函数恒成立、能成立问题及课后练习(含答案)
高考专题二 恒成立、能成立问题
24
所以当 g(m)=0 时,m=3a- 2 1, 同理可得 h(n)=f (n)-f (a)=16(n-a)2(2n+a-3), 所以当 h(n)=0 时,n=3-2 a, 所以此时 n-m=3-2 a-3a- 2 1=2-2a,即 n-m 的最大值为 2-2A.
返回导航
25
规律总结
“双变量”的恒(能)成立问题一定要正确理解其实质,深刻挖掘内含条件,进行等价 变换,常见的等价转换有
返回导航
6
若 a≤0,则 h′(x)=eax-ex+axeax<1-1+0=0,所以 h(x)在(0,+∞)上为减函数,所 以 h(x)<h(0)=0,即 f (x)<-1.
综上,a≤12.
返回导航
7
规律总结
利用导数解决不等式的恒成立或有解问题的主要策略:①构造函数,利用导数求出 最值,进而求出参数的取值范围;②分离变量,构造函数,直接把问题转化为函数的最 值问题.有些不易分参的也可采用“同构”技巧.
返回导航
22
(2)(2022·新疆乌鲁木齐二模)已知函数 f (x)=13x3-1+2 ax2+ax+1(a∈R). ①讨论函数 y=f (x)的单调性; ②设 a<1,若∀x1∈[m,n],∃x2∈[m,n],且 x1≠x2,使得 f (x1)=f (x2),求 n-m 的最大值.
解:①因为 f (x)=13x3-1+2 ax2+ax+1(a∈R),所以 f ′(x)=x2-(1+a)x+a=(x-1)(x -a),
第三章 一元函数的导数及其应用
专题二 恒成立、能成立问题
内容索引
第一部分 课时作业
命题角度 1 恒成立问题 【典例 1】 (2022·新高考Ⅱ卷)已知函数 f (x)=xeax-ex. (1)当 a=1 时,讨论 f (x)的单调性; (2)当 x>0 时,f (x)<-1,求 a 的取值范围.
第10讲 恒成立能成立3种常见题型(解析版)
第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。
函数恒成立、能成立问题及课后练习(含问题详解)
恒成立、能成立问题专题 一、基础理论回顾1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;二、经典题型解析题型一、简单型例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .例2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤;方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .例3、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为 答案:41≥m 题型二、更换主元和换元法例1、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;(Ⅱ)分析:在不等式中出现了两个字母:λ及t ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
函数恒成立问题专练(含详解)
函数恒成立问题专练(含详解)一、解答题(本大题共11小题,共132.0分)1.己知函数f(x)=log121−ax2x−1,a为常数.(1)若f(x)为奇函数;求a;(2)若对于x∈[32,52],不等式log12(2x+1)−m>(14)x−log2(2x−1)恒成立,求实数m∼的取值范围.2.设f(x)=log131−axx−1为奇函数,a为常数.(1)求a的值(2)若∀x∈[2,4],不等式f(x)+x>(13)x+m恒成立,求实数m的取值范围.3.已知函数f(x)=lg(10x+1)−12x,g(x)=9x−a3x,函数g(x)是奇函数.(1)判断函数f(x)的奇偶性,并求实数a的值;(2)若对任意的t∈(0,+∞),不等式g(t2+1)+g(−tk)>0恒成立,求实数k的取值范围;(3)设ℎ(x)=f(x)+12x,若存在x∈(−∞,1],使不等式g(x)>ℎ[lg(10b+9)]成立,求实数b的取值范围.4.已知函数f(x)=|ax2−1|−x2+ax,其中a≤1.(1)当a=1时,求函数f(x)的单调递减区间;(2)对满足f(x)有四个零点的任意实数a,当x∈[0,1]时,不等式f(x)≤m恒成立,求实数m的取值范围.5.设函数f(x)=a2x−(t−1)(a>0且a≠1)是定义域为R的奇函数.a x(1)求t的值;(2)若f(1)>0,求使不等式f(kx−x2)+f(x−1)<0对一切x∈R恒成立的实数k的取值范围;),是否存在正数m,且m≠1使函数f(kx−x2)+(3)若函数f(x)的图象过点(1,32f(x−1)<0在[1,log23]上的最大值为0,若存在,求出m的值,若不存在,请说明理由.6.已知函数f(x)=x2+(m−2)x−m,g(x)=f(x)x,且函数y=f(x−2)是偶函数.(1)求g(x)的解析式;.(2)若不等式g(sinx)−nsinx ≤0在(0,π2]恒成立,求实数n的取值范围;(3)若函数y=g(log2(x2+4))+k⋅2log2(x2+4)−9恰好有三个零点,求k的值及该函数的零点.7.已知函数f(x)=log2(x+2),g(x)=a⋅4x−2x+1−a+1.(1)求函数ℎ(x)=f(x)+f(x−6)的定义域,并判断其在定义域上单调性(无需证明);(2)若对任意的x1,x2∈[1,2],f(x1)<g(x2)恒成立,求a的取值范围.8. 已知函数f(x)=1+a (12)x+(14)x.(1)当a =1时,求f(x)的值域;(2)若f(x)≥−3对任意x ∈[0,+∞)恒成立,求实数a 的取值范围.9. 已知函数f(x)=4sin(x −π3)cosx +√3.(1)求函数f(x)的最小正周期;(2)若m −3<f(x)<m +3对任意x ∈(0,π2)恒成立,求实数m 的取值范围.10. 已知函数g (x )=ax 2−2ax +1+b (a >0)的定义域为[2,3],值域为[1,4];设f (x )=g (x )x.(1)求a,b 的值;(2)若不等式f (2x )−k ⋅2x ≥0在x ∈[−1,1]上恒成立,求实数k 的取值范围; (3)若f (|2x −1|)+k ⋅2|2x −1|−3k =0有三个不同的实数解,求实数k 的取值范围.)+6cos2x.11.函数f(x)=√3sin(2x−π3(Ⅰ)求函数f(x)的图象的对称轴方程;,0]时,不等式f2(x)−mf(x)+2m−7≤0恒成立,求m的取值范(Ⅱ)当x∈[−π3围.答案和解析1.解:(1)∵f(x)为奇函数,满足f(−x)=−f(x),则,∴1+ax−2x−1=2x−11−ax ,即(1+ax )(1−ax )=(1+2x )(1−2x ), 即1−a 2x 2=1−4x 2⇒a 2=4,当a =2时,对数函数的真数为−1,应舍去; 当a =−2时,f(x)=log 122x+12x−1,满足条件,∴a =−2;(2)由log 12(2x +1)−m >(14)x−log 2(2x −1),可得log 122x+12x−1−(14)x>m ,令g(x)=log122x+12x−1−(14)x,只需要g (x )min >m ,∵函数y =log 122x+12x−1=log 12(1+22x−1)在[32,52]上单调递增,y =−(14)x 在[32,52]上单调递增, ∴g (x )在[32,52]上单调递增, 则g(x)min =g(32)=−98. ∴m 的取值范围是m <−98.本题考查函数的奇偶性及复合函数的单调性,同时考查对数函数的性质及不等式恒成立问题,考查了学生的计算能力,培养了学生分析问题与解决问题的能力. (1)由奇函数的定义可求得a 值; (2)将原不等式恒成立转化为g(x)min>m ,其中g(x)=log 122x+12x−1−(14)x,根据复合函数单调性求出g(x)在区间[32,52]上的最小值得出m 的取值范围.2.解:(1)因为f(x)=log 131−axx−1为奇函数,得f(−x)+f(x)=0,log 131+ax −x−1+log 131−ax x−1=0,log 13(1+ax −x−1⋅1−ax x−1)=0,1+ax −x−1⋅1−ax x−1=1,1−a 2x 2=1−x 2,(a 2−1)x 2=0,因为x 2不恒为0,所以a 2−1=0,即a =±1,经检验,当a =1时,f(x)=log 131−xx−1显然没有意义,舍去,故a =−1;(2)由(1)得,f(x)=log 13x+1x−1=log 131+2x−1,利用复合函数的单调性,易得此函数在x ∈[2,4]上为增函数, 令g(x)=x −(13)x ,显然g(x)在x ∈[2,4]上为增函数, 故y =f(x)+x −(13)x 在x ∈[2,4]上为增函数, 而对∀x ∈[2,4],不等式f(x)+x >(13)x +m 恒成立,即m <(f(x)+x −(13)x )min =f(2)+2−(13)2=89,所以m <89.解析:本题考查函数的奇偶性和单调性,已知函数零点求参数,属较难题. (1)由题知函数为奇函数即f(−x)+f(x)=0求解即可;(2)由(1)知 f(x)=log 13x+1x−1=log 131+2x−1,利用复合函数的单调性,易得此函数在x ∈[2,4]上为增函数,而g(x)=x −(13)x ,在x ∈[2,4]上为增函数,y =f(x)+x −(13)x 在x ∈[2,4]上为增函数,结合∀x ∈[2,4],不等式f(x)+x >(13)x +m 恒成立,可得实数m 的取值范围.3.解:(1)由函数f(x)=lg(10x +1)−12x ,g(x)=9x −a 3x,可得f(x)和g(x)的定义域均为R ;∵f(−x)=lg(10−x +1)+12x=lg(110x +1)+12x =lg(1+10x 10x )+12x=lg(1+10x )−lg10x +12x =lg(1+10x )−12x =f(x), ∴f(−x)=f(x),则f(x)是偶函数; ∵函数g(x)是奇函数,g(x)的定义域为R ; ∴g(0)=0,即1−a 1=0,可得:a =1.经检验a =1时,g(x)是奇函数; 故a =1. (2)由(1)可得g(x)=9x −13x=3x −13x ,可知g(x)在R 上是单调增函数,且为奇函数,那么不等式g(t 2+1)+g(−tk)>0,可得g(t 2+1)>−g(−tk), 即g(t 2+1)>g(tk), ∴对任意的t ∈(0,+∞),不等式g(t 2+1)+g(−tk)>0恒成立, 等价于:t 2+1>tk 在t ∈(0,+∞)恒成立, 即t +1t >k 在t ∈(0,+∞)恒成立,由对勾函数的单调性可得,(t +1t )min =2, 故得k <2.∴实数k 的取值范围是(−∞,2).(3)由ℎ(x)=f(x)+12x ,得ℎ(x)=lg(10x +1), 那么:ℎ[lg(10b +9)]=lg(10lg(10b+9)+1) =lg(10b +9+1)=lg(10b +10),存在x ∈(−∞,1],不等式g(x)>ℎ[lg(10b +9)]成立, 即存在x ∈(−∞,1],3x −13x >lg(10b +10)成立, 可得(3x −13x )max >lg(10b +10), ∵g(x)在x ∈(−∞,1]上是单调增函数, ∴lg(10b +10)<g(1)=83,∴1083>10b +10,可得:b <1053−1,又∵{10b +9>010b +10>0,可得b >−910,所以实数b 的取值范围是(−910,1053−1).解析:本题考查了函数的奇偶性和单调性的应用,对数函数的性质,指数函数及其性质,属于中档题.(1)求解定义域,利用奇偶性定义判断即可;利用g(x)是奇函数求实数a 的值; (2)判断g(x)的单调性,利用单调性脱去“f ”,即可求解实数k 的取值范围; (3)由ℎ(x)=f(x)+12x ,求解ℎ(x),利用不等式g(x)>ℎ[lg(10b +9)]在x ∈(−∞,1]有解,可得实数b 的取值范围.4.解:(1)当a =1时,f(x)=|x 2−1|−x 2+x ={x −1,x ∈(−∞,−1]∪[1,+∞)−2x 2+x +1,−1<x <1由图知函数f(x)的单调递减区间为[14,1];(2)①当a =1时,由(1)知此时函数f(x)不满足要求.②当a ≤0时,f(x)=|ax 2−1|−x 2+ax =−ax 2+1−x 2+ax =−(a +1)x 2+ax +1,此时函数f(x)为二次或者一次函数,不满足要求. ③当0<a <1时,f(x)=|ax 2−1|−x 2+ax ={ −(a +1)x 2+ax +1,x ∈√a √a )(a −1)x 2+ax −1,x ∈(−∞,1√a )∪(1√a+∞)当x ∈√a√a )时,f(x)=−a(a +1)x 2+ax +1=[−(a +1)x −1](x −1),有两个零点x 1=−1a+1,x 2=1,均满足要求. 对称轴x =a2(a+1)=12−12(a+1)∈(0,12), 此时f(x)max =f(a2(a+1))=1+a 24(a+1). 当x ∈(−∞,√a)∪(√a+∞)时,f(x)=(a −1)x 2+ax −1,函数f(x)有两个零点,则△=a 2−4(1−a)=a 2+4a −4>0,得−2+2√2<a <1,对称轴x =−a2(a−1)=−12+12(1−a )>√2+1, 而√a <√2√2−1<√2+1,所以−2+2√2<a <1符合要求.当x ∈[0,1]时,f (x )max =f (a2(a+1))=1+a 24(a+1)=1+14(a +1+1a+1−2). 因为a ∈(−2+2√2,1),所以(a +1)∈(−1+2√2,2), 所以f (x )=1+14(a +1+1a+1−2)<98, 综上所述m ∈[98,+∞).解析:本题考查分段函数,函数单调性最值,二次函数,函数零点,基本不等式,不等式性质及恒成立问题,综合性较强,有一定的难度.(1)将a =1时,去绝对值符号可得f(x)解析式,根据图象可得f(x)的单调减区间; (2)对a 分类讨论,判断是否满足f(x)有四个零点,再将当x ∈[0,1]时,不等式f(x)≤m 恒成立转化为当x ∈[0,1]时,f(x)max ≤m 即可求解.5.(1)f(x)是定义域为R 的奇函数,∴f(0)=0,∴t =2; (2)由(1)得f(x)=a x −a −x ,∵f(1)>0得a −1a >0又a >0,∴a >1,由f(kx −x 2)+f(x −1)<0得f(kx −x 2)<−f(x −1), ∵f(x)为奇函数,∴f(kx −x 2)<f(1−x), ∵a >1∴f(x)=a x −a −x 为R 上的增函数,∴kx −x 2<1−x 对一切x ∈R 恒成立,即x 2−(k +1)x +1>0对一切x ∈R 恒成立, 故Δ=(k +1)2−4<0解得−3<k <1 (3)函数f(x)的图象过点(1,32),∴a =2,假设存在正数m ,且m ≠1符合题意,由a =2得:g(x)=log m [a 2x +a −2x −mf(x)] =log m [22x +2−2x −m(2x −2−x )] =log m [(2x −2−x )2−m(2x −2−x )+2]设t =2x −2−x 则(2x −2−x )2−m(2x −2−x )+2=t 2−mt +2, ∵x ∈[1,log 23],∴t ∈[32,83]记ℎ(t)=t 2−mt +2,∵函数g(x)=log m [a 2x +a −2x −mf(x)]在[1,log 23]上的最大值为0, 若0<m <1时,则函数ℎ(t)=t 2−mt +2在[32,83]有最小值为1 由于对称轴t =m 2<12,∴ℎmin (t)=ℎ(32)=174−32m =1⇒m =136,不合题意;(ⅱ)若m >1时,则函数ℎ(t)=t 2−mt +2>0在[32,83]上恒成立,且最大值为1,最小值大于0①{12<m 2≤2512ℎ(t)max =ℎ(83)=1⇒m =7324, 又此时m 2=7348∈[32,83],又ℎ(t)min =ℎ(7348)<0, 故g(x)在[1,log 23]无意义, 所以m =7324应舍去;②{m2>2512ℎ(t)max=ℎ(32)=1⇒{m >256m =136⇒m 无解,综上所述:故不存在正数m ,使函数g(x)=log m [a 2x +a −2x −mf(x)]在[1,log 23]上的最大值为0.解析:本题考查了奇函数的性质,利用函数的性质解抽象不等式,以及函数中的恒成立问题,属于难题.(1)由奇函数的性质可知f(0)=0,得出t =2;(2)由f(1)>0得a −1a >0又a >0,求出a >1,判断函数的单调性f(x)=a x −a −x 为R 上的增函数,不等式整理为x 2−(k +1)x +1>0对一切x ∈R 恒成立,利用判别式法求解即可;(3)把点代入求出a =2,假设存在正数m ,构造函数设t =2x −2−x 则(2x −2−x )2−m(2x −2−x )+2=t 2−mt +2,对底数m 进行分类讨论,判断m 的值.6. 解:(1)∵f(x)=x 2+(m −2)x −m ,∴f(x −2)=(x −2)2+(m −2)(x −2)−m =x 2+(m −6)x +8−3m . ∵y =f(x −2)是偶函数,∴m −6=0,∴m =6. ∴f(x)=x 2+4x −6, ∴g(x)=x −6x +4(x ≠0).(2)令sinx =t ,∵x ∈(0,π2],∴t ∈(0,1],不等式g(sinx)−nsinx ⩽0在(0,π2]上恒成立, 等价于g(t)−nt ⩽0在t ∈(0,1]上恒成立, ∴n ≥tg(t)=t 2+4t −6. 令ℎ(t)=t 2+4t −6,t ∈(0,1]. 则ℎ(x)max =ℎ(1)=−1, 所以n ≥−1.(3)令log 2(x 2+4)=p ,则p ≥2, 方程可化为: g(p)+k ·2p−9=0|,即p −6p+4+2k p−9=0,也即p 2−5p+(2k−6)p=0.又∵方程有三个实数根,∴p 2−5p+(2k−6)p=0有一个根为2,∴k =6.∴p 2−5p +6=0,解得p =2或p =3. 由,得x =0,由log 2(x 2+4)=3,得x =±2, ∴该函数的零点为0,−2,2.解析:本题考查利用奇偶性求函数的解析式,不等式恒成立及函数的零点与方程根的关系,考查换元法,属于较难题.(1)由f(x)得到f(x −2)表达式,利用偶函数求出m ,从而得g(x)的解析式; (2)由g(t)−nt ⩽0在t ∈(0,1]上恒成立,分离常数n ≥tg(t)=t 2+4t −6. 令ℎ(t)=t 2+4t −6,t ∈(0,1]利用二次函数求解;(3)令log 2(x 2+4)=p ,则p ≥2,方程g(log 2(x 2+4))+k ⋅2log2(x2+4)−9=0转化为p 2−5p+(2k−6)p=0,利用方程的根与函数零点的关系p 2−5p+(2k−6)p=0有一个根为2,得k =6,p =2或3,从而求得函数的零点.7.解:(1)∵f (x )=log 2(x +2),g (x )=a ⋅4x −2x+1−a +1,,∴ {x +2>0x −4>0⇒x ∈(4,+∞) , ∴ ℎ(x)在(4,+∞)递增;(2)由题意:f(x 1)max <g(x 2)而f(x 1)max =2, ∴g(x 2)>2对于x 2∈[1,2]恒成立,∴a ⋅4x −2x+1−a +1>2,令t =2x , t ∈[2,4], 即at 2−2t −a −1>0对于t ∈[2,4]恒成立, ∴a >2t+1t 2−1=1t 2−12t+1=4u−3u−2 (令u=2t +1∈[5,9]),∴a >(4u−3u−2)max =49−39−2=35.即a 的取值范围为(35,+∞).解析:本题考查了函数的定义域及单调性,不等式恒成立问题,对数及指数函数的性质,也考查了等价转换与换元法的使用,属于中档题. (1)函数,根据对数函数的性质,可得定义域,由复合函数同增异减原则可得其单调性;(2)任意的x 1,x 2∈[1,2],f(x 1)max <g(x 2)而f(x 1)max =2,即g(x 2)>2对于x 2∈[1,2]恒成立,然后利用换元法及函数的性质求出最值,即可得到a 的取值范围.8.解:(1)当a =1时,f(x)=1+(12)x +(12)2x ,由指数函数、复合函数单调性知f(x)在 R 上为减函数, x →+∞,f(x)→1, x →−∞,f(x)→+∞, 即f(x)的值域为(1,+∞);(2)由题意知,令(12)x =t ,则t ∈(0,1],依题意可得1+at +t 2≥−3, 即t +4t +a ≥0对任意t ∈(0,1]恒成立, 由函数ℎ(t)=t +4t +a 在(0,1]上单调递减, 故t =1,ℎ(t)min =5+a ≥0, a ≥−5.∴实数a 的取值范围是 [−5,+∞).解析:本题考查函数的单调性、指数的性质及函数的值域的求法,属于中档题.(1)a =1 时, f(x)=1+(12)x +(12)2x , 由单调性即可解题;(2)采用换元法,令 (12)x =t ,问题转化为t +4t +a ≥0对任意t ∈(0,1]恒成立,然后运用对勾函数的单调性即可解题.9.解:(1)f(x)=4cosx(12sinx −√32cosx)+√3 =2sinxcosx −2√3cos 2x +√3=sin2x −√3cos2x=2sin(2x −π3),所以函数f(x)的最小正周期是π. (2)令t =2x −π3,t ∈(−π3,2π3),则sint ∈(−√32,1],2sint ∈(−√3,2],即f(x)∈(−√3,2].由题意知{m −3≤−√3m +3>2,解得−1<m ⩽3−√3.即实数m的取值范围是(−1,3−√3].解析:本题考查三角恒等变换、三角函数的图象与性质以及不等式恒成立问题,属于中档题.(1)通过三角恒等变换,化简得到f(x)=2sin(2x−π3),进而得到最小正周期;(2)运用换元法,以及正弦函数的图象与性质,求得f(x)∈(−√3,2],再根据不等式恒成立,得到m的不等组,解得m的取值范围.10.解:(1)∵a>0,∴g(x)=a(x−1)2+1+b−a在区间[2,3]上是增函数,(2)由已知可得f(x)=x+1x−2,∴f(2x)−k⋅2x≥0,即2x+12−2≥k⋅2x,∴1+(12x )2−2⋅12x≥k,令t=12x,则k≤t2−2t+1,∵x∈[−1,1],∴t∈[12,2],记H(t)=t2−2t+1,t∈[12,2],∴H(t)min=0,∴k的取值范围是(−∞,0];(3)∵当x=0时,2x−1=0,∴x=0不是方程的解;∴当x≠0时,令|2x−1|=t,则t∈(0,+∞),∴原方程有三个不等的实数解可转化为t2−(3k+2)t+(2k+1)=0有两个不同的实数解t1,t2,其中0<t1<1,t2>1,或0< t1<1,t2=1.记ℎ(t)=t2−(3k+2)t+(2k+1),解不等组①得k>0,而不等式组②无实数解.所以实数k的取值范围是(0,+∞).11.【答案】解:(1)函数,令2x +π3=π2+kπ, k ∈Z ,解得x =π12+kπ2, k ∈Z ,则f(x)图象的对称轴方程为x =π12+kπ2, k ∈Z;(2)当x ∈[−π3, 0]时,2x +π3∈[−π3, π3], 则,从而f(x)∈[32, 92],设t =f(x),则t ∈[32, 92],当x ∈[−π3, 0]时,不等式f 2(x)−mf(x)+2m −7≤0恒成立, 等价于t 2−mt +2m −7≤0对于t ∈[32, 92]恒成立, 则{(32)2−32m +2m −7⩽0(92)2−92m +2m −7⩽0, 解得5310⩽m ⩽192.故m 的取值范围为[5310, 192].解析:本题主要考查了三角函数两角和差公式,二倍角公式的运用,正弦函数图像及其性质的运用,三角函数值域的求法,不等式恒成立问题,考查了分析和转化能力,属于中档题.(1)先运用三角函数两角和差公式,二倍角公式将f(x)化简,再带入对称轴公式运算,解出相应的x 值,即可得到答案;(2)先根据x ∈[−π3, 0],得到f(x)的值域,再设t =f(x),则t ∈[32, 92],则不等式等价于t 2−mt +2m −7≤0对于t ∈[32, 92]恒成立,然后等价转化为{(32)2−32m +2m −7⩽0(92)2−92m +2m −7⩽0,即可求解.。
恒成立能成立问题总结(详细)
当a
1 时 x1
x2 , h( x)
2
(0, ) 单调递减;
0 恒成立,此时
f ( x)
0 ,函数 f ( x) 在
当0
a
1
1
时,函数 f ( x) 在 (0,1) 单调递减, (1,
1) 单调递增,
2
a
1 ( 1, ) 单调递减 .
a
(Ⅱ)当 a
1 时, f (x) 在( 0, 1)上是减函数,在(
( 2) f (x) 0在 x R 上恒成立 a 0且 0
( 3)当 a 0 时,若 f (x) 0在 [ , ] 上恒成立
b 2a 或 f( ) 0
b 2a 0
b 或 2a
f( ) 0
若 f ( x) 0在[ , ] 上恒成立
f( ) 0 f( ) 0
( 4)当 a 0时,若 f ( x) 0在[ , ] 上恒成立
由 h( 1) 7 k, h(2) 20 k, h( 3) k 45, h(3) k 9 ,故 h( x)min 45 k 由 k 45 0 k 45。 ( 2)据 题 意 : 存 在 x 3,3 , 使 f ( x) g( x) 成 立 h(x) g( x) f ( x) 0 在
x 3,3 有解,故 h( x)max 0 ,由( 1)知 h( x) max k 7 ,于是得 k 7 。
f (x)
ln x
1a ax
x
( Ⅰ)当a
1 时,讨论 f ( x) 的单调性;
2
(Ⅱ)设 g ( x)
2
x 2bx 4. 当 a
1
时,若对任意
4
f (x1) g (x2) ,求实数 b 取值范围 .
恒成立与能成立的七类问题【解析版】--高中数学
恒成立与能成立的七类问题热点题型速览热点一分离参数法解答恒(能)成立问题1(2023·全国·统考高考真题)已知函数f x =ae x -ln x 在区间1,2 上单调递增,则a 的最小值为( ).A.e 2B.eC.e -1D.e -2【答案】C【分析】根据f x =ae x -1x≥0在1,2 上恒成立,再根据分参求最值即可求出.【详解】依题可知,f x =ae x -1x ≥0在1,2 上恒成立,显然a >0,所以xe x ≥1a,设g x =xe x ,x ∈1,2 ,所以g x =x +1 e x>0,所以g x 在1,2 上单调递增,g x >g 1 =e ,故e ≥1a ,即a ≥1e=e -1,即a 的最小值为e -1.故选:C .2(2023春·江苏无锡·高二统考期末)已知函数f (x )=a ln x +x 2,在区间(0,2)上任取两个不相等的实数x 1,x 2,若不等式f x 1 -f x 2x 1-x 2>0恒成立,则实数a 的取值范围是()A.[-8,+∞)B.(-∞,-8]C.[0,+∞)D.(-∞,0]【答案】C【分析】根据f x 1 -f x 2x 1-x 2>0可知f x 在(0,2)上单调递增,进而由导数即可求解.【详解】由f x 1 -f x 2 x 1-x 2>0可知f x 在(0,2)上单调递增,所以f (x )=ax +2x ≥0在(0,2)上恒成立,即a ≥-2x 2在(0,2)上恒成立,故a ≥-2x 2 max ,所以a ≥0,故选:C3(2023春·河南南阳·高二统考期末)若f x =log 0.5x 3-3x 2+ax +6 在区间1,2 上单调递增,则实数a 的取值范围为()热点一:分离参数法解答恒(能)成立问题热点二:构造函数法解答恒(能)成立问题热点三:最值比较法解答恒(能)成立问题热点四:“先分离后构造”解答恒(能)成立问题热点五:两次构造函数,解答恒(能)成立问题热点六:先分离参数、再两次构造函数,解答恒(能)成立问题热点七:构造函数法证明恒成立问题恒成立问题能成立问题“隐性”恒成立A.-∞,0B.-1,+∞C.-1,0D.-1,0【答案】C【分析】令f (t )=log 0.5t ,t =x 3-3x 2+ax +6,根据复合函数的单调性可得需满足t >0,且t =x 3-3x 2+ax +6在1,2 上单调递减,结合导数。
恒成立问题(教师版)含答案
1.恒成立问题恒成立问题即:。
在近些年的数学高考题及高考模拟题中经常出现含参数不等式恒成立问题,题目一般综合性强,可考查函数、不等式及导数等诸多方面的知识,同时兼顾考查转化化归思想、数形结合思想、分类讨论思想,是高考热点题型之一。
下面结合例题浅谈恒成立问题的常见解法。
1.1 转换主元首先确定题目中的主元,化归成初等函数求解。
此方法常适用于化为一次函数。
对于一次函数有:例1:若不等式 2x -1>m(x 2-1)对满足-2m 2的所有m 都成立,求x 的取值范围。
)(,x p I x ∈∀],[,)(n m x b kx x f ∈+=⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立≤≤例2:设函数为实数。
(Ⅰ)已知函数在处取得极值,求的值;(Ⅱ)已知不等式对任意都成立,求实数的取值范围。
1.2 化归二次函数法根据题目要求,构造二次函数。
结合二次函数实根分布等相关知识,求出参数取值范围。
对于一元二次函数有: (1)上恒成立; (2)上恒成立例3:在R 上定义运算:x y =(1-y)x 若不等式(x -a)(x +a)<1对任意实数x 成立,则 ( ) (A)-1<a<1 (B)0<a<2 (C) (D)323()(1)1,32a f x x x a x a =-+++其中()f x 1x =a '2()1f x x x a >--+(0,)a ∈+∞x ),0(0)(2R x a c bx ax x f ∈≠>++=R x x f ∈>在0)(00<∆>⇔且a R x x f ∈<在0)(00<∆<⇔且a ⊗⊗⊗2321<<-a 3122a -<<例4:已知向量=(x 2,x+1),=(1-x,t) 若函数f(x)=·在区间(-1,1)上是增函数,求t的取值范围。
22人教A版新教材数学必修第一册知识总结--恒成立与能成立问题
加练课3 恒成立与能成立问题学习目标 1.了解不等式中“恒成立与能成立”问题的三种常见类型:①一次函数型;②二次函数型;③变量分离型.掌握不等式恒成立与能成立问题的解题方法.2.运用函数与方程、转化与化归、数形结合、分类讨论等数学思想和数学方法分析和解 决问题.自主检测·必备知识一、概念辨析,判断正误1.当x =−1 或x =2 时,都能使不等式2x −3>0 成立.( × )2.设f(x)=ax +b ,若f(x)>0 在[m,n] 上恒成立,则f(m)>0 和f(n)>0 同时成立.( √ )3.若f(x) 在区间[a,b] 上单调递减,且f(x 0)>0,x 0∈(a,b) ,则f(x)>0 恒成立.( × ) 二、夯实基础,自我检测4.(2020河北尚义第一中学高一期中)若命题p :∀x ∈R,x 2+ax +1≥0 为真命题,则实数a 的取值范围是( ) A.a ≥2 B.a ≤−2C.−2≤a ≤2D.a ≤−2 或a ≥2 答案:C解析:令f(x)=x 2+ax +1 ,则必有△=a 2−4≤0 ,解得−2≤a ≤2 , 所以实数a 的取值范围是−2≤a ≤2 . 故选C.5.(2021四川成都树德中学高一月考)若关于x 的不等式ax 2−2ax +3<0 无解,则实数a 的取值范围是( )A.a ≤0 或a >3B.0≤a ≤3C.a ≤0 或a ≥3D.0<a ≤3 答案:B解析:ax 2−2ax +3<0 无解⇔ax 2−2ax +3≥0 恒成立, 当a =0 时,3≥0 恒成立;当a ≠0 时,{a >0,△=4a 2−12a ≤0, 解得0<a ≤3 .综上,实数a 的取值范围是0≤a ≤3 .故选B.6.(2020山西太原高一月考)若关于x 的不等式2x 2−8x −4+a ≤0 在1≤x <3 内有解,则实数a 的取值范围是( ) A.a ≥12 B.a ≤10 C.a ≤12 D.a ≥10解析:由题意,可得−a≥2x2−8x−4,设f(x)=2x2−8x−4=2(x−2)2−12,若1≤x<3,则−12≤f(x)≤−10,若使不等式2x2−8x−4+a≤0在1≤x<3内有解,则只需−a≥f(x)min,即−a≥−12,解得a≤12.故选C.7.若不等式mx2+2mx+1>0的解集为R,则实数m的取值范围是.答案:[0,1)8.当x∈(1,2)时,不等式x2+mx+2>0恒成立,则m的取值范围是.答案:(−2√2,+∞)解析:当x∈(1,2)时,不等式x2+mx+2>0恒成立,等价于m>−x−2x恒成立.设f(x)=−x−2x,其中x∈(1,2),则f(x)=−(x+2x )≤−2√x⋅2x=−2√2,当且仅当x=√2时取“=”.∴f(x)的最大值为−2√2.∴m的取值范围是(−2√2,+∞).互动探究·关键能力探究点一不等式能成立问题精讲精练例(2020浙江温州中学高一期中)已知函数f(x)=2x2−(m+3)x+1. (1)当m=−2时,求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)≤2在[1,2]上有解,求实数m的取值范围. 答案:(1)当m=−2时,f(x)=2x2−x+1≤2,即2x2−x−1≤0,即(2x+1)(x−1)≤0,解得−12≤x≤1,故不等式的解集为{x|−12≤x≤1}.(2)由题意得,2x2−(m+3)x+1≤2在x∈[1,2]上有解,即m≥2x 2−3x−1x=2x−1x−3在x∈[1,2]上有解,记g(x)=2x−1x−3,x∈[1,2],则m≥g(x)min,又g(x)在[1,2]上单调递增,所以g(x)min=g(1)=−2,所以m≥−2.解决不等式有解问题,可按以下规则进行转化:一般地,已知函数y=f(x),x∈[a,b],(1)若x1∈[a,b],f(x1)<m有解,f(x)min<m;(2)若x1∈[a,b],f(x1)>m有解,f(x)min>m.迁移应用1.已知函数f(x)=ax2−(2a+3)x+6(a∈R).(1)当a=1时,求函数y=f(x)的零点;(2)解关于x的不等式f(x)<0(a>0);(3)当a=1时,函数f(x)≤−(m+5)x+3+m在[−2,2]上有解,求实数m的取值范围.答案:(1)当a=1时,f(x)=x2−5x+6=(x−2)(x−3),所以函数y=f(x)的零点为2,3(2)由f(x)=ax2−(2a+3)x+6<0可得(ax−3)(x−2)<0,当0<a<32时,解不等式得2<x<3a;当a=32时,x不存在,即不等式的解集为⌀;当a>32时,解不等式得3a<x<2.综上,当0<a<32时,不等式的解集为{x|2<x<3a};当a=32时,不等式的解集为⌀;当a>32时,不等式的解集为{x|3a<x<2}.(3)由题意得,不等式x2+mx+3−m≤0在[−2,2]上有解,令y=x2+mx+3−m,则函数的图象开口向上,对称轴为直线x=−m2.①当−m2≤−2,即m≥4时,函数在x=−2处取得最小值,即4−2m+3−m≤0,即m≥73,所以m≥4;②当−2<−m2<2,即−4<m<4时,函数在x=−m2处取得最小值,此时−m24+3−m≤0,解得m≤−6或m≥2,即2≤m<4;③当−m2≥2,即m≤−4时,函数在x=2处取得最小值,此时4+2m+3−m≤0,解得m≤−7.综上,m≥2或m≤−7.探究点二 一次函数型与二次函数型精讲精练例1对任意的m ∈[−1,1] ,函数f(x)=x 2+(m −4)x +4−2m 的值恒大于零,求x 的取值范围.答案:由题意得,f(x)=x 2+(m −4)x +4−2m =(x −2)m +x 2−4x +4 , 令g(m)=(x −2)m +x 2−4x +4 ,则原问题转化为关于m 的一次函数问题, 即在[−1,1] 上,g(m) 的值恒大于零, ∴{g(−1)=(x −2)×(−1)+x 2−4x +4>0,g(1)=x −2+x 2−4x +4>0, 解得x <1 或x >3 .故当x 的取值范围是(−∞,1)∪(3,+∞) 时,对任意的m ∈[−1,1] ,函数f(x) 的值恒大于零.例2(2020江苏淮安阳光学校高一月考)设m ∈R ,二次函数y =x 2−5x +m . (1)若该二次函数的两个零点都在区间(1,+∞) 内,求m 的取值范围;(2)若对任意的x ∈[1,2] ,不等式x 2−5x +m ≤2x 2+mx +m 2 恒成立,求m 的取值范围.答案:(1)二次函数y =x 2−5x +m 图象的对称轴为直线x =52 ,由题意可得{△=(−5)2−4m >0,f(1)=1−5×1+m >0,解得{m <254,m >4,所以m 的取值范围为4<m <254 .(2)不等式x 2−5x +m ≤2x 2+mx +m 2 对于任意的x ∈[1,2] 恒成立, 即x 2+(m +5)x +m 2−m ≥0 对于任意的x ∈[1,2] 恒成立, 设g(x)=x 2+(m +5)x +m 2−m , 函数图象为开口向上的抛物线, 其对称轴为直线x =−m+52,则只需g(x)min ≥0 , 所以{−m+52≥2,g(x)min =g(2)≥0或{−m+52≤1,g(x)min =g(1)≥0 或{1<−m+52<2,g(x)mis =g(−m+52)≥0,解得{m ≤−9,m 2+m +14≤0或{m ≥−7,m 2+6≥0或{−9<m <−7,3 m 2−14m −25≥0, 所以m ≤−9 或m ≥−7 或−9<m <−7 ,故m 的取值范围是R . 解题感悟 1.一次函数型:f(x)=ax +b >0(a ≠0) 在[m,n] 上恒成立⇔{f(m)>0,f(n)>0.f(x)=ax +b <0(a ≠0) 在[m,n] 上恒成立⇔{f(m)<0,f(n)<0.2.二次函数型(1)二次函数在R 上的恒成立,问题: 对于二次函数y =ax 2+bx +c(a ≠0) , ①若ax 2+bx +c ≥0 在R 上恒成立,则{a >0,△≤0;②若ax 2+bx +c ≤0 在R 上恒成立,则{a <0,△≤0;(2)二次函数在给定区间上的恒成立问题:若f(x)=ax 2+bx +c >0(a ≠0) 在某个区间上恒成立,则利用图象法或转化为求函数的最值问题或分离变量法求解. 迁移应用1.(2020江苏南京高一期中)已知函数f(x)=x 2−4ax +3a 2 ,其中a 为实数. (1)当a =2 时,判断命题p :∃x ∈R,f(x)≤0 的真假,并说明理由; (2)若∀x ∈[1,2],f(x)≤0 ,求实数a 的取值范围. 答案:(1)命题p 为真命题.理由:当a =2 时,f(x)=x 2−8x +12 , 又f(2)=0 ,所以命题p :∃x ∈R,f(x)≤0 为真命题.(2)由题意得,函数f(x) 的图象关于直线x =2a 对称, f(x) 在(−∞,2a) 上是减函数, 在(2a,+∞) 上是增函数,当32≤2a 时,f(x) 的最大值为f(1) ,当32>2a 时,f(x) 的最大值为f(2) ,则要使∀x ∈[1,2],f(x)≤0 , 只需f(1)≤0 ,且f(2)≤0 即3a 2−4a +1≤0 , 且3a 2−8a +4≤0,解得13≤a ≤1 ,且23≤a ≤2 ,即23≤a ≤1 ,所以实数a 的取值范围是[23,1] .探究点三 变量分离型精讲精练例(2020山东烟台高一期中)已知函数f(x)=x 2−3x +b ,不等式f(x)<0 的解集为{x|1<x <t},b,t ∈R . (1)求b 和t 的值;(2)当x ∈[1,4] 时,函数y =f(x) 的图象恒在y =kx 2 图象的上方,求实数k 的取值范围.答案:(1)因为不等式f(x)<0 的解集为{x|1<x <t} , 所以1和t 为方程x 2−3x +b =0 的两根, 所以{1×t =b,1+t =3, 解得b =t =2 .(2)由题意得,∀x ∈[1,4] , 恒有x 2−3x +2>kx 2 .两边同时除以x 2 得,k <2x 2−3x +1 . 令g(x)=2x2−3x+1,t =1x, 则g(t)=2t 2−3t +1 ,则k <2x 2−3x +1 等价于k <g(t),t ∈[14,1] , 即k <g(t)min又g(t)=2t 2−3t +1=2(t −34)2−18,所以当t =34 时,g(t)min =−18 . 所以实数k 的取值范围为k <−18 .解题感悟函数恒成立问题的求解方法在求解恒成立问题时,把参数分离出来,使不等式的一端是含有参数的代数式,另一端是一个区间上的具体函数,这样便于问题的解决.一般将函数的恒成立问题转化为求函数的最大值或最小值问题: ①a ≤f(x) 恒成立⇔a ≤f(x)min ; ②a ≥f(x) 恒成立⇔a ≥f(x)min . 迁移应用1.(2020江苏南京师范大学附属中学高一月考)已知二次函数f(x) 的值域为[−4,+∞) ,且不等式f(x)<0 的解集为(-1,3). (1)求f(x) 的解析式;(2)若对于任意的x ∈[−2,2],f(x)>2x +m 恒成立,求实数m 的取值范围. 答案:(1)设f(x)=ax 2+bx +c(a ≠0) ,由题意可得,{f(−1)=a −b +c =0,f(3)=9a +3b +c =0,f(1)=a +b +c =−4, 解得{a =1,b =−2,c =−3, 即f(x)=x 2−2x −3 .(2)由(1)得m <x 2−4x −3 对任意的x ∈[−2,2] 恒成立, 令g(x)=x 2−4x −3=(x −2)2−7 , 当x ∈[−2,2] 时,g(x)∈[−7,9] ,所以m <−7 ,即实数m 的取值范围是(−∞,−7) .评价检测·素养提升1.(2020江苏南京第五高级中学高一月考)不等式2x 2−kx −k >0 对于一切实数x 恒成立,则k 的取值范围为( ) A.(-8,0) B.(0,8)C.(−∞,−8)∪(0,+∞)D.(−∞,0)∪(8,+∞) 答案:A2.(2020湖北宜昌高一期中)如果∃x 0∈R ,使得x 02+ax 0+1<0 成立,那么实数a 的取值范围为( ) A.(−∞,−2]B.(−∞,−2)∪(2,+∞)C.[2,+∞)D.⌀ 答案:B3.已知当a ∈[−1,1] 时,不等式x 2+(a −4)x +4−2a >0 恒成立,则实数x 的取值范围是 . 答案:(−∞,1)∪(3,+∞)解析:令g(a)=x 2+(a −4)x +4−2a =(x −2)a +x 2−4x +4 , 因为当a ∈[−1,1] 时,不等式x 2+(a −4)x +4−2a >0 恒成立, 所以{g(−1)>0,g(1)>0, 即{x 2−5x +6>0,x 2−3x +2>0, 解得x <1 或x >3 ,所以实数x 的取值范围为(−∞,1)∪(3,+∞) .4.已知函数f(x)=x 2+mx −1 ,若对于任意的x ∈[m,m +1] ,都有f(x)<0 成立,则实数m 的取值范围是 . 答案:(−√22,0)解析:由题意可得{f(m)=2 m 2−1<0,f(m +1)=2 m 2+3m <0,解得−√22<m <0 ,所以实数m 的取值范围是(−√22,0) .5.若二次函数f(x)=ax 2+bx +c(a ≠0) 满足f(x +1)−f(x)=2x ,且f(0)=1 . (1)求f(x) 的解析式;(2)当x ∈[1,3] 时,不等式f(x)<m(x +2) 恒成立,求实数m 的取值范围. 答案:(1)由f(0)=1 ,可得c =1 ,由f(x +1)−f(x)=a(x +1)2+b(x +1)+c −(ax 2+bx +c)=2ax +a +b =2x , 可得2a =2,a +b =0 ,解得a =1,b =−1 , 则f(x)=x 2−x +1 .(2)由题意得,不等式x 2−x +1<m(x +2) 在x ∈[1,3] 上恒成立, 即x 2−(1+m)x +1−2m <0 在x ∈[1,3] 上恒成立, 设g(x)=x 2−(1+m)x +1−2m ,则g(1)=1−(1+m)+1−2m <0 ,且g(3)=9−3(1+m)+1−2m <0 解得m >13 且m >75 ,则m >75 ,即m 的取值范围是(75,+∞) .课时评价作业基础达标练1.(2020山东烟台高一期中)若不等式x 2−tx +1<0 对一切x ∈(1,2) 恒成立,则实数t 的取值范围为( ) A.t <2 B.t >52 C.t ≥1 D.t ≥52 答案:D2.(2020河北保定定州第二中学高一月考)当1≤x ≤3 时,关于x 的不等式ax 2+x −1<0 恒成立,则实数a 的取值范围是( ) A.(−∞,0) B.(−∞,−14) C.(−14,+∞) D.(−12,+∞) 答案:B3.(2020江苏南京高一期中)关于x 的不等式x 2+x −2+a(x +x −1)+a +1>0 对任意的x >0 恒成立,则a 的取值范围是( ) A.a >−2 B.a >−1 C.a >0 D.a >1 答案:B4.(2020山西兴县友兰中学高一期中)若“∃x ∈[−1,3],x 2−2x +a <0 ”为假命题,则实数a 的最小值为 . 答案:15.关于x 的不等式(1+m)x 2+mx +m <x 2+1 对x ∈R 恒成立,则实数m 的取值范围是 . 答案:(−∞,0]6.关于x 的不等式x 2+ax −2<0 在区间[1,4] 上有实数解,则实数a 的取值范围是 . 答案:(−∞,1)7.已知二次函数f(x) 满足f(x)=f(2−x) ,且f(1)=7,f(3)=3 . (1)求函数f(x) 的解析式;(2)是否存在实数m ,使得二次函数f(x) 在[−1,3] 上的图象恒在直线y =mx +1 的上方?若存在,求出实数m 的取值范围;若不存在,请说明理由.答案:(1)因为f(x)=f(2−x) ,所以二次函数f(x) 的图象的对称轴为直线x =1 , 又f(1)=7 ,故可设二次函数解析式为f(x)=a(x −1)2+7 , 因为f(3)=3 ,所以4a +7=3 ,解得a =−1 . 所以f(x)=−(x −1)2+7=−x 2+2x +6 .(2)假设存在实数m ,使得二次函数f(x) 在[−1,3] 上的图象恒在直线y =mx +1 的上方,等价于不等式−x 2+2x +6>mx +1 ,即x 2+(m −2)x −5<0 在[−1,3] 上恒成立. 令g(x)=x 2+(m −2)x −5 ,则{g(−1)=−m −2<0,g(3)=3m −2<0, 解得−2<m <23 , 所以实数m 的取值范围为(−2,23) .8.(2020北京八中高一期中)已知函数f(x)=mx 2+(1−3m)x −4,m ∈R . (1)当m =1 时,求f(x) 在区间[−2,2] 上的最大值和最小值; (2)解关于x 的不等式f(x)>−1 .(3)当m <0 时,若存在x 0∈(1,+∞) ,使得f(x)>0 ,求实数m 的取值范围.答案:(1)当m =1 时,f(x)=x 2−2x −4 在[−2,1) 上单调递减,在(1,2] 上单调递增, 所以f(x) 的最小值为f(1)=1−2−4=−5 ,最大值为f(−2)=4+4−4=4 .(2)不等式f(x)>−1 可化为mx 2+(1−3m)x −3>0 ,即(mx +1)(x −3)>0 , 当m >0 时,不等式化为(x +1m )(x −3)>0 ,解得x <−1m 或x >3 ; 当m =0 时,不等式化为x −3>0 ,解得x >3 ; 当m <0 时,不等式化为(x +1m )(x −3)<0 ,当−1m <3 ,即m <−13 时,解得−1m <x <3 ; 当−1m =3 ,即m =−13时,不等式无解;当−1m >3 ,即−13<m <0 时,解得3<x <−1m . 综上,当m >0 时,不等式的解集为{x|x <−1m或x >3} ;当m =0 时,不等式的解集为{x|x >3} ;当−13<m <0 时,不等式的解集为{x|3<x <−1m } ; 当m =−13 时,不等式的解集为空集; 当m <−13 时,不等式的解集为{x|−1m<x <3} .(3)当m <0 时,若存在x 0∈(1,+∞) ,使得f(x)>0 ,则f(x) 在(1,+∞) 上的最大值大于0,因为函数f(x)=mx 2+(1−3m)x −4 的图象开口向下,其对称轴为直线x =−1−3m 2m=−12m +32>1 , 所以f(x)max =f(−1−3m 2m)=m ⋅(1−3m)24 m 2+(1−3m)⋅(−1−3m 2m)−4=−(1−3m)24m−4 ,所以−(1−3m)24m−4>0 ,即(1−3m)2>−16m , 即9 m 2+10m +1>0, 解得m <−1 或−19<m <0 .素养提升练9.(2020江苏苏州高一月考)已知正数a,b 满足9a +1b =2 ,若a +b ≥x 2+2x 对任意正数a,b 恒成立,则实数x 的取值范围是( ) A.[−4,2] B.[−2,4]C.(−∞,−4]∪[2,+∞)D.(−∞,−2]∪[4,+∞)答案:A10.(2020安徽合肥一中高一月考)已知m ∈R ,函数f(x)=mx 3−x ,若∃a ∈R ,使得−2≤f(a +1)−f(a)≤2 ,则实数m 的最大值为( )A.12B.9C.8D.0答案:A解析:f(a +1)−f(a)=m(a +1)3−(a +1)−ma 3+a =m(3a 2+3a +1)−1 , 若∃a ∈R ,使得−2≤f(a +1)−f(a)≤2 ,则−2≤m(3a 2+3a +1)−1≤2 ,则−1≤m(3a 2+3a +1)≤3 ,因为y =3a 2+3a +1=3(a +12)2+14>0 , 所以−13a 2+3a+1≤m ≤33a 2+3a+1 ,因为要求实数m 的最大值,所以只需m ≤(33a 2+3a+1)max 即可,而y =3a 2+3a +1=3(a +12)2+14 的最小值为14 ,所以(33a 2+3a+1)max =12 ,故m ≤12 .故选A.11.已知二次函数f(x)=4x 2−2(p −2)x −2p 2−p +1 ,若在区间[−1,1] 内至少存在一个实数x ,使得f(x)>0 ,则实数p 的取值范围是 .答案:(−3,32)解析:因为二次函数f(x) 在区间[−1,1] 内至少存在一个实数x ,使得f(x)>0 的否定是“在区间[−1,1] 内的任意实数x ,都有f(x)≤0 ”,所以{f(1)m ≤120,f(−1)m ≤120,即{4−2(p −2)−2p 2−p +1≤0,4+2(p −2)−2p 2−p +1≤0, 整理得{2p 2+3p −9≥0,2p 2−p −1≥0,解得p ≥32 或p ≤−3 ,所以二次函数在区间[−1,1] 内至少存在一个实数x ,使得f(x)>0 的实数p 的取值范围是(−3,32) . 12.函数f(x)=x 2+ax +3−a, 当x ∈[−2,2] 时,f(x)≥0 恒成立,则实数a 的取值范围是 .答案:[−7,2]解析:函数f(x)=x 2+ax +3−a 的图象开口向上,其对称轴为直线x =−a 2 .当−a 2<−2 ,即a >4 时,函数f(x) 在区间[−2,2] 上为增函数, ∴f(x)min =f(−2)=−3a +7 ,解不等式−3a +7≥0 ,得a ≤73 ,显然不符合题意;当−2≤−a 2≤2 ,即−4≤a ≤4 时, f(x)min =f(−a 2)=−14a 2−a +3 ,解不等式−14a 2−a +3≥0 ,得−6≤a ≤2 , ∴−4≤a ≤2 ;当−a 2>2 ,即a <−4 时,函数f(x) 在区间[−2,2] 上为减函数, ∴f(x)min =f(2)=a +7 ,解不等式a +7≥0 ,得a ≥−7 ,∴−7≤a <−4 .综上,实数a 的取值范围是[−7,2] .13.(2020河南郑州高一期中)已知函数f(x)=2x 2−ax +a 2−4,g(x)=x 2−x +a 2−8,a ∈R .(1)当a =1 时,解不等式f(x)<0 ;(2)若对任意x >0 ,都有f(x)>g(x) 成立,求实数a 的取值范围;(3)若对任意x 1∈[0,1] ,任意x 2∈[0,1] ,都有不等式f(x 1)>g(x 2) 成立,求实数a 的取值范围.答案:(1)当a =1 时,f(x)=2x 2−x −3 ,令f(x)<0 ,得(2x −3)(x +1)<0 ,解得−1<x <32 ,所以f(x)<0 的解集为(−1,32) . (2)若对任意x >0 ,都有f(x)>g(x) 成立,即f(x)−g(x)=x 2+(1−a)x +4>0 在x >0 时恒成立,令ℎ(x)=x 2+(1−a)x +4(x >0) ,当△=(1−a)2−16<0 ,即−3<a <5 时,函数ℎ(x) 的图象和x 轴无交点,且开口向上,符合题意;当△≥0 ,即a ≥5 或a ≤−3 时,只需{ℎ(0)=4>0,−1−a 2<0, 解得a <1 , 又a ≥5 或a ≤−3 ,所以a ≤−3 .综上,实数a 的取值范围是a <5 .(3)若对任意x 1∈[0,1] ,任意x 2∈[0,1] ,都有不等式f(x 1)>g(x 2) 成立,则只需满足f(x)min >g(x)max ,x ∈[0,1] .g(x)=x 2−x +a 2−8 ,其图象的对称轴为直线x =12 , 则g(x) 在[0,12) 上单调递减,在(12,1] 上单调递增, ∴g(x)max =g(0)=g(1)=a 2−8 .f(x)=2x 2−ax +a 2−4 ,其图象的对称轴为直线x =a 4 ,①当a 4≤0 ,即a ≤0 时,f(x) 在[0,1] 上单调递增, f(x)min =f(0)=a 2−4>g(x)max =a 2−8 恒成立;②当0<a 4<1 ,即0<a <4 时,f(x) 在[0,a 4) 上单调递减,在(a 4,1] 上单调递增,f(x)min =f(a 4)=78a 2−4,g(x)max =a 2−8 , 令78a 2−4>a 2−8 ,得0<a <4 ; ③当a 4≥1 ,即a ≥4 时,f(x) 在[0,1] 上单调递减, f(x)min =f(1)=a 2−a −2,g(x)max =a 2−8,令a 2−a −2>a 2−8 ,解得4≤a <6 .综上,实数a 的取值范围为(−∞,6) .创新拓展练14.(2021山东烟台高一期末)已知函数f(x)=x 2+ax +b(a,b ∈R) .(1)若关于x 的不等式f(x)>0 的解集是(−∞,−2)∪(−12,+∞) ,求a 、b 的值; (2)若a =−2,b =0,g(x)=kx,f(x) 与g(x) 的定义域都是[0,2] ,使得|f(x)−g(x)|<1 恒成立,求实数k 的取值范围;(3)若方程f(x)=0 在区间(1,2)上有两个不同的实根,求f(1) 的取值范围.答案:(1)因为f(x)>0 的解集为(−∞,−2)∪(−12,+∞) , 所以方程f(x)=0 的两根为-2和−12 , 由根与系数的关系得,{(−2)+(−12)=−a,(−2)×(−12)=b,所以a =52,b =1 . (2)因为a =−2,b =0, 所以f(x)=x 2−2x,因为|f(x)−g(x)|<1 在[0,2] 上恒成立,所以−1<x 2−2x −kx <1 在[0,2] 上恒成立.①当x =0 时,-1<0<1满足题意,②当x ∈(0,2] 时,x −1x −2<k <x +1x −2 在(0,2] 上恒成立, 即(x −1x −2)max <k <(x +1x −2)min , 因为y =x −1x −2 在(0,2] 上单调递增,y =x +1x −2 在(0,1] 上单调递减,在(1,2] 上单调递增, 所以(x −1x −2)max =−12 ,(x +1x −2)min =0 ,所以−12<k <0 .(3)因为方程f(x)=0 在区间(1,2)上有两个不同的实根,所以{f(1)=1+a +b >0,f(2)=4+2a +b >0,1<−a 22,△=a 2−4b >0,因为b =f(1)−1−a ,所以{f(1)>0,4+2a +f(1)−1−a >0,−4<a <−2,a 2−4(f(1)−1−a)>0,由a 2−4(f(1)−a −1)>0 ,得4f(1)<(a +2)2<4 ,解得f(1)<1 .综上,f(1) 的取值范围是(0,1).。
(完整版)函数恒成立问题(端点效应)
(完整版)函数恒成⽴问题(端点效应)函数恒成⽴专题01:可求最值型基础知识:(1)不等式0)(≥x f 在定义域内恒成⽴,等价于()0≥min x f ;(2)不等式0)(≤x f 在定义域内恒成⽴,等价于()0≤max x f 。
【例1】【重庆⽂】若对任意的0>x ,24423ln 12)(c c x x x x f ->--=恒成⽴,求c 的取值范围。
【例2】函数1)1ln()1()(+-++=kx x x x f 在区间),1(+∞-上恒有0)(>x f ,求k 可以取到的最⼤整数。
【变式1】函数)0(ln )(,42)(2>=+-=a x a x g x x x f ,若)(4)(x g x x f -≤恒成⽴,求a 的取值范围。
【变式2】【2012新课标⽂】设函数()2--=ax e x f x Ⅰ求)(x f 的单调区间;Ⅱ若1=a ,k 为整数,且当0>x 时,01)()(>++'-x x f k x ,求k 的最⼤值。
【变式3】【2012新课标理】已知函数)(x f 满⾜2121)0()1()(x x f e f x f x +-'=- Ⅰ求)(x f 的解析式及单调区间;Ⅱ若b ax x x f ++≥221)(,求b a )1(+的值。
专题02:分离变量型基础知识:分离变量的核⼼思想就是为了简化解题,希望同学通过以下例⼦有所感悟【例1】【2010天津】函数1)(2-=x x f ,对任意)(4)1()(4)(,,232m f x f x f m m x f x +-≤-??+∞∈恒成⽴,求实数m 的取值范围。
【变式1】【2010安徽】若不等式0)1)((22≤++-x x a a 对⼀切(]2,0∈x 恒成⽴,求a 的取值范围。
【例2】若函数x ax x x f 1)(2++=在??+∞,21上单调递增,求a 的取值范围。
【变式2】【2012湖北】若)2ln(21)(2++-=x b x x f 在),1(+∞-上是减函数,求b 的取值范围。
微专题恒成立与能成立问题教师版
恒成立问题的几种类型一、在R 上恒成立问题【例1】不等式x 2-ax +1≥0对实数x ∈R 恒成立,求实数a 的取值范围.答案:[-2,2].解法1由题意得Δ≤0,所以-2≤a ≤2,即实数a 的取值范围为[-2,2].解法2当x =0时,x 2-ax +1≥0恒成立,∴a ∈R ,当x ≠0时,ax ≤x 2+1,∴⎩⎪⎨⎪⎧x >0,a ≤x +1x ,且⎩⎪⎨⎪⎧x <0,a ≥x +1x ,恒成立. ∴-2≤a ≤2,综上所述,-2≤a ≤2,即实数a 的取值范围为[-2,2].【变式1】已知关于x 的不等式(m 2+4m -5)x 2-4(m -1)x +3>0对一切实数x 成立,求实数m 的取值范围.【变式2】已知函数f (x )=mx 2-mx -1,若f (x )<0对一切实数x 成立,求实数m 的取值范围.【练习1】已知022>--m x x 对R x ∈恒成立,求m 的取值范围.【练习2】已知R x mx x x ∈->+对12恒成立,求m 的取值范围.【练习3】若的取值范围恒成立,求对m R x x mx ∈>+-0122.二、在某定区间上恒成立问题【例2】对任意实数x ∈[-1,1],不等式x 2+(a -4)x +4-2a <0恒成立,求实数a 的取值范围.答案:(3,+∞).解法1:(利用函数最值)由题意得f (x )=x 2+(a -4)x +4-2a 在[-1,1]上的最大值小于0,所以⎩⎪⎨⎪⎧f (-1)<0,f (1)<0,解得a >3.所以实数a 的取值范围为(3,+∞). 解法2:(分离参数法)a >(x -2)22-x=2-x 恒成立-1≤x ≤1,所以a >3. 所以实数a 的取值范围为(3,+∞).【变式1】不等式x 2-ax -1≥0对a ∈[-1,1]恒成立的,求实数x 的取值范围.答案:⎝ ⎛⎦⎥⎤-∞,-1+52∪⎣⎢⎡⎭⎪⎫1+52,+∞ 解析:设f (a )=(-x )a +x 2-1,⎩⎪⎨⎪⎧f (-1)≥0f (1)≥0,所以x ≥1+52或x ≤-1+52, 即实数x 的取值范围为⎝ ⎛⎦⎥⎤-∞,-1+52∪⎣⎢⎡⎭⎪⎫1+52,+∞. 【变式2】(2018·镇江期末)已知函数f (x )=x 2-kx +4对任意的x ∈[1,3],不等式f (x )≥0恒成立,则实数k 的最大值为________________.答案:4.解析:因为不等式f (x )≥0对任意的x ∈[1,3]恒成立,所以k ≤x 2+4x ,因为x 2+4x =x +4x≥ 2x·4x=4,当且仅当x =2时取等号,所以k ≤4. 【变式3】已知函数f (x )=x 2+ax +3-a ,若f (x )<0对一切实数x ∈[-2,-2]成立,求实数a 的取值范围.点评:此题属于含参数二次函数,求最值时,轴变区间定的情形,我们分类标准是轴在区间上和在区间外,还有与其相反的,轴动区间定,讨论标准相同。
高中数学素能培优(二) 恒成立与能成立问题
例2(2024·山东潍坊模拟)已知函数f(x)=log3 9 ·log3(3x),函数g(x)=4x-2x+1+5.
(1)求函数f(x)的最小值;
(2)若存在实数m∈[-1,2],使不等式f(x)-g(m)≥0成立,求实数x的取值范围.
1
2 3
2
令 =t,则 t∈(0, ],- 2 − +1=-3t2-2t+1,
3
2
2
5
1
5
2
2
令 g(t)=-3t -2t+1,t∈(0, ],则 g(t)的最小值为 g =- ,所以 2-4m ≤- ,
3
3
3
3
33Biblioteka 3222
整理可得(3m +1)(4m -3)≥0,解得 m ≥ 4,即 m≥ 2 或 m≤- 2 .
2
因为
2
y= -x
7
在(1,4)内单调递减,所以值域为(- ,1),所以
2
2
-x
在(1,4)内能成立,
a 的取值范围是(-∞,1).
命题点3
更换主元法
解决含参数不等式恒成立(能成立)的某些问题时,若能适时的把主元变量
和参数变量进行“换位”思考,往往会使问题降次、简化,方便问题的求解.
例5已知当a∈[2,3]时,不等式ax2-x+1-a≤0恒成立,求x的取值范围.
1
例 1(2024·江西南昌模拟)已知函数 f(x)=x -ax+a ,若在区间[ ,a]上,
专题04 恒成立问题(文理通用)(含详细答案)
专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0a f f a e>2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为14.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .16.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+ D .21cos 12x x ≥-1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________. 2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________.6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________. 14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________.1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________.3.已知函数1()ln (0)f x ax x a x=+>.(1)当1a =时,()f x 的极小值为___________;(2)若()f x ax ≥在(0,)+∞上恒成立,则实数a 的取值范围为___________. 4.已知函数()()221xf exx x =-+,则()f x 在点()()0,0f 处的切线方程为___________,若()f x ax ≥在()0,∞+上恒成立,则实数a 的取值范围为___________.5.设函数()32f x ax bx cx =++(a ,b ,R c ∈,0a ≠)若不等式()()2xf x af x '-≤对一切R x ∈恒成立,则a =___________,b ca+的取值范围为___________. 6.已知函数()()x x f x x ae e -=-为偶函数,函数()()xg x f x xe -=+,则a =___________;若()g x mx e >-对()0,x ∈+∞恒成立,则m 的取值范围为___________. 五、解答题1.已知函数()sin f x x ax =-,()=ln 1xg x x x e -+,2.71828e =⋅⋅⋅为自然对数的底数. (1)当()0,x π∈,()0f x <恒成立,求a 的取值范围;(2)当0a =时,记()()()h x f x g x =+,求证:对任意()1,x ∈+∞,()0h x <恒成立. 2.已知函数()1x f x ae x =--(1)若()0f x ≥对于任意的x 恒成立,求a 的取值范围 (2)证明:1111ln(1)23n n++++≥+对任意的n N +∈恒成立 3.若对任意的实数k 、b ,函数()y f x kx b =++与直线y kx b =+总相切,则称函数()f x 为“恒切函数”.(1)判断函数()2f x x =是否为“恒切函数”;(2)若函数()()ln 0f x m x nx m =+≠是“恒切函数”,求实数m 、n 满足的关系式;(3)若函数()()1x xf x e x e m =--+是“恒切函数”,求证:104m -<≤. 4.已知函数()(ln )sin x f x e x a x =+-.(1)若()ln sin f x x x ≥⋅恒成立,求实数a 的最大值; (2)若()0f x ≥恒成立,求正整数a 的最大值.专题04 恒成立问题一、单选题1.若定义在R 上的函数()f x 满足()()2f x f x -=+,且当1x <时,()x xf x e=,则满足()()35f f -的值 A .恒小于0 B .恒等于0 C .恒大于0D .无法判断【试题来源】安徽省皖江名校联盟2021届高三第二次联考(理) 【答案】C【分析】当1x <时,求导,得出导函数恒小于零,得出()f x 在(),1-∞内是增函数.再由()()2f x f x -=+得()f x 的图象关于直线1x =对称,从而得()f x 在()1,+∞内是减函数,由此可得选项.【解析】当1x <时,'1()0xx f x e -=->,则()f x 在(),1-∞内是增函数. 由()()2f x f x -=+得()f x 的图象关于直线1x =对称,所以()f x 在()1,+∞内是减函数, 所以()()350f f ->.故选C .2.()()(),f x R f x f x x R '∀∈设函数是定义在上的函数,其中的导函数为,满足对于()()f x f x '<恒成立,则下列各式恒成立的是A .2018(1)(0),(2018)(0)f ef f e f <<B .2018(1)(0),(2018)(0)f ef f e f >>C .2018(1)(0),(2018)(0)f ef f e f ><D .2018(1)(0),(2018)(0)f ef f ef【试题来源】2020届福建省仙游县枫亭中学高三上学期期中考试(理) 【答案】B【分析】构造函数()()xf x F x e =,求出'()0F x >,得到该函数为R 上的增函数,故得(0)(1)F F <,(0)(2018)F F <,从而可得到结论.【解析】设()()x f x F x e =,x R ∈(),所以'()()[]xf x F x e '==()()xf x f x e '-, 因为对于()(),x R f x f x ∀∈<',所以'()0F x >,所以()F x 是R 上的增函数,所以(0)(1)F F <,(0)(2018)F F <,即(1)(0)f f e <,2018(2018)(0)f f e <, 整理得()()10f ef >和()20182018(0f ef >).故故选B .3.已知0a >,0b >,下列说法错误的是 A .若1b a a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立D .ln 0b ba a e+≥恒成立 【试题来源】浙江省杭州市萧山中学2019-2020学年高三下学期返校考试 【答案】D【解析】对于A ,不妨令01a <≤,1b ≥,则1aab bb a aa a ab a b a b ⎛⎫⎛⎫⋅=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,所以1baa b ⋅=即11b aaab-=,由10b a -≥可知101b aa -<≤,则101ab <≤,所以1≥ab ,2a b +≥,故A 正确; 对于B ,若a b ≤,则0a b e e -≤,320b a ->,故32ab e e b a -≠-即23a b e a e b +≠+,与已知矛盾,故B 正确;对于C ,()ln ln ln 1b b a a b a b a a-≥-⇔-≥-, 令0b x a =>,()()ln 10f x x x x =-->,则()1x f x x-'=, 则()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()10f x f ≥=,所以ln 10b b a a --≥即ln 1b ba a-≥-,故C 正确; 对于D ,设()()ln 0h x x x x =>,()()0x xg x x e=>, 则()ln 1h x x '=+,()1xxg x e -'=, 所以()h x 在()10,e -上单调递减,在()1,e -+∞上单调递增,则()()11h x h e e --≥=-,()g x 在()0,1上单调递增,在()1,+∞上单调递减,则()()11g x g e -≤=,所以()()110h e g e --+<,即当1a b e -==时ln 0bba a e +<,故D 错误.故选D . 4.若1x =是函数()4312*()1n n n f x a x a x a x n N ++=--+∈的极值点,数列{}n a 满足11a =,23a =,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=+++⎢⎥⎣⎦,若不等式n S t 对n +∀∈N 恒成立,则实数t 的最大值为 A .2020 B .2019 C .2018D .1010【试题来源】新疆维吾尔自治区2021届高三第二次联考数学(理)能力测试试题 【答案】D【分析】由极值点得数列的递推关系,由递推关系变形得数列1{}n n a a +-是等比数列,求得1n n a a +-,由累加法求得n a ,计算出n b ,然后求和122311202020202020n n b b b b b b ++++,利用增函数定义得此式的最小值,从而得出n S 的最小值,再由不等式恒成立可得t 的最大值. 【解析】3212()43n n n f x a x a x a '++=--,所以12(1)430n n n f a a a '++=--=, 即有()2113n n n n a a a a +++-=-,所以{}1n n a a +-是以2为首项3为公比的等比数列, 所以1123n n n a a -+-=⋅,1201111221123232313n n nn n n n n n n a a a a a a a a a a --++---=-+-+-++-+=⋅+⋅++⋅+=所以31log n n b a n +==,所以12231120202020202011120201223(1)n n b b b b b b n n +⎛⎫+++=+++⎪⨯⨯+⎝⎭1111120202020122311n n n n ⎛⎫=-+-++-=⎪++⎝⎭, 又20201ny n =+为增函数,当1n =时,1010n S =,10102020n S ≤<, 若n S t ≥恒成立,则t 的最大值为1010.故选D .【名师点睛】本题考查函数的极值,等比数列的判断与通项公式,累加法求通项公式,裂项相消法求和,函数新定义,不等式恒成立问题的综合应用.涉及知识点较多,属于中档题.解题方法是按部就班,按照题目提供的知识点顺序求解.由函数极值点得数列的递推公式,由递推公式引入新数列是等比数列,求得通项公式后用累加法求得n a ,由对数的概念求得n b ,用裂项相消法求和新数列的前n 项和,并利用函数单调性得出最小值,然后由新定义得n S 的最小值,从而根据不等式恒成立得结论. 二、多选题1.若满足()()'0f x f x +>,对任意正实数a ,下面不等式恒成立的是 A .()()2f a f a < B .()()2af a ef a >-C .()()0>f a fD .()()0af f a e>【试题来源】江苏省扬州中学2019-2020学年高二下学期6月月考 【答案】BD【分析】根据()()'0f x f x +>,设()()xh x e f x =,()()()()xh x ef x f x ''=+,得到()h x 在R 上是增函数,再根据a 是正实数,利用单调性逐项判断.【解析】设()()xh x e f x =,()()()()xh x ef x f x ''=+,因为()()'0f x f x +>,所以()0h x '>,()h x 在R 上是增函数, 因为a 是正实数,所以2a a <,所以()()22aae f a e f a <,因为21a a e e >>, ()(),2f a f a 大小不确定,故A 错误, 因为a a -<,所以()()aa ef a e f a --<,即()()2a f a e f a >-,故B 正确.因为0a >,所以()()()000a e f a e f f >=, 因为1a e >,()(),0f a f 大小不确定.故C 错误.()()()000a e f a e f f >=,因为1a e >,所以()()0af f a e>,故D 正确.故选BD. 【名师点睛】本题主要考查导数与函数单调性比较大小,还考查了运算求解的能力,属于中档题.2.定义在R 上的函数()f x 的导函数为()f x ',且()()()f x xf x xf x '+<对x ∈R 恒成立,则下列选项不正确的是 A .2(2)(1)f f e> B .2(2)(1)f f e< C .()10f >D .()10f ->【试题来源】江苏省盐城市伍佑中学2019-2020学年高二下学期期中 【答案】BCD【分析】构造出函数()()xxf x F x e =,再运用求导法则求出其导数,借助导数与函数单调性之间的关系及题设中()()()f x xf x xf x '+<,从而确定函数()()xxf x F x e =是单调递减函数,然后可判断出每个答案的正误. 【解析】构造函数()()xxf x F x e =, 因为2[()()]()()()()()0()x x x xe f x xf x xe f x f x xf x xf x F x e e '+-+-=='<', 故函数()()xxf x F x e=在R 上单调递减函数, 因为21>,所以212(2)(1)(2)(1)f f F F e e <⇒<,即2(2)(1)f f e<,故A 正确,B 错误; 因为()(1)0F F <,即()10f e<,所以()10f <,故C 错误; 因为()(1)0F F ->,即()110f e--->,所以()10f -<,故D 错误,故选BCD. 【名师点睛】解答本题的难点所在是如何依据题设条件构造出符合条件的函数()()xxf x F x e=,这里要求解题者具有较深的观察力和扎实的基本功,属于较难题. 3.已知函数()cos sin f x x x x =-,下列结论中正确的是 A .函数()f x 在2x π=时,取得极小值1-B .对于[]0,x π∀∈,()0≤f x 恒成立C .若120x x π<<<,则1122sin sin x x x x < D .若sin x a b x <<,对于0,2x π⎛⎫∀∈ ⎪⎝⎭恒成立,则a 的最大值为2π,b 的最小值为1【试题来源】山东省肥城市2019-2020学年高二下学期期中考试 【答案】BCD【分析】先对函数求导,根据022f ππ⎛⎫'=-≠⎪⎝⎭,排除A ;再由导数的方法研究函数单调性,判断出B 选项;构造函数()sin xg x x=,由导数的方法研究其单调性,即可判断C 选项;根据()sin x g x x =的单调性,先得到sin 2x x π>,再令()sin h x x x =-,根据导数的方法研究其单调性,得到sin 1xx<,即可判断D 选项. 【解析】因为()cos sin f x x x x =-,所以()cos sin cos sin f x x x x x x x '=--=-, 所以022f ππ⎛⎫'=-≠⎪⎝⎭,所以2x π=不是函数的极值点,故A 错; 若[]0,x π∈,则()sin 0f x x x '=-≤,所以函数()cos sin f x x x x =-在区间[]0,π上单调递减;因此()()00≤=f x f ,故B 正确; 令()sin x g x x =,则()2cos sin x x x g x x -'=, 因为()cos sin 0f x x x x =-≤在[]0,π上恒成立,所以()2cos sin 0x x xg x x -'=<在()0,π上恒成立,因此函数()sin xg x x=在()0,π上单调递减;又120x x π<<<,所以()()12g x g x >,即1212sin sin x x x x >,所以1122sin sin x x x x <,故C 正确;因为函数()sin x g x x =在()0,π上单调递减;所以0,2x π⎛⎫∈ ⎪⎝⎭时,函数()sin x g x x =也单调递减,因此()sin 22x g x g x ππ⎛⎫=>= ⎪⎝⎭在0,2π⎛⎫⎪⎝⎭上恒成立;令()sin h x x x =-,0,2x π⎛⎫∈ ⎪⎝⎭,则()1cos 0h x x '=-≥在0,2π⎛⎫⎪⎝⎭上恒成立,所以()sin h x x x =-在0,2π⎛⎫⎪⎝⎭上单调递增, 因此()sin 0h x x x =->,即sin 1xx <在0,2π⎛⎫ ⎪⎝⎭上恒成立; 综上,2sin 1x x π<<在0,2π⎛⎫⎪⎝⎭上恒成立,故D 正确.故选BCD . 【名师点睛】本题主要考查导数的应用,利用导数的方法研究函数的极值,单调性等,属于常考题型.4.已知函数()2f x x x=-,()()πcos 5202xg x a a a =+->,.给出下列四个命题,其中是真命题的为A .若[]1,2x ∃∈,使得()f x a <成立,则1a >-B .若R x ∀∈,使得()0g x >恒成立,则05a <<C .若[]11,2x ∀∈,2x ∀∈R ,使得()()12f x g x >恒成立,则6a >D .若[]11,2x ∀∈,[]20,1x ∃∈,使得()()12f x g x =成立,则34a ≤≤ 【试题来源】冲刺2020高考数学之拿高分题目强化卷(山东专版) 【答案】ACD【分析】对选项A ,()f x 在[]1,2上的最小值小于a 即可;对选项B ,()g x 的最小值大于0即可;对选项C ,()f x 在[]1,2上的最小值大于()g x 的最大值即可;对选项D ,[]11,2x ∀∈,[]20,1x ∃∈,()min min ()g x f x ≤,()max max ()g x f x ≥即可.【解析】对选项A ,只需()f x 在[]1,2上的最小值小于a ,()f x 在[]1,2上单调递增,所以min 2()(1)111f x f ==-=-,所以1a >-,故正确; 对选项B ,只需()g x 的最小值大于0,因为[]πcos,2x a a a∈-,所以min ()52530g x a a a =-+-=->,所以503a <<,故错误; 对选项C ,只需()f x 在[]1,2上的最小值大于()g x 的最大值,min ()1f x =-,max ()525g x a a a =+-=-,即15a ->-,6a >,故正确;对选项D ,只需()min min ()g x f x ≤,()max max ()g x f x ≥,max 2()(2)212f x f ==-=,所以[]11,2x ∈,[]1()1,1f x ∈-, []0,1x ∈时,π0,22x π⎡⎤∈⎢⎥⎣⎦,所以()g x 在[]0,1上单调递减, ()min (1)52a g x g ==-,()max (0)5a g x g ==-,所以()[]52,5g x a a ∈--,由题意,52151a a -≤-⎧⎨-≥⎩⇒34a ≤≤,故正确.故选ACD .【名师点睛】本题主要考查不等式恒成立和存在性问题,考查学生的分析转化能力,注意恒成立问题和存在性问题条件的转化,属于中档题.5.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是 A .2- B .1- C .0D .1【试题来源】江苏省南京市2020-2021学年高三上学期期中考前训练 【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立,令()()3ln ln 1x F x x x x x =++>,利用导数法研究其最小值即可.【解析】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x =++>,则()222131ln 2ln x x x F x x x x x---'=-+=.令()ln 2x x x ϕ=--,因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增, 所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=,将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数,所以713,34t ⎛⎫∈ ⎪⎝⎭,即()min1713,41216F x ⎛⎫∈ ⎪⎝⎭. 因为k 为整数,所以0k ≤.故选ABC . 6.下列不等式中恒成立的有 A .()ln 11xx x +≥+,1x >- B .11ln 2x x x ⎛⎫≤- ⎪⎝⎭,0x > C .1x e x ≥+D .21cos 12x x ≥-【试题来源】广东省中山市2019-2020学年高二下学期期末 【答案】ACD 【分析】令10tx ,()1ln 1f t t t=+-,导数方法求出最小值,即可判定出A 正确;令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >,导数方法研究单调性,求出范围,即可判定B 错; 令()1xf x e x =--,导数的方法求出最小值,即可判定C 正确;令()21cos 12f x x x =-+,导数的方法求出最小值,即可判定D 正确. 【解析】A 选项,因为1x >-,令10t x ,()1ln 1f t t t=+-,则()22111t f t t t t -'=-=,所以01t <<时,()210t f t t-'=<,即()f t 单调递减;1t >时,()210t f t t -'=>,即()f t 单调递增; 所以()()min 10f t f ==,即()1ln 10f t t t=+-≥,即1ln t t t -≥,即()ln 11x x x +≥+,1x >-恒成立;故A 正确;B 选项,令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,0x >, 则()()2222211112110222x x x f x x x x x ---⎛⎫'=-+==-≤ ⎪⎝⎭显然恒成立, 所以()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭在0x >上单调递减, 又()10f =,所以当()0,1x ∈时,()()10f x f >=,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,故B 错; C 选项,令()1xf x e x =--,则()1xf x e '=-,当0x >时,()10xf e x ='->,即()f x 单调递增;当0x <时,()10xf e x ='-<,所以()f x 单调递减;则()()00f x f ≥=,即1x e x ≥+恒成立;故C 正确; D 选项,令()21cos 12f x x x =-+,则()sin f x x x '=-+, 所以()cos 10f x x ''=-+≥恒成立,即函数()sin f x x x '=-+单调递增, 又()00f '=,所以当0x >时,()0f x '>,即()21cos 12f x x x =-+单调递增; 当0x <时,()0f x '<,即()21cos 12f x x x =-+单调递减; 所以()()min 00f x f ==,因此21cos 12x x ≥-恒成立,故D 正确;故选ACD . 三、填空题1.函数3()2,()ln 1f x x x c g x x =-+=+,若()()f x g x ≥恒成立,则实数c 的取值范围是___________.【试题来源】【全国区级联考】江苏省徐州市铜山区下学期高二数学(文)期中试题 【答案】2c ≥【解析】由()()f x g x ≥,即32ln 1x x c x -+≥+,即32ln 1c x x x ≥-+++.令()()32ln 10h x x x x x =-+++>,()()()21331x x x h x x'-++=-,故函数()h x 在区间()0,1上递增,在()1,+∞上递减,最大值为()12h =,所以2c ≥.【名师点睛】本题主要考查利用分析法和综合法求解不等式恒成立,问题,考查利用导数研究函数的单调性,极值和最值等知识.首先根据()()f x g x ≥,对函数进行分离常数,这里主要的思想方法是分离常数后利用导数求得另一个部分的最值,根据这个最值来求得参数的取值范围.2.若[,)x e ∀∈+∞,满足32ln 0mxx x me -≥恒成立,则实数m 的取值范围为___________.【试题来源】2020届湖南省长沙市长郡中学高三下学期3月停课不停学阶段性测试(理) 【答案】(,2]e -∞【分析】首先对参数的范围进行讨论,分两种情况,尤其是当0m >时,对式子进行变形,构造新函数,将恒成立问题转化为最值来处理,利用函数的单调性来解决,综述求得最后的结果.【解析】(1)0m ≤,显然成立;(2)0m >时,由32ln 0mxx x me -≥22ln m x m x x e x ⇒≥2ln (2ln )mxx m x e e x⇒≥,由()x f x xe =在[),e +∞为增2ln mx x⇒≥2ln m x x ⇒≤在[),e +∞恒成立, 由()2ln g x x x =在[),e +∞为增,min ()2g x e =,02m e <≤, 综上,2m e ≤,故答案为(,2]e -∞.3.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为___________.【试题来源】四川省泸州市2020学年下学期高二期末统一考试(文) 【答案】(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【解析】函数的导数2()21f ax x x '=+-,由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立,即221a x x+,得322x x a +在1x 上恒成立,设32()2g x x x =+, 则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数, 则当1x =时,()g x 取得最小值()1213g =+=,则3a , 即实数a 的取值范围是(],3-∞,故答案为(],3-∞.【名师点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.4.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为___________. 【试题来源】2020年高考数学选填题专项测试(文理通用) 【答案】[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【解析】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥,故答案为[)0,+∞.【名师点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.5.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是___________. 【试题来源】2020届四川省成都七中高三二诊数学模拟(理)试题 【答案】0a e ≤<【分析】若函数()0x f x e ax =->恒成立,即min ()0f x >,求导得'()x f x e a =-,在0,0,0a a a >=<三种情况下,分别讨论函数单调性,求出每种情况时的min ()f x ,解关于a的不等式,再取并集,即得.【解析】由题意得,只要min ()0f x >即可,'()x f x e a =-,当0a >时,令'()0f x =解得ln x a =,令'()0f x <,解得ln x a <,()f x 单调递减, 令'()0f x >,解得ln x a >,()f x 单调递增,故()f x 在ln x a =时,()f x 有最小值,min ()(ln )(1ln )f x f a a a ==-, 若()0f x >恒成立,则(1ln )0a a ->,解得0a e <<; 当0a =时,()0x f x e =>恒成立; 当0a <时,'()x f x e a =-,()f x 单调递增,,()x f x →-∞→-∞,不合题意,舍去.综上,实数a 的取值范围是0a e ≤<.故答案为0a e ≤<6.当[1,2]x ∈-时,32122x x x m --<恒成立,则实数m 的取值范围是___________. 【试题来源】陕西省商洛市洛南中学2019-2020学年高二下学期第二次月考(理) 【答案】(2,)+∞【分析】设()3212,[1,2]2x x x x f x --∈-=,利用导数求得函数的单调性与最大值,结合题意,即可求得实数m 的取值范围.【解析】由题意,设()3212,[1,2]2x x x x f x --∈-=, 则()22(1)(323)x x f x x x --=-+'=,当2[1,)3x ∈--或(1,2]x ∈时,()0f x '>,()f x 单调递增;当2(,1)3x ∈-时,()0f x '<,()f x 单调递减, 又由222(),(2)2327f f -==,即2()(2)3f f -<, 即函数()f x 在区间[1,2]-的最大值为2,又由当[1,2]x ∈-时,32122x x x m --<恒成立,所以2m >, 即实数m 的取值范围是(2,)+∞.故答案为(2,)+∞【名师点睛】本题主要考查了恒成立问题的求解,其中解答中熟练应用函数的导数求得函数的单调性与最值是解答的关键,着重考查推理与运算能力,属于基础题.7.若()()220xxx me exeex e ++-≤在()0,x ∈+∞上恒成立,则实数m 的取值范围为___________.【试题来源】浙江省杭州地区(含周边)重点中学2020-2021学年高三上学期期中 【答案】32m ≤-【分析】对已知不等式进行变形,利用换元法、构造函数法、常变量分离法,结合导数的性质进行求解即可.【解析】()()()()222210xx x x x xme ex e ex me ex e ex e e++++-⇒≤≤ (1), 令x ext e=,因为()0,x ∈+∞,所以0t >, 则不等式(1)化为2221(2)(1)11t t m t t m t --+++≤⇒≤+,设()xex f x e=,()0,x ∈+∞,'(1)()x e x f x e -=,当1x >时,'()0,()f x f x <单调递减, 当01x <<时,'()0,()f x f x >单调递增,因此当()0,x ∈+∞时,max ()(1)1f x f ==, 而(0)0f =,因此当()0,x ∈+∞时,()(0,1]f x ∈,因此(0,1]t ∈,设2221()1t t g t t --+=+,(0,1]t ∈,因此要想()()220x x xme ex e ex e ++-≤在()0,x ∈+∞上恒成立,只需min ()m g t ≤,2'2243()(1)t t g t t ---=+,因为(0,1]t ∈,所以'()0g t <,因此()g t 在(0,1]t ∈时单调递减,所以min 3()(1)2g t g ==-,因此32m ≤-.8.已知函数()()(ln )xf x e ax x ax =--,若()0f x <恒成立,则a 的取值范围是___________.【试题来源】四川省三台中学实验学校2019-2020学年高二下学期期末适应性考试(理) 【答案】1,e e ⎛⎫ ⎪⎝⎭【分析】先由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;原问题即可转化为直线y ax =介于x y e =与ln y x =之间,作出其大致图象,由图象得到只需<<OA OB k a k ;根据导数的方法求出OA ,OB 所在直线斜率,进而可得出结果. 【解析】由x y e =的图象与ln y x =的图象可得,ln >x e x 恒成立;所以若()()(ln )0=--<xf x e ax x ax 恒成立,只需0ln 0x e ax x ax ⎧->⎨-<⎩,即直线y ax =介于x y e =与ln y x =之间,作出其大致图象如下:由图象可得,只需<<OA OB k a k ;设11(,)A x y ,由ln y x =得1y x'=,所以111OA x x k y x =='=, 所以曲线ln y x =在点11(,)A x y 处的切线OA 的方程为1111ln ()-=-y x x x x , 又该切线过点O ,所以11110ln (0)1-=-=-x x x ,解得1x e =,所以1=OA k e; 设22(,)B x y ,由x y e =得e x y '=,所以22x OB x x k y e =='=,所以曲线x y e =在点22(,)B x y 处的切线OB 的方程为222()-=-x x y e e x x ,又该切线过点O ,所以2220(0)-=-x x ee x ,解得21x =,所以=OB k e ;所以1a e e <<.故答案为1,e e ⎛⎫⎪⎝⎭. 【名师点睛】本题主要考查由导数的方法研究不等式恒成立的问题,熟记导数的几何意义即可,属于常考题型.9.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________. 【试题来源】黑龙江省七台河市田家炳高级中学2019-2020学年高二下学期期中考试(理)【答案】[1,)-+∞【分析】求导得到()x f x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案. 【解析】因为()1x f x e ax =+-,所以()x f x e a '=+,因为0x ,所以()1f x a '+. 当10a +,即1a ≥-时,()0f x ',则()f x 在[0,)+∞上单调递增,从而()(0)0f x f =,故1a ≥-符合题意;当10a +<,即1a <-时,因为()x f x e a '=+在[0,)+∞上单调递增,且(0)10f a '=+<,所以存在唯一的0(0,)x ∈+∞,使得()00f x '=.令()0f x '<,得00x x <,则()f x 在[)00,x 上单调递减,从而()(0)0f x f =,故1a <-不符合题意.综上,a 的取值范围是[1,)-+∞.故答案为[1,)-+∞.10.不等式()221n n n N *>-∈不是恒成立的,请你只对该不等式中的数字作适当调整,使得不等式恒成立,请写出其中一个恒成立的不等式:___________. 【试题来源】北京市101中学2019-2020学年高三10月月考 【答案】331n n >-【分析】将不等式中的数字2变为3,得出331n n >-,然后利用导数证明出当3n ≥时,33n n ≥即可,即可得出不等式331n n >-对任意的n *∈N 恒成立.【解析】13311>-,23321>-,33331>-,猜想,对任意的n *∈N ,331n n >-.下面利用导数证明出当3n ≥时,33n n ≥,即证ln 33ln n n ≥,即证ln ln 33n n ≤, 构造函数()ln x f x x =,则()21ln xf x x -'=,当3x ≥时,()0f x '<. 所以,函数()ln x f x x =在区间[)3,+∞上单调递减,当3n ≥时,ln ln 33n n ≤.所以,当3n ≥且n *∈N 时,33n n ≥,所以,331n n >-.故答案为331n n >-. 【名师点睛】本题考查数列不等式的证明,考查了归纳法,同时也考查了导数在证明数列不等式的应用,考查推理能力,属于中等题.11.已知()ln f x x x m x =--,若()0f x >恒成立,则实数m 的取值范围是___________. 【试题来源】湖北省襄阳市第一中学2019-2020学年高二下学期5月月考 【答案】(,1)-∞【分析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->,分类讨论,分离参数,求最值,即可求实数m 的取值范围.【解析】函数()f x 的定义域为(0,)x ∈+∞,由()0f x >,得ln ||xx m x->, (ⅰ)当(0,1)x ∈时,||0x m -≥,ln 0xx<,不等式恒成立,所以m R ∈; (ⅰ)当1x =时,|1|0m -≥,ln 0xx=,所以1m ≠; (ⅰ)当1x >时,不等式恒成立等价于ln x m x x <-恒成立或ln xm x x>+恒成立, 令ln ()x h x x x =-,则221ln ()x x h x x'-+=,因为1x >,所以()0h x '>,从而()1h x >, 因为ln xm x x<-恒成立等价于min ()m h x <,所以1m , 令ln ()x g x x x =+,则221ln ()x xg x x+-'=, 再令2()1ln p x x x =+-,则1'()20p x x x=->在(1,)x ∈+∞上恒成立,()p x 在(1,)x ∈+∞上无最大值,综上所述,满足条件的m 的取值范围是(,1)-∞.故答案为(,1)-∞.12.已知函数21,0()2,0x e x f x ax x x ⎧-≥=⎨+<⎩,若()1f x ax ≥-恒成立,则a 的取值范围是___________.【试题来源】陕西省安康市2020-2021学年高三上学期10月联考(理)【答案】4e -⎡⎤⎣⎦【分析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立,当0x ≠时,则2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩,然后构造函数()x e g x x=(0x >),()221x h x x x +=-(0x <),分别求解函数()g x 的最小值和()h x 的最大值,只需()()min max h x a g x ≤≤即可.【解析】若()1f x ax ≥-,则211,021,0x e ax x ax x ax x ⎧-≥-≥⎨+≥-<⎩,当0x =时,显然成立;当0x ≠时,则()2,012,0x e ax x a x x x x ⎧≥>⎪⎨-≥--<⎪⎩,因为当0x <时,20x x ->, 所以只需满足2,021,0xe a x xx a x x x ⎧≤>⎪⎪⎨+⎪≥<⎪-⎩即可,令()x e g x x =(0x >),则()()21x x e g x x-'=, 则()0,1x ∈时,()0g x '<,所以()g x 在()0,1x ∈上递减, 当()1,x ∈+∞时,()0g x '>,则()g x 在()1,+∞上递增, 所以()()1min g x g e ==,所以a e ≤,令()221x h x x x +=-(0x <), 则()()()()()()22222222112221x x x x x x h x x x x x --+-+-'==--,令()0h x '=,得x =x =则当x ⎛∈-∞ ⎝ ⎭时,()0h x '>;当x ⎫∈⎪⎪⎝⎭时,()0h x '<, 所以函数()h x在⎛-∞ ⎝ ⎭上递增,在⎫⎪⎪⎝⎭上递减, 所以()4maxh x h ===-⎝⎭⎝⎭故4a ≥-4a e -≤.故答案为4e -⎡⎤⎣⎦.【名师点睛】本题考查根据不等式恒成立问题求参数的取值范围问题,考查学生分析问题、转化问题的能力,考查参变分离思想的运用,考查利用导数求解函数的最值,属于难题. 解决此类问题的方法一般有以下几种:(1)作出函数的图象,利用数形结合思想加以研究;(2)先进行参变分离,然后利用导数研究函数的最值,即可解决问题,必要时可以构造新函数进行研究.13.函数()2cos sin f x x x x x =+-,当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()f x ax ≤恒成立,则实数a 的取值范围是___________.【试题来源】河南省名校联盟2020届高三(6月份)高考数学(理)联考试题 【答案】[)0,+∞ 【分析】先根据2x π=时22f a ππ⎛⎫≤⎪⎝⎭得0a ≥,再对函数()f x 求导,研究导函数的单调性、最值等,进而研究函数()f x 单调性,即可解决.【解析】22f a ππ⎛⎫≤ ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π,0a ∴≥. 由题意得()()2sin sin cos 1sin cos 1f x x x x x x x x '=-++-=-+-⎡⎤⎣⎦, 令()sin cos 1g x x x x =-+-,则()sin g x x x '=-. 当,2x π⎛⎤∈π⎥⎝⎦时,()0g x '<,()g x 单调递减; 当3,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,()g x ∴的最小值为()1g ππ=--. 又22g π⎛⎫=- ⎪⎝⎭,302g π⎛⎫= ⎪⎝⎭,3,22x ππ⎡⎤∴∈⎢⎥⎣⎦,()0g x ≤,即()0f x '≤, ()f x ∴在区间3,22ππ⎡⎤⎢⎥⎣⎦为减函数.02f π⎛⎫= ⎪⎝⎭,∴当3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x ≤.又当0a ≥,3,22x ππ⎡⎤∈⎢⎥⎣⎦时,0ax ≥,故()f x ax ≤恒成立,因此a 的取值范围是[)0,+∞.14.已知0a <,且()221ln 0ax ax x ax -+≥+恒成立,则a 的值是___________.【试题来源】6月大数据精选模拟卷04(上海卷)(满分冲刺篇) 【答案】e -【分析】把不等式()221ln 0a x ax x ax -+≥+恒成立,转化为函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,结合函数的单调性和零点,得出1a-是函数ln y ax x =-的零点,即可求解. 【解析】由题意,不等式()221ln 0a x ax x ax -+≥+恒成立,即函数()()()1ln 0f x ax ax x =+⋅-≥在定义域内对任意的x 恒成立,由ln ,0,0y ax x a x =-<>,则10y a x'=-<,所以ln y ax x =-为(0,)+∞减函数, 又由当0a <,可得1y ax =+为(0,)+∞减函数, 所以1y ax =+ 与ln y ax x =-同为单调减函数,且1a-是函数1y ax =+的零点, 故1a -是函数ln y ax x =-的零点,故110ln a a a ⎛⎫⎛⎫=⋅--- ⎪ ⎪⎝⎭⎝⎭,解得a e =-.【名师点睛】本题主要考查了不等式的恒成立问题,以及函数与方程的综合应用,其中解答中把不等式恒成立问题转化为函数的性质和函数的零点问题是解答的关键,着重考查转化思想,以及推理与运算能力.15.若对任意实数(],1x ∈-∞,2211xx ax e-+≥恒成立,则a =___________. 【试题来源】2020届辽宁省抚顺市高三二模考试(理) 【答案】12-【分析】设()()2211xx ax f x x e-+=≤,结合导数可知当0a <时,()()min 21f x f a =+;由题意可知,()()2122211a a f x f a e++≥+=≥,设()1t g t e t =--,则()0g t ≤,由导数可求出当0t =时,()g t 有最小值0,即()0g t ≥.从而可确定()0g t =,即可求出a 的值.【解析】设()()2211xx ax f x x e -+=≤,则()()()121xx x a f x e --+⎡⎤⎣⎦'=.当211a +≥,即0a ≥时,()0f x '≤,则()f x 在(],1-∞上单调递减, 故()()2211a f x f e -≥=≥,解得102ea ≤-<,所以0a ≥不符合题意; 当211a +<,即0a <时,()f x 在(),21a -∞+上单调递减,在(]21,1a +上单调递增, 则()()min21f x f a =+.因为2211xx ax e -+≥,所以()()2122211a a f x f a e ++≥+=≥. 令211a t +=<,不等式21221a a e++≥可转化为10te t --≤,设()1t g t e t =--, 则()1tg t e '=-,令()0g t '<,得0t <;令()0g t '>,得01t <<,则()g t 在(),0-∞上单调递减,在()0,1上单调递增;当0t =时,()g t 有最小值0, 即()0g t ≥.因为()0g t ≤,所以()0g t =,此时210a +=,故12a =-. 【名师点睛】本题考查了函数最值的求解,考查了不等式恒成立问题.本题的难点在于将已知恒成立问题,转化为()10tg t e t =--≤恒成立.本题的关键是结合导数,对含参、不含参函数最值的求解. 四、双空题1.已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________.【试题来源】辽宁省锦州市渤大附中、育明高中2020-2021学年高三上学期第一次联考 【答案】10,2⎛⎫ ⎪⎝⎭[)5,-+∞【分析】求出导函数()2122122ax x f x ax x x-+'=-+=,只需方程22210ax x -+=有两个不相等的正根,满足1212010210x x a x x a ⎧⎪∆>⎪⎪=>⎨⎪⎪+=>⎪⎩,解不等式组可得a 的取值范围;求出 ()()1212f x f x x x +--的表达式,最后利用导数,通过构造函数,求出新构造函数的单调性,最后求出t 的取值范围.【解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---, 设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭, 22()0a h a a '-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-.因此t 的取值范围是[)5,-+∞. 故答案为10,2⎛⎫ ⎪⎝⎭;[)5,-+∞【名师点睛】本题考查了已知函数极值情况求参数取值范围问题,考查了不等式恒成立问题,构造新函数,利用导数是解题的关键,属于基础题.2.对任意正整数n ,函数32()27cos 1f n n n n n πλ=---,若(2)0f ≥,则λ的取值范围是___________;若不等式()0f n ≥恒成立,则λ的最大值为___________. 【试题来源】2021年新高考数学一轮复习学与练 【答案】13,2⎛⎤-∞-⎥⎝⎦132-【分析】将2n =代入求解即可;当n 为奇数时,cos 1n π=-,则转化。
高一数学不等式恒成立与能成立问题 (解析版)
不等式恒成立与能成立一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x 2、∀∈x D ,()()max ≥⇔≥m f x m f x 3、∃∈x D ,()()max ≤⇔≤m f x m f x 4、∃∈x D ,()()min≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;题型一单变量不等式恒成立问题【例1】已知函数()42+=x xbf x 为奇函数.(1)求实数b 的值;(2)若对任意的[]0,1x ∈,有()23202--+<f xkx k 恒成立,求实数k 的取值范围.【答案】(1)1=-b ;(2)3,2⎛⎫+∞ ⎪⎝⎭【解析】(1)∵函数()42+=x x bf x 的定义域为R ,且为奇函数,∴()010=+=f b ,解得1=-b ,经验证:()411222-==-x xx x f x 为奇函数,符合题意,故1=-b ;(2)∵()122=-xxf x ,∴()f x 在R 上单调递增,且()131222-=-=-f .∵()23202--+<f x kx k ,则()()23212--<-=-f x kx k f ,又函数()f x 在R上单调递增,则221x kx k --<-在[]0,1x ∈上恒成立,∴()32141k x x >++-+在[]0,1x ∈上恒成立,设()()32141g x x x =++-+,令1t x =+,则[1,2]t ∈,函数32y t t=+在上递减,在2]上递增,当1t =时,5y =,当2t =时,112y =,故()max 113422g x =-=,则32k >,∴实数k 的取值范围为3,2⎛⎫+∞ ⎪⎝⎭.【变式1-1】已知定义在R 上的函数()22x xf x k -=-⋅是奇函数.(1)求实数k 的值;(2)若对任意的R x ∈,不等式()()240f x tx f x ++->恒成立,求实数t 的取值范围.【答案】(1)1k =;(2)()3,5-【解析】(1) 函数()22x x f x k -=-⋅是定义域R 上的奇函数,∴(0)0f =,即()000220f k =-⋅=,解得1k =.此时()22x x f x -=-,则()()()2222x x x xf x f x ---=-=--=-,符合题意;(2)因为()22x xf x -=-,且2x y =在定义域R 上单调递增,2x y -=在定义域R 上单调递减,所以()22x x f x -=-在定义域R 上单调递增,则不等式()()240f x tx f x ++->恒成立,即()()24f x tx f x +>-恒成立,即24x tx x +>-恒成立,即()2140x t x +-+>恒成立,所以()21440t ∆=--⨯<,解得35t -<<,即()3,5t ∈-.【变式1-2】已知()21212xxm m ⎛⎫- ⎪⎝⎭≤-对任意(],1x ∈-∞-恒成立,则实数m 的取值范围为_________.【答案】[]2,3-【解析】依题意,()21212xxm m ⎛⎫- ⎪⎝⎭≤-对任意(],1x ∈-∞-恒成立,可等价为221122x x m m ⎛⎫- ⎪⎝+⎭≤对任意(],1x ∈-∞-恒成立,即2in2m 1122x x m m ≤+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令[)12,2x t =∈+∞,()[)2211,2,24f t t t t t ⎛⎫∴=+=+-∈+∞ ⎪⎝⎭,()()2min 1122624f t f ⎛⎫∴==+-= ⎪⎝⎭,26m m ∴-≤,解得23m -≤≤,∴实数m 的取值范围为[]2,3-.【变式1-3】已知()()2log 124x xf x a =-⋅+,其中a 为常数(1)当()()102f f -=时,求a 的值;(2)当[1x ∈+∞,)时,关于x 的不等式()1f x x ≥-恒成立,试求a 的取值范围;【答案】(1)32a =;(2)2a ≤【解析】(1)()()102f f -=得()()222log 124log 11log 4a a -+-+=-⇒()()22log 52log 42a a -=-⇒352842a a a -=-⇒=;(2)()122log 1241log 2x x x a x --⋅+≥-=1111242222x x x x xa a -⇒-⋅+≥⇒≤+-,令2x t =,[)1[2x t ∈+∞∴∈+∞ ,,),设()112h t t t =+-,则()min a h t ≤, ()h t 在[2+∞,)上为增函数⇒2t =时,()112h t t t =+-有最小值为2,2a ∴≤.【变式1-4】已知函数()()4log 65x xf x m =+⋅.(1)当1m =-时,求()f x 的定义域;(2)若()2f x ≤对任意的[]0,1x ∈恒成立,求m 的取值范围.【答案】(1)()0,∞+;(2)(]1,2-【解析】(1)当1m =-时()()4log 65x xf x =-,令650x x ->,即65x x>,即615x⎛⎫> ⎪⎝⎭,解得0x >,所以()f x 的定义域为()0,∞+.(2)由()2f x ≤对任意的[]0,1x ∈恒成立,所以06516x x m <+⋅≤对任意的[]0,1x ∈恒成立,即6166555xxx m ⎛⎫⎛⎫-<≤- ⎪ ⎪⎝⎭⎝⎭对任意的[]0,1x ∈恒成立,因为165x y =是单调递减函数,65xy ⎛⎫=- ⎪⎝⎭是单调递减函数,所以()16655xx g x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()min 12g x g ==,所以()65xh x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()max 01h x h ==-,所以12m -< ,即m 的取值范围为(]1,2-.题型二单变量不等式能成立问题【例2】定义在[]3,3-上的奇函数()f x ,已知当[]3,0x ∈-时()143x xaf x =+(a R ∈).(1)求()f x 在(]0,3上的解析式;(2)若存在[]2,1x ∈--时,使不等式()1123xx m f x -≤-成立,求实数m 的取值范围.【答案】(1)()34x xf x =-;(2)5m ≥【解析】(1)根据题意,()f x 是定义在[]3,3-上的奇函数,则()010f a =+=,得1a =-.经检验满足题意:故1a =-;当[]3,0x ∈-时,()1114343x x x x a f x =+=-,当(]0,3x ∈时,[]3,0x -∈-,()114343---=-=-x x x xf x .又()f x 是奇函数,则()()34x x f x f x =--=-.综上,当(]0,3x ∈时,()34x xf x =-.(2)根据题意,若存在[]2,1x ∈--,使得()1123x x m f x -≤-成立,即11114323x x x x m --≤-在[]2,1x ∈--有解,即12243x x x m ≥+在[]2,1x ∈--有解.又由20x >,则12223xx m ⎛⎫≥+⋅ ⎪⎝⎭在[]2,1x ∈--有解.设()12223xx g x ⎛⎫=+⋅ ⎪⎝⎭,分析可得()g x 在[]2,1x ∈--上单调递减,又由[]2,1x ∈--时,()()11min 1212523g g x --⎛⎫=-=+⋅= ⎪⎝⎭,故5m ≥.即实数m 的取值范围是[)5,+∞.【变式2-1】已知函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦.(1)求()f x 的定义域B ;(2)对于(1)中的集合B ,若x B ∃∈,使得21a x x >-+成立,求实数a 的取值范围.【答案】(1)12,4B ⎡⎤=-⎢⎥⎣⎦;(2)13,16⎛⎫+∞ ⎪⎝⎭【解析】(1)∵()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∴114x ≤≤.∴12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.(2)令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎥⎣⎦上的最小值.∵()21324g x x ⎛⎫=-+ ⎪⎝⎭,∴()g x 在12,4⎡⎤-⎢⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∴实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.【变式2-2】已知函数()1422x x f x a +=-⋅+,其中[]0,3.x ∈(1)若()f x 的最小值为1,求a 的值;(2)若存在[]0,3x ∈,使()33f x ≥成立,求a 的取值范围.【答案】(1)5a =;(2)1a ≥【解析】(1)因为[]0,3x ∈,()()()22242224x x x f x a a =-⋅+=-+-,当22x =时,即当1x =时,函数()f x 取得最小值,即()()min 141f x f a ==-=,解得5a =.(2)令[]21,8xt =∈,则()24f x t t a =-+,由()33f x ≥可得2433a t t ≥-++,令()2433g t t t =-++,函数()g t 在[)1,2上单调递增,在(]2,8上单调递减,因为()136g =,()81g =,所以,()()min 81g t g ==,1a ∴≥.【变式2-3】已知函数()e e x xf x -=+.(1)当[0,)x ∈+∞时,试判断并证明其单调性.(2)若存在[ln 2,ln 3]x ∈-,使得(2)()30f x mf x -+≥成立,求实数m 的取值范围.【答案】(1)单调递增,证明见解析;;(2)109,30⎛⎤-∞⎥⎝⎦.【解析】(1)()e e x xf x -=+在[0,)+∞上单调递增,证明如下:12,[0,)x x ∀∈+∞,且12x x <,则()()()()()112221212211211221e e e e ee eeee e e e 1ex x x x x x x x x x x xx x x x f x f x +--+⎛⎫--=+-+=-+=- ⎝-⎪⎭,由120x x ≤<得:21e e 0x x->,12e 1x x +>,所以()()21f x f x >,即()f x 在[0,)+∞上的单调递增(2)由题设,[ln 2,ln 3]x ∃∈-使()()()()222(2)()3e e e e 3e e e e 10x x x x x x x x f x mf x m m -----+=+-++=+-++≥,又()()e e e e ()x x x x f x f x -----=++==,即()f x 是偶函数,结合(1)知:()f x 在[ln 2,0]-单调递减,在[0,ln 3]上单调递增,又510(ln 2)(ln 3)23f f -=<=,所以(0)()(ln 3)f f x f ≤≤,即102()3f x ≤≤,令e e x x t -=+,则102,3t ⎡⎤∃∈⎢⎥⎣⎦使210t mt -+≥,可得211t m t t t+≤=+,令1()g t t t =+在102,3t ⎡⎤∈⎢⎥⎣⎦单调递增,故max 10109()330g t g ⎛⎫==⎪⎝⎭;所以max ()m g t ≤,即109,30m ⎛⎤∈-∞ ⎥⎝⎦.【变式2-4】已知1≤x ≤27,函数33()log (3)log 227=⋅++xf x a x b (a >0)的最大值为4,最小值为0.(1)求a 、b 的值;(2)若不等式()(3)0t g t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,求实数k 的取值范围.【答案】(1)1,2a b ==;(2)43⎛⎤-∞ ⎥⎝⎦,【解析】(1)()()()()3333log 3log 2log 1log 3227x f x a x b a x x b =⋅++=+-++()23log 142a x a b =+--+,由1≤x ≤27得[]3log 0,3t x =∈,()[]23log 10,4x -∈,又a >0,因此33()log (3)log 227=⋅++xf x a x b 的最大值为24+=b ,最小值为420a b -++=,解得1,2a b ==.(2)()()23log 1f x x =-,()()()2310tg t f kt t kt =-=--≥又1,32t ⎡⎤∈⎢⎥⎣⎦,()2112t k t t t-≤=+-,而1()2h t t t =+-在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上单调递增.由不等式()()30tg t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,得:max 12k t t ⎛⎫≤+- ⎪⎝⎭43=.因此,k 的取值范围是43⎛⎤∞ ⎥⎝⎦-,.题型三任意-任意型不等式成立问题【例3】已知()()()21ln 12xf x xg x m ⎛⎫=+=- ⎪⎝⎭,,若对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则实数m的取值范围是()A .14⎡⎫+∞⎪⎢⎣⎭B .14⎛⎥-∞⎤ ⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭,D .12⎛⎤-∞- ⎥⎝⎦,【答案】C【解析】易知()2(ln 1)f x x =+在[0,3]上单调递增,()()min 00f x f ==,()1()2xg x m =-在[1,2]上单调递减,()()max 112g x g m ==-,对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则()()min max f x g x ≥102m -≤,即12m ≥.故选:C.【变式3-1】已知定义在区间[0,2]上的两个函数()f x 和()g x ,其中2()24(1)f x x ax a =-+≥,2()1x g x x =+.(1)求函数()y f x =的最小值()m a ;(2)若对任意12,[0,2]x x ∈,21()()f x g x >恒成立,求a 的取值范围.【答案】(1)24,12()84,2a a m a a a ⎧-≤<=⎨-≥⎩;(2)13a ≤<【解析】(1)由()()222244f x x ax x a a =-+=-+-,则二次函数的对称轴为x a =,则当12a ≤<时,()f x 在[)0,a 上单调递减,在(],2a 上单调递增,所以()()()2min 4m a f x f a a ===-;当2a ≥时,()f x 在[0,2]上单调递减,()()()min 284m a f x f a ===-,所以()24,1284,2a a m a a a ⎧-≤<=⎨-≥⎩;(2)()()1121g x x x =++-+,当[0,2]x ∈时,[]11,3x +∈,又()g x 在区间[0,2]上单调递增,所以()40,3g x ⎡⎤∈⎢⎥⎣⎦.若对任意12,[0,2]x x ∈,()()21f x g x >恒成立则()()21minmax f x g x >,故212443a a ≤<⎧⎪⎨->⎪⎩或24843a a ≥⎧⎪⎨->⎪⎩解得:13a ≤<.【变式3-2】已知函数()2x f x =,31()log 1xg x x-=+.(1)求()21log 20202f g ⎛⎫+- ⎪⎝⎭的值;(2)试求出函数()g x 的定义域,并判断该函数的单调性与奇偶性;(判断函数的单调性不必给出证明.)(3)若函数()(2)3()F x f x f x =-,且对[]10,1x ∀∈,211,22x ⎡⎤∀∈-⎢⎥⎣⎦,都有()()12F x g x m >+成立,求实数m 的取值范围.【答案】(1)2021;(2)定义域为()1,1-,函数()g x 在()1,1-上为减函数;奇函数;(3)13,4⎛⎫-∞- ⎪⎝⎭.【解析】(1)()2log 2020231log 20202log 320212f g ⎛⎫+-=+= ⎪⎝⎭;(2)由101x x ->+有11x -<<,∴函数()g x 的定义域为()1,1-.∵3312()log log 111x g x x x -⎛⎫==-+ ⎪++⎝⎭,∴函数()g x 在()1,1-上为减函数;31()log ()1xg x g x x+-==--,且定义域关于原点对称,∴函数()g x 为奇函数;(3)∵对[]10,1x ∀∈,211,22x ⎡⎤∀∈-⎢⎥⎣⎦,都有()()12F x g x m >+恒成立,∴min max ()()F x g x m >+,由(2)知()g x 在11,22⎡⎤-⎢⎥⎣⎦上为减函数,∴max 1()12g x g ⎛⎫=-= ⎪⎝⎭,∵2()(2)3()232x x F x f x f x =-=-⋅,令2x t =,则23y t t =-,当[]0,1x ∈时,12t ≤≤,∴当32t =即223log log 312x ==-时,min 9()4F x =-,∴914m ->+,即134m <-,∴m 的取值范围为13,4⎛⎫-∞- ⎪⎝⎭.【变式3-3】已知函数()()2,f x x bx c b c =++∈R ,且()0f x ≤的解集为[]1,2-.(1)求函数()f x 的解析式;(2)设()()312f x xg x +-=,若对于任意的1x 、[]22,1x ∈-都有()()12g x g x M -≤,求M 的最小值.【答案】(1)()22f x x x =--;(2)M 的最小值为1516.【解析】(1)因为()0f x ≤的解集为[]1,2-,所以20x bx c ++=的根为1-、2,由韦达定理可得1212b c -+=-⎧⎨-⨯=⎩,即1b =-,2c =-,所以()22f x x x =--.(2)由(1)可得()()2312322f x x xx g x +-+-==,当[]2,1x ∈-时,()[]2223144,0x x x +-=+-∈-,故当[]2,1x ∈-时,()22112,116xx g x +-⎡⎤∈⎢⎣=⎥⎦,因为对于任意的1x 、[]22,1x ∈-都有()()12g x g x M -≤,即求()()12max g x g x M -≤,转化为()()max min g x g x M -≤,而()max 1g x =,()min 116g x =,所以,()()max min 11511616M g x g x ≥-=-=.所以M 的最小值为1516.题型四任意-存在型不等式成立问题【例4】已知函数()9f x x x=+和函数()g x x a =--,若对任意的[]124x ∈,,总存在[]201x ∈,,使得()()21g x f x <成立,则实数a 的取值范围是__________.【答案】7a >-【解析】对任意的[]124x ∈,,总存在[]201x ∈,,使得()()21g x f x <,即()()min min g x f x <,因对勾函数()9f x x x=+在[]23,上递减,在[]34,上递增,故当[]124x ∈,时,()()min 36f x f ==,函数()g x x a =--在[]01,上递减,所以()()min 11g x g a ==--,由()()min min g x f x <得16a --<,即7a >-.【变式4-1】已知()f x 是定义在[]22-,上的奇函数,当(]0,2x ∈时,()21x f x =-,函数()22.g x x x m =-+如果对于任意的[]12,2x ∈-,总存在[]22,2x ∈-,使得()()21g x f x ≥,则实数m 的取值范围是__________.【答案】[)5,-+∞【解析】若对于[]12,2x ∀∈-,[]22,2x ∃∈-,使得()()21g x f x ≥,则等价为()()max max g f x x ≥()f x 是定义在[]22-,上的奇函数,()00f ∴=,当(]0,2x ∈时,()(]210,3xf x =-∈,则当[]2,2x ∈-时,()[]3,3f x ∈-,()222(1)1g x x x m x m =-+=-+- ,[]2,2x ∈-,()max ()28g x g m ∴=-=+,则满足83m +≥,解得5m ≥-.【变式4-2】已知函数)()log 1xa f x a bx =+-(a >0且1,R ab ≠∈)是偶函数,函数()x g x a =(a >0且1a ≠).(1)求实数b 的值;(2)当a =2时,若1(1,)∀∈+x ∞,2R ∃∈x ,使得()()()112220g x mg x f x +->恒成立,求实数m 的取值范围.【答案】(1)12b =;(2)32m ≥-.【解析】(1)由题设,()()f x f x -=,即()()log 1log 1x x a a a bx a bx -++=+-,所以log (1)(1)log (1)x x a a a b x a bx ++-=+-,则1b b -=-,可得12b =.(2)由(1)及a =2知:2()log (21)2xx f x =+-,()2x g x =,所以12122log ()2144x x x x m +⋅->+在1(1,)∀∈+x ∞,2R ∃∈x 上恒成立,令42x x y m +⋅=且(1,)x ∈+∞,2log (41)x t x =+-且R x ∈,只需min y t >恒成立,而21log (2)2xxt =+,由20xm =>在R x ∈上递增,1n m m =+在(0,1)m ∈上递减,(1,)m ∈+∞上递增,2log t n =在定义域上递增,所以t 在(,0)-∞上递减,(0,)+∞上递增,故min 0|1x t t ===,综上,4210x x m +⋅->在(1,)x ∈+∞上恒成立,令2(2,)x k =∈+∞,则210k mk ->+在(2,)+∞上恒成立,而240m ∆=+>,故2{2230mm -≤+≥,可得32m ≥-.【变式4-3】已知函数2(1)()()x x a f x x ++=为偶函数.(1)求实数a 的值;(2)判断()f x 的单调性,并用定义法证明你的判断:(3)设()52g x kx k =+-,若对任意的1x ∈,总存在2[0,1]x ∈,使得()()12f x g x ≤成立,求实数k 的取值范围.【答案】(1)1-;(2)()f x 在(0,)+∞上单调递增,在(,0)-∞上单调递减,证明见解析;(3)9(,2-∞【解析】(1)()f x 为偶函数,定义域为(,0)(0,)-∞+∞ ,故()()f x f x -=对定义域内x 恒成立,22(1)()(1)()x x a x x a x x ++-+-+=,即2(1)0a x +=对定义域内x 恒成立,故1a =-;(2)22211()1x f x x x-==-,在(0,)+∞上单调递增,在(,0)-∞上单调递减,证明:设120x x <<,21212122221212()()11()()0x x x x f x f x x x x x -+-=-=>,故()f x 在(0,)+∞上单调递增,同理可证()f x 在(,0)-∞上单调递减;(3)由题意得()()12max max f x g x ≤,而()1max 12f x f ==,①0k ≥时,()2max (1)5g x g k ==-,152k -≥,解得902k ≤≤,②0k <时,()2max (0)52g x g k ==-,1522k -≥,故0k <时恒满足题意,综上,k 的取值范围是9(,]2-∞.题型五存在-存在型不等式成立问题【例5】已知函数()212=+f x x x ,()()ln 1=+-g x x a ,若存在1x ,[]20,2∈x ,使得()()12>f x g x ,则实数a 的取值范围是.【答案】a >-4【解析】问题可转化为f (x )max >g (x )min ,易得f (x )max =4,g (x )min =-a ,由f (x )ma x >g (x )min 得:4>-a ,故a >-4即为所求.【变式5-1】已知函数()11f x x =+,()1g x x =-,若1x ∃,[]2,1x a a ∈+,使得()()12f x g x >成立,求正实..数.a 的取值范围.【答案】【解析】存在1x ,2[x a ∈,1]a +,使得()()12f x g x >成立,等价为在[a ,1]a +上,()()max min f x g x >.由()1g x x =-在[a ,1]a +递增,可得()g x 的最小值为()1g a a =-,又0a >,所以()f x 在[a ,1]a +递减,可得()f x 的最大值为1()1f a a =+,由111a a >-+,解得a <<0a <;综上可得,a的范围是.【变式5-2】已知()2f x x x=+,()g x x a =-+,对于[]11,3x ∃∈,[]21,3x ∃∈,()()12f x g x ≥成立.【答案】20,3⎛⎤-∞ ⎥⎝⎦【解析】因为对于[]11,3x ∃∈,[]21,3x ∃∈,()()12f x g x ≥成立故当1x ,[]213x ∈,时,()()12max min f x g x ,因为()2f x x x=+在⎡⎣递减,⎤⎦递增,且()13f =,()2113333f =+=,故()()max 1133f x f ==,而()g x x a =-+在[]13,递减,故()()min 33g x g a ==-所以1133a - ,解得203a ,即a 的取值范围是20,3⎛⎤-∞ ⎥⎝⎦.【变式5-3】已知函数()222x x f x m m -=+⨯+是R 上的偶函数,()2g x a x m =--.(1)求m 的值;(2)若存在1x ,2[1x ∈,4],使得12()()f x g x 成立,求a 的取值范围.【答案】(1)1;(2)92a .【解析】(1)因为()222x x f x m m -=+⨯+是R 上的偶函数,所以()()f x f x -=,即222222x x x x m m m m --+⨯+=+⨯+,即(1)(22)0x x m ---=,解得1m =,故()222x xf x -=++;(2)由(1)可得2,2()2{2,2x a x g x a x x a x -++=--=+-< ,因为2,2(){2,2x a x g x x a x -++=+-< ,所以()g x 在[1,2]上是增函数,在[2,4]上是减函数,所以()max g x g =(2)a =,设2x t =,[1x ∈,4],可得[2t ∈,16],则12y t t=++在[2,16]递增,可得2t =时,f (2)取得最小值92,存在1x ,2[1x ∈,4],使得12()()f x g x 成立,可得()()min max f x g x ,即为92a .题型六任意-存在型等式成立问题【例6】已知函数1()423x x f x +=--,2()42(1)g x x mx m m =--≥,若对于任意1[0,1]x ∈,总存在2[0,1]x ∈,使得()()12f x g x =成立,则实数m 的取值范围为()A .3,22⎡⎫⎪⎢⎣⎭B .3,2⎡⎫+∞⎪⎢⎣⎭C .[1,2)D .31,2⎡⎤⎢⎥⎣⎦【答案】D【解析】定义1()423x x f x +=--,[0,1]x ∈,值域为A ;令2x t =,[1,2]t ∈,则1()423x x f x +=--可化为()222314y t t t =--=--在[1,2]t ∈上单增,所以()2max 2143y =--=-,()2min 1144y =--=-,即集合[]4,3A =--.定义2()42(1)g x x mx m m =--≥,[0,1]x ∈,值域为B ;因为对称轴22x m =≥,所以2()42g x x mx m =--在[0,1]x ∈上单调递减,所以max max ()(0)2,()(1)16g x g m g x g m ==-==-,即集合[]16,2B m m =--因为对于任意1[0,1]x ∈,总存在2[0,1]x ∈,使得()()12f x g x =成立,所以A B ⊆.只需162164231m m m m m -<-⎧⎪-≤-⎪⎨-≥-⎪⎪≥⎩解得:1456321m m m m ⎧>⎪⎪⎪≥⎪⎨⎪≤⎪⎪⎪≥⎩,即312m ≤≤。
高考数学导数专题专讲 专题35 双变量恒成立与能成立问题概述(含答案)
专题35双变量恒成立与能成立问题概述【方法总结】1.最值定位法解双变量不等式恒成立问题的思路策略(1)用最值定位法解双变量不等式恒成立问题是指通过不等式两端的最值进行定位,转化为不等式两端函数的最值之间的不等式,列出参数所满足的不等式,从而求解参数的取值范围.(2)有关两个函数在各自指定范围内的不等式恒成立问题,这里两个函数在指定范围内的自变量是没有关联的,这类不等式的恒成立问题就应该通过最值进行定位.2.常见的双变量恒成立能成立问题的类型(1)对于任意的x1∈[a,b],x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)min≥g(x2)max.(如图1)(2)若存在x1∈[a,b],总存在x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)max≥g(x2)min.(如图2)(3)对于任意的x1∈[a,b],总存在x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)min≥g(x2)min.(如图3)(4)若存在x1∈[a,b],对任意的x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)max≥g(x2)max.(如图4)(5)若存在x1∈[a,b],对任意的x2∈[m,n],使得f(x1)=g(x2)⇔f(x1)max≥g(x2)max.(如图4)(6)若存在x1∈[a,b],总存在x2∈[m,n],使得f(x1)=g(x2)⇔f(x)的值域与g(x)的值域的交集非空.(如图5)考点一双任意与双存在不等问题(1)f(x),g(x)是在闭区间D上的连续函数且∀x1,x2∈D,使得f(x1)>g(x2),等价于f(x)min>g(x)max.其等价转化的目标是函数y=f(x)的任意一个函数值均大于函数y=g(x)的任意一个函数值.如图⑤.(2)存在x1,x2∈D,使得f(x1)>g(x2),等价于f(x)max>g(x)min.其等价转化的目标是函数y=f(x)的某一个函数值大于函数y=g(x)的某些函数值.如图⑥.【例题选讲】[例1]已知函数f (x )=a +1x+a ln x ,其中参数a <0.(1)求函数f (x )的单调区间;(2)设函数g (x )=2x 2f ′(x )-xf (x )-3a (a <0),存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,求a 的取值范围.解析(1)∵f (x )=a +1x +a ln x ,定义域为(0,+∞).∴f ′(x )=-a +1x 2+a x =ax -(a +1)x 2.①当-1<a <0时,a +1a<0,恒有f ′(x )<0.∴函数f (x )的单调减区间是(0,+∞).②当a =-1时,f ′(x )=-1x <0,∴f (x )的减区间是(0,+∞).③当a <-1时,x 0,a +1a f ′(x )>0,∴f (x )的增区间是0,a +1a x a +1a,+∞f ′(x )<0,∴f (x )a +1a ,+∞(2)g (x )=2ax -ax ln x -(6a +3)(a <0),因为存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,∴2g (x )min <g (x )max .又g ′(x )=a (1-ln x ),且a <0,∴当x ∈[1,e)时,g ′(x )<0,g (x )是减函数;当x ∈(e ,e 2]时,g ′(x )>0,g (x )是增函数.∴g (x )min =g (e)=a e -6a -3,g (x )max =max{g (1),g (e 2)}=-6a -3.∴2a e -12a -6<-6a -3,则a >32e -6.又a <0,从而32e -6<a <0,即a 32e -6,0[例2]已知函数f (x )=12ln x -mx ,g (x )=x -a x(a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围.解析(1)因为f (x )=12ln x -mx ,x >0,所以f ′(x )=12x-m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(x )=0得x =12m ;f ′(x )>0,x >0得0<x <12m ;由f ′(x )<0,x >0得x >12m.所以f (x )0,12m 上单调递增,在12m,+∞上单调递减.综上所述,当m ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当m >0时,f (x )0,12m ,单调递减区间为12m ,+∞.(2)若m =12e 2,则f (x )=12ln x -12e2x .对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max ,由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,又g ′(x )=1+ax 2>0(a >0),x ∈[2,2e 2],所以函数g (x )在[2,2e 2]上是增函数,所以g (x )min =g (2)=2-a 2.由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].[例3]已知f (x )=x +a 2x(a >0),g (x )=x +ln x .(1)若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,求实数a 的取值范围;(2)若存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),求实数a 的取值范围.解析(1)对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,等价于x ∈[1,e]时,f (x )min ≥g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.只需证f (x )≥e +1,即x +a 2x ≥e +1⇔a 2≥(e +1)x -x 2在[1,e]上恒成立即可.令h (x )=(e +1)x -x 2,当x ∈[1,e]时,h (x )=(e +1)x -x 2=-x -e +12+e +12的最大值为e +12=e +122.所以a 2e +122,即a ≥e +12(舍去负值).故实数a 的取值范围是e +12,+∞(2)存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),等价于x ∈[1,e]时,f (x )min <g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.又f ′(x )=1-a 2x2,令f ′(x )=0,得x =a ,故f (x )=x +a 2x(a >0)在(0,a )上单调递减,在(a ,+∞)上单调递增.当0<a <1时,f (x )在[1,e]上单调递增,f (x )min =f (1)=1+a 2<e +1,符合题意;当1≤a ≤e 时,f (x )在[1,a ]上单调递减,在[a ,e]上单调递增,f (x )min =f (a )=2a ,此时,2a <e +1,解得1≤a <e +12;当a >e 时,f (x )在[1,e]上单调递减,f (x )min =f (e)=e +a 2e ,此时,e +a 2e<e +1,即a <e ,与a >e 矛盾,不符合题意.综上可知,实数a 的取值范围是0,e +12.点拨(1)本题第(1)问从数的角度看,问题的本质就是f (x )min ≥g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点不低于g (x )图象的最高点.(2)本题第(2)问从数的角度看,问题的本质就是f (x )min <g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.[例4]设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.解析(1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x -23g ′(x )<0,解得0<x <23;由g ′(x )>0,解得x <0或x >23.又x ∈[0,2],所以g (x )在区间0,23上单调递减,在区间23,2上单调递增,又g (0)=-3,g (2)=1,故g (x )max =g (2)=1,g (x )min =g 23=-8527.所以[g (x 1)-g (x 2)]max =g (x )max -g (x )min =1+8527=11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,等价于在区间12,2上,函数f (x )min ≥g (x )max .由(1)可知在区间12,2上,g (x )的最大值为g (2)=1.在区间12,2上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,x ∈12,2,则h ′(x )=1-2x ln x -x ,易知h ′(x )在区间12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.所以函数h (x )=x -x 2lnx 在区间12,1上单调递增,在区间[1,2]上单调递减,所以h (x )max =h (1)=1,所以实数a 的取值范围是[1,+∞).考点二存在与任意嵌套不等问题(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧.【例题选讲】[例5]设函数f (x )=e(x 2-ax +a )e x(a ∈R ).(1)若曲线y =f (x )在x =1处的切线过点M (2,3),求a 的值;(2)设g (x )=x +1x +1-13,若对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立,求a 的取值范围.解析(1)因为f (x )=e(x 2-ax +a )e x ,所以f ′(x )=e·(2x -a )e x -(x 2-ax +a )e xe 2x =-(x -2)(x -a )ex -1.又f (1)=1,即切点为(1,1),所以k =f ′(1)=1-a =3-12-1,解得a =-1.(2)“对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立”,等价于“在[0,2]上,f (x )的最大值大于或等于g (x )的最大值”.因为g (x )=x +1x +1-13,g ′(x )=x 2+2x (x +1)2≥0,所以g (x )在[0,2]上单调递增,所以g (x )max =g (2)=2.令f ′(x )=0,得x =2或x =a .①当a ≤0时,f ′(x )≥0在[0,2]上恒成立,f (x )单调递增,f (x )max =f (2)=(4-a )e -1≥2,解得a ≤4-2e ;②当0<a <2时,f ′(x )≤0在[0,a ]上恒成立,f (x )单调递减,f ′(x )≥0在[a ,2]上恒成立,f (x )单调递增,f (x )的最大值为f (2)=(4-a )e -1或f (0)=a e ,所以(4-a )e -1≥2或a e≥2.解得:a ≤4-2e 或a ≥2e ,所以2e≤a <2;③当a ≥2时,f ′(x )≤0在[0,2]上恒成立,f (x )单调递减,f (x )max =f (0)=a e≥2,解得a ≥2e ,所以a ≥2.综上所述:a ≤4-2e 或a ≥2e .[例6]已知函数f (x )=x -(a +1)ln x -a x (a ∈R 且a <e),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解析(1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.①若a ≤1,当x ∈[1,e]时,f ′(x )≥0,则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a .②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数;当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数.所以f (x )min =f (a )=a -(a +1)ln a -1,综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1;(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值.由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x )x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数,则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2e e +1,所以a 的取值范围为e 2-2ee +1,1考点三双任意与存在相等问题(1)∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 与g (x )在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图⑨.其等价转化的目标是两个函数有相等的函数值.图⑨图⑩(2)∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图⑩.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中.说明:图⑨,图⑩中的条形图表示函数在相应定义域上的值域在y 轴上的投影.【例题选讲】[例7]已知函数f (x )=ax -ln x +x 2.(1)若a =-1,求函数f (x )的极值;(2)若a =1,∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0),求实数m 的取值范围.解析(1)依题意知,当a =-1时,f (x )=-x -ln x +x 2,f ′(x )=-1-1x +2x =2x 2-x -1x =(2x +1)(x -1)x,因为x ∈(0,+∞),故当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0,故当x =1时,f (x )有极小值,极小值为f (1)=0,无极大值.(2)当a =1时,f (x )=x -ln x +x 2.因为∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0),故ln x 1-x 1=13mx 32-mx 2.设h (x )=ln x -x ,g (x )=13mx 3-mx ,当x ∈(1,2)时,h ′(x )=1x -1<0,即函数h (x )在(1,2)上单调递减,故h (x )的值域为A =(ln 2-2,-1).又g ′(x )=mx 2-m =m (x +1)(x -1).①当m <0时,g (x )在(1,2)上单调递减,此时g (x )的值域为B =2m 3,-2m 3,因为A ⊆B ,又-2m 3>0>-1,故2m 3≤ln 2-2,即m ≤32ln 2-3;②当m >0时,g (x )在(1,2)上单调递增,此时g (x )的值域为B =-2m 3,2m3,因为A ⊆B ,又2m 3>0>-1,故-2m 3≤ln 2-2,故m ≥-32(ln 2-2)=3-32ln 2.综上所述,实数m -∞,32ln 2-3∪3-32ln 2,+∞[例8]已知函数f (x )=a ln x -x +2,a ∈R .(1)求函数f (x )的单调区间;(2)若对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,求实数a 的值.解析(1)因为f (x )=a ln x -x +2,所以f ′(x )=ax -1=a -x x,x >0,当a ≤0时,对任意的x ∈(0,+∞),f ′(x )<0,所以f (x )的单调递减区间为(0,+∞),无单调递增区间;当a >0时,令f ′(x )=0,得x =a ,因为x ∈(0,a )时,f ′(x )>0,x ∈(a ,+∞)时,f ′(x )<0,所以f (x )的单调递增区间为(0,a ),单调递减区间为(a ,+∞).(2)①当a ≤1时,由(1)知,f (x )在[1,e]上是减函数,所以f (x )max =f (1)=1.因为对任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (1)=2<4,所以对任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.②当1<a <e 时,由(1)知,f (x )在[1,a ]上是增函数,在(a ,e]上是减函数,所以f (x )max =f (a )=a ln a -a +2.因为对任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (a )=2a (ln a -1)+4,又1<a <e ,所以ln a -1<0,2a (ln a -1)+4<4,所以对任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.③当a ≥e 时,由(1)知,f (x )在[1,e]上是增函数,f (x )min =f (1)=1,f (x )max =f (e)=a -e +2,由题意,对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则当x 1=1时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (1)+f (e)≥4,同理当x 1=e 时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (e)+f (1)≤4,所以f (1)+f (e)=4.(对任意的x 1∈(1,e),令g (x )=4-f (x )-f (x 1),x ∈[1,e],g (x )=0有解.g (1)=4-f (1)-f (x 1)=f (e)-f (x 1)>0,g (e)=4-f (e)-f (x 1)=f (1)-f (x 1)<0,所以存在x 2∈(1,e),g (x 2)=4-f (x 2)-f (x 1)=0,即f (x 1)+f (x 2)=4.)所以由f (1)+f (e)=a -e +3=4,得a =e +1.综上可知,实数a 的值为e +1.[例9]已知函数f (x )=ln x -x ,g (x )=13mx 3-mx (m ≠0).(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若对任意的x 1∈(1,2),总存在x 2∈(1,2),使得f (x 1)=g (x 2),求实数m 的取值范围.解析(1)易知切点为(1,-1),f ′(x )=1x-1,切线的斜率k =f ′(1)=0,故切线方程为y =-1.(2)设f (x )在区间(1,2)上的值域为A ,g (x )在区间(1,2)上的值域为B ,则由题意可得A ⊆B .∵f (x )=ln x -x ,∴f ′(x )=1x -1=1-x x <0在(1,2)上恒成立,∴函数f (x )在区间(1,2)上单调递减,∴值域A 为(ln 2-2,-1).又g ′(x )=mx 2-m =m (x +1)(x -1),当m >0时,g ′(x )>0在x ∈(1,2)上恒成立,则g (x )在(1,2)上是增函数,此时g (x )在区间(1,2)上的值域B 为-23m ,23m,则m ,23m ≥-1,-23m ≤ln 2-2,解得m ≥-32(ln 2-2)=3-32ln 2.当m <0时,g ′(x )<0在x ∈(1,2)上恒成立,则g (x )在(1,2)上是减函数,此时g (x )在区间(1,2)上的值域B 为23m ,-23m,m ,-23m ≥-1,23m ≤ln 2-2,解得m ≤32(ln 2-2)=32ln 2-3.∴实数m -∞,32ln 2-3∪3-32ln 2,+∞[例10]已知函数f (x )=(1-x )e x -1.(1)求f (x )的极值;(2)设g (x )=(x -t )2+ln x -mt ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.解析(1)f ′(x )=-x e x ,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2ln x -mt ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x =m t,等价于方程ln x =mx 有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x ∈0,1e 时,h ′(x )<0,h (x )单调递减,当x ∈1e ,+∞h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e .[例11]已知函数f (x )=x 2-23ax 3,a >0,x ∈R ,g (x )=1x 2(1-x ).(1)若∃x 1∈(-∞,-1],∃x 2∈-∞,-12f (x 1)=g (x 2),求实数a 的取值范围;(2)当a =32时,求证:对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).解析(1)∵f (x )=x 2-23ax 3,∴f ′(x )=2x -2ax 2=2x (1-ax ).令f ′(x )=0,得x =0或x =1a.∵a >0,∴1a >0,∴当x ∈(-∞,0)时,f ′(x )<0,∴f (x )在(-∞,-1]上单调递减,f (x )≥f (-1)=1+2a3,故f (x )在(-∞,-1]上的值域为1+2a3,+∞∵g (x )=1x 2(1-x ),∴g ′(x )=3x 2-2x x 4(1-x )2=3x -2x 3(1-x )2.当x <-12时,g ′(x )>0,∴g (x )在-∞,-12上单调递增,g (x )<-12=83,故g (x )在-∞,-12上的值域为-∞,83若∃x 1∈(-∞,-1],∃x 2∈-∞,-12f (x 1)=g (x 2),则1+2a 3<83,解得0<a <52,故实数a 的取值范围是0,52(2)当a =32时,f (x )=x 2-x 3,∴f ′(x )=2x -3x 2=323-x 当x >2时,f ′(x )<0,∴f (x )在(2,+∞)上单调递减,且f (2)=-4,∴f (x )在(2,+∞)上的值域为(-∞,-4).则g (x )=1x 2(1-x )=1f (x )在(1,+∞)上单调递增,∴g (x )=1x 2(1-x )在(1,+∞)上的值域为(-∞,0).∵(-∞,-4)(-∞,0),∴对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).点拨本题第(1)问等价转化的基本思想是:两个函数有相等的函数值,即它们的值域有公共部分;第(2)问等价转化的基本思想是:函数f(x)的任意一个函数值都与函数g(x)的某一函数值相等,即f(x)的值域都在g(x)的值域中.。
高中数学恒成立问题1(含详解)
x 1,1 时,函数 y f (x) 的图象上任意一点的切线斜率恒大于 3 m ,求 m 的取 值范围 .
12. 设数列 { an} 的前 n 项和为 Sn,已知 a1=1,a2=6,a3=11,且 (5 n 8)Sn 1 (5n 2) Sn An B, n 1,2,3,…,其中 A,B 为常数 . (Ⅰ)求 A 与 B 的值; (Ⅱ)证明数列 { an} 为等差数列; (Ⅲ)证明不等式 5amn aman 1对任何正整数 m、n 都成立 . 13. 对于满足 |a| 2 的所有实数 a, 求使不等式 x2+ax+1>2a+x恒成立的 x 的取值 范围。
x 0,4 的值域的交集非空,则一定存在 1, 2 [0, 4] 使得 f ( 1 ) g ( 2 ) 1成立,
如果函数 f x 在 x 0,4 的值域与 g x 在 x 0,4 的值域的交集是空集,只要
这两个值域的距离的最小值小于 1 即可 . 由(Ⅰ)可得 , 函数 f x 在 x 0,4 的值域为
数,因而是一个单调函数,它的最值在定义域的端点得到 . 为此
只需
10
3x2 x 2 0,
1 0 即 3x2 x 8 0.
解得 2 x 1. 3
故x
2 ,1 时,对满足 1 a 1 的一切 a 的值,都有 g x 0 .
ቤተ መጻሕፍቲ ባይዱ
3
解法 2. 考虑不等式 g x 3x2 ax 3a 5 0 .
由 1 a 1 知, a2 36 a 60 0 , 于是 , 不等式的解为
10. 求 实 数 a 的 取 值 范 围 , 使 得 对 任 意 实 数 x 和 任 意
微专题23 恒成立、能成立问题(解析版)
微专题23恒成立、能成立问题【方法技巧与总结】1.利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.2.不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈.(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f x g x <成立,则()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()min max f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =成立,则()f x 的值域是()g x 的值域的子集.【题型归纳目录】题型一:分离参数题型二:判别式法题型三:数形结合题型四:多变量的恒成立问题题型五:主元法题型六:直接法【典型例题】题型一:分离参数例1.(2022·江苏·连云港市赣马高级中学高一阶段练习)若对任意12x ≤≤,有2x a ≤恒成立,则实数的取值范围是()A .{|2}a a ≤B .{|4}a a ≥C .{|5}a a ≤D .{|5}a a ≥【答案】B【解析】因为对任意12x ≤≤,有2x a ≤恒成立,所以()2maxxa ≤,因为12x ≤≤,所以204x ≤≤,所以4a ≥,故选:B例2.(2022·天津·高一期末)对于满足等式1411a b +=+的任意正数,a b 及任意实数[1,)x ∈+∞,不等式26a b x x m +≥-+-恒成立,则实数m 的取值范围为()A .[2,)+∞B .[1,)+∞C .[0,)+∞D .[3,)-+∞【答案】B【解析】因为任意正数,a b 满足等式1411a b +=+,所以()()1411111a b a b a b a b ⎛⎫+=++-=+++-⎡⎤ ⎪⎣⎦+⎝⎭144481b a a b +=++≥+=+,当且仅当126b a +==,即3,5a b ==时等号成立,因为任意实数[1,)x ∈+∞,不等式26a b x x m +≥-+-恒成立,所以,268m x x ≥-+-对任意实数[1,)x ∈+∞恒成立,因为[1,)x ∈+∞时,()2268311x x x -+-=--+≤,当且仅当=3x 时等号成立,所以,1m ≥,即实数m 的取值范围为[1,)+∞.故选:B例3.(2022·全国·高一课时练习)已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是()A .6,7⎛⎫+∞ ⎪⎝⎭B.11,,22∞∞⎛⎛⎫+-⋃+ ⎪ ⎪⎝⎭⎝⎭C .6,7⎛⎫-∞ ⎪⎝⎭D.⎝⎭【答案】D【解析】对任意[]1,3m ∈,不等式215mx mx m --<-+恒成立,即对任意[]1,3m ∈,()216m x x -+<恒成立,所以对任意[]1,3m ∈,261x x m-+<恒成立,所以对任意[]1,3m ∈,2min612x x m ⎛⎫-+<= ⎪⎝⎭,所以212x x -+<,解得1122x <<,故实数x的取值范围是1122⎛-+ ⎝⎭.故选:D .变式1.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D.变式2.(2022·广东·深圳外国语学校高一阶段练习)若关于x 的不等式26110x x a -+-<在区间()2,5内有解,则实数a 的取值范围是()A .[)6,+∞B .()6,+∞C .[)2,+∞D .()2,+∞【答案】D【解析】由关于x 的不等式26110x x a -+-<在区间(2,5)内有解,得2611a x x >-+在区间(2,5)内有解,令2()611f x x x =-+,则min ()(3)918112a f x f >==-+=,即2a >,所以实数a 的取值范围是(2,)+∞.故选:D .题型二:判别式法例4.(2022·山东·潍坊一中高三期中)若关于x 的不等式()()224210a x a x -++-≥的解集不为空集,则实数a 的取值范围为()A .62,5⎛⎤- ⎥⎝⎦B .62,5⎡⎤-⎢⎥⎣⎦C .6(,2)[,)5-∞-⋃+∞D .6(,2],5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】C【解析】根据题意,分两种情况讨论:①当240a -=时,即2a =±,若2a =时,原不等式为410x -≥,解可得:14x ≥,则不等式的解集为1|4x x ⎧⎫≥⎨⎬⎩⎭,不是空集;若2a =-时,原不等式为10-≥,无解,不符合题意;②当240a -≠时,即2a ≠±,若22(4)(2)10a x a x -++-≥的解集是空集,则有22240Δ(2)4(4)0a a a ⎧-<⎨=++-<⎩,解得625a -<<,则当不等式22(4)(2)10a x a x -++-≥的解集不为空集时,有2a <-或65a ≥且2a ≠,综合可得:实数a 的取值范围为6(,2)[,)5-∞-⋃+∞;故选:C .例5.(2022·陕西·西安市西光中学高二阶段练习)关于x 的不等210ax ax a ++-<的解集为R ,则a ∈()A .(),0∞-B .(0,+∞)C .(0,1)D .(]0-∞,【答案】D【解析】当0a =时,2110ax ax a ++-=-<对R x ∈恒成立,符合题意;当0a ≠时,构造21y ax ax a =++-,要使0y <对R x ∈恒成立,由二次函数的图像可知:a<0且224(1)340a a a a a ∆=--=-+<,解得:a<0,综上:0a ≤.故选:D .例6.(2022·河北唐山·高一期中)已知关于x 的不等式2220mx mx ++≥的解集为R ,则实数m 的取值范围是()A .02m <<B .02m ≤≤C .0m ≤或2m ≥D .0m <或m>2【答案】B【解析】当0m =时,则20≥恒成立,0m =成立;当0m ≠时,则20Δ480m m m >⎧⎨=-≤⎩,解得02m <≤;综上所述:实数m 的取值范围为02m ≤≤.故选:B.变式3.(2022·广东·石门高级中学高一阶段练习)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是()A .[]3,0-B .()(),30,-∞-⋃+∞C .(]3,0-D .(][),30,-∞-⋃+∞【答案】C【解析】当=0k 时,308-<对一切实数x 都成立,故=0k 符合题意;当0k ≠时,要使不等式23208kx kx +-<对一切实数x 都成立,则2<03<<03Δ=4×2×<08k k k k ⎧⎪⇒-⎨⎛⎫-- ⎪⎪⎝⎭⎩,综上可得30k -<≤,即(]3,0k ∈-;故选:C.变式4.(2022·北京市第五十中学高一阶段练习)对于任意实数x ,不等式()()222240m x m x ---+>恒成立,则m 的取值范围是()A .{22}mm -<<∣B .{22}mm -<≤∣C .{2mm <-∣或2}m >D .{2mm <-∣或2}m ≥【答案】B【解析】当20m -=,即=2m 时,40>恒成立,满足题意.当20m -≠时,则有()()22>0Δ=424×2×4<0m m m ----⎧⎪⎨⎪⎩,解得:22m -<<综上,实数m 的取值范围是22m -<≤故选:B变式5.(2022·河南·洛宁县第一高级中学高一阶段练习)已知不等式()2110ax a x --+>对任意实数x 都成立,则实数a 的取值范围是()A.{|3a a >-0}a <B.{|33a a -<<+C.{|3a a <-3a >+D.{33a a -<+【答案】D【解析】当0a =时,不等式为10x -+>,即1x <,不符合题意;当0a ≠时,不等式()2110ax a x --+>对任意实数x 都成立,由一元二次函数性质可知,0a >且判别式2[(1)]40a a ∆=---<,解得33a -<<+.故选:D .题型三:数形结合例7.已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式(2)(1)f ax f +- 对于[1x ∈,2]恒成立,则a 的取值范围是()A .(-∞,32-B .(-∞,1]2-C .[3-,12-D .3[,1]2--【解析】解:由题可知,()f x 的图象关于y 轴对称,且函数()f x 在(,0)-∞上递减,由函数()f x 的图象特征可得121ax -+ 在[1,2]上恒成立,得31a x x-- 在[1,2]上恒成立,所以312a -- .故选:D .例8.当(1,2)x ∈时,不等式1log a x x -<恒成立,则实数a 的取值范围为()A .(0,1)B .(1,2)C .(1,2]D .(2,)+∞【解析】解:函数1y x =-在区间(1,2)上单调递增,∴当(1,2)x ∈时,1(0,1)y x =-∈,若不等式1log a x x -<恒成立,则1a >且1log 2a 即(1a ∈,2],故选:C .例9.当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则实数a 的取值范围为()A .(2,3]B .[4,)+∞C .(1,2]D .[2,4)【解析】解:函数2(1)y x =-在区间(1,2)上单调递增,∴当(1,2)x ∈时,2(1)(0,1)y x =-∈,若不等式2(1)log a x x -<恒成立,则1a >且1log 2a 即(1a ∈,2],故选:C .变式6.存在[3x ∈,4]使得2()1x x a - 成立,则实数a 的取值范围是9[3,32-.【解析】解:由题意,存在[3x ∈,4]使得21()x a x- ,设21()(),[3,4],(),[3,4]f x x a x g x x x =-∈=∈,且1()3max g x =,1()4min g x =,如图①,当3a 时,函数()f x 在[3,4]上单调递增,此时只需21()(3)(3)3min f x f a ==- ,解得3333a -+ ,故333a - ;如图②,当34a <<时,函数()f x 的最小值为()min f x f =(a )0=,显然恒成立,如图③,当4a 时,函数()f x 在[3,4]上单调递减,此时21()(4)(4)4min f x f a ==- ,解得7922a ,故942a ;综上,实数a 的取值范围是9[3,]32-.故答案为:9[3]2.题型四:多变量的恒成立问题例10.(2022·江苏省镇江第一中学高一阶段练习)已知函数2()2,R =++∈f x x ax a .(1)若不等式()0f x ≤的解集为[1,2],求不等式2()1f x x ≥-的解集;(2)若对于任意[1,1]x ∈-,不等式()2(1)4f x a x ≤-+恒成立,求实数a 的取值范围;(3)已知()g x x m =-+,当3a =-时,若对任意1[1,4]x ∈,总存在2(1,8)x ∈,使()()12f x g x =成立,求实数m 的取值范围.【解析】(1)由题意,1,2为方程220x ax ++=的两个不等实数根,123a a ∴+=-⇒=-,所以不等式2()1f x x ≥-为2223212310x x x x x -+≥-⇒-+≥,解得12x ≤或1x ≥,所以不等式解集为[)1,1,2⎛⎤-∞+∞ ⎥⎝⎦.(2)2()2(1)4220f x a x x x a a -≤-+⇒+-≤对[1,1]x ∈-恒成立,令()222a h x x x a =+--,即()0h x ≤对[1,1]x ∈-恒成立,因为函数()h x 开口向上,故只需满足()()101220101220h a a h a a ⎧≤-+-≤⎧⎪⇒⎨⎨-≤++-≤⎪⎩⎩,解得13a ≤,所以a 的取值范围为1,3⎛⎤-∞ ⎥⎝⎦(3)当3a =-时,2()32f x x x =-+,开口向上,对称轴为32x =当[1,4]x ∈时,min 1()4f x =-,max ()6f x =,1()64f x ∴-≤≤,(1,8)x ∈时,()()8,1g x m m ∈-+-+,由题意,对任意1[1,4]x ∈,总存在2(1,8)x ∈,使()()12f x g x =成立,即函数()f x 的值域是函数()g x 的值域的子集,即()1,648,1m m ⎡⎤⊆-+-+⎢⎥-⎣⎦,18416m m ⎧-+<-⎪∴⎨⎪-+>⎩,解得3174m <<,所以m 的取值范围为317,4⎛⎫⎪⎝⎭.例11.(2022·浙江·杭十四中高一期末)已知函数()4af x x x=+-,()g x x b =-,2()2h x x bx =+(1)当2a =时,求函数()()y f x g x =+的单调递增与单调递减区间(直接写出结果);(2)当[]3,4a ∈时,函数()f x 在区间[]1,m 上的最大值为()f m ,试求实数m 的取值范围;(3)若不等式()()()()1212h x h x g x g x -<-对任意1x ,[]20,2x ∈(12x x <)恒成立,求实数b 的取值范围.【解析】(1)当2a =时,21()()42(4y f x g x x x b x b x x =+=+-+-=+--,所以函数()()y f x g x =+的单调递增区间为(,1)-∞-,(1,)+∞,单调递减区间为(1,0)-,(0,1);(2)因为[3a ∈,4],且函数()y f x =在[1上单调递减,在)∞+上单调递增,又因为()f x 在[1,]m 上的最大值为()f m ,所以()()1f m f ≥,即414am a m+-≥+-,整理可得2(1)0m a m a -++≥,所以(1)()0m m a --≥,所以max m a ≥,即4m ≥;(3)由不等式1212()()|()||()|h x h x g x g x -<-对任意1x ,2[0x ∈,122]()x x <恒成立,即1122()|()|()|()|h x g x h x g x -<-,可令()()|()|F x h x g x =-,等价为()F x 在[0,2]上单调递增,而222(21),()()()2(21),x b x b x bF x h x g x x bx x b x b x b x b⎧++-<=-=+--=⎨+-+≥⎩,分以下三种情况讨论:①当12b b ≤--即14b ≤-时,可得102b -+≤,解得12b ≥,矛盾,无解;②1122b b b --<<-+,即1144b -<<时,函数()F x 的图象的走向为减、增、减、增,但是中间增区间的长度不足1,要想()F x 在[0,2]递增,只能102b -+≤,即12b ≥,矛盾,无解;③12b b ≥-+即14b ≥时,此时()F x 在1[2b --,)∞+上单调递增,要想()F x 在[0,2]递增,只能102b --≤,即12b ≥-,所以14b ≥.综上可得满足条件的b 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭.例12.(2022·辽宁·大连二十四中高三阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()2()log 21x f x kx =+-,()()g x f x x =+.(1)若不等式()422(2)x xg a g -⋅+>-恒成立,求实数a 的取值范围;(2)设4()ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【解析】(1)由题意知,()()22log 21log 210x x kx kx -+--+-=,即()()22222112log 21log 21log log 212x xxx x kx x --+=+-+===-+,所以12k =-,故()()21log 212xf x x =+-,∴()()()21log 212xg x f x x x =+=++,因为函数21x y =+为增函数,函数2log y x =在其定义域上单调递增,所以()2log 21xy =+单调递增,又12y x =为增函数,所以函数()g x 在R 上单调递增,所以不等式()()4222x xg a g -⋅+>-恒成立等价于4222x x a -⋅+>-,即442x xa +<恒成立,设2xt =,则0t >,2444442x x t t t t++==+≥,当且仅当2t =,即1x =时取等号,所以4a <,故实数a 的取值范围是(),4-∞;(2)因为对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,所以()g x 在[]0,3上的最小值不小于()h x 在2,e e ⎡⎤⎣⎦上的最小值,因为()()21log 212xg x x =++在[]0,3上单调递增,所以当[]0,3x ∈时,()()min 01g x g ==,∴4()ln 211h x x x x mx =+-+≤,即存在2e,e x ⎡⎤∈⎣⎦,使311ln 22m x x ≥+成立,令()311ln ,22t x x x x =+∈2,e e ⎡⎤⎣⎦,因为312y x =在2,e e ⎡⎤⎣⎦上单调递增,1ln 2y x =在2,e e ⎡⎤⎣⎦上单调递增,∴()t x 在2,e e ⎡⎤⎣⎦上单调递增,∴()()3min 11e e 22t x t ==+,∴311e 22m ≥+,所以实数m 的取值范围是311e ,22⎡⎫++∞⎪⎢⎣⎭.变式7.(2022·湖北武汉·高一期中)已知函数()()2=R f x x mx m -∈.(1)若存在实数x ,使得()()22x xf f -=-成立,试求m 的最小值;(2)若对任意的[]12,1,1x x ∈-,都有()()122f x f x -≤恒成立,试求m 的取值范围.【解析】(1)由题意,由()()22x x f f -=-得,222222x x x x m m ---⋅=-+⋅,即222222x xxx m --+=+,2(22)22222222x x x xx x x xm ----+-∴==+-++,令222x x t -=+≥=,则2(2)m t t t=-≥,由于函数y t =在[2,)+∞为增函数,2y t=在[2,)+∞为减函数,min 2212m ∴=-=,即m 的最小值为1.(2)二次函数()2f x x mx=-的开口向上,对称轴为2m x =,若对任意的[]12,1,1x x ∈-,都有()()122f x f x -≤恒成立,则当[1,1]x ∈-时,()()max min 2f x f x -≤,①当12m≥,即2m ≥时,()min max (1)1,()(1)1f x f m f x f m =-=+==-,故1(1)2m m +--≤,解得1m ≤,又2m ≥,故无解;②当112m -≤≤,即22m -≤≤时,2min ()()24m m f x f ==-,max ()max{(1),(1)}max{1,1}f x f f m m =-=+-,要使得()()max min 2f x f x -≤,只需()122m f f ⎛⎫-≤ ⎪⎝⎭且()122m f f ⎛⎫--≤ ⎪⎝⎭,故2212(1)22242m mm m ++≤⇔+≤⇔--≤≤-,2212(1)22242m mm m -+≤⇔-≤⇔-+≤≤+,故22m -≤≤-+③当12m≤-,即2m ≤-时,max min ()(1)1,()(1)1f x f m f x f m ==-=-=+,则()()max min 2f x f x -≤,即22m -≤,解得1m ≥-,与2m ≤-矛盾,无解.综上,实数m 的取值范围是22m -+≤≤.变式8.(2022·湖南·株洲二中高一阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=且()()2log 21x f x kx =++,()()g x f x x =+.(1)求()f x 的解析式;(2)若不等式()()4213x xg a g -⋅+>-恒成立,求实数a 取值范围;(3)设()221h x x mx =-+,若对任意的[]10,3x ∈,存在[]21,3x ∈,使得()()12g x h x ≥,求实数m 取值范围.【解析】(1)由题意知,()()22log 21log 210x x kx kx -+--+-=,即()()222212log 21log 21log 21x xxx kx x --+=+-+==-+,所以12k =-,故()()21log 212xf x x =+-.(2)由(1)知,()()()21log 212x g x f x x x=+=++,所以()g x 在R 上单调递增,所以不等式()()4213x xg a g -⋅+>-恒成立等价于4213x x a -⋅+>-,即442x xa +<恒成立.设2xt =,则0t >,2444442x x t t t t++==+≥,当且仅当2t =,即1x =时取等号,所以4a <,故实数a 的取值范围是(),4-∞.(3)因为对任意的[]10,3x ∈,存在[]21,3x ∈,使得()()12g x h x ≥,所以()g x 在[]0,3上的最小值不小于()h x 在[]1,3上的最小值,因为()()21log 212xg x x =++在[]0,3上单调递增,所以当[]0,3x ∈时,()()min 01g x g ==,又()221h x x mx =-+的对称轴为x m =,[]1,3x ∈,当1m £时,()h x 在[]1,3上单调递增,()()min 1221h x h m ==-≤,解得12m ≥,所以112m ≤≤;当13m <<时,()h x 在[)1,m 上单调递减,在[],3m 上单调递增,()()2min 11h x h m m ==-≤,解得m R ∈,所以13m <<;当3m ≥时,()h x 在[]1,3上单调递减,()()min 31061h x h m ==-≤,解得32m ≥,所以3m ≥,综上可知,实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.变式9.(2022·山西·晋城市第一中学校高一阶段练习)已知函数()4f x x x=+,(1)判断函数()f x 在区间()0,∞+上的单调性,并利用定义证明;(2)若对任意的121,,42x x ⎡⎤∈⎢⎥⎣⎦时,()()122f x f x m m -≤+恒成立,求实数m 的取值范围.【解析】(1)()4f x x x =+在()0,2上单调递减,在()2,+∞上单调递增,理由如下:取()12,0,2x x ∀∈,且12x x <,()()()()121212121212444x x f x f x x x x x x x x x --=+--=--()()1212121212441x x x x x x x x x x ⎛⎫-=--=-⋅⎪⎝⎭,因为()12,0,2x x ∀∈,12x x <,故12120,40x x x x >-<,120x x -<,()()()1212121240x x f x f x x x x x --=-⋅>,所以()()12f x f x >,所以()4f x x x=+在()0,2上单调递减;取()34,2,x x ∀∈+∞,且34x x <,()()()()343434343434444x x f x f x x x x x x x x x --=+--=--()()3434343434441x x x x x x x x x x ⎛⎫-=--=-⋅ ⎪⎝⎭,因为()34,2,x x ∀∈+∞,34x x <,故34340,40x x x x >->,340x x -<,()()()3434343440x x f x f x x x x x --=-⋅<,所以()()34f x f x <,所以()4f x x x=+在()2,+∞上单调递增;(2)若对任意的121,,42x x ⎡⎤∈⎢⎥⎣⎦时,()()122f x f x m m -≤+恒成立,0m =时,2m m+无意义,舍去,当0m <时,20m m+<,此时()()122f x f x m m -≤+无解,舍去,所以0m >,只需求出()()12f x f x -的最大值,当1,22x ⎡⎤∈⎢⎥⎣⎦时,()4f x x x =+单调递减,当(]2,4x ∈时,()4f x x x =+单调递增,故()()min 2224f x f ==+=,又因为17182122f ⎛⎫=+= ⎪⎝⎭,()4415f =+=,故()max 11722f x f ⎛⎫== ⎪⎝⎭,故()()12max 179422f x f x -=-=,所以922m m≤+,因为0m >,故解得:4m ≥或102m <≤实数m 的取值范围是[)14,0,2⎛⎤+∞ ⎝⎦.变式10.(2022·黑龙江·哈尔滨三中高一阶段练习)已知定义域为R 的函数()f x 满足()()212132f x x a x a +=+--+.(1)求函数()f x 的解析式;(2)若对任意的[]3,2a ∈--,都有()0f x <恒成立,求实数x 的取值范围;(3)若[]12,2,1x x ∃∈-使得()()124f x f x >+,求实数a 的取值范围.【解析】(1)()()2+1=+213+2f x x a x a --,令1x t +=,则1x t =-,故()()()()2212113221f t a t t a t a t a =-+---+=--+,所以()221f x a a x x =--+;(2)()221f x a a x x =--+可看作关于a 的一次函数()()2211x a h a x =--++,要想对任意的[]3,2a ∈--,都有()0h a <恒成立,只需要()()()()223=321++1<02=221++1<0h x x h x x --------⎧⎪⎨⎪⎩①②,解①得:33x -<<-解②得:31x -<<-,则33x -<<-31x -<<-求交集得33x -<<-实数x 的取值范围是(3,3--;(3)若[]12,2,1x x ∃∈-使得()()124f x f x >+,只需()()max min 4f f x x >+在[]2,1x ∈-上成立,()221f x a a x x =--+的对称轴为=x a ,当2a ≤-时,()f x 在[]2,1x ∈-上单调递增,所以()()max 112123x f a a a f ==--+=-,()()min 244135f x f a a a =-=+-+=+,由23354a a ->++,解得:76a <-,2a ≤-与76a <-取交集得:2a ≤-;当1a ≥时,()f x 在[]2,1x ∈-上单调递减,所以()()min 123x f a f ==-,()()min 235x f a f =-=+,由35234a a +>-+,解得:16a >,1a ≥与16a >取交集得:1a ≥;当122a -<<-时,()f x 在[)2,a -上单调递减,在[],1a 上单调递增,且()()12f f >-,所以()()max 123x f a f ==-,()()2min ==+1f x f a a a --,由22314a a a ->--++,解得:3a >或1a <-,3a >或1a <-与122a -<<-取交集得:21a -<<-,当112a -≤<时,()f x 在[)2,a -上单调递减,在[],1a 上单调递增,且()()21f f -≥,所以()()max 235x f a f =-=+,()()2min ==+1f x f a a a --,23514a a a +>--++,解得:0a >或4a <-,0a >或4a <-与112a -≤<取交集得:0<<1a ,综上:1a <-或0a >实数a 的取值范围是()(),10,+-∞-⋃∞变式11.(2022·江西·贵溪市实验中学高三阶段练习(文))设函数()f x 的定义域是()0,+∞,且对任意的正实数x 、y 都有()()()f xy f x f y =+恒成立,已知()164f =,且01x <<时()0f x <.(1)求()1f 与()2f 的值;(2)求证:对任意的正数1x 、2x ,()()121f x x f x +>;(3)解不等式()()111282f x f x +>-.【解析】(1)对任意的正实数x 、y 都有()()()f xy f x f y =+恒成立,所以,()()()16444f f f =+=,则()42f =,()()()4222f f f =+=,可得()21f =,()()()221f f f =+,可得()1=0f .(2)证明:对任意的正实数x 、y 都有()()()f xy f x f y =+恒成立,令1y x =,则()()110f x f f x ⎛⎫+== ⎪⎝⎭,可得()1f f x x ⎛⎫=- ⎪⎝⎭,对任意的正数1x 、2x ,则11201x x x <<+,所以,()()()11112121210x f f x f f x f x x x x x x ⎛⎫⎛⎫=+=-+<⎪ ⎪++⎝⎭⎝⎭,故()()121f x x f x +>.(3)由()()111282f x f x +>-,可得()()()()()()21282244f x f x f x f x f f x -<+=++=,由(2)可知,函数()f x 在()0,+∞上为增函数.所以,24>128>0128>0x x x x --⎧⎪⎨⎪⎩,解得213x <<或>2x .故原不等式的解集为()2,12,3⎛⎫+∞ ⎪⎝⎭.题型五:主元法例13.(2022·广东实验中学高三阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【解析】(1)令==0x y ,则(0)2(0)f f =,可得(0)=0f ,令y x =-,则(0)()()0f f x f x =+-=,可得()()f x f x -=-,又()f x 定义域为R ,故()f x 为奇函数.(2)令12=+>=x x y x x ,则1212()=()+()f x f x f x x -,且120x x ->,因为0x >时,()0f x <,所以1212()()=()<0f x f x f x x --,故12()()f x f x <,即()f x 在定义域上单调递减,所以()f x 在区间[]3,3-上的最大值为(3)=(12)=(1)+(2)=3(1)=3(1)=6f f f f f f -------.(3)由(2),()f x 在[]1,1-上min ()=(1)=2f x f -,2[1,1],[1,1],()<22x a f x m am ∃∈-∀∈---恒成立,即2[1,1],22>2a m am ∀∈----恒成立,所以2[1,1],()=2>0a g a m ma ∀∈--恒成立,显然0m =时不成立,则2>0(1)=2>0m g m m -⎧⎨⎩,可得2m >;2<0(1)=+2>0m g m m -⎧⎨⎩,可得2m <-;综上,2m <-或2m >.例14.(2022·广东·深圳中学高三阶段练习)已知当11a -≤≤时,()24420x a x a +-+->恒成立,则实数x 的取值范围是()A .(),3-∞B .][(),13,∞∞-⋃+C .(),1-∞D .()(),13,-∞⋃+∞【答案】D【解析】()24420x a x a +-+->恒成立,即()22440x a x x -+-+>,对任意得[]1,1a ∈-恒成立,令()()2244f a x a x x =-+-+,[]1,1a ∈-,当2x =时,()0f a =,不符题意,故2x ≠,当2x >时,函数()f a 在[]1,1a ∈-上递增,则()()2min 12440f a f x x x =-=-++-+>,解得3x >或2x <(舍去),当2x <时,函数()f a 在[]1,1a ∈-上递减,则()()2min 12440f a f x x x ==-+-+>,解得1x <或2x >(舍去),综上所述,实数x 的取值范围是()(),13,-∞⋃+∞.故选:D.例15.(2022·黑龙江·双鸭山一中高一阶段练习)若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦D .[)51,0,43⎛⎤- ⎥⎝⎦【答案】C【解析】命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,其否定为真命题,即“[]()21,3,2130a ax a x a ∀∈---+-≥”为真命题.令22()23(21)30g a ax ax x a x x a x =-++-=--++≥,则(1)0(3)0g g -≥⎧⎨≥⎩,即22340350x x x x ⎧-++≥⎨-≥⎩,解得14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,所以实数x 的取值范围为[]51,0,43⎡⎤⎢⎥⎣-⎦.故选:C变式12.(2022·江西·于都县新长征中学高一阶段练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)【答案】C【解析】令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩,整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x \的取值范围为()(),13,-∞⋃+∞.故选:C .变式13.(2022·江西·金溪一中高三阶段练习(理))不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是()A .(]1,42⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x ,或22705320⎧-=⎪⎨-+≥⎪⎩x x x ,解得4x ≤-或x12≤<xx =综上,实数x 的取值范围是4x ≤-,或12x ≥.故选:A.题型六:直接法例16.(2022·全国·高三专题练习)已知函数2()23f x x ax =--+满足对任意[2,]x a a ∈-,恒有()0f x >,则实数a 的取值范围是()A .(1,1)-B.51,3⎛⎫- ⎪⎝⎭C.⎫⎪⎝⎭D.⎛ ⎝⎭【答案】C【解析】由题设,()f x 开口向下且对称轴为4ax =-,∴要使任意[2,]x a a ∈-,恒有()0f x >,则()()()()2222Δ240{222230230a f a a a a f a a a =+>-=----+>=--+>,∴22310501a a a ⎧-+<⎪⎨<⎪⎩1a <<.故选:C.例17.(2022·全国·高一单元测试)若不等式2(1)10x a x +-+≥对一切(1,2]x ∈都成立,则a的最小值为()A .0B.-C.2-D .5-【答案】D【解析】记22()(1)11f x x a x x ax a =+-+=++-,要使不等式()2110x a x +-+≥对一切(1,2]x ∈都成立,则:12(1)20a f ⎧-≤⎪⎨⎪=≥⎩或2122()1024a a a f a ⎧<-<⎪⎪⎨⎪-=--+≥⎪⎩或22(2)50a f a ⎧-≥⎪⎨⎪=+≥⎩解得2a ≥-或42a -<<-或54a -≤≤-,即5a ≥-.故选:D例18.(2022·全国·高一课时练习)若关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,则m 的取值范围为()A .(,1][0,)-∞-+∞B .(,1)(0,)-∞-+∞C .[0,1]D .(0,1)【答案】B【解析】令22()(1)f x x m x m =-+-,其对称轴为202m x =≥,关于x 的不等式22(1)0x m x m -+-≥在(1,1)-有解,当(1,1)x ∈-时,有()(1)f x f <-,(1)0f ∴->,即20m m +>,可得0m >或1m <-.故选:B .【过关测试】一、单选题1.(2022·浙江·杭州高级中学高一期末)已知函数()()log 8a f x ax =-满足1a >,若()1f x >在区间[]1,2上恒成立,则实数a 的取值范围是()A .()4,+∞B .8,43⎛⎫⎪⎝⎭C .81,3⎛⎫ ⎪⎝⎭D .()81,4,3⎛⎫⋃+∞ ⎪⎝⎭【答案】C【解析】因为()()log 8a f x ax =-且1a >,又8y ax =-单调递减,log a y x =在定义域上单调递增,所以()()log 8a f x ax =-在定义域上单调递减,因为()1f x >在区间[]1,2上恒成立,所以()()2log 821log a a f a a =->=恒成立,所以821a a a ->⎧⎨>⎩,解得813a <<,即81,3a ⎛⎫∈ ⎪⎝⎭;故选:C2.(2022·全国·高一单元测试)已知函数()()221,1,,12,2,2xa x x f x a x x ax a x ⎧-+≤⎪=<<⎨⎪+-≥⎩(0a >且1a ≠),若对任意两个不相等的实数1x ,2x ,()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则实数a 的取值范围是()A .[]2,4B .(]1,4C .()2,+∞D .(]2,4【答案】D【解析】对任意两个不相等的实数1x ,2x ,()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,所以函数()f x 在R 上为增函数,则有220,1,22,221,44,a a aa a a a a ->⎧⎪>⎪⎪-≤⎨⎪⎪-+≤⎪≤+-⎩解得:24a <≤.故选:D.3.(2022·湖南·高一阶段练习)已知())()ln 0f x ax a =>是奇函数,若()()210f ax bx f ax -++<恒成立,则实数b 的取值范围是()A .()8,8-B .()0,8C .()8,16-D .()8,0-【答案】B【解析】∵()f x 是奇函数,∴()()f x f x -=-即()()0f x f x +-=恒成立,即)())lnln0ax a x +-=,则2160a -=,解得4a =±,又∵0a >,∴4a =,则())ln 4f x x =,所以())ln4ln ⎛⎫==f x x ,())()ln4ln ⎫-=+==-⎪⎭f x x f x ,()f x 是奇函数,因为=u 在[)0,∞+是单调递减函数,()ln =f x u 在[)0,∞+是单调递增函数,由复合函数的单调性性判断得,函数()f x 在[)0,∞+上单调递减,又()f x 为奇函数,所以()f x 在R 上单调递减;由()()210-++<f ax bx f ax 恒成立得,()()2441-<-+f x bx f x 可得()()2441-<--f x bx f x 恒成立,则2441->--x bx x ,即()24410--+>x b x 恒成立,所以()244410b =--⨯⨯<△恒成立,解得08b <<.故选:B.4.(2022·江苏·高一专题练习)若4230x x m -+>在()01x ∈,上恒成立,则实数m 的取值范围是()A.()+∞B .()4∞+,C.(-∞D .()4∞-,【答案】C【解析】令()212xt t =∈,,,则原问题转化为230t mt -+>在()12t ∈,恒成立,即3m t t<+在()12t ∈,恒成立,又3t t +≥=当且仅当t =),故实数m的取值范围是(-∞,故选:C .5.(2022·辽宁·东北育才双语学校高一期中)定义在R 上的函数()f x 满足()()2f x f x -=,且当1x ≥时,()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[],1x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .-1B .23-C .23D .13-【答案】D【解析】由题设,()f x 关于1x =对称,根据()f x 的解析式,在[1,)+∞上()f x 在4x =处连续且单调递减,所以()f x 在(,1)-∞上递增,要使对任意[],1x t t ∈+,()()()21f x f x f x t -≤++=恒成立,则|1|||x x t -≥+在[],1t t +上恒成立,所以222212x x x tx t -+≥++,即(1)(21)0t x t ++-≤在[],1t t +上恒成立,当10210t x t +≥⎧⎨+-≤⎩,即 min ,可得113t -≤≤-;当10210t x t +<⎧⎨+-≥⎩,即()max 1{1212t t x t <-≥-=-,无解;综上,t 的最大值为13-.故选:D.6.(2022·四川·石龙中学高一阶段练习)已知对于任意实数x ,220kx x k -+>恒成立,则实数k 的取值范围是()A .1k >B .=1k C .1k ≤D .1k <【答案】A【解析】由题知,当=0k 时,20x ->不恒成立,舍去;当0k ≠时,220kx x k -+>即22y kx x k =-+图像恒在x 轴的上方,所以2>0Δ=44<0k k -⎧⎨⎩解得1k >;综上,1k >.故选:A7.(2022·全国·高一单元测试)已知函数2()3f x ax x =+-,若对任意的12,[1,)x x ∈+∞,且()()121212,3f x f x x x x x -≠<-恒成立,则实数a 的取值范围是()A .(,1)-∞B .(,1]-∞C .(,0)-∞D .(,0]-∞【答案】D【解析】不妨设121x x ≤<,则120x x -<,根据题意,可得()()()12123f x f x x x ->-恒成立,即()()112233f x x f x x ->-恒成立.令2()()323g x f x x ax x =-=--,则()()12g x g x >恒成立,所以函数()g x 在[1,)+∞上单调递减.当0a =时,()23g x x =--在[1,)+∞上单调递减,符合题意;当0a ≠时,要使2()23g x ax x =--在[1,)+∞上单调递减,则0,21,2a a<⎧⎪-⎨-≤⎪⎩解得a<0.综上所述,实数a 的取值范围是(,0]-∞.故选:D.8.(2022·江苏省横林高级中学高一阶段练习)已知对任意(),0,x y ∈+∞,且23x y +=,11221t x y ≤+++恒成立,则t 的取值范围是()A .4t ≤B .12t ≤C .13t ≤D .23t ≤【答案】D【解析】由23x y +=得:()()2216x y +++=,(),0,x y ∈+∞,22x ∴+>,211y +>,()()111111212221222162216221y x x y x y x y x y ⎛⎫⎛⎫++∴+=++++=++⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭12263⎛≥+= ⎝(当且仅当1x y ==时取等号),∴当11221t x y ≤+++恒成立时,23t ≤.故选:D.二、多选题9.(2022·重庆十八中高一阶段练习)不等式22x bx c x b ++≥+对任意R x ∈恒成立,则()A .2440b c -+≤B .0b ≤C .1c ≥D .0b c +≥【答案】ACD【解析】对于A ,将22x bx c x b ++≥+整理为()220x b x c b +-+-≥,因为22x bx c x b ++≥+对任意R x ∈恒成立,所以0∆≤,即()()2240b c b ---≤,整理得2440b c -+≤,故A 正确;对于B ,令1,2b c ==,则()()2124211430∆=---=-=-<,满足题意,故B 错误;对于C ,由A 知244c b ≥+,即2114b c ≥+≥,故C 正确;对于D ,2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭,故D 正确.故选:ACD.10.(2022·福建·三明一中高一阶段练习)已知函数()f x 的定义域为{}0x x >,当210x x >>时,()()1212120x x f x f x x x ⎡⎤-+->⎣⎦恒成立,则()A .()y f x =在()0,∞+上单调递减B .()12y f x x=-在()0,∞+上单调递减C .()()1236f f ->D .()()1236f f -<【答案】ABC【解析】A 选项:由()()1212120x x f x f x x x ⎡⎤-+->⎣⎦,210x x >>,得()()2112120x xf x f x x x -->>,所以()y f x =在()0,∞+上单调递减,A 选项正确;B 选项:()()()()21212121121212121212121211022222x x x x x x x x y y f x f x f x f x x x x x x x x x x x -----=--+=-->-=>,所以()12y f x x=-在()0,∞+上单调递减,C 选项与D 选项:由A 选项得()()2112120x x f x f x x x -->>,令12x =,23x =,则()()32123236f f -->=⨯,所以C 选项正确,D 选项错误;故选:ABC.11.(2022·浙江省平阳中学高一阶段练习)设函数()22f x x x a =++,若关于x 的不等式()()0f f x ≥恒成立,则实数a 的可能取值为()A .0B .12C .1D .32【答案】CD【解析】因为函数()22f x x x a =++的开口向上,对称轴为=1x -,所以()()min 11f x f a =-=-,即()f x 的值域为[)1,a -+∝且关于x 的不等式()()0f f x ≥恒成立,则()1011f a a ⎧-≥⎨-≥-⎩,即2100a a a ⎧+-≥⎨≥⎩,解得a ≥或11Δ0a -<-⎧⎨≤⎩,此时无解.所以实数a的取值范围为⎫+∝⎪⎪⎣⎭故选:CD.12.(2022·江苏省怀仁中学高一阶段练习)已知函数()[]()212,2f x x x =-+∈-,()[]()220,3g x x x x =-∈,则下列结论正确的是()A .[]2,2x ∀∈-,()f x a >恒成立,则实数a 的取值范围是(),3-∞-B .[]2,2x ∃∈-,()f x a >恒成立,则实数a 的取值范围是(),3-∞-C .[]0,3x ∃∈,()g x a =,则实数a 的取值范围是[]1,3-D .[]2,2x ∀∈-,[]0,3t ∃∈,()()f x g t =【答案】AC【解析】对于A 选项,[]2,2x ∀∈-,()f x a >恒成立,即()min f x a >,()f x 为减函数,所以()min ()23f x f a ==->,A 选项正确;对于B 选项,[]2,2x ∃∈-,()f x a >恒成立,即()max f x a >,所以()25f a -=>,B 选项不正确;对于C 选项,[]0,3x ∃∈,()g x a =,即()()max min g x a g x ≥≥,()g x 的图像为开口向上的抛物线,所以在对称轴1x =处取最小值,在离对称轴最远处3x =取最大值,所以()()3311g a g =≥≥=-,C 选项正确;对于D 选项,[]2,2x ∀∈-,[]0,3t ∃∈,()()f x g t =,即要求()f x 的值域是()g x 值域的子集,而()f x 的值域为[3,5]-,()g x 值域为[1,3]-,不满足要求,D 选项不正确;故选:AC.三、填空题13.(2022·江苏省新海高级中学高一期中)若不等式()()2log ln 40,1a x x a a -<>≠对于任意()31,e x ∈恒成立,则实数a 的取值范围是____________【答案】()140,1e ,⎛⎫+∞ ⎪⎝⎭【解析】因为不等式()()2log ln 40,1a x x a a -<>≠对于任意()31,e x ∈恒成立,即不等式()2ln ln 4ln x x a+<对于任意()31,e x ∈恒成立,因为()31,e x ∈,所以()ln 0,3x ∈,所以不等式14ln ln ln x a x +<对于任意()31,e x ∈恒成立,令()4g x x x=+,()0,3x ∈,因为()4g x x x=+在()0,2上单调递减,在()2,3上单调递增,所以()()min 24g x g ==,即min4ln 4ln x x ⎛⎫= ⎪+⎝⎭,所以14ln a<,所以ln 0a <或1ln 4a >,解得01a <<或14e a >,即()140,1e ,a ⎛⎫∈+∞ ⎪⎝⎭;故答案为:()140,1e ,⎛⎫+∞ ⎪⎝⎭14.(2022·全国·高一单元测试)若关于x 的方程12log 1mx m =-在区间()01,上有解,则实数m 的取值范围是_____.【答案】()(),01,∞∞-⋃+【解析】当()01x ∈,时,()12log 0,x ∞∈+,所以要使方程12log 1m x m =-在区间()01,上有解,只需01mm >-即可,解得0m <或1m >,所以实数m 的取值范围是()(),01,∞∞⋃+-.故答案为:()(),01,∞∞⋃+-.15.(2022·全国·高一专题练习)已知关于x 的方程2222212x a x a x x a ++-=-+-+有解,则实数a 的取值范围是___________.【答案】1a ≥或1a ≤-【解析】由题知,2222212x a x a x x a ++-=-+-+有解①当2x a <-时,即2222212x a a x x x a --=-+-+-+化简得22421x x a -=-有解即()()2222214a a a ->--⨯-整理得:42210a a ++<无解②当22a x a -≤≤时,即2222212x a a x x a x +=-+--++化简得2210x x -+=解得1x =即221a a -≤≤解得:1a ≥或者1a ≤-③当2x a >时,即2222212x a a x x a x +=-+-++-化简得:2221a x =+有解即()22221a a >+化简得:()2210a -<无解综上,实数a 的取值范围为:1a ≥或1a ≤-故答案为:1a ≥或1a ≤-.16.(2022·全国·高一单元测试)记{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,已知2()3,()2g x x f x x =-=,设函数{}()max (),()F x f x g x =,若方程()0F x m -=有解,则实数m 的取值范围是__________________.【答案】[)2,-+∞【解析】由题意()0F x m -=有解,即(),y F x y m ==有交点令12()()1,3f x g x x x =∴=-=当(,1)(3,),()()x g x f x ∈-∞-⋃+∞>当(1,3),()()x g x f x ∈-<故{}223,1()max (),()2,133,3x x F x f x g x x x x x ⎧-≤-⎪==-<<⎨⎪-≥⎩画出函数{}()max (),()F x f x g x =的简图,如下图所示:数形结合可知,当=1x -时,min ()(1)2F x F =-=-故若(),y F x y m ==有交点,2m ≥-则实数m 的取值范围是[)2,-+∞故答案为:[)2,-+∞。
函数恒成立、能成立问题及课后练习(含答案)
恒成立、能成立问题专题 一、基础理论回顾1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m i n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m ax ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;二、经典题型解析题型一、简单型例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a . 例2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤;方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对bx x a x h ++=)(求导,22))((1)(x a x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .例3、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为 答案:41≥m 题型二、更换主元和换元法[]1,1-上的减函数,(Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围; (Ⅱ)分析:在不等式中出现了两个字母:λ及t ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
专题练 第8练 恒成立问题与能成立问题
(2)当 x≥0 时,f(x)≥12x3+1 恒成立,求 a 的取值范围.
由 f(x)≥12x3+1 得, ex+ax2-x≥12x3+1,其中 x≥0, ①当x=0时,不等式为1≥1,显然成立,符合题意;
②当x>0时,分离参数a得, a≥-ex-12xx3-2 x-1, 记 g(x)=-ex-12xx3-2 x-1(x>0),
(3)判断含x,ln x,ex的混合式的函数值的符号时,需利用x0=eln x0 及
ex≥x+1,ln x≤x-1对函数式放缩,有时可放缩为一个常量,变形为 关于x的一次式或二次式,再判断符号.
跟踪训练1 (2022·宣城模拟)已知函数f(x)=ln x-aex(a∈R). (1)若f(1)=1,求曲线y=f(x)在点(1,1)处的切线方程;
则 g′(x)=-x-2ex-x312x2-x-1, 令 h(x)=ex-12x2-x-1(x>0), 则h′(x)=ex-x-1, 令t(x)=ex-x-1(x>0), 则t′(x)=ex-1>0, 故h′(x)单调递增,h′(x)>h′(0)=0, 故h(x)单调递增,h(x)>h(0)=0,
专题练
第8练
恒成立问题与能成立问题
考情分析 恒成立问题(能成立问题)多与参数的取值范围问题联系在一起,是近几 年高考的热门题型,难度大,一般为高考题中的压轴题.
一、恒成立问题 例1 (2020·全国Ⅰ)已知函数f(x)=ex+ax2-x. (1)当a=1时,讨论f(x)的单调性;
当a=1时,f(x)=ex+x2-x, f′(x)=ex+2x-1,令φ(x)=ex+2x-1, 由于φ′(x)=ex+2>0, 故f′(x)单调递增,注意到f′(0)=0, 故当x∈(-∞,0)时,f′(x)<0,f(x)单调递减, 当x∈(0,+∞)时,f′(x)>0,f(x)单调递增.
不等式恒成立、能成立、恰成立问题专题(17例题+15练习题+答案与解析)
不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例2、已知(),22x ax x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围;例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln)(44>-+=xcbxxaxxf在1=x处取得极值3c--,其中a、b为常数.(1)试确定a、b的值;(2)讨论函数)(xf的单调区间;(3)若对任意0>x,不等式22)(cxf-≥恒成立,求c的取值范围。
2、主参换位法例5、若不等式a10x-<对[]1,2x∈恒成立,求实数a的取值范围例6、若对于任意1a≤,不等式2(4)420x a x a+-+->恒成立,求实数x的取值范围例7、已知函数323()(1)132af x x x a x=-+++,其中a为实数.若不等式2()1f x x x a'--+>对任意(0)a∈+∞,都成立,求实数x的取值范围.3、分离参数法(1)将参数与变量分离,即化为()()g f xλ≥(或()()g f xλ≤)恒成立的形式;(2)求()f x在x D∈上的最大(或最小)值;(3)解不等式()max()g f xλ≥(或()()ming f xλ≤),得λ的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒成立、能成立问题专题 一、基础理论回顾1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立 2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D上恰成立,等价于)(x f 在D上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D上恒成立,等价于在区间D上函数()y f x =和图象在函数()y g x =图象下方;ﻬ二、经典题型解析题型一、简单型例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a . 例2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤;方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(x a x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .例3、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为 答案:41≥m 题型二、更换主元和换元法例1、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;(Ⅱ)分析:在不等式中出现了两个字母:λ及t ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将λ视作自变量,则上述问题即可转化为在(],1-∞-内关于λ的一次函数大于等于0恒成立的问题。
(Ⅱ)略解:由(Ⅰ)知:()f x x =,()sin g x x x λ∴=+,()g x 在[]11-,上单调递减,()cos 0g x x λ'∴=+≤cos x λ∴≤-在[]11-,上恒成立,1λ∴≤-,[]max ()(1)sin1g x g λ=-=--,∴只需2sin11t t λλ--≤++,2(1)sin110t t λ∴++++≥(其中1λ≤-)恒成立,由上述②结论:可令()2(1)sin110(1f t t λλλ=++++≥≤-),则2t 101sin110t t +≤⎧⎨--+++≥⎩,21sin10t t t ≤-⎧∴⎨-+≥⎩,而2sin10t t -+≥恒成立,1t ∴≤-。
例2、已知二次函数1)(2++=x ax x f 对[]2,0∈x 恒有0)(>x f ,求a 的取值范围。
解: 对[]2,0∈x 恒有0)(>x f 即012>++x ax 变形为)1(2+->x ax 当0=x 时对任意的a 都满足0)(>x f 只须考虑0≠x 的情况2)1(xx a +->即211x x a --> 要满足题意只要保证a 比右边的最大值大就行。
现求211x x --在(]2,0∈x 上的最大值。
令211≥∴=t x t 41)21()(22++-=--=t t t t g (21≥t )43)21()(max -==g t g 所以43->a又1)(2++=x ax x f 是二次函数0≠∴a 所以43->a 且0≠a例3、对于满足0≤a≤4的所有实数a求使不等式342-+>+a x ax x 都成立的x 的取值范围答案: 1-<x 或3>x题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于x 取值范围内的任一个数都有()()f x g a ≥恒成立,则min ()()g a f x ≤;若对于x 取值范围内的任一个数都有()()f x g a ≤恒成立,则max ()()g a f x ≥.例1、当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x+<-.∴5m ≤-.例2、已知函数()ln()x f x e a =+(a 为常数)是实数集R 上的奇函数,函数()cos g x x x λ=-在区间2,33ππ⎡⎤⎢⎥⎣⎦上是减函数.(Ⅰ)求a 的值与λ的范围;(Ⅱ)若对(Ⅰ)中的任意实数λ都有()1g x t λ≤-在2,33ππ⎡⎤⎢⎥⎣⎦上恒成立,求实数t 的取值范围.(Ⅲ)若0m >,试讨论关于x 的方程2ln 2()xx ex m f x =-+的根的个数. 解:(Ⅰ)、(Ⅲ)略(Ⅱ)由题意知,函数()cos g x x x λ=-在区间2,33ππ⎡⎤⎢⎥⎣⎦上是减函数.max 1()(),332g x g ππλ∴==-()1g x t λ≤-在2,33ππ⎡⎤⎢⎥⎣⎦上恒成立11,32t πλλ⇔-≥-132t πλ∴≤+(1)λ≤-1,.32t π∴≤- 题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)) 例1、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________ 解析:对∀x R ∈,不等式||x ax ≥恒成立、则由一次函数性质及图像知11a -≤≤,即11a -≤≤。
|ax=yxy例2、不等式)4(x x ax -≤在]3,0[∈x 内恒成立,求实数a 的取值范围。
解:画出两个凼数ax y =和)4(x x y -=在]3,0[∈x 上的图象 如图33=a知当3=x 时3=y , 当33≤a ]3,0[∈x 时总有)4(x x ax -≤所以33≤a例4、已知函数36,2(),63,2x x y f x x x +≥-⎧==⎨--<-⎩若不等式()2f x x m ≥-恒成立,则实数m 的取值范围是 .解:在同一个平面直角坐标系中分别作出函数2y x m =-及()y f x =的图象,由于不等式()2f x x m ≥-恒成立,所以函数2y x m =-的图象应总在函数()y f x =的图象下方,因此,当2x =-时,40,y m =--≤所以4,m ≥-故m 的取值范围是[)4,.-+∞|ax=yxy题型五、其它(最值)处理方法若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <. 利用不等式性质1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______。
解:设()31f x x x =++-,由()23f x aa ≤-有解,()2min 3a a f x ⇒-≥,又()()31314x x x x ++-≥+--=,∴234a a -≥,解得41a a ≥≤-或。
2、若关于x 的不等式a x x ≥++-32恒成立,试求a的范围解:由题意知只须a 比32++-x x 的最小值相同或比其最小值小即可,得min )32(++-≤x x a由5)3(232=+--≥++-x x x x 所以 5≤a 利用分类讨论1、已知函数422)(+-=ax x x f 在区间[-1,2] 上都不小于2,求a 的值。