva,A.D.Gorchinskiy,Chem.Mater.11(1999)771.[32]O.L.Blakslee,D.G.Proctor,E.J.Seldin,G.B.Spence,T.Weng,J.Appl.Phys.41(1970)3373.[33]S.P.Daniel,E.Artacho,J.M.Soler,Phys.Rev.B59(1999)12678.[34]T.H.Wang,T.H.Fang,Y.C.Lin,Appl.Phys.A86(2007)335.[35]S.Chen,L.Liu,T.Wang,Surf.Coat.Technol.191(2005)25.[36]R.B.King,J.Solids Struct.23(1987)1657.5Y.Zhang,C.Pan/Diamond&Related Materials24(2012)1–5。
纳米压痕张泰华著,第12章
2 引入自由表面能的修正,裂纹停止之前瞬间向前扩展 状态尺寸近似卸载结束时刻。
3 需要标准样品做参考;由于KIC的约定真值需要通过双悬梁或 单边缺口梁等传统 方法测得,校准环节在技术上起到最终修正 的作用,确保测试方法的合理性和实用性。
—第12章 断裂韧度
微/纳米力学测试技术
12.3 发展动态
“纯微区”测试
—第12章 断裂韧度
微/纳米力学测试技术
12.1.1 典型测试方法 1 棱锥压头:以棱锥压头在试样表面产生的径向裂纹痕迹作为 研究对象。压头主要包括维氏、玻氏和立方角三种。
(a)维氏压头
(b)玻氏或立方角压头
—第12章 断裂韧度
微/纳米力学测试技术
(1)维氏压头 1976年,Evans和Charles假设维氏压头产生的径向裂纹在试样内部对 应贯通的半饼状裂纹面
压入总功、卸载功示意图
—第12章 断裂韧度
微/纳米力学测试技术
在显微范围和宏 观范围内,维氏 压头的Wu/Wt随 载荷水平的变化 非常微小,最大 相对误差<5%
图8.2 圆锥孔洞扩张模型示意图
维氏压头的显微范围内压入实验的Wu/Wt变化趋势
—第12章 断裂韧度
微/纳米力学测试技术
在显微范围和宏观
—第12章 断裂韧度
微/纳米力学测试技术
有效实验数据的判据
1 有效径向裂纹
筛选有效实验数据
① 径向裂纹的长度c应远大于压痕的特征尺寸a,至少c≥2a;
②
理想情况,压痕角点只出现一条径向裂纹,不应计入分叉的
径向裂纹;
③
无明显的材料剥落。
2 有效F-h曲线
光滑、无位移突进、无载荷突跳 —第12章 断裂韧度
半饼状裂纹面
纳米压痕技术
纳米压痕技术(英:Nanoindentation),也称深度敏感压痕技术(英:Depth-Sensing Indentation, DSI),是最简单的测试材料力学性质的方法之一,可以在纳米尺度上测量材料的各种力学性质,如载荷-位移曲线、弹性模量(Elastic Modulus)、硬度(Hardness)、断裂韧性(Frac ture Toughness)、应变硬化效应(Strain Hardening Effect)、粘弹性使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
晶体管,本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。
它对电信号有放大和开关等作用,应用十分广泛。
能隙(Bandgap energy gap)或译作能带隙,在固态物理学中泛指半导体或是绝缘体的价带(valenc e band)(价带[1](valenc e band)或称价电带,通常是指半导体或绝缘体中,在绝对零度下能被电子占满的最高能带。
对半导体而言,此能带中的能级基本上是连续的。
全充满的能带中的电子不能在固体中自由运动。
但若该电子受它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充带中留下的电子可在固体中自由运动。
)顶端至传导带(传导带(conduction band)系指半导体或是绝缘体材料中,一个电子所具有能量的范围。
这个能量的范围高于价带(valence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流)(conduction band)底端的能量差距, 对一个本征半导体(intrinsic semic onduc tor)而言,其导电性与能隙的大小有关,只有获得足够能量的电子才能从价带被激发,跨过能隙并跃迁至传导带。
纳米压痕实验 ppt课件
纳米压痕实验
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
Minus k Vibration Isolation Table 精密减振台
纳米压痕实验
7
Nano Indenter®G200的技术参数
• 载荷分辨率:50nN
• 标准测试最大载荷:500mN
• 高载荷测试最大载荷:10N
• Z方向的位移分辨率:<0.01nm
• 最大压入深度:>500μm
• X-Y Table位移分辨率:1μm
4
纳米压痕测量仪器
• 一、TriboIndenter®是Hysitron公 司生产的低载荷原位纳米力学 测试系统,可进行压入和划入 测试。右上图为其核心部分。
• Hysitron公司:1992年成立于美 国明尼苏达州,是一家专门致 力于原位纳米力学测试系统设 计、生产和销售的公司。
• 二、Nano Indenter®是最早研制 的压入测量仪器。右下图为其 核心部分。
最大载荷<500mN,压痕深度2100nm左右
纳米压痕实验
9
压痕实验原理
P h h f m
1
S dP
2
dh h h max
h c h max
P max S
3
A f hc
4
H P max
பைடு நூலகம்
5
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
6
4
2
0
0
10
20
30
40
50
60
70
80
Time(seconds)
1
接触刚度:S
F0 Z0
cos
1 m 2
Ks
1 Kf
H &E
.....
9
1
装载样品
2
打开电源,启动电脑
3
打开Nanosuite软件,进行操作
4
导出实验相关数据,卸载样品
.....
10
装载样品
.....
11
Nanosuite软件界面
• 1983年Nano Instruments公司在 美国田纳西州成立并开始研发 Nano Indenter®,1998年被MTS 公司收购,MTS公司2008年被 Agilent公司收购。
.....
传感器 光学显微镜 样品台
3
Vibration Isolation Cabinet 隔热和隔音
Computer
.....
1
• 纳米压痕是一种先进的微尺度力学测量技术。它是通过测 量作用在压针上的载荷和压入样品表面的深度来获得材料 的载荷-位移曲线。其压入深度一般控制在微/纳米尺度, 因此要求测试仪器的位移传感器具有优于1nm的分辨率, 所以称之为纳米压痕仪。
• 测量的材料力学性能包括:弹性模量、硬度、屈服强度、 断裂韧性、应变硬化效应、粘弹性等。
.....
8
传统的准静态纳米压痕测试是利用卸载曲线获得接触刚度,每个压痕循环 只能获得最大压痕深度处的一个硬度和模量。连续刚度测量技术则可以直 接获得压入过程中采集的每个数据点对应压入深度的接触刚度,进而计算 出硬度与弹性模量等力学性能作为压入深度的连续函数。
Load(mN)
12
10
Nominal Force
6
1
1 2
1
2 i
7
Er
E
Ei
用最小二乘法拟合卸载曲线顶端的25%~30%,得到(1)式,然后计 算出接触刚度即(2)式,用(3)式计算出接触深度,代入(4)中 求得接触面积,于是得到硬度即(5)式。利用接触刚度和接触面积 计算得到折合模量即(6)式,然后利用(7)式以及压针的模量和泊 松比计算样品材料的弹性模量。
CSM Controller 连续刚度测量
NanoSwift Controller 控制和采集位移和力的变化
.....
Monitor Keyboard
4
Schematic of the Nano Indenter G200
.....
5
• 载荷分辨率:50nN • 标准测试最大载荷:500mN • 高载荷测试最大载荷:10N • Z方向的位移分辨率:<0.01nm • 最大压入深度:>500μm • X-Y Table位移分辨率:1μm • 行程范围:100 ×100mm • 显微镜放大倍数:
Video Screen :25X Objective :10X&40X
.....
6
最大载荷<500mN,压痕深度2100nm左右
.....
7
P h hf m
1
S dP
2 dh hhmaxhchmax
Pm ax S
3
A f hc
4
H Pmax
5
A
S Er 2 A
.....
2
• 一、TriboIndenter®是Hysitron公 司生产的低载荷原位纳米力学 测试系统,可进行压入和划入 测试。右上图为其核心部分。
• Hysitron公司:1992年成立于美 国明尼苏达州,是一家专门致 力于原位纳米力学测试系统设 计、生产和销售的公司。
• 二、Nano Indenter®是最早研制 的压入测量仪器。右下图为其 核心部分。
.....
12
注意事项
1)
2)
3)
.....
13
.....
14