圆柱和圆锥知识点归纳总结.doc

合集下载

完整版)圆柱体和圆锥体知识点复习整理

完整版)圆柱体和圆锥体知识点复习整理

完整版)圆柱体和圆锥体知识点复习整理圆柱体和圆锥体知识点复整理
本文档旨在提供关于圆柱体和圆锥体的知识点复整理。

以下是相关的知识点介绍:
圆柱体(Cylinder)
圆柱体是一个由两个平行的圆面和一个定位于两圆面之间的侧面所组成的几何体。

以下是一些圆柱体的重要特征:
底面积:圆柱体底面的面积可以通过圆的面积公式计算。

圆的面积公式为:A = πr²,其中 r 是圆的半径。

侧面积:圆柱体的侧面积可以通过将圆的周长乘以圆柱体的高度来计算。

侧面积公式为:A = 2πrh,其中 h 是圆柱体的高度,r 是圆的半径。

总表面积:圆柱体的总表面积可通过将底面积和侧面积相加来计算。

总表面积公式为:A = 2πr² + 2πrh。

圆锥体(Cone)
圆锥体是一个由一个圆形底面和一个定位于底面圆心的侧面所组成的几何体。

以下是一些圆锥体的重要特征:
底面积:圆锥体底面的面积可以通过圆的面积公式计算。

圆的面积公式为:A = πr²,其中 r 是底面圆的半径。

侧面积:圆锥体的侧面积可以通过将圆的周长乘以圆锥体的斜高来计算。

侧面积公式为:A = πrl,其中 l 是圆锥体的斜高,r 是底面圆的半径。

总表面积:圆锥体的总表面积可通过将底面积和侧面积相加来计算。

总表面积公式为:A = πr² + πrl。

以上是关于圆柱体和圆锥体的知识点复习整理。

希望对您有所帮助!。

苏教版六年级数学下册第二单元知识点归纳

苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。

2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。

3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。

4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。

第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。

第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。

第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。

(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。

与求体积除以3相反。

培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。

2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。

圆柱圆锥知识点总结

圆柱圆锥知识点总结

圆柱圆锥知识点总结一、圆柱的定义和性质圆柱是由一个矩形绕着一条平行于其中一边的直线移动而得到的几何体。

圆柱的底面是一个圆,上下底面平行且相等,侧面是一个矩形。

通常情况下,我们所说的圆柱指的是直圆柱,即底面和侧面直角相交的圆柱。

圆柱的性质:1. 圆柱的侧面是一个矩形,其面积等于底面周长乘以高度。

2. 圆柱的体积等于底面积乘以高度,即V=πr^2*h。

3. 圆柱的表面积等于两个底面积之和加上侧面积,即S=2πr^2+2πrh。

二、圆锥的定义和性质圆锥是由一个直角三角形绕着它的一个直角边旋转一周而得到的几何体。

圆锥的侧面是一个由母线和母线上一点到底面的连线组成的扇形。

通常情况下,我们所说的圆锥指的是直圆锥,即底面圆和侧面直角相交的圆锥。

圆锥的性质:1. 圆锥的侧面是一个扇形,其面积等于底面周长乘以母线的一半。

2. 圆锥的体积等于1/3底面积乘以高度,即V=1/3πr^2*h。

3. 圆锥的表面积等于底面积加上底面到顶点的母线所绕成的曲面积,即S=πr^2+πrl。

三、圆柱和圆锥的应用1. 圆柱和圆锥在日常生活中有着广泛的应用,比如有些容器的外形就是圆柱或者圆锥;例如筒形创可贴盒,花瓶,饮料瓶等。

2. 圆柱和圆锥的公式和计算方法可以用来解决一些实际问题,比如计算容器的容积和表面积,计算油桶的容量,设计工程建筑结构等。

3. 圆柱和圆锥的几何图形在工程实践中也有着广泛的应用,比如圆柱形的桥墩,圆锥形的喷水池等。

四、圆柱和圆锥知识点的考点在中学数学课本和考试中,圆柱和圆锥作为基础几何图形经常出现,特别是在解题和推导中经常需要用到它们的性质和公式。

掌握好圆柱和圆锥的知识对于初中数学的学习和考试成绩至关重要。

总结通过对圆柱和圆锥的定义、性质、公式和应用等方面的了解,我们可以更好地理解这两种几何图形的特点和作用,进而提高我们的数学运算能力和解决实际问题的能力。

在学习和应用过程中,我们要注重在不断的练习和实践中巩固这些知识,才能更好地应用它们解决实际问题,提高数学素养。

圆柱体与圆锥体知识点

圆柱体与圆锥体知识点

圆柱体与圆锥体知识点圆柱体与圆锥体是几何学中的重要概念,它们在日常生活和工程设计中都有广泛的应用。

本文将详细介绍圆柱体与圆锥体的定义、性质、公式及其应用。

一、圆柱体的定义和性质圆柱体是由两个平行且相等的圆面和它们之间的侧面组成的几何体。

圆柱体的侧面是一个矩形,其两条边分别与两个圆面的切线垂直相交。

以下是圆柱体的一些性质:1. 所有生成圆柱体的平行直线都与底面圆相切。

2. 圆柱体的两个底面圆半径相等。

3. 圆柱体的侧面积等于底面周长乘以高度。

4. 圆柱体的体积等于底面积乘以高度。

二、圆柱体的公式1. 底面积公式:圆柱体的底面积等于底面圆的半径平方乘以π。

公式表示为:底面积= πr^2,其中r为底面圆的半径。

2. 侧面积公式:圆柱体的侧面积等于底面周长乘以高度。

公式表示为:侧面积= 2πrh,其中r为底面圆的半径,h为圆柱体的高度。

3. 全面积公式:圆柱体的全面积等于底面积加上两倍的侧面积。

体的高度。

4. 体积公式:圆柱体的体积等于底面积乘以高度。

公式表示为:体积 = 底面积 × h,其中h为圆柱体的高度。

三、圆锥体的定义和性质圆锥体是由一个圆锥面和一个平面封闭的几何体。

圆锥体的底面是一个圆,其顶点与底面圆的中心相连。

以下是圆锥体的一些性质:1. 所有生成圆锥体的平行直线都与底面圆相交。

2. 圆锥体的侧面积等于底面周长乘以母线长。

3. 圆锥体的体积等于底面积乘以高度除以3。

四、圆锥体的公式1. 底面积公式:圆锥体的底面积等于底面圆的半径平方乘以π。

公式表示为:底面积= πr^2,其中r为底面圆的半径。

2. 侧面积公式:圆锥体的侧面积等于底面周长乘以母线长除以2。

公式表示为:侧面积= πrl/2,其中r为底面圆的半径,l为母线长。

3. 全面积公式:圆锥体的全面积等于底面积加上侧面积。

公式表示为:全面积= πr(r+l),其中r为底面圆的半径,l为母线长。

4. 体积公式:圆锥体的体积等于底面积乘以高度除以3。

六年级数学下册圆柱与圆锥知识点总结(全面)

六年级数学下册圆柱与圆锥知识点总结(全面)

圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

B、不沿着高展开,展开图形是平行四边形或不规则图形。

C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。

长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

圆柱和圆锥的知识点归纳

圆柱和圆锥的知识点归纳

圆柱和圆锥的知识点归纳圆柱和圆锥是几何学中重要的几何体,它们的形状和性质在我们日常生活和工作中都有广泛的应用。

本文将对圆柱和圆锥的知识点进行归纳和概述。

一、圆柱的概念与性质圆柱是由一个圆在平行于其所在平面的平面上作直线运动而生成的几何体。

圆柱的形状特点是上下底面均为同心圆,且其侧面由平行于底面的直线段组成。

1. 底面与高度:圆柱的底面是一个圆,圆柱的高度是连接底面圆心的直线段。

底面和高度决定了圆柱的大小和形状。

2. 侧面与母线:圆柱的侧面是由底面圆上的点沿着底面的圆弧上升或下降所得到的轨迹线。

连接两个底面圆心的直线称为圆柱的母线,且与侧面平行。

3. 表面积和体积:圆柱的表面积等于两个底面的周长和侧面的面积之和。

圆柱的体积等于底面的面积乘以高度。

二、圆锥的概念与性质圆锥是由一个圆在平行于其所在平面且以一点为中心的射线上作直线运动而生成的几何体。

圆锥的形状特点是一个底面为圆的尖锐或钝角三维图形。

1. 底面与高度:圆锥的底面是一个圆,圆锥的高度是连接底面圆心和尖点的直线段。

底面和高度决定了圆锥的大小和形状。

2. 侧面与母线:圆锥的侧面是由底面圆上的点沿着射线上升或下降所得到的轨迹线。

连接底面圆心和尖点的直线称为圆锥的母线,且与侧面相交于一点。

3. 表面积和体积:圆锥的表面积等于底面的面积和与底面相交的侧面的面积之和。

圆锥的体积等于底面的面积乘以高度再除以3。

三、圆柱和圆锥的应用圆柱和圆锥在日常生活和工作中都有广泛的应用,以下列举几个常见的应用场景:1. 圆柱:饮水机、水管、葱、铅笔、调酒器等均采用了圆柱体的形状。

此外,圆柱的性质使得它在数学和物理中也有重要的应用,如圆柱体积公式在计算液体容量和体积问题中的应用。

2. 圆锥:喇叭、冰淇淋圆锥、圆锥形山顶等都是圆锥体的应用。

在工程和建筑领域,常常使用圆锥体来设计锥形物体以提高流体的效率和流动性。

四、圆柱和圆锥的相关定理在研究圆柱和圆锥的性质时,我们还需要了解一些相关的定理,它们对于解决具体问题具有指导作用。

圆柱和圆锥知识点归纳总结

圆柱和圆锥知识点归纳总结

圆柱和圆锥知识点归纳总结一、圆柱1.定义及性质圆柱是由一个平行于底面的曲线(母线)围绕着一个平行于母线的轴旋转而成的立体图形。

圆柱具有以下性质:a.圆柱的底面是一个圆,轴与底面圆相交于圆心。

b.圆柱的侧面是一个长方形,其面积等于底面圆的周长乘以母线的长度。

c.圆柱的体积等于底面圆的面积乘以母线的长度。

2.圆柱的表面积和体积计算公式a. 表面积计算公式:S = 2πr² + 2πrh,其中r为底面圆半径,h为母线的长度。

b.体积计算公式:V=πr²h,其中r为底面圆半径,h为母线的长度。

3.圆柱的投影a.圆柱的平行截面是一个与底面圆相似的圆。

b.圆柱的垂直截面是一个矩形。

4.圆柱的应用a.圆柱广泛应用于日常生活中的容器,如杯子、筒子、桶等。

b.圆柱也是建筑中常用的结构形式,如圆柱形的支柱、柱子等。

二、圆锥1.定义及性质圆锥是由一个平行于底面的点(顶点)与一个与底面相交的曲线(母线)围成的立体图形。

圆锥具有以下性质:a.圆锥的底面是一个圆,顶点与底面圆的圆心相重。

b.圆锥的侧面是一个三角形,其面积等于底面圆的周长乘以母线的长度的一半。

c.圆锥的体积等于底面圆的面积乘以母线的长度的一半。

2.圆锥的表面积和体积计算公式a. 表面积计算公式:S = πr² + πrl,其中r为底面圆半径,l为母线的长度。

b.体积计算公式:V=1/3πr²h,其中r为底面圆半径,h为母线的长度。

3.圆锥的投影a.圆锥的平行截面是与底面圆相似的圆。

b.圆锥的垂直截面是一个等腰三角形。

4.圆锥的应用a.圆锥广泛应用于日常生活中的容器,如冰淇淋蛋筒。

b.圆锥也是建筑中常用的结构形式,如锥形的尖塔、圆锥形的钟楼等。

总结:圆柱和圆锥是几何学中重要的几何体,具有许多相似的性质和计算公式。

它们在日常生活和建筑中有着广泛的应用,对于理解立体几何形状和计算体积、表面积都具有重要意义。

深入学习和理解圆柱和圆锥的知识,有助于解决实际问题和提升数学能力。

圆柱和圆锥知识点总结

圆柱和圆锥知识点总结

圆柱和圆锥知识点总结一、圆柱的定义和性质1.定义:圆柱是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。

2.元素:圆柱由两个平行的底面、两个底面之间的侧面和两个底面的圆所组成。

3.特点:(1)底面积相等:圆柱的两个底面积相等。

(2)高度:圆柱的高度是连接两个底面的垂直线段。

(3)侧面积:圆柱的侧面积等于底面周长乘以高度。

(4)体积:圆柱的体积等于底面积乘以高度。

(5)闭曲面:圆柱的底面和侧面构成闭合的曲面。

4.圆柱的投影:圆柱的投影形态为一个矩形。

二、圆锥的定义和性质1.定义:圆锥是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。

2.元素:圆锥由一个底面、一个尖顶和底面与尖顶之间的侧面组成。

3.特点:(1)底面:圆锥的底面是一个圆。

(2)高度:圆锥的高度是连接底面和尖顶的垂直线段。

(3)侧面:圆锥的侧面是由底面上任意一点到尖顶的直线构成。

(4)侧面积:圆锥的侧面积等于圆周长乘以半斜高。

(5)体积:圆锥的体积等于底面面积乘以高度再除以3(6)闭曲面:圆锥的底面和侧面构成闭合的曲面。

4.圆锥的投影:圆锥的投影形态为一个三角形。

三、圆柱和圆锥的应用1.圆柱的应用:圆柱广泛应用于各个领域,如:(1)建筑:柱子、立柱、柱圈等结构都是圆柱体的应用。

(2)机械:轴、销、滚筒等都是圆柱体的应用。

(3)制造:瓶子、罐子、圆筒形容器等都是圆柱体的应用。

(4)数学:柱体的几何性质是数学中的重要内容,如计算底面积、侧面积、体积等。

(5)其他:圆柱的轴对称性质也常用于解决几何问题。

2.圆锥的应用:圆锥也有广泛的应用,如:(1)建筑:塔、锥形屋顶、圆锥形尖塔等都是圆锥体的应用。

(2)环境工程:漏斗、喷泉、喷水池等都是圆锥体的应用。

(3)制造:圆锥形工件的制造是机械加工中常见的任务。

(4)数学:圆锥的几何性质也是数学中的重要内容,如计算底面积、侧面积、体积等。

(完整版)圆柱与圆锥知识点总结

(完整版)圆柱与圆锥知识点总结

圆柱与圆锥总结练习知识点一:关于圆柱展开图1、下面()图形是圆柱的展开图。

(单位:cm)2、一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。

3、做一个底面直径是20厘米,高是50厘米的圆柱形通风管,至少需要_________平方厘米的铁皮。

知识点二:圆柱的侧面积,表面积以及应用侧面积C侧= 底面积S底=表面积S表=实际计算中很多时候计算表面积时,很多时候只要求计算侧面积或者底面积只算一个。

4、一个圆柱的展开图如图所示,求该圆柱的表面积。

5、旋转得到的圆柱。

如图长方形绕过中心的直线旋转一周得到一个圆柱体,已知长方形的长为20厘米,宽是10厘米,求圆柱体的表面积。

6、会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?7、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?8、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。

如果每分转动5周,每分可以压多大的路面?知识点三、圆柱的体积以及应用体积V柱=圆柱的体积与容积,以及根据体积求质量等问题9、(1)直角三角形的两条边分别是6cm和7cm。

(2)长方形的长是10厘米,宽是5厘米,绕过中点的直线旋转一圈。

知识点四、圆锥的体积以及应用体积V柱=圆锥的体积与容积,以及根据体积求质量等问题10、一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米?知识点五、圆柱圆锥体积之间的关系,底面积,体积比的问题①如果圆柱与圆锥等底等高,圆柱的体积是圆锥的②如果圆柱与圆锥体积相等,高相等,则圆锥的底面积是圆柱的③如果圆柱与圆锥体积相等,底面积相等,则圆锥的高是圆柱的11、一个圆柱体橡皮泥,底面积是12平方厘米,高4厘米,把它捏成:(1)底面积不变的圆锥,圆锥的高是多少?(2)高不变的圆锥,圆锥的底面积是多少?(3)底面积是8平方厘米的圆锥,高是多少?12、一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器内,水深是多少分米?13、有一段钢可做一个底面直径8厘米,高9厘米的圆锥形零件.如果把它改制成高是12厘米的圆柱形零件,零件的底面积是多少平方厘米?知识点六、体积单位,表面积单位之间的互换,以及常见立体图形的体积表面积问题表面积单位:平方厘米平方分米平方米(进率是10*10=100)体积单位:立方厘米立方分米立方米(进率是10*10*10=1000)表面积是所有表面的面积的总和,算出各个面的面积求和即可长方形面积= 正方形面积= 三角形面积=平行四边形面积= 梯形面积=体积:所有立体图形的体积都可以用底面积×高求解,各个立体图形也有自己的体积公式。

圆柱和圆锥有关知识点总结(完整版)

圆柱和圆锥有关知识点总结(完整版)

圆柱和圆锥有关知识点一、在下图中,标出圆柱和圆锥各部分名称.二、基本公式1、圆的知识圆的周长=直径×π=半径×2×πC=πd =2πr逆推公式有:直径=圆的周长÷πd =C÷π半径=圆的周长÷π÷2r =C÷π÷2圆的面积=半径的平方×πS=πr 22、圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体就是圆柱。

(1)圆柱的侧面积=底面周长×高S 侧=C h 逆推公式有:圆柱的高=圆柱的侧面积÷底面周长h=S 侧÷C 圆柱的底面周长=圆柱的侧面积÷高C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2S 表=S 侧+2S 底(实际情况实际分析)(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长=高时,展开后是正方形)。

(4)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

圆柱的体积=底面积×高V 柱=S h=πr 2h 逆推公式有:圆柱的高=圆柱的体积÷底面积h=V 柱÷S 圆柱的底面积=圆柱的体积÷高S=V 柱÷h这个长方形的长就是圆柱的底面周长,宽就是圆柱的高(4)半个圆柱的表面积=侧面积÷2+一个底面积+直径×高(半个侧面积+两个半圆+1个长为高,宽为直径的长方形)14圆柱的表面积=侧面积÷4+半个底面积+半径×高×2(直径×高)(14个侧面积+一个半圆+2个长为高,宽为半径的长方形)考试常见题型:a.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长;、b.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;d.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积;e.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积。

圆柱和圆锥有关知识点总结

圆柱和圆锥有关知识点总结

圆柱和圆锥有关知识点总结一、圆柱的基本概念和性质:1.圆柱是由在同一平面内的两个平行圆底面及连接两个底面上相应点的全等矩形侧面所围成的立体。

2.圆柱的两个底面可以是正圆、椭圆或其他形状的圆。

3.圆柱的高是连接两个底面中心的线段,它垂直于底面。

4.圆柱的侧面是由无数个平行于底面的矩形所组成的,这些矩形的长和宽相等,相互平行。

5.圆柱的体积可以用公式V=πr²h来计算,其中r是底面的半径,h是高。

6. 圆柱的表面积可以用公式A=2πrh+2πr²来计算,其中r是底面的半径,h是高。

7. 圆柱的侧面积可以用公式A=2πrh来计算,其中r是底面的半径,h是高。

二、圆锥的基本概念和性质:1.圆锥是由一个圆锥面和一个底面围成的立体。

2.圆锥的侧面是由圆锥顶点和底面上的点连成的直线所围成的。

3.圆锥的高是从顶点到底面的垂直线段。

4.圆锥的底面可以是正圆、椭圆或其他形状的圆。

5.圆锥的体积可以用公式V=1/3πr²h来计算,其中r是底面的半径,h是高。

6.圆锥的表面积可以用公式A=πr(r+√(r²+h²))来计算,其中r是底面的半径,h是高。

7. 圆锥的侧面积可以用公式A=πrl来计算,其中r是底面的半径,l是斜高。

三、圆柱和圆锥的关系:1.圆柱可以看作是一个顶点在无穷远处的圆锥。

2.当圆锥的底面特殊情况为正圆时,圆锥就变成了一种特殊的圆锥,叫做正圆锥。

3.圆柱和圆锥具有相似的性质和定理。

四、圆柱和圆锥的应用:1.圆柱常见于烟囱、水塔、油罐等工程结构中,它们的稳定性和容积是设计中需要考虑的因素。

2.圆锥常见于类似圆锥帽、纸杯等锥形物体中,它的形状使得液体或粉末在流动时更加顺畅,还可以减少浪费。

3.圆锥体积和表面积的计算在数学和物理学中有广泛的应用,例如在力学、流体力学、建筑设计等领域中。

5.圆锥的展开图在纸模制作、制作帽子等方面有应用。

通过以上总结,我们对圆柱和圆锥的基本概念、性质和应用有了更深入的理解。

圆柱圆锥复习总结 常考题归纳 知识点

圆柱圆锥复习总结 常考题归纳 知识点

圆柱圆锥常考题型归纳一,公式转换1.基本公式:圆柱:体积:圆锥:体积:侧面积:底面积:底面积:底面周长:表面积:底面周长:2.基本题型1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?3.把体积是282.6平方厘米的铁块熔铸成底面半径为6平方厘米的圆锥型零件,求该零件高是多少?二,切割问题,表面积增加或减少1.基本公式:增加的面数+每个面的面积= 增加的表面积切割面(增加的面)=底面2.基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20平方分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?三.放入或拿出物体,水面上升或下降。

1. 基本公式:水面上升(下降)的高度×容器的底面积=物体的体积溢出的水的体积=物体的体积2.基本题型:1.一个圆柱桶半径是5分米,把一铁块拿出后,水面下降3分米,求铁块体积?2.如图所示,一个底面直径为20厘米的装有水的圆柱体容器,水中浸没着一个底面直径为12厘米、高为15厘米的圆锥体铅锤,当铅锤从水中取出后,容器中的水下降了多少厘米?3.在直径为20里面的圆柱容器中,放入半径为3厘米的圆锥,水面上升0.3厘米,求圆锥的高是多少?4.一个圆柱体水桶,底面半径为20厘米,盛有80厘米深的水,现将一个底面周长为62.8厘米的圆锥体铁块完全沉入水桶里,水比原来上升了1/16。

问圆锥体铁块的高是多少厘米?四.高增加或减少,侧面积增加或减少问题1.关键点:A.画出展开图B.圆柱底面周长=长方形的长圆柱高=长方形的宽C.当圆柱底面周长=圆柱高时,圆柱展开是一个正方形2.基本题型:1.一圆柱的高减少2厘米,侧面积就减少50.24平方厘米,求圆柱体积减少多少?2一个圆柱展开是正方形,如果圆柱高增加2厘米,侧面积就增加12.56平方厘米,求圆柱原来的侧面积是多少?3.一个圆柱体,已知高度每增加1厘米,它的侧面积就增加31.4平方厘米,如果高是16厘米,则它的体积是多少立方厘米?五,抓住体积不变类题型1.基本考点:用沙堆铺路,粮食的转换,钢铁铸造等2.基本题型:1.一个沙堆高2米,底面半径是10分米,用这堆沙铺宽1米,厚2厘米的路,可以铺多少米?2.一个高度为30厘米,底面直径为2分米的圆锥体容器内盛满水,将水倒入底面直径是4分米的圆柱体容器,此时水的高度是多少厘米?六,圆锥圆柱的转换关系1.基本关系:等底等高:圆柱体积=3圆锥体积等体积:圆锥:底面积(倍)×高(倍)=3倍1圆柱与圆锥等底等高,圆柱体积比圆锥体积大36立方分米,圆柱与圆锥体积各是多少?2.一个圆锥和一个圆柱等底等高,且两个物体的体积之和为30立方厘米,则这两个物体的体积之差是多少立方厘米?3.将一个底面半径是3分米,高是6分米的圆柱木料削成一个最大的圆锥,至少要削去多少立方分米的木料?。

(完整版)圆柱圆锥知识点总结

(完整版)圆柱圆锥知识点总结
答:做这样一个水桶,至少需用铁皮5416.5平方厘米。
例7、(考点透视)一个圆柱的侧面积展开是一个边长15.7厘米的正方形。这个圆柱的表面积是多少平方厘米?
分析与解:圆柱的侧面积展开是一个正方形,即圆柱的高和底面周长都是15.7厘米。根据圆柱的底面周长可以算出底面积。
解答:底面半径:15.7 ÷ 3.14 ÷ 2 = 2.5(厘米)
圆柱:底面周长 3.14 × 3 × 2 = 18.84(厘米)
底面积 3.14 × 3²=28.26(平方厘米)
圆锥:底面周长 3.14 × 10 = 31.4(米)
底面积 3.14 ×(10÷2)²=78.5(平方米)
点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算。
底面积:3.14 × 2.5²=19.625(平方厘米)
侧面积:15.7 × 15.7 = 246.49(平方厘米)
表面积:19.625 × 2 + 246.49 = 285.74(平方厘米)
答:这个圆柱的表面积是285.74平方厘米。
例8、(考点透视)一个圆柱形的游泳池,底面直径是10米,高是4米。在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?
表面积:0.2826 × 2 + 1.884 = 2.4492(平方米)≈ 3(平方米)
答:至少需要铁皮3平方米。
点评:这里不能用四舍五入法取近似值。因为在实际生活中使用的材料要比计算得到的结果多一些。因此这儿保留整数,十分位上虽然是4,但也要向个位进1。
例6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30厘米,高是50厘米。做这样一个水桶,至少需用铁皮6123平方厘米。
下面( )图形旋转会形成圆柱。

人教版六年级下册数学单元知识点归纳——第三单元圆柱与圆锥

人教版六年级下册数学单元知识点归纳——第三单元圆柱与圆锥

3圆柱与圆锥一、圆柱的认识1. 生活中有很多物体是圆柱形的,如茶叶桶、蜡烛、罐头盒等。

2.圆柱的特点 :圆柱是由 3 个面围成的。

它的上、下两个......面叫做底面。

圆柱四周的面(上、下底面除外)叫做侧面。

圆柱....的两个底面之间的距离叫做高,圆柱有无数条高。

........3.圆柱的上、下底面是完整同样的两个圆。

圆柱的侧面.....是一个曲面 ,沿高睁开后是一个长方形(或正方形 ),这个长方形.............................(或正方形 )的长 (或边长 ) 等于圆柱的底面周长,宽 (或边长 ) 等于...............................圆柱的高。

.....4.把一张长方形的硬纸贴在木棒上 ,迅速转动木棒 ,长方形硬纸形成的图形就是圆柱。

二、圆柱的表面积1.圆柱的侧面积 =底面周长×高 ,用字母表示 :S侧=Ch。

假如..................提示 :假如沿一条斜线将圆柱的侧面睁开 ,它的侧面会是一个平行四边形 ,圆柱的底面周长是平行四边形的底 ,圆柱的高是平行四边形的高。

注意 :圆柱的侧面睁开不行能获得梯形。

已知底面直径 ,底面周长的计算公式是C=πd,圆柱的侧面积公式就是 S 侧=πdh;假如已知底面半径,底面周长的计算公式就是......C=2πr ,圆柱的侧面积公式就是S 侧=2πrh 。

.......2.圆柱的表面积 =侧面积 +底面积×2,用字母表示为S表..................=Ch 2 πr .。

+2.......三、圆柱的体积1.圆柱所占空间的大小 ,叫做这个圆柱的体积。

2.圆柱体积的推导过程 :把一个圆柱的底面沿半径分红若干个相等的扇形,依据平分线沿着圆柱的高把它们切开后,能够提示 :在实质中 ,不是全部的圆柱形物体都有两个底面 ,要详细问题详细剖析。

比如 :求一段排气筒的表面积就是求圆柱的侧面积 ,求一个水桶的表面积就是求圆柱的侧面积和一个底面积的和。

圆柱圆锥

圆柱圆锥

圆柱和圆锥有关知识点一、圆柱和圆锥各部分的名称以及特征1、圆柱(1)认识圆柱各部分的名称:上下两个圆面叫做底面,圆柱的周围叫侧面,圆柱两个底面之间的距离叫做高。

(2)圆柱的特征:圆柱的上下底面是两个圆,它们是完全相同的;圆柱的侧面是曲面;圆柱的高有无数条,高的长度都相等。

(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长与高相等时,展开后是正方形)。

这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

2. 圆锥(1)认识圆锥各部分的名称:下面一个圆面叫做底面,它周围叫侧面,从圆锥的顶点到底面圆心的距离叫做高。

(2)圆锥的特征圆锥的底面都是一个圆。

圆锥的侧面是曲面。

一个圆锥只有一条高。

(3)圆锥的侧面沿着一条母线展开后是一个扇形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。

(如下图所示)二、基本公式1、圆的知识圆的周长=直径×π=半径×2×πC=πd =2πr逆推公式有:直径=圆的周长÷π d = C÷π半径=圆的周长÷π÷2 r = C÷π÷2圆的面积=半径的平方×π=(直径÷2)2×π=(圆的周长÷π÷2)2×πS=πr2=(d÷2)2×π=(C÷π÷2)2×π2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。

圆柱的侧面积=底面周长×高=直径×π×高=半径×2×π×高S 侧=C h=πd h=2πr h逆推公式有:圆柱的高=圆柱的侧面积÷底面周长=圆柱的侧面积÷(π×高)=圆柱的侧面积÷(半径×2×π)h=S 侧÷C圆柱的底面周长=圆柱的侧面积÷高 C =S 侧÷h(2)圆柱的表面积=圆柱的侧面积+圆柱的底面积×2 S表=S 侧+2S底(3) 圆柱的体积=底面积×高V柱=S h=πr2 h逆推公式有:圆柱的高=圆柱的体积÷底面积h=V柱÷S圆柱的底面积=圆柱的体积÷高h=V柱÷S3 ( 1 )如果圆柱的侧面展开是一个正方形,那么这个圆柱的高和底面周长相等。

圆柱与圆锥知识点总结

圆柱与圆锥知识点总结

圆柱与圆锥知识点总结一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

C.无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h =2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2 = 2πr×h + 2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。

长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h =πr2 hh =V柱÷S=V柱÷(πr2)S=V柱÷h5、.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:a 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

圆柱圆锥三角形知识点总结

圆柱圆锥三角形知识点总结

圆柱圆锥三角形知识点总结一、圆柱的相关知识点总结圆柱是一种几何图形,它的侧面是一个矩形,两个底面是两个同心圆。

圆柱的性质如下:1. 定义:圆柱是以一个平行于底面的圆形截面作为侧面的几何体。

2. 侧面积:圆柱的侧面积可以通过计算圆的周长乘以圆柱的高来得到,公式为:2πrh。

3. 体积:圆柱的体积可以通过计算圆的面积乘以圆柱的高来得到,公式为:πr²h。

4. 斜高:圆柱的斜高是指从顶点到底面的最短距离,它可以通过勾股定理计算得到,公式为:l = √(r²+h²)。

5. 表面积:圆柱的表面积可以通过计算两个底面的面积、侧面的面积来得到,公式为:2πr² + 2πrh。

圆柱的应用非常广泛,例如筒形容器、圆柱体的地基等都是我们日常生活中经常接触到的。

在工程学和物理学中,圆柱也有着重要的应用,例如在制造轴承和液压缸等方面。

二、圆锥的相关知识点总结圆锥是一种几何图形,它的侧面是一个扇形,底面是一个圆。

圆锥的性质如下:1. 定义:圆锥是以一个平行于底面的圆形截面作为侧面的几何体。

2. 侧面积:圆锥的侧面积可以通过计算圆的周长乘以圆锥的斜高来得到,公式为:πrl。

3. 体积:圆锥的体积可以通过计算圆的面积乘以圆锥的高再除以3来得到,公式为:πr²h/3。

4. 斜高:圆锥的斜高是指从顶点到底面的最短距离,它可以通过勾股定理计算得到,公式为:l = √(r²+h²)。

5. 表面积:圆锥的表面积可以通过计算底面的面积、侧面的面积来得到,公式为:πr² +πrl。

圆锥也有着广泛的应用,例如圆锥体的几何学应用主要是围绕圆锥形的断面和体积展开。

在建筑学、雕塑和工程学中,圆锥也有着重要的应用。

例如在建筑学中,尖顶的教堂和塔楼就是圆锥的应用。

三、三角形的相关知识点总结三角形是一种几何图形,它有三条边和三个角。

三角形的性质如下:1. 定义:三角形是由三条线段连接成的图形,它的内角之和为180度。

圆柱和圆锥的知识点总结

圆柱和圆锥的知识点总结

圆柱和圆锥的知识点总结一、圆柱的知识点总结1.1 定义圆柱是由两个平行的圆柱底面和连接两个底面的矩形侧面组成的几何图形。

其中,底面的圆称为底圆,连接两个底面的矩形侧面称为侧面。

1.2 性质(1)圆柱的两个底面分别为底圆,它们的直径相等;(2)圆柱的侧面是一个矩形,其长和宽分别为圆的周长和平行于底面直线的高;(3)圆柱的高是连接两个底面的垂直距离;(4)圆柱的体积等于底面积乘以高,表达式为V = πr^2h;(5)圆柱的表面积等于底面积加上两个底面的面积,表达式为S = 2πr^2 + 2πrh。

1.3 公式(1)圆柱的体积计算公式为V = πr^2h;(2)圆柱的表面积计算公式为S = 2πr^2 + 2πrh。

1.4 应用圆柱广泛应用于工程、建筑、制造等领域,例如建筑中的柱子、喷水器中的水柱、饮料瓶、桶等。

二、圆锥的知识点总结2.1 定义圆锥是由一个圆锥底面和连接该底面的直母线面组成的几何图形。

其中,底面的圆称为底圆,连接底面和尖点的直线称为直母线。

2.2 性质(1)圆锥的底面为底圆;(2)圆锥的侧面是一个扇形;(3)圆锥的高是直母线的长度;(4)圆锥的体积等于底面积乘以高再除以3,表达式为V = (1/3)πr^2h;(5)圆锥的侧面积等于底面积乘以斜高的一半,表达式为S = πrl。

2.3 公式(1)圆锥的体积计算公式为V = (1/3)πr^2h;(2)圆锥的侧面积计算公式为S = πrl。

2.4 应用圆锥也广泛应用于工程、建筑、制造等领域,例如建筑中的圆锥形塔尖、火箭的锥体、喇叭等。

三、圆柱和圆锥的比较3.1 相同之处(1)都由圆面和侧面组成;(2)都有底面积和侧面积;(3)都有体积。

3.2 不同之处(1)形状不同:圆柱的底面是圆形,侧面是矩形;圆锥的底面是圆形,侧面是扇形;(2)体积计算公式不同:圆柱的体积公式为V = πr^2h,圆锥的体积公式为V =(1/3)πr^2h;(3)侧面积计算公式不同:圆柱的侧面积公式为S = 2πrh,圆锥的侧面积公式为S = πrl。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱和圆锥有关知识点
( 3)圆锥的侧面沿着一条母线展开后是一个扇
一、圆柱和圆锥各部分的名称以及特征
1、圆柱
(1)认识圆柱各部分的名
称:上下两个圆面叫做底
面,
圆柱的周围叫侧面,
圆柱两个底面之间的距离叫做高。

(2)圆柱的特征:
圆柱的上下底面是两个圆,它们是完全相同
的;圆柱的侧面是曲面;圆柱的高有无数条,高
的长度都相等。

(3)沿高剪开:圆柱的侧面展开后是长方形(当
圆柱底面周长与高相等时,展开后是正方形)。

这个长方形的长就是圆柱底面的周长,宽就
是圆柱的高。

2.圆锥
( 1)认识圆锥各部分的名称:
下面一个圆面叫做底面,它周围叫侧面,从圆锥
的顶点到底面圆心的距离叫做高。

(2)圆锥的特征
圆锥的底面都是一个圆。

圆锥的侧面是曲面。


个圆锥只有一条高。

形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。

(如下图所示)
二、基本公式
1、圆的知识
圆的周长 =直径×π =半径× 2×π
C=π d =2 π r
逆推公式有:
直径 =圆的周长÷π
d = C ÷π
半径 =圆的周长÷π÷ 2
r = C ÷π÷ 2
圆的面积 =半径的平方×π
=(直径÷ 2)2×π
=(圆的周长÷π÷ 2)2×π
S=π r 2
=( d÷ 2)2×π
=( C÷π÷ 2)2×π
2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,
得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。

圆柱的侧面积 =底面周长×高
=直径×π×高
=半径× 2×π×高
S 侧=C h=π d h=2 πr h
逆推公式有:
圆柱的高 =圆柱的侧面积÷底面周长
=圆柱的侧面积÷(π×高)
=圆柱的侧面积÷(半径×2×π)
h=S 侧÷ C
圆柱的底面周长 =圆柱的侧面积÷高
C =S 侧÷ h 5、等底等高情况下,圆柱体积是圆锥体积的 3倍。

1 等底等高的情况下,圆锥体积是圆柱体积的
(2)圆柱的表面积
=圆柱的侧面积+圆柱的底面积×2 S 表=S 侧 +2S底等底等高的情况下,圆锥体积比圆柱体积少
3
2
3
(3)圆柱的体积 =底面积×高
V 柱=S h=πr 2 h
逆推公式有:
圆柱的高 =圆柱的体积÷底面积
h=V柱÷ S
圆柱的底面积 =圆柱的体积÷高
h=V柱÷ S
3 ( 1 )如果圆柱的侧面展开是一个正方形,
那么这个圆柱的高和底面周长相等。

( 2 )半个圆柱的表面积
=侧面积÷ 2 +一个底面积+直径×高
1
(3) 4
圆柱的表面积
=侧面积÷ 4+半个底面积+直径×高
等底等高的情况下,圆柱体积比圆锥体积多2倍
6、等体积等高的圆柱和圆锥,圆锥底面积是
圆柱底面积的 3倍;
等体积等底面积的圆柱
和圆锥,圆锥的高是圆柱
高的 3倍。

7、圆柱的横切:切成 n 段,需要 n-1 次,增加 2 ×( n-1 )个底面积
8、圆柱的纵切:切 1次,增加 2个长方形,长方形的长是底面的直径,宽是圆柱的高
9、圆锥的纵切:切 1次,增加 2个三角形,三角形的底是圆锥的直径,
三角形的高是圆锥的高
10、把一个正方体削成一个最大的圆柱(或圆锥),正方体的棱长就是圆柱(或圆锥)的底
面直径和高。

4、圆锥的体积 =底面积×高×
V 锥= 1
Sh
3 逆推公式有:1
3
11、①熔铸(或铸成),体积不变。

②注水问题:上升的(或下降 ) 的水的体积
等于放入的的物体的体积。

( 完全浸没)
圆锥的高 =圆锥的体积× 3÷底面积h=V锥× 3÷S
圆锥的底面积 =圆锥的体积× 3÷高
S= V 锥× 3 ÷h 12.一个圆柱的侧面展开图是一个正方形,
说明底面周长和高的比是 1∶ 1,
半径和高的比是 1∶2π,
直径和高的比是 1∶π
13、当侧面积一定时,越是细、长的圆柱体积越小,越是粗、矮的圆柱体积越大。

相关文档
最新文档