七年级数学全册测试题
七年级数学上册测试题及答案全套
七年级数学上册测试题及答案全套七年级(上)数学第一章有理数检测题满分100分 答题时间 90分钟班级 学号 姓名 成绩一、填空题(每小题3分 共36分) 1、下面说法错误的是( )(A))5(--的相反数是)5(- (B)3和3-的绝对值相等(C)若0>a ,则 a 一定不为零 (D)数轴上右边的点比左边的点表示的数小2、已知a a -=、b b =、0>>b a ,则下列正确的图形是( ) (A )(B )(C )(D )3、若a a +-=+-55,则a 是( )(A )任意一个有理数 (B )任意一个负数或0(C )任意一个非负数 (D )任意一个不小于5的数 4、对乘积)3()3()3()3(-⨯-⨯-⨯-记法正确的是( ) (A )43-(B )4)3(-(C )4)3(+-(D )4)3(-- 5、下列互为倒数的一对是( )(A )5-与5 (B )8与125.0 (C )321与231 (D )25.0与4-6、互为相反数是指( )(A )有相反意义的两个量。
(B )一个数的前面添上“-”号所得的数。
(C )数轴上原点两旁的两个点表示的数。
(D )相加的结果为O 的两个数。
7、下列各组数中,具有相反意义的量是( ) (A )节约汽油10公斤和浪费酒精10公斤 (B )向东走5公里和向南走5公里 (C )收入300元和支出500元 (D )身高180cm 和身高90cm 8、下列运算正确的是( )(A )422=- (B )4)2(2-=- (C )6)2(3-=- (D )9)3(2=-9、计算:22)2(25.03.0-÷⨯÷-的值是( )(A )1009-(B )1009(C )4009(D )4009- 10、下列的大小排列中正确的是( )(A ))21()32(43)21(0+-<-+<--<--<(B ))21(0)21()32(43--<<+-<-+<-- (C ))21()32(043)21(+-<-+<<--<--(D ))21(043)32()21(--<<--<-+<+-11、将边长为1的正方形对折5次后,得到图形的面积是( )(A )0.03125 (B )0.0625 (C )0.125 (D )0.25 12、已知5=x 、2=y ,且0<+y x ,则xy 的值等于( )(A )10和-10 (B )10 (C )-10 (D )以上答案都不对 二、填空题:13、用计算器计算68)2()9(-+-,按键顺序是: 、 、 、 、 、、 + 、 、 、 、 、 、 ;结果是 。
七年级下册数学全程测试卷
一、选择题(每题3分,共30分)1. 若方程 2x - 5 = 3x + 1 的解为 x = 2,则方程 4x - 10 = 6x + 2 的解为()A. x = 1B. x = 2C. x = 3D. x = 42. 在等腰三角形ABC中,若AB = AC,且∠B = 40°,则∠A的度数为()A. 40°B. 50°C. 60°D. 70°3. 已知直线l:3x - 2y + 1 = 0,则点P(1,2)在直线l的()A. 上方B. 下方C. 左侧D. 右侧4. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 25. 已知一次函数y = kx + b(k ≠ 0)的图象经过点A(1,3)和B(2,4),则k的值为()B. 2C. 3D. 46. 在直角坐标系中,点P(2,-1)关于y轴的对称点坐标为()A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)7. 已知一元二次方程 x^2 - 5x + 6 = 0,则该方程的解为()A. x = 2 或 x = 3B. x = 2 或 x = 4C. x = 3 或 x = 4D. x = 2 或 x = -38. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°9. 已知数列{an}的通项公式为an = 3n - 2,则数列的第10项为()A. 28B. 27C. 2610. 下列关于平行四边形的说法正确的是()A. 对边平行且相等B. 对角线相等C. 对角相等D. 四边相等二、填空题(每题3分,共30分)1. 已知一次函数y = kx + b(k ≠ 0)的图象经过点A(1,3)和B(2,4),则k = __,b = __。
2. 在△ABC中,若AB = AC,则∠A = __°。
人教版数学七年级上册全册综合测试
七年级(上)全册综合测试一.选择题(共10小题,满分20分,每小题2分)1.下列等式变形正确的是()A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=12.若a与2互为相反数,则a+1的值为()A.﹣3.B.﹣1.C.1.D.3.3.在代数式中,整式的个数是()A.3B.4C.5D.64.我国倡导的“一带一路”地区覆盖的总人口为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.44×10105.有理数a,b在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a﹣b>0;③a+b >0;④+>0;⑤﹣a>﹣b,其中正确的个数有()A.1个B.2个C.3个D.4个6.下列运算正确的是()A.5a﹣3a=2B.2a+3b=5ab C.﹣(a﹣b)=b+a D.2ab﹣ba=ab 7.x=a是关于x的方程2a+3x=﹣5的解,则a的值是()A.﹣1B.1C.﹣5D.58.已知a、b、c三个数在数轴上对应的点如图所示,下列结论错误的是()A.a+c<0B.b﹣c>0C.c<﹣b<﹣a D.﹣b<a<﹣c 9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对10.已知整数a1、a2、a3、a4、……满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……,a n+1=﹣|a n+n|(n为正整数)依此类推,则a2019的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣1010二.填空题(共6小题,满分18分,每小题3分)11.飞机无风时的航速为a千米/时,风速为20千米/时,若飞机顺风飞行3小时,再逆风飞行4小时,则两次行程总共飞行千米(用含a的式子表示).12.化简:4(a﹣b)﹣(2a﹣3b)=.13.|﹣4|﹣|﹣2.5|+|﹣10|=;|﹣24|÷|﹣3|×|﹣2|=;(﹣38)﹣(﹣24)﹣(+65)=.14.若方程2x+1=3和的解相同,则a的值是.15.如图,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE 翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.16.点A和点B在同一平面上,如果从A观察B,B在A的北偏东14°方向,那么从B观察A,A在B的方向.三.解答题(共7小题,满分56分)17.(6分)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.18.(8分)解方程:﹣=1.19.(8分)先化简,再求值:﹣xy,其中x=3,y =﹣.20.(8分)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若∠DCB=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数.21.(8分)为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?22.(8分)如图,点O在直线AB上,∠AOC与∠COD互补,OE平分∠AOC.(1)若∠BOC=40°,则∠DOE的度数为;(2)若∠DOE=48°,求∠BOD的度数.23.(10分)先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.参考答案一.选择题1.D.2.B.3.B.4.C.5.C.6.D.7.A.8.C.9.C.10.C.二.填空题11.(7a﹣20).12.2a﹣b13.11.5;16;﹣79.14.7.15.90.16.南偏西14°.三.解答题17.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.18.解:去分母,得:5(x+3)﹣2(x﹣1)=10,去括号,得:5x+15﹣2x+2=10,移项,得:5x﹣2x=10﹣15﹣2,合并同类项,得:3x=﹣7,系数化为1,得:x=﹣.19.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.20.解:(1)∵∠ACD=90°,∠DCB=35°,∴∠ACB=∠ACD+∠DCB=90°+35°=125°,(2)∵∠ACB=140°,∠ACD=90°,∴∠DCB=∠ACB﹣∠ACD=140°﹣90°=50°,又∵∠ECB=90°∴∠ECD=∠ECB﹣∠DCB=90°﹣50°=40°.21.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.22.解:(1)∵点O在直线AB上,∠BOC=40°,∴∠AOC=140°,∵∠AOC与∠COD互补,∴∠COD=40°,∵OE平分∠AOC,∴∠EOC=70°,∴∠DOE=30°;故答案为:30°;(2)∵点O在直线AB上,∴∠AOC与∠BOC互补,∵∠AOC与∠COD互补,∴∠BOC=∠COD,∵OE平分∠AOC,∴∠AOE=∠EOC,设∠BOC为x,可得:2(48°+x)+x=180°,解得:x=28°,∴∠BOD=2∠BOC=56°.23.解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.。
人教版初中数学七年级上册期末测试卷(标准难度)(含答案解析)
人教版初中数学七年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab>0;③b+c<0;④b−a>0.上述结论中,所有正确结论的序号是( )A. ①②B. ②③C. ②④D. ③④2.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22022+22023的末位数字是( )A. 2B. 4C. 8D. 63.下列说法:①两个数互为倒数,则它们的乘积为1;②若a、b互为相反数,则b=−1;③a 若a为任意有理数,则a−|a|≤0;④两个有理数比较,绝对值大的反而小;⑤若A是一个三次多项式,B是一个四次多项式,则A+B一定是四次多项式;⑥−5πR2的系数是−5.其中正确的有( )A. 2个B. 3个C. 4个D. 5个4.多项式1x|m|−(m−4)x+7是关于x的四次三项式,则m的值是( )2A. 4B. −2C. -4D. 4或-45.一个两位数的个位数字与十位数字都是x,如果将个位数字与十位数字分别加2和1,所得的新数比原数大12,则可列的方程是( )A. 2x+3=12B. 10x+2+3=12C. (10x+x)−10(x+1)−(x+2)=12D. 10(x+1)+(x+2)=10x+x+126.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程( )A. 4(x−1)=2x+8B. 4(x+1)=2x−8C. x4+1=x+82D. x4−1=x−827.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为( )A. 28°B. 112°C. 28°或112°D. 68°8.如图,点B为线段AC上一点,AB=11cm,BC=7cm,D、E分别是AB、AC的中点,则DE 的长为( )A. 3.5cmB. 4cmC. 4.5cmD.5cm9.已知,a,b是不为0的有理数,且|a|=−a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )A.B.C.D.10.已知点A,B,C,D在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位长度.若点A,B,C,D分别表示数a,b,c,d,且满足a+d=0,则b的值为( )A. −1B. −12C. 12D. 111.如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为( )A. 252B. 253C. 336D. 33712.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,−a,b,−b按照从小到大的顺序排列,正确的是( )A. a<−b<b<−aB. a<b<−b<−aC. a<−b<−a<bD. −b<a<b<−a第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.《九章算术》是中国古代第一部数学专著,不仅最早提到分数问题,也首先记录了盈不足等问题,在第七章“盈不足”中有这样一个问题:“今有蒲生一日,长三尺;莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”其意思是“有蒲和莞两种植物,蒲第一日长了3尺,莞第一日长了1尺,以后蒲每日生长的长度是前一日的一半,莞每日生长的长度是前一日的2倍,问几日蒲、莞上涨的长度相等.”请计算出第三日后,蒲、莞的长度相差为尺.14.若5x3n y|m|+4与−3x9y6是同类项,那么m+n的值为.15.小红在解关于x的方程:−3x+1=3a−2时,误将方程中的“−3”看成了“3”,求得方程的解为x=1,则原方程的解为.16.如图1是边长为18cm的正方形纸板,剪掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是cm3.三、解答题(本大题共9小题,共72.0分。
最新冀教版七年级数学上册全册试卷7套 附答案
冀教版七年级数学上册第一章达标测试卷一、选择题(每题2分,共28分)1.如果零上15 ℃记作+15 ℃,那么零下9 ℃可记作( )A.-9 ℃ B.+9 ℃C.+24 ℃ D.-6 ℃2.下列各式正确的是( )A.|5|=|-5| B.-|5|=|-5|C.-5=|-5| D.-(-5)=-|5|3.一种巧克力的质量标识为“(100±0.25)g”,则下列合格的是( )A.99.80 g B.100.30 gC.100.51 g D.100.70 g4.若有理数a,b在数轴上所对应的点如图所示,则下列大小关系正确的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-1.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-1.tif" \* MERGEFORMATINETA.-a<0<b B.-b<a<0C.a<0<-b D.0<b<-a5.A,B,C三个地方的海拔分别是124 m,38 m,-72 m,那么最低点比最高点低( )A.196 m B.-196 mC.110 m D.-110 m6.-1的倒数是( )A.- B. C.- D.7.下列式子中,成立的是( )A.-23=(-2)3B.(-2)2=-22C.= D.32=3×28.下列各组数中,①-(-2)和-|-2|;②(-1)2和-12;③23和32;④(-2)3和-23.互为相反数的有( )A.④ B.①② C.①②③ D.①②④9.已知有理数a,b,c在数轴上对应的点如图所示,则下列结论正确的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-1.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-1.tif" \* MERGEFORMATINETA.a+b<0 B.b-c<0 C.bc>0 D.abc<010. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET 已知|x|=5,|y|=2,且|x+y|=-x-y,则x-y的值为( )A.±3 B.±3或±7C.-3或7 D.-3或-711. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET把数轴折叠,折点A表示数1,数轴上B,C两点重合,点B,C分别表示数b,c,下列说法正确的是( )A.b与c互为相反数 B.b与c互为倒数C.若b=-1,则c=3 D.b+c=112.如图,半径为1的圆沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-3.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-3.tif" \* MERGEFORMATINETA.-2π B.3-2πC.-3-2π D.-3+2π13.已知|a|=5,|b|=2,且b<a,则a+b的值为( )A.3或7 B.-3或-7 C.-3 或7 D.3或-714.观察下列算式,用你发现的规律得出22 021的个位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A.2 B.4 C.6 D.8二、填空题(每题3分,共12分)15.比较大小:-0.6________-.16.计算:4+(-2)2×5=________.17.【新题】已知a,b,c三个数在数轴上对应点的位置如图所示,有下列式子①a-c,②a+b, ③ac,④++,其中结果为负数的有________.(填序号)INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-2.tif" \* MERGEFORMATINET18.按照如图所示的操作步骤,若输入的值为-3,则输出的值为________. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-3.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-3.tif" \* MERGEFORMATINET三、解答题(19-20题每题8分,21-23题每题10分,24题14分,共60分) 19.(1)2--+;(2)(-24)×.20.把下列各数表示在数轴(如图)上,然后把这些数用“>”连接起来.0,1,-3,-(-0.5),-,+.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-4.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-4.tif" \* MERGEFORMATINET21. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\荣德原创灰.tif" \* MERGEFORMATINET河北省某医疗器械进出口公司,出口的某品牌治疗仪由于运费、进口税等影响,针对不同的国家,售价不完全相同,若以2万元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:售出台数763545售价(万元)+0.1+0.3-0.20-0.1-0.2(1)求这批治疗仪的总售价.(2)若这批治疗仪的生产成本为每台1.9万元,另外还需各种费用共3万元,售完后该公司盈利或亏损多少万元?22.王红有5张写着数字的卡片,如图,请按要求抽出卡片,完成下列各题.(第22题)(1)从中取出2张卡片,使这2张卡片上的数字乘积最小.(2)从中取出2张卡片,使这2张卡片上的数字相除商最大.(3)从中取出除以外的4张卡片,将这4张卡片上的数字进行加、减、乘、除或乘方等混合运算,使结果为24(注:每个数字只能用一次,如:23×[1-(-2)]),请另写出一种符合要求的运算式子:________.23.A,B两地修建一条东西走向的笔直的铁路,为保障施工任务顺利完成,工程队负责人的巡察车从8:00开始来回奔波于各个施工地点,若他从A出发,规定向东为正,向西为负,到13:00他的行车里程(单位:k m)如下:+15,-4,+5,-1,+10,-3,-2,+12,+4,-10,+6.(1)到13:00,他的巡察车在出发点A的什么方向?距出发点A多远?(2)若巡察车耗油量为a L/k m,从8:00到13:00他的巡察车共耗油多少升?24.(1)如图,在数轴上标出数-4.5,-2,1,3.5所对应的点A,B,C,D;INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-6.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ-6.tif" \* MERGEFORMATINET(2)C,D两点间的距离为______,B,C两点间的距离为__________;(3)数轴上有两点M,N,点M表示的数为a,点N表示的数为b,那么M,N两点间的距离为________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动,已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,设运动时间为t秒.①当t为何值时,P,Q两点重合?②当t为何值时,P,Q两点间的距离为1?答案一、1.A 2.A 3.A 4.B 5.A 6.C 7.A 8.B 9.C10.D 提示:因为|x|=5,|y|=2,所以x=±5,y=±2.又|x+y|=-x-y,所以x+y<0,则x=-5,y=2或x=-5,y=-2,所以x-y=-7或-3,故选D.11.C12.B 提示:由题意得AB=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,因为点B在原点的左侧,所以点B所表示的数为-(2π-3)=3-2π,故选B.13.A 14.A二、15.> 16.24 17.①②④ 18.55三、19.解:(1)原式=+=-6-12=-18.(2)原式=(-24)×+(-24)×-(-24)×=(-8)+(-6)-(-3)=-11.20.解:如图所示:INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-1.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-1.tif" \* MERGEFORMATINET根据数轴的特点把这些数用“>”连接起来为1>-(-0.5)>0>->-3>+.21.解:(1) 7×0.1+6×0.3+3×(-0.2)+5×0+4×(-0.1)+5×(-0.2)+2×(7+6+3+5+4+5)=0.7+1.8-0.6+0-0.4-1+60=60.5(万元).答:这批治疗仪的总售价为60.5万元.(2)1.9×(7+6+3+5+4+5)+3=60(万元),60.5-60=0.5(万元).答:售完后该公司盈利0.5万元.22.解:(1)取,,乘积最小为-6.(2)取,,商最大为3.(3)(答案不唯一)[3-(-2)]2-1=2423.解:(1)(+15)+(-4)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-10)+(+6)=32(k m),答:到13:00,他的巡察车在出发点A的东边,距出发点A 32 k m.(2)|+15|+|-4|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-10|+|+6|=72(k m),a×72=72a(L).答:从8:00到13:00他的巡察车共耗油72a L.24.解:(1)如图所示.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\DA-2+.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\ 7JJ数学河北专版\\word\\DA-2+.tif" \* MERGEFORMATINET(2)2.5; 3 (3)|a-b|(4)①依题意有2t-t=3,解得t=3.故当t为3时,P,Q两点重合.②依题意有2t-t=3-1或2t-t=3+1,解得t=2或t=4.故当t为2或4时,P,Q两点间的距离为1.冀教版七年级数学上册第二章达标测试卷一、选择题(每题2分,共28分)1.在下列立体图形中,只要两个面就能围成的是( )A. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-5.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-5.tif"\*MERGEFORMATINETB. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-6.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-6.tif"\*MERGEFORMATINETC. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-7.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-7.tif"\*MERGEFORMATINETD. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ J-8.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\J-8.tif" \* MERGEFORMATINET2.如图,钟表上10点整时,时针与分针所成的角是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-9.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-9.tif" \* MERGEFORMATINETA.30° B.60° C.90° D.120°3. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\易错题灰.tif" \* MERGEFORMATINET 下列说法正确的是( )A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2 cm4.能用∠AOB,∠O,∠1三种方法表示同一个角的图形是( )A. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\ CSJ2-10.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-10.tif" \* MERGEFORMATINETB. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-11.tif"\*MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-11.tif" \*MERGEFORMATINET C. INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-12.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-12.tif" \* MERGEFORMATINET D.INCLUDEPICTURE"F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-13.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-13.tif" \* MERGEFORMATINET5.如图,若AC=BD,则AB与CD的大小关系是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-14.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-14.tif" \* MERGEFORMATINETA.AB>CD B.AB<CD C.AB=CD D.不能确定6.有一个几何体,萌萌,琳琳,佳佳分别做了如下的描述,萌萌:有五个面;琳琳:有四个面是三角形;佳佳:有8条棱.这个几何体可能是( )A.圆锥 B.正方体 C.四棱锥 D.三棱柱7.将一副三角尺按如图所示的方式放置,则∠AOB=( )A.30° B.45°C.75° D.80°8.如图,直线m外有一点O,点A是m上一点,当点A在m上运动时,下列选项中一定成立的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-17.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-17.tif" \* MERGEFORMATINETA.∠α>∠β B.∠α<∠β C.∠α=∠β D.∠α+∠β=180°9.下列时刻,时针和分针所成角最大的是( )A.1:30 B.10:10 C.2:50 D.6:4010.如图是一根长为10 cm的木棒,木棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-18.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-18.tif" \* MERGEFORMATINETA.7个 B.6个 C.5个 D.4个11.下列说法正确的是( )A.如果一个角有补角,那么这个角必是钝角B.一个锐角的余角比这个角的补角小90°C.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补D.如果∠α、∠β互余,∠β、∠γ互余,那么∠α与∠γ也互余12.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN =a,BC=b,则线段AD的长是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-19.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-19.tif" \* MERGEFORMATINETA.2(a-b) B.2a-b C.a+b D.a-b13.如图,把∠APB放置在量角器上,读得射线PA,PB分别经过刻度117和153,把∠APB绕点P顺时针旋转得到∠A′PB′,下列三个结论:①∠APA′=∠BPB′;②若射线PA′经过刻度27,则∠B′PA与∠A′PB互补;③若∠APB′=∠APA′,则射线PA′经过刻度45.其中正确的是( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-20.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-20.tif" \* MERGEFORMATINETA.①② B.①③ C.②③ D.①②③14.石家庄为了改善大气环境,工厂迁出市区,大力发展旅游业,某游乐中心的摩天轮,以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30 m i n.若此时21号车厢运行到最高点,且至少经过x m i n后,9号车厢才会运行到最高点,则x等于( )A.10 B.20 C. D.二、填空题(每题3分,共12分)15.如图,在此图中小于平角的角的个数是________.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-10.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-10.tif" \* MERGEFORMATINET16.一副三角尺按如图方式放置,若∠α=23°27′,则∠β的度数是______ __.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-11.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-11.tif" \* MERGEFORMATINET17.如图,将三角形ABC绕点A顺时针旋转得到三角形ADE,且点D恰好在AC 上,∠BAE=∠CDE=136°,则∠C的度数是________.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-12.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-12.tif" \* MERGEFORMATINET18.点C在直线AB上,AB=5,BC=2,点C为BD的中点,则AD的长为________.三、解答题(19题9分,20题10分 , 21题9分, 22、23题每题10分,24题12分,共60分)19.计算:(1)131°28′-51°32′15″; (2)58°38′27″+47°42′40″;(3)34°25′×3+35°42′.20.已知:如图,AC=2BC,D为AB的中点,BC=3,求CD的长.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-27.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-27.tif" \* MERGEFORMATINET21.按要求解答:(1)如图,按要求画图.①画直线AB;②画射线CD;③连接AD,BC相交于点P;④连接BD并延长至点Q,使D Q=BD.(2)由(1)所画图形中,以点P为顶点且小于平角的角有哪些?若形成的锐角为80°,求它的余角和补角的度数.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-15.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-15.tif" \* MERGEFORMATINET22.阅读解题过程,回答问题.如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD 的度数.解:过点O作射线OM,使点M,O,A在同一直线上.因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=∠AOM-∠MOD=∠AOM-∠BOC=180°-30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-14.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\j-14.tif" \* MERGEFORMATINET23.如图,线段AB=6cm,C是AB的中点,D是BC的中点,E是AD的中点.(1)求线段AE的长;(2)求线段EC的长.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-29.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-29.tif" \* MERGEFORMATINET24.将一副直角三角尺按如图①所示方式摆放在直线AD上,保持三角尺OBC不动,将三角尺MON绕点O以每秒8°的速度按顺时针方向旋转t s.(1)如图②,当t=________时,OM平分∠AOC,此时∠NOC-∠AOM=________;(2)继续旋转三角尺MON,如图③,使得OM,ON同时在直线OC的右侧,猜想∠NOC与∠AOM有怎样的数量关系?并说明理由(数量关系中不能含t).(3)直线AD的位置不变,若在三角尺MON开始顺时针旋转的同时,另一个三角尺OBC也绕点O以每秒2°的速度按顺时针方向旋转,当OM旋转至射线OD 上时,两个三角尺同时停止运动.当t=________时,∠MOC=15°.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-31.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ2-31.tif" \* MERGEFORMATINET答案一、1.D 2.B 3.A 4.D 5.C 6.C 7.C 8.D 9.C10.B 提示:因为图中共有3+2+1=6(条)线段,这6条线段分别长2 cm、3 cm、5 cm、7 cm、8 cm、10 cm,所以能量出6个长度,故选B.11.B12.B 提示:因为MN=MB+CN+BC=a,BC=b,所以MB+CN=a-b.因为M是AB的中点,N是CD的中点,所以AB+CD=2(MB+CN)=2(a-b),所以AD=AB+CD+BC=2(a-b)+b=2a-b.故选B.13.D 提示:由题意可知∠APB=∠A′PB′=36°,∠BPB′=∠APB+∠APB ′,∠APA′=∠A′PB′+∠APB′,所以∠APA′=∠BPB′,故①正确;若射线PA′经过刻度27,则∠B′PA=117°-27°-36°=54°,∠A ′PB=153°-27°=126°,所以∠B′PA+∠A′PB=180°,即∠B′PA 与∠A′PB互补,故②正确;若∠APB′=∠APA′,则∠A′PB′=∠APB ′,所以∠APA′=2∠A′PB′=72°,所以射线PA′与刻度0所在直线所成锐角的度数为117°-72°=45°,所以射线PA′经过刻度45,故③正确.故选D.14.B二、15.1116.66°33′17.24° 提示:因为将三角形ABC绕点A顺时针旋转得到三角形ADE,所以∠BAC=∠DAE,∠C=∠E.因为∠BAE=136°,所以∠DAE=(360°-∠BAE)=×(360°-136°)=112°.因为∠CDE+∠ADE=180°,∠DAE+∠E+∠ADE=180°,所以∠CDE=∠E+∠DAE,所以∠E=∠CDE-∠DAE=136°-112°=24°,所以∠C=24°.18.1或9三、19.解:(1)131°28′-51°32′15″=79°55′45″.(2)58°38′27″+47°42′40″=106°21′7″.(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.20.解:因为AC=2BC,BC=3,所以AC=6,所以AB=AC+BC=9.又因为D为AB的中点,所以BD=AB=4.5,所以CD=BD-BC=4.5-3=1.5.21.解:(1)如图所示.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-3.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\jda-3.tif" \* MERGEFORMATINET(2)以点P为顶点且小于平角的角有∠APB,∠BPD,∠CPD,∠APC.若形成的锐角为80°,则它的余角为90°-80°=10°,补角为180°-80°=100°.22.解:(1)由题可知∠AOD=∠AOM-∠BOC,所以如果∠BOC=60°,那么∠AOD=180°-60°=120°.如果∠BOC=n°,那么∠AOD=(180-n)°.(2)因为∠AOB=∠DOC=x°,∠AOD=y°,且∠AOD=∠AOB+∠DOC-∠BOC,所以∠BOC=∠AOB+∠DOC-∠AOD=(2x-y)°.23.解:(1)因为C是AB的中点,AB=6 cm,所以AC=BC=AB=3cm.又因为D是BC的中点,所以BD=CD=BC=1.5cm,所以AD=AB-BD=6-1.5=4.5(cm).因为E是AD的中点,所以AE=AD=2.25cm.(2)由(1)可知AE=2.25cm,AC=3cm,所以EC=AC-AE=3-2.25=0.75(cm).24.解:(1);45°(2)∠NOC-∠AOM=45°.理由:因为∠AON=90°+8°·t,所以∠NOC=∠AON-∠AOC=90°+8°·t-45°=45°+8°·t.因为∠AOM=8°·t,所以∠NOC-∠AOM=45°+8°·t-8°·t=45°.(3)5或10冀教版七年级数学上册第三章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列各式中,符合代数式书写格式规定的是( ) A.(a+b)÷c B.1bc C.m·3 D.x2.下列各式中,代数式的个数是( )①;②26+38;③ab=ba;④;⑤2a-1;⑥a;⑦(a2-b2);⑧5n+2.A.5 B.6 C.7 D.83.下列语句中,不正确的是( )A.0是代数式 B.a是代数式C.x的3倍与y的的差表示为3x-y D.S=πr2是代数式4.若代数式x+3的值是2,则x等于( )A.1 B.-1 C.5 D.-55.下列对代数式a2-5b2的描述中,正确的是( )A.a与5b的平方差B.a的平方减5后乘b的平方C.a的平方与b的平方的5倍的差 D.a与5b的差的平方6.比x的多7的数表示为( )A.x+7B.x-7C.x++7 D.x7.如图所示的是小芳设计的一个有理数的运算程序,如果输入的值为-2,则输出的值为( )A.3 B.-3 C.-5 D.-98.观察下列数:,,,,…,根据规律推算:第8个数应为( )A. B. C. D.9.在一定条件下,若物体运动的路程s(m)用含时间t(s)的式子表示为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.28 m B.58 m C.68 m D.88 m10.当x的值分别取3和-3时,代数式-x4+2x2-3的值( ) A.互为相反数 B.互为倒数C.相等D.以上都不对11.定义一种运算☆,其规则为a☆b=+.根据这个规则,计算2☆3的值是( )A. B. C.5 D.612.笔记本每本m元,圆珠笔每支n元.若买x本笔记本和y支圆珠笔,共需( )A.(mx+n y)元 B.(m+n)(x+y)元 C.(n x+my)元 D.m n(x+y)元13.当x=-1时,代数式|5x+2|和代数式1-3x的值分别是M,N,则M,N之间的关系为( )A.M>N B.M=NC.M<N D.以上三种情况都有可能14.一个长方形的周长是45 cm,一条边的长是a cm,这个长方形的面积为( )A.cm2B.cm2C.cm2D.a cm215.两艘船从同一港口同时出发,反向而行,甲船顺水,乙船逆水,两艘船在静水中的速度是60 k m/h,水流速度是a k m/h,3 h后这两艘船相距( ) A.6a k m B.3a k m C.360 k m D.180 k m16.一根绳子弯曲成如图所示的形状,当把绳子像图①那样沿虚线a剪1次时,绳子被剪为5段;当把绳子像图②那样沿虚线a,b剪2次时,绳子被剪为9段.若按照上述规律把绳子剪n次时,则绳子被剪为( )A.(6n-1)段B.(5n-1)段C.(4n+1)段 D.段二、填空题(17题3分,18、19题每题4分,共11分)17.工蜂去寻找蜜源,归巢时工蜂用空中画圈的方式告诉同伴所需蜜蜂的只数,若画x个圈表示需要(10x-1)只蜜蜂.某天工蜂画了5个圈,它表示需要__ ______只蜜蜂去采蜜.18.如图是用火柴棒拼成的图形,则第5个图形需________根火柴棒,第n个图形需________根火柴棒.19.已知1=12,1+2+1=22,1+2+3+2+1=32,…据上面等式反映的规律探究:对于正整数n(n≥4),1+2+…+(n-1)+n +(n-1)+…+2+1=________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.求下列代数式的值:(1)(a+2)(a-2)+a(1-a),其中a=5;(2)(m-n)2-2m+2n,其中m-n=-1.21.一个果子成熟后由树上落到地面上,若它下落时离地面的高度与经过的时间有如下表所示的关系:时间t/秒0.50.60.70.80.9…高度h/米5×0.255×0.365×0.495×0.645×0.81…试用含t的式子表示h.如果果子经过0.72秒落到地上,那么这个果子开始下落时离地面的高度是多少米?(精确到0.01米)22.如图所示的是一个数值转换机的示意图,请你用含x,y的式子表示输出结果,并求输入x的值为,y的值为-2时的输出结果.23.观察下列各图形中点的个数,根据其中蕴含的规律回答下列问题:(1)图①中有________个点;图②中有________个点;图③中有________个点;(2)请用代数式表示出第n个图形中点的个数,并求第10个图形中共有多少个点.24.某建筑物的窗户如图所示,它的上半部分是半圆形,下半部分是长方形.(1)请你求出制造窗框所需材料的总长(图中所有黑线的长度和);(2)当x=1.2,y=1.8时,求所需材料的总长(π≈3.14,结果保留一位小数).25.如图,长和宽分别是a,b的长方形纸片的四个角都剪去一个边长为x的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当a=8,b=6,且剪去部分的面积等于剩余部分的面积的一半时,求剩余部分的面积.26.(1)当a=2,b=3时,分别求代数式a2-2ab+b2,(a-b)2的值;(2)当a=-5,b=-3时,分别求代数式a2-2ab+b2,(a-b)2的值;(3)观察(1)(2)中代数式的值,探究a2-2ab+b2与(a-b)2有何关系?(4)利用(3)中你发现的关系,求12.572-2×12.57×2.57+2.572的值.答案一、1.D 2.C 3.D 4.B 5.C6.A 7.B 8.D 9.D 10.C 11.A12.A 13.C 14.D 15.C 16.C二、17.49 18.16;(3n+1) 19.n2三、20.解:(1)当a=5时,原式=(5+2)×(5-2)+5×(1-5)=7×3+5×(-4)=21-20=1.(2)原式=(m-n)2-2(m-n),当m-n=-1时,原式=(-1)2-2×(-1)=1+2=3.21.解:h=5t2,当t=0.72时,h=5×0.722≈2.59.故这个果子开始下落时离地面的高度约是2.59米.22.解:由数值转换机的示意图可得输出结果为(2x+y2).当x=,y=-2时,(2x+y2)=×[2×+(-2)2]=.23.解:(1)5;9;13(2)因为题图①中有1+4=5(个)点,题图②中有1+4×2=9(个)点,题图③中有1+4×3=13(个)点,所以第n个图形中点的个数为1+4n.当n=10时,1+4n=1+4×10=41,即第10个图形中共有41个点.24.解:(1)制造窗框所需材料的总长为4y+2x+2x+3x+πx=4y+7x+πx(m).(2)当x=1.2,y=1.8时,4y+7x+πx≈4×1.8+7×1.2+3.14×1.2≈19.4.所以所需材料的总长约为19.4 m.提示:正确列出代数式是解题的关键,本题运用了数形结合思想,从图形的特征入手,列出代数式.25.解:(1)剩余部分的面积为ab-4x2.(2)由剪去部分的面积等于剩余部分的面积的一半,得4x2=(ab-4x2).把a=8,b=6代入4x2=(ab-4x2),解得x=2.即正方形的边长x=2,所以剩余部分的面积为6×8-4×22=32.26.解:(1)当a=2,b=3时,a2-2ab+b2=1,(a-b)2=1.(2)当a=-5,b=-3时,a2-2ab+b2=4,(a-b)2=4.(3)由(1)(2)可得a2-2ab+b2=(a-b)2.(4)由(3)中关系,可得12.572-2×12.57×2.57+2.572=(12.57-2.57)2=100.冀教版七年级数学上册第四章达标测试卷一、选择题(每题2分,共28分)1.下列整式中,不属于单项式的是( )A.5x3y B.x2y+4 C.-8ab2D.3ab32.23xy2z3的次数是( )A.3 B.5 C.6 D.93.下列关于整式说法正确的是( )A.-不是整式 B.整式不是单项式就是多项式C.整式中一定不含分母D.和都是整式4.已知2x n+1y3与x4y3是同类项,则n的值是( )A.2 B.3 C.4 D.55.已知M=a2+ab,N=ab-b2,M和N的大小关系是( )A.M>N B.M<N C.M≥N D.M≤N6.两个三次多项式相加,和的次数是( )A.三 B.六C.大于或等于三 D.小于或等于三7.若|m-3|+(n+2)2=0,则m-2m n+4n+2(m n-m)的值为( )A.-4 B.-11 C.0 D.48.下列各式计算正确的是( )A.2(m-1)-3(m-1)=-m-3 B.a-[-(-b-c)]=a-b-cC.a-(-2a+b)=3a+b D.(x+y)-(y-x)=09.一个多项式加上-2a+7等于3a2+a+1,则这个多项式是( )A.3a2-a-6 B.3a2+3a+8C.3a2+3a-6 D.-3a2-3a+610.已知m-n=100,x+y=-1,则代数式(n+x)-(m-y)的值是( )A.99 B.101 C.-99 D.-10111.若A=x2y-2xy,B=xy2-3xy,则计算3A-2B的结果是( )A.2x2y B.3x2y-2xy2C.x2y D.xy212.已知关于x的多项式(2mx2+5x2+3x+1)-(6x2+3x)化简后不含x2项,则m 的值是( )A.0 B.0.5 C.3 D.-2.513.如图,从边长为a+5的正方形纸片中剪去一个边长为a+1的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的周长为( )INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-2.tif" \* MERGEFORMATINETA.2a+6 B.2a+8C.2a+14 D.4a+2014.有一道题目是一个多项式A减去多项式2x2+5x-3,小胡同学将2x2+5x-3抄成了2x2+5x+3,计算结果是-x2+3x-7,这道题目的正确结果是( )A.x2+8x-4 B.-x2+3x-1C.-3x2-x-7 D.x2+3x-7二、填空题(每题3分,共12分)15.同时符合下列条件:①同时含有字母a,b;②常数项是-,且最高次项的系数是2的一个四次二项式,请你写出满足以上条件的一个整式: . 16.观察下列单项式:-x,3x2,-5x3,7x4,-9x5,…,可以猜想第n个单项式是________________.17.石家庄地铁3号线正式通车当天,某列地铁在市二中站到站前,原有(3a+b)人,到站时下去了(a+2b)人,又上来了一些人,此时地铁上共有(8a-5b)人.在市二中站上地铁的人数是________.18.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三名同学相同数量的扑克牌(假定发到每名同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出两张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A 同学.请你确定,最终B同学手中剩余的扑克牌的张数为________.三、解答题(19题8分,20-23题每题10分, 24题12分,共60分)19.已知关于x,y的多项式x4+(m+2)x n y-xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?20.先化简,再求值:2(3x2-2xy-y)-4(2x2-xy-y),其中x=-3,y=1.21.已知x,y互为相反数,且|y-3|=0,求2(x3-2y2)-(x-3y)-(x-3y2+2x3)的值.22.小丽同学准备化简:(3x2-6x-8)-(x2-2x□6) ,算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-6x-8)-(x2-2x×6);(2)若x2-2x-3=0,求(3x2-6x-8)-(x2-2x-6)的值;(3)当x=1时,(3x2-6x-8)-(x2-2x□6)的结果是-4,请你通过计算说明“□”所代表的运算符号.23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如图.INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-4.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-4.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21秋初中\\数学\\7JJ数学河北专版\\word\\CSJ4-4.tif" \* MERGEFORMATINET(1)求所捂的二次三项式;(2)若x=-1,求所捂二次三项式的值.24.阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把a+b看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是________.(2)已知x2-2y=4,求3x2-6y-21的值;(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.答案一、1.B 2.C 3.B 4.B 5.C 6.D 7.B 8.B 9.C 10.D 11.B 12.B 13.D 提示:根据题意得,长方形的周长为2(a+1+a+5+4)=2(2a+10)=4a+20.故选D.14.B 提示:由题意可得,A-(2x2+5x+3)=-x2+3x-7,则A=-x2+3x-7+2x2+5x+3=x2+8x-4,故这道题目的正确结果是x2+8x-4-(2x2+5x-3)=x2+8x-4-2x2-5x+3=-x2+3x-1.故选B.二、15.2a2b2-(答案不唯一)16.(-1)n(2n-1)x n17.6a-4b18.7 提示:设每名同学有扑克牌x张,B同学从A同学处得到两张扑克牌,又从C同学处得到三张扑克牌后,则B同学有(x+2+3)张扑克牌,A同学有(x-2)张扑克牌,那么给A同学后,B同学手中剩余的扑克牌的张数为x +2+3-(x-2)=x+5-x+2=7.三、19.解:(1)因为多项式是五次四项式,所以n+1=5,m+2≠0.所以n=4,m≠-2.(2)因为多项式是四次三项式,所以m+2=0,n为任意有理数.所以m=-2,n为任意有理数.20.解:原式=6x2-4xy-2y-8x2+4xy+4y=-2x2+2y.当x=-3,y=1时,原式=-2×9+2×1=-16.21.解:因为x,y互为相反数,且|y-3|=0,所以y=3,x=-3.2(x3-2y2)-(x-3y)-(x-3y2+2x3)=2x3-4y2-x+3y-x+3y2-2x3=-y2-2x+3y,当x=-3,y=3时,原式=-32-2×(-3)+3×3=6.22.解:(1)(3x2-6x-8)-(x2-2x×6)=(3x2-6x-8)-(x2-12x)=3x2-6x-8-x2+12x=2x2+6x-8.(2)(3x2-6x-8)-(x2-2x-6)=3x2-6x-8-x2+2x+6=2x2-4x-2,因为x2-2x-3=0,所以x2-2x=3,所以2x2-4x-2=2(x2-2x)-2=6-2=4.(3)当x=1时,原式=(3-6-8)-(1-2□6),由题意得,-11-(1-2□6)=-4,整理得,1-2□6=-7,所以-2□6=-8,易得“□”所代表的运算符号是“-”.23.解:(1)所捂的二次三项式为x2-5x+1+3x=x2-2x+1.(2)当x=-1时,所捂二次三项式的值为1+2+1=4.24.解:(1)-(a-b)2(2)因为x2-2y=4,所以原式=3(x2-2y)-21=3×4-21=-9.(3)因为a-2b=3,2b-c=-5,c-d=10,所以a-c=(a-2b)+(2b-c)=3-5=-2,2b-d=(2b-c)+(c-d)=-5+10=5,所以原式=-2+5-(-5)=8.冀教版七年级数学上册第五章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列方程中,是一元一次方程的是( )A.2x=1 B.-2=0 C.2x-y=5 D.x2+1=2x2.下列对等式的变形中,正确的是( )A.若a=b,则a-3=3-b B.若ax=ay,则x=yC.若a=b,则ac=bc D.若=,则b=d3.下列方程中,解为的是( )A.x-1=0 B.5(m-1)+2=m+2C.3x-2=4(x-1) D.3(y-1)=y-24.下列变形中,正确的是( )A.若3x-1=2x+1,则3x+2x=1+1B.若3(x+1)-5(1-x)=0,则3x+3-5-5x=0C.若1-=x,则2-3x-1=xD.若-=10,则-=15.已知关于x的方程2x+a-9=0的解是x=2,则a的值是( ) A.2 B.3 C.4 D.56.解方程-=1时,去分母后正确的结果是( )A.4x+1-10x+1=1 B.4x+2-10x-1=1C.4x+2-10x-1=6 D.4x+2-10x+1=67.某同学在解方程5x-1=◎x+3时,把◎处的数看错了,解得x=-,该同学把◎处的数看成了( )A.3 B.-8 C.8 D.-8.若关于y的方程5y+3=0与5y+3k=27的解相同,则k的值为( ) A.0 B.1 C.5 D.109.已知x+y+2(-x-y+1)=3(1-y-x)-4(y+x-1),则x+y等于( ) A.- B. C.- D.10.已知关于x的方程(k-2)x|k-1|-10=0是一元一次方程,则k的值为( )A.1 B.2 C.0 D.0或211.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩下的人数恰好比乙组现有人数的一半多3人,设乙组原有x人,则可列方程为( )A.2x=x+3 B.2x=(x+8)+3C.2x-8=x+3 D.2x-8=(x+8)+312.已知关于x的方程2x-3=+x的解满足|x|-1=0,则m的值是( ) A.-6 B.-12 C.-6或-12 D.任何数13.一艘轮船在静水中的速度为20 k m/h,水流速度为4 k m/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头之间的距离.设甲、乙两码头之间的距离为x k m,则可列出方程( ) A.(20+4)x+(20-4)x=5 B.20x+4x=5C.+=5D.+=514.甲、乙两个足球队进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,则甲队胜( )A.5场 B.6场 C.7场 D.8场15.a,b,c,d为实数,现规定一种新的运算=ad-bc,则满足等式=1的x 的值为( )A.3 B.-5 C.-10 D.1016.图①为一张正面白色、反面灰色的长方形纸片.沿虚线剪裁将其分成甲、乙两张长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示,若图②中白色与灰色区域的面积比为8∶3,图②中纸片的面积为33,则图①中纸片的面积为( )A. B. C.42 D.44二、填空题(17题3分,其余每空2分,共11分)17.方程2x-1=0的解是________.18.三个正整数的比是1∶2∶4,它们的和是84,那么这三个数中最大的数是_ ___________,最小的数是____________.19.某同学在解方程=-1去分母时,方程右边的-1忘记了乘3,因而求得方程的解为x=2.则a的值为________,原方程的解为________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.解下列方程:(1)2x-=-x+2; (2)+=1;(3)-=1.2; (4)2x-=(x-1).21.已知x=1是方程2-(a-x)=2x的解,求关于y的方程a(y-5)-2=a(2y -3)的解.22.已知关于x的方程(a+1)x|a+2|-2=0为一元一次方程,求代数式++的值.23.某市为更有效地利用水资源,制定了居民用水阶梯收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,未超过部分仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.24.已知关于x的方程m+=4的解是关于x的方程-=-1的解的2倍,求m 的值.25.甲、乙两人想共同承包一项工程.这项工程甲单独做30天完成,乙单独做20天完成,而合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合起来做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?26.小刚为书房买灯,现有两种灯可供选购,其中一种是9 W(0.009 k W)的节能灯,售价49元/盏;另一种是40 W(0.04 k W)的白炽灯,售价18元/盏.。
人教版七年级数学上册全册综合测试题
人教版七年级数学上册全册综合测试题1、精选优质文档-倾情为你奉上七年级上数学全册综合测试题一、选择题(本题共10个小题,每小题3分,共30分)1等于() A2 B C2 D 2下列各组数中,互为相反数的是( ) A 与1 B(1)2与1 C与1 D12与13下列各组单项式中,为同类项的是( ) Aa与a Ba与2a C2xy与2x D3与a4如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是Aab0 Bab 0 C D5下列各图中,可以是一个正方体的平面展开图的是( )ABCD北OAB第8题图6在灯塔O处观测到轮船A位于北偏西54的方向,同时轮船B在南偏东15的方向,那么AOB的大小为 ( ) A69 B111 C142、1 D1597一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A(150%)x80%x28B(150%)x80%x28 C(150%x)80%x28 D(150%x)80%x288轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米设A港和B港相距x千米根据题意,可列出的方程是() A B C D9.某种出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米以后,每增加1千米加收1.5元(不足1千米按1千3、米计),某人乘这种出租车从甲地到乙地支付车费18元,设此人从甲地到乙地经过的路程为千米,则的最大值是().(A)7 (B)9 (C)10 (D)1110.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q, 如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上, 则数轴上表示2019的点与圆周上重合的点对应的字母是()Am Bn Cp Dq图1图2qnpmqnpm二、填空题(本大题共8个小题;每小题4分,共32分)11单项式xy2的系数是_12若x=2是方程82x=ax的解,则a=_13计算:1537+4251=_14青藏高原是世界上海拔最高的4、高原,它的面积约为2 500 000平方千米将2 500 000用科学记数法表示应为_平方千米15已知,ab=2,那么2a2b+5=_16已知|x|4,y24且y0,则xy的值为_ 17. 下列说法:若a、b互为相反数,则a+b=0;若a+b=0,则a、b互为相反数;若a、b互为相反数,则;若,则a、b互为相反数其中正确的结论是(第20题)18. 如图所示,圆圈内分别标有1,2,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为,则电子跳蚤连续跳()步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳步到标有数字2的圆圈内,完成一次跳跃,第5、二次则要连续跳步到达标有数字6的圆圈,依此规律,若电子跳蚤从开始,那么第3次能跳到的圆圈内所标的数字为10 ;. 三、解答题(本大题共10个小题;共78分)19(本小题满分5分)计算:20(本小题满分5分)先化简,再求值:(4x2+2x8)(x1),其中x=21.(6分)解方程:解:去分母,得6x3x142x4 即3x12x8 移项,得3x2x81合并同类项,得x7x7上述解方程的过程中,是否有错误?答:_;如果有错误,则错在_步.如果上述解方程有错误,请你给出正确的解题过程:OACBED22(本小题满分5分)如图,AOB=COD=90,OC 平分AOB,BOD=3DOE求:COE的度数236、(本小题满分5分)AEDBFC 如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长24(本小题满分10分)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,7、求m的值25.(本小题满分8分). 某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?26.(本题满分10分).温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州运往南昌的机器为台。
七年级上册数学测试卷全部
一、选择题(每题3分,共30分)1. 下列各数中,正整数是()A. -2B. 0.5C. 3D. -32. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b < 0C. a - b < 0D. a + b > 03. 下列各数中,绝对值最大的是()A. -5B. 5C. -2D. 24. 下列各组数中,成比例的是()A. 2,4,6,8B. 1,2,3,6C. 2,4,6,12D. 3,6,9,125. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的周长是()A. 22cmB. 24cmC. 26cmD. 28cm6. 在直角坐标系中,点P的坐标为(2,-3),则点P关于x轴的对称点坐标是()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 矩形D. 梯形8. 若一个长方体的长、宽、高分别为4cm、3cm、2cm,则它的体积是()A. 24cm³B. 26cm³C. 28cm³D. 30cm³9. 下列等式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a + 3b = 2a + 3bC. 2a - 3b = 2a + 3bD. 2a + 3b = 2a - 3b10. 若a² = 9,则a的值为()A. 3B. -3C. ±3D. 0二、填空题(每题3分,共30分)11. 0.2的倒数是_________。
12. 3/4与1/2的和是_________。
13. 下列各数中,负整数是_________。
14. 下列各数中,有理数是_________。
15. 一个长方形的长是6cm,宽是4cm,则它的周长是_________。
16. 下列各数中,无理数是_________。
最新人教版七年级数学上册单元测试题及答案全册
最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。
鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)
鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。
七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文
精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
人教版七年级数学下册全册单元测试试卷及答案
第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.如图,点在延长线上,下列条件中不能判定的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第3题图第4题图第5题图4.如图,,∠3=108°,则∠1的度数是()A.72°B.80°C.82°D.108°5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第6题图第8题图7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A.①B.①②C.①②③D.①②③④8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个9. 点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线l的距离()A.小于2 cm B.等于2 cmC.不大于2 cm D.等于4 cm10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.如图,当剪子口∠AOB增大15°时,∠COD增大.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.第22题图23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第24题图第五章检测题答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以点P到直线l的距离等于4 cm,故选C.3. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.4. A 解析:∵a∥b,∠3=108°,∴∠1=∠2=180°∠3=72°.故选A.5. C 解析:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.又∵BE平分∠ABC,∴∠ABE=∠EBC.即∠ABE=∠DEB.所以图中相等的角共有5对.故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. C 解析:①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质.故选C.8. D 解析:如题图,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),又2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.10. B 解析:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.二、填空题11. 144°解析:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 15°解析:因为∠AOB与∠COD是对顶角,∠AOB与∠COD始终相等,所以随∠AOB变化,∠COD也发生同样变化.故当剪子口∠AOB增大15°时,∠COD也增大15°.13. 垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 52°解析:∵EA⊥BA,∴∠EAD=90°.∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°∠EAD∠EDA=52°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与a相交于D,∵a∥b,∴∠ADC=∠50°.∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 65°解析:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65°.三、解答题19.解:(1)(2)如图所示.(3)∠PQC =60°. ∵ PQ ∥CD ,∴ ∠DCB +∠PQC =180°. ∵ ∠DCB =120°,∴ ∠PQC =180°120°=60°. 20. 解:(1)小鱼的面积为7×6121 ×5×6121 ×2×5121 ×4×2121 ×1.5×121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD . ∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2. 即∠EAP =∠APF . ∴ AEF ∥P . ∴ ∠E =∠F . 22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1, ∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°, ∴ ∠ACB =∠AED =80°. ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°, ∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行同旁内角互补). ∵ ∠B =65°,∴ ∠BCE =115°. ∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°, ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.第六章《实数》水平测试题班级 学号 姓名 成绩一、选择题 (每题3分,共30分。
最新部编版人教《初中数学七年级上册全册同步训练习题及答案》精品完美优秀实用打印版整册每课测试题
部编版人教初中数学七年级上册全册同步训练习题及答案前言:该同步训练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步训练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步训练习题)第一章有理数1.1 正数和负数5分钟训练(预习类训练,可用于课前)1.下面说法中正确的是()A.“向东5米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6 ℃记作-6 ℃,那么+8 ℃的意义就是零上8 ℃D.若将高1米设为标准0,高1.20米记作+0.20,那么-0.05所表示的高是0.95米思路解析:弄清具有相反意义的量的含义,如东与西,升与降,高与低等语意答案:D2.填空:(1)如果零上5 ℃记为+5 ℃,那么-9 ℃表示的意义是___________;(2)高出海平面129米记为+129米,那么-45米表示的是__________;(3)某仓库运出货物40千克记为-40千克,那么运进21千克货物应记为___________;(4)如果下降5米记为-5米,那么上升4米应记为__________;(5)某钢厂增产14吨钢记为+14吨,那么减产3吨应记为____________.思路解析:(1)零上5 ℃规定为+5 ℃,即“+”号表示“零上”,那么与它相反意义的量“零下”就规定为“-”.本题里的各小题中的“零上、上升、高出、运进、增产”等表示的量均为正数,与它们意义相反的量则都用负数表示.(4)本小题的“-”号表示“下降”,因此,“上升”应记为“+”,也就是说,具有相反意义的两个量,把其中的一个规定为正时,那么另一个即为负.答案:(1)零下9 ℃ (2)低于海平面45米 (3)+21千克 (4)+4米 (5)-3吨10分钟训练(强化类训练,可用于课中)1.如果水库的水位高于正常水位2 m时,记作+2 m,那么低于正常水位3 m时,应记作…()A.+3 mB.-3 mC.+13m D.-13m思路解析:注意规定“正、负”的相对性.对于具有相反意义的量,如节约用水为正,那么浪费用水为负;反过来,节约用水为负,那么浪费用水为正.答案:B2.在下列横线上填上适当的词,使前后构成具有相反意义的量.(1)收入5 000元,_______2 000元;(2)向南走5千米,向_______走3千米;(3)_______2万元,盈利212万元;(4)_______9.5吨,运出12吨.思路解析:本例题考查具有相反意义的量,这些相反意义的量与现实生活紧密相连,必须掌握常见的表示具有相反意义的名词术语.答案:(1)支出(2)北(3)亏损(4)运进3.高于海平面50 m记作_______,低于海平面30 m记作_______,海平面的高度记作___ _____.思路解析:通常情况下,我们把海平面的高度看作0 m,高于海平面记作“+”,低于海平面记作“-”.答案:+50 m -30 m 0 m4.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4 000千米,记作____ _____;(2)球赛时,如果胜2局记作+2,那么-2表示_________;(3)若-4万元表示亏损4万元,那么盈余3万元记作________;(4)+150米表示高出海平面150米,低于海平面200米应记作_________.思路解析:注意“+”“-”号使用的相对性,如向东记作“+”,则向西记作“-”,反之亦然.答案:(1)-4 000千米 (2)输2局 (3)+3万元 (4)-200米5.在-1.2,23,-0.10,π,0,-(-1),3中,非负数共有_________个.思路解析:非负数就是大于或等于零的数.答案:5快乐时光寄信有一天,父亲让8岁的儿子去寄一封信,儿子已经拿着信跑了,父亲才想起信封上没写地址和收信人的名字.儿子回来后,父亲问他:“你把信丢进邮筒了吗?”“当然.”“你没看见信封上没有写地址和收信人的名字吗?”“我当然看见信封上什么也没写.”“那你为什么不拿回来呢?”“我还以为您不写地址和收信人,是为了不想让我知道您把信寄给谁呢!”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)0是自然数,也是偶数;()(2)0可以看成是正数,也可以看成是负数;()(3)海拔-155米表示比海平面低155米;()(4)如果盈利1 000元,记作+1 000元,那么亏损200元就可记作-200元;()(5)如果向南走记为正,那么-10米表示向北走-10米;()(6)温度0 ℃就是没有温度.()思路解析:根据具有相反意义的含义来判断.答案:(1)√(2)×(3)√(4)√(5)×(6)×2.今年我省元月份某一天的天气预报中,延安市最低气温为-6 ℃,西安市最低气温为2℃.这一天延安市的气温比西安市的气温低()A.8 ℃B.-8 ℃C.6 ℃D.2 ℃思路解析:在这里考查对正、负数的理解一个比0 ℃要低6 ℃,而另一个比0 ℃要高出2 ℃,故这一天延安市的气温比西安市的气温低8 ℃.答案:A3.用正数和负数表示下列具有相反意义的量.(1)温度上升5 ℃和温度下降7 ℃;(2)向东6米和向西10米;(3)球赛时,如果胜一场得1分,败一场扣1分;(4)海平面以上200米和海平面以下30米.思路解析:习惯规定上升、向东、得分、高出等记作正.答案:(1)+5 ℃和-7 ℃(2)+6米和-10米(3)+1和-1 (4)+200米和-30米4.填空:(1)如果零上3 ℃记作+3 ℃,那么-7 ℃表示的意义是____________;(2)某钢厂增产150吨钢记作+150吨,那么减产30吨记作____________;(3)如果前进5千米记作+5千米,那么后退16千米记作_____________;(4)支出100元记作-100元,那么+1 000元表示的意义是_____________.思路解析:利用相反意义的量来解决实际问题.答案:(1)零下7 ℃(2)-30吨(3)-16千米(4)收入1 000元5.把下列各数填在相应的集合内:15,-6,+2,-0.9,12,0,0.23,-113,14.正数集合{____________…};负数集合{____________…};正分数集合{____________…};负分数集合{____________…}思路解析:此题主要考查你对数的分类能力.正数包括正整数和正分数;负数包括负整数和负分数;正分数包括正分数本身外,还有正的小数;同样,负的小数也属于负分数;另外,填整数集合时,不要漏掉“0”.填集合时通常最后要加省略号.答案:正数集合{15,+2,12,0.23,14,…};负数集合{-6,-0.9,-113,…};正分数集合{12,0.23,14,…};负分数集合{-0.9,-113,…}6.桌上放着8只茶杯,全部杯口朝上,每次翻转其中4个,只要翻转两次,就可以把它们全都翻成杯口朝下.如果将问题中的8只茶杯改为6只,每次仍然翻转其中的4只,能否经过若干次翻转把它们全部翻成杯口朝下?请你动手试验一下.提示:用+1表示杯口朝上,-1表示杯口朝下,请填出翻转次数及过程:初始状态 +1,+1,+1,+1,+1,+1.第一次翻转-1,-1,-1,-1,______,__________________ ______________________________________________ ______________________________________……答案:答案不唯一6只茶杯:翻转三次可以全部翻成杯口朝下.第一次翻转为-1,-1,-1,-1,+1,+1;第二次翻转为-1,+1,+1,+1,-1,+1;第三次翻转为-1,-1,-1,-1,-1,-1.1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)0千米表示原地未动2.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,_ _______,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{__________ _…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.问答题(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14••51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括______ __和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B4.在下列适当的空格里打上“√”号.有理数整数分数正整数负分数自然数2-3.14-5 8思路解析:根据数的分类来判别.答案:有理数整数分数正整数负分数自然数2 √√√√-3.14 √√√0 √√√-58√√√5.把下列各数分别填在相应的大括号里1.8,-42,+0.01,-512,0,-3.1415926,1112,1整数集合{_________________…};分数集合{_________________…};正数集合{_________________…};负数集合{_________________…};自然数集合{___________________…};。
(人教版)初中数学七年级上册 全册测试卷一(附答案)
(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。
七年级数学全册单元测试卷试卷(word版含答案)
七年级数学全册单元测试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
人教版初中数学七年级上册全册配套习题
第一章 有理数测试1 正数和负数学习要求:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题:(正确的在括号内画“√”,错误的画“×”)( ) 1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( ) 2.节约4吨水与浪费4吨水是一对具有相反意义的量. ( ) 3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( ) 4.在小学学过的数前面添上“-”号,得到的就是负数.二、填空题:5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______.8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”).9.整数可以看作分母为1的______,有理数包括____________.10.把下列各数填在相应的大括号内:正数集合{_______________________________________________________________…}负数集合{_______________________________________________________________…}非负数集合{_____________________________________________________________…}有理数集合{_____________________________________________________________…}74,6,0,14.3,5.0,432,14,5.8,51,27----综合、运用、诊断一、填空题:11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处.13.是正数而不是整数的有理数是____________________.14.是整数而不是正数的有理数是____________________.15.既不是正数,也不是负数的有理数是______________.16.既不是真分数,也不是零的有理数是______________.17.在下列数中: 11.11111,95.527,0,+2004,-2 ,1.12122122212222,非负有理数有__________________________________________.二、判断题:(正确的在括号里画“√”,错误的画“×”) ( ) 18.带有正号的数是正数,带有负号的数是负数. ( ) 19.有理数是正数和小数的统称.( ) 20.有最小的正整数,但没有最小的正有理数. ( ) 21.非负数一定是正数. ( ) 22.是负分数.三、解答题:23.-3.782 ( ).(A)是负数,不是分数(B)不是分数,是有理数(C)是负数,也是分数(D)是分数,不是有理数24.下面说法中正确的是( ).(A)正整数和负整数统称整数(B)分数不包括整数(C)正分数,负分数,负整数统称有理数(D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加,31-725.95 ,111-311-工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).12345+0.031+0.017+0.023-0.021-0.015(A)1个(B)2个(C)3个(D)5个测试2 相反数数轴学习要求:掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题:1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a的相反数是______.3.规定了______、______和______的______叫数轴.4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
七年级数学上全册练习题(含答案)
第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
七年级数学摸底测试卷
题号123456、
7
8910
答案*
^
一.选择题(本大题共10小题,每小题4分,满分40分)
1.如果把高于警戒水位米,记作+米,则低于警戒水位米,记作( )
A、+米
B、米
C、米
D、米
2.数轴上,到表示数3的点距离5个单位长度的点所表示的数是( )
A、8
B、2
C、-2
D、8或-2
3.已知一粒大米的质量约为千克,这个数用科学记数法表示为()A.×10-4B.×10-4C.×10-5D.21×10-6
4.为确保信息安全,信息需加密传递输,发送方将明文加密为密文传输给接收方,接收方收到密文后还原为明文。
已知某种加密规则为:a,b对应的密文为a-2b,2a-b。
例如1,2的密文是-3,4.当接收方收到的密文是1,7时,解密得到的明文是
@
,1 ,3 ,1 ,1
5. 已知
6,
8, x y c
y x c
-+= -+=
{则y x
-等于
A. -1
6.如图,C 是线段AB 的中点,D是CB上一点,下列说法中错误的是()
=AC-BD = 1
2
BC=
1
2
AB-BD =AD-BC
7.下面是两户居民家庭全年各项支出的统计图,根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()
A.甲户比乙户大
B.乙户比甲户大
C.甲、乙两户一样大
D.无法确定哪一户大
A C—B
8.在8︰30时,时钟上的时针和分针之间的夹角为( ) ° ° C. 80° °
·
项目
衣服
食品
教育
其它
~
9.化简[]235(27)a b a a b ----的结果是( ) A. -7a-10b +4b
[
10.关于x 的分式方程
15
m
x =-,下列说法正确的是( )
A .方程的解是5x m =+
B .5m >-时,方程的解是正数
C .5m <-时,方程的解为负数
D .无法确定
二.填空题(本大题共4小题,每小题5分,满分20分)
11.已知4a + 和2
(3)b -互为相反数,那么3a b +等于 。
12.∠α=35°,则∠α的余角的补角为 。
】
13.某同学爬楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长S 米,该同学上楼速 度是 a 米/分,下楼速度是b 米/分。
则他的平均速度是 米/分。
14.如果关于x 的方程
x
x x a --=+-42114有增根,则a 的值为________. 三.(本大题共2小题,每小题8分,满分16分)
15.计算:()2
4
123⎡⎤----⎣⎦÷3
12⎛⎫ ⎪⎝⎭ 16.先化简,再求值:2
314223a a a a +-⎛⎫+÷ ⎪--⎝⎭
, 其中2
410a a -+=
四.(本大题共2小题,每小题8分,满分16分) 17.已知关于x 、y 的方程组⎩⎨
⎧=-=+m
y x y x 21
2. (1)求这个方程组的解;
(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1
】
18.2008年奥运期间,小区物业用花盆妆点院落。
下列的每一个图都是由若干个花盆组成
的正方形图案.
(1)若用n 表示每条边上(包括两个端点)的花盆数,用s 表示组成每个图案的花盆数. 按上图所表现出来的规律推算,当n=8时,s 的值应是多少 (2)用含n 的代数式表示s .
…
五.(本大题共2小题,每小题10分,满分20分)
19.已知方程组734
521x y x y m +=⎧⎨-=-⎩
的解能使等式4x-3y=7成立。
(1)求原方程组的解;
(2)求代数式2
21m m -+ 的值。
\
20.已知关于x 的不等式组0521
x a x -⎧⎨
->⎩≥,
只有四个整数解,求实数a 的取值范围。
#
六.(本题满分12分)
21.如图,已知12,//AB DE ∠=∠,求证:BDC EFC ∠=∠.
七.(本题满分12分) ^
22.(1)如图,已知∠AOB 是直角,∠BOC =30°,OM 平分∠AOC,ON 平分∠BOC ,求 ∠MON 的度数;
(2)在(1)中∠AOB=α,其它条件不变,求∠MON 的度数;
(3)你能从(1)、(2)中发现什么规律
八.(本题满分14分)
23.某商场计划拨款9万元从一厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元。
;
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元。
在同时购进两种不同型号电视机的方案中,为使销售获利最多,你会选择哪种进货方案
(3)若商场准备用9万元同时购进三种不同型号的电视机50台,并且获利8900元,请你设计进货方案。
)
A
M
—
B
N C
七年级数学试题参考答案
一.填空题
° 14。
2ab
a b + 三.
15。
.10 16。
27
x =-
四.
17.(1)1; (2)2
18.(1)2
226x x -+; (2)2
7x x -+ 五. 19.(1)1
1
x y =⎧⎨
=-⎩; (2)49。
20.(1)8或20; (2)21或15。
六.
21.(1)90; (2)补图,被调查的240名学生视力; (3)11250人。
七.
22.(1)45°; (2)1
2
MON α∠=; (3)不论∠AOB 等于多少度,∠MON 的度数都等于它的一半。
八.
23.解:(1)设购买电视机甲种x 台,乙种y 台,丙种z 台,由题意得:
①x+y=50,1500x+2100y=90000, 解得x=25,y=25;
②y+z=50,2100y+2500z=90000, 解得y=,z=(不合题意,舍去); ③x+z=50,1500x+2500z=90000, 解得x=35,z=15.
答:有两种进货方案:(1)购进甲种25台,乙种25台.(2)购进甲种35台,丙种15台.
(2)方案一:25×150+25×200=8750.
方案二:35×150+15×250=9000元.
答:购买甲种电视机35台,丙种电视机15台获利最多。
(3)设购买电视机甲种x台,乙种y台,丙种z台,由题意得:x+y+z=50,1500x+2100y+2500z=90000
解得x=25+(2/3)z,y=25-(5/3)z
∵x、y、z为均大于0而小于50的整数
∴x=27,y=20,z=3;x=29,y=15,z=6;x=31,y=10,z=9;x=33,y=5,z=12 故有四种进货方案:
(1)购进甲种27台,乙种20台,丙种3台.
(2)购进甲种29台,丙种15台,丙种6台.
(3)购进甲种31台,丙种10台,丙种9台.
(4)购进甲种33台,丙种5台,丙种12台.。