全国卷近五年高考函数真题
函数模块5年高考真题汇总通用版(含答案)
答案解释考点01函数概念与单调性考点02函数周期性与奇偶性应用又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.(2022·全国·统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.6.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知二、填空题考点03函数图像应用一、单选题-的大致图像,1.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[3,3]则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .2y =【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解【详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,....A.10π9BC.4π3D【答案】C【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到....【答案】D【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.....【答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x y f x ==+32()22x x x f x -=-=-+,344240,2-⨯>+排除选项D ;考点04函数性质综合应用一、单选题1.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2021·全国·统考高考真题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b>C .2ab a <D .2ab a >【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当a<0时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,a<0,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D933⎝⎦。
全国卷历年高考函数与导数真题归类分析(含答案)
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
2024年高考数学真题分类汇编(三角函数篇,解析版)
专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
全国卷历年高考函数与导数真题归类分析(含答案)
全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=ln(x x +为偶函数,则a=【解析】由题知ln(y x =是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m(D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:1141)2-)由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12 D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3]【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。
历年(2019-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞3.(2019∙江苏∙高考真题)函数y =的定义域是 .考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x =B .y =2x -C .12log y x =D .1y x=9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【详细分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【详细分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【详细分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答.【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【详细分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【详细分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【详细分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可. 【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B3.(2019∙江苏∙高考真题)函数y =的定义域是 . 【答案】[1,7]-.【详细分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【答案详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点评】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【详细分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-.故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【详细分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减, 所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>【答案】A【详细分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知g g <,因为4112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+-=-=-<,即1122-<-,所以()(22g g >,综上,(((222g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【详细分析】利用指数型复合函数单调性,判断列式计算作答. 【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【详细分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【详细分析】利用函数单调性定义即可得到答案.【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【详细分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x-==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A【详细分析】由题意结合函数的解析式考查函数的单调性即可.【答案详解】函数122,log xy y x -==, 1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【名师点评】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C【解析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小.【答案详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【名师点评】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+ C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【详细分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141eϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【详细分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【详细分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .2【答案】D【详细分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【详细分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可. 【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【详细分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=- 22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【详细分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【详细分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【详细分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++,对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【详细分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【详细分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【答案详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点评】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+【答案】D【详细分析】先把x <0,转化为‐x>0,代入可得()f x -,结合奇偶性可得()f x . 【答案详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D .【名师点评】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【详细分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【详细分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【详细分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【详细分析】A 选项,先详细分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行详细分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【详细分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222fx f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC. 故选:BC. [方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解. 3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【详细分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=- , ()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题. 4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【详细分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【答案详解】sin x 可以为负,所以A 错; 1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本详细分析判断能力,属中档题.。
历年(2019-2023)全国高考数学真题分项(函数的基本概念与基本初等函数)汇编(附答案)
历年(2019-2023)全国高考数学真题分项(函数的基本概念与基本初等函数)汇编考点一 函数的值域1.(2019•上海)下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x = C .tan y x = D .cos y x =2.(2023•上海)已知函数1,0,()2,0xx f x x ⎧=⎨>⎩…,则函数()f x 的值域为 . 3.(2022•上海)设函数()f x 满足1()(1f x f x=+对任意[0x ∈,)+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有{|()y y f x =,0}f x a A =剟,则a 的取值范围为 .考点二 函数的图象与图象的变换4.(2021•浙江)已知函数21()4f x x =+,()sin g x x =,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =5.(2020•浙江)函数cos sin y x x x =+在区间[π-,]π上的图象可能是( )A .B .C .D .6.(2019•浙江)在同一直角坐标系中,函数1xy a=,1log (02a y x a =+>且1)a ≠的图象可能是( ) A . B .C .D .考点三.复合函数的单调性7.(2023•新高考Ⅰ)设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A .(-∞,2]-B .[2-,0)C .(0,2]D .[2,)+∞8.(2020•海南)已知函数2()(45)f x lg x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞考点四 函数的最值及其几何意义9.(2021•新高考Ⅰ)函数()|21|2f x x lnx =--的最小值为 .10.(2019•浙江)已知a R ∈,函数3()f x ax x =-.若存在t R ∈,使得2|(2)()|3f t f t +-…,则实数a 的最大值是 .考点五 函数奇偶性的性质与判断11.(2023•新高考Ⅱ)若21()()21x f x x a ln x -=++为偶函数,则(a = ) A .1-B .0C .12D .112.(2021•上海)以下哪个函数既是奇函数,又是减函数( ) A .3y x =-B .3y x =C .3log y x =D .3x y =13.(2019•上海)已知R ω∈,函数2()(6)sin()f x x x ω=-⋅,存在常数a R ∈,使()f x a +为偶函数,则ω的值可能为( ) A .2πB .3πC .4πD .5π14.(2021•新高考Ⅱ)写出一个同时具有下列性质①②③的函数():f x .①1212()()()f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.15.(2021•新高考Ⅰ)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a = .16.(2023•上海)已知a ,c R ∈,函数2(31)()x a x c f x x a+++=+.(1)若0a =,求函数的定义域,并判断是否存在c 使得()f x 是奇函数,说明理由;(2)若函数过点(1,3),且函数()f x 与x 轴负半轴有两个不同交点,求此时c 的值和a 的取值范围.考点六 奇偶性与单调性的综合17.(2021•新高考Ⅱ)已知函数()f x 的定义域为(()R f x 不恒为0),(2)f x +为偶函数,(21)f x +为奇函数,则( ) A .1()02f -=B .(1)0f -=C .f (2)0=D .f (4)0=18.(2020•海南)若定义在R 的奇函数()f x 在(,0)-∞单调递减,且f (2)0=,则满足(1)0xf x -…的x 的取值范围是( )A .[1-,1][3 ,)+∞B .[3-,1][0- ,1]C .[1-,0][1 ,)+∞D .[1-,0][1 ,3]考点七 分段函数的应用19.(2022•上海)若函数210()000a x x f x x ax x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,求参数a 的值为 .20.(2022•浙江)已知函数22,1,()11,1,x x f x x x x ⎧-+⎪=⎨+->⎪⎩…则1((2f f = 3728 ;若当[x a ∈,]b 时,1()3f x 剟,则b a -的最大值是 .考点八 抽象函数及其应用21.(2022•新高考Ⅱ)已知函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,f (1)1=,则221()(k f k ==∑) A .3-B .2-C .0D .122.【多选】(2023•新高考Ⅰ)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A .(0)0f = B .f (1)0=C .()f x 是偶函数D .0x =为()f x 的极小值点23.(2020•上海)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +…恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[x a ∈,)+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2A =-,}m ,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值.考点九 函数的周期性24.(2019•上海)已知函数()f x 周期为1,且当01x <…时,2()log f x x =,则3()2f = .考点十 函数恒成立问题25.(2021•上海)已知1x ,2x R ∈,若对任意的21x x S -∈,21()()f x f x S -∈,则有定义:()f x 是在S 关联的.(1)判断和证明()21f x x =-是否在[0,)+∞关联?是否有[0,1]关联?(2)若()f x 是在{3}关联的,()f x 在[0x ∈,3)时,2()2f x x x =-,求解不等式:2()3f x 剟. (3)证明:()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”.考点十一 对数的运算性质26.(2022•浙江)已知25a =,8log 3b =,则34(a b -= ) A .25B .5C .259D .53考点十二 对数值大小的比较27.(2022•新高考Ⅰ)设0.10.1a e =,19b =,0.9c ln =-,则( ) A .a b c <<B .c b a <<C .c a b <<D .a c b <<28.(2021•新高考Ⅱ)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<考点十三 反函数29.(2021•上海)已知3()2f x x=+,则1f -(1)= . 30.(2020•上海)已知函数3()f x x =,1()f x -是()f x 的反函数,则1()f x -= .考点十四 函数与方程的综合运用31.(2019•浙江)设a ,b R ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++⋅⎪⎩…若函数()y f x ax b =--恰有3个零点,则( ) A .1a <-,0b <B .1a <-,0b >C .1a >-,0b <D .1a >-,0b >32.(2019•上海)已知2()||(1,0)1f x a x a x =->>-,()f x 与x 轴交点为A ,若对于()f x 图象上任意一点P ,在其图象上总存在另一点(Q P 、Q 异于)A ,满足AP AQ ⊥,且||||AP AQ =,则a = . 33.(2019•上海)已知1()1f x ax x =++,a R ∈. (1)当1a =时,求不等式()1(1)f x f x +<+的解集; (2)若()f x 在[1x ∈,2]时有零点,求a 的取值范围.考点十五 根据实际问题选择函数类型34.(2020•山东)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为( )(20.69)ln ≈ A .1.2天B .1.8天C .2.5天D .3.5天35.【多选】(2023•新高考Ⅰ)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020p pL lgp =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车 10 60~90 混合动力汽车 1050~60电动汽车10 40已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A .12p p …B .2310p p >C .30100p p =D .12100p p…36.(2023•上海)为了节能环保、节约材料,定义建筑物的“体形系数” 0F S V =,其中0F 为建筑物暴露在空气中的面积(单位:平方米),0V 为建筑物的体积(单位:立方米).(1)若有一个圆柱体建筑的底面半径为R ,高度为H ,暴露在空气中的部分为上底面和侧面,试求该建筑体的“体形系数” S ;(结果用含R 、H 的代数式表示) (2)定义建筑物的“形状因子”为2L f A =,其中A 为建筑物底面面积,L 为建筑物底面周长,又定义T 为总建筑面积,即为每层建筑面积之和(每层建筑面积为每一层的底面面积).设n 为某宿舍楼的层数,层高为3米,则可以推导出该宿舍楼的“体形系数”为13S n =+.当18f =,10000T =时,试求当该宿舍楼的层数n 为多少时,“体形系数” S 最小.37.(2021•上海)已知一企业今年第一季度的营业额为1.1亿元,往后每个季度增加0.05亿元,第一季度的利润为0.16亿元,往后每一季度比前一季度增长4%. (1)求今年起的前20个季度的总营业额;(2)请问哪一季度的利润首次超过该季度营业额的18%?38.(2020•上海)在研究某市交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qvx=,x为道路密度,q为车辆密度,交通流量801100135(,040 ()3(40)85,4080x xv f xk x x⎧⎪-⋅<<==⎨⎪--+⎩剟.(1)若交通流量95v>,求道路密度x的取值范围;(2)已知道路密度80x=时,测得交通流量50v=,求车辆密度q的最大值.参考答案考点一 函数的值域1.(2019•上海)下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x = C .tan y x = D .cos y x =【详细解析】A ,2x y =的值域为(0,)+∞,故A 错B,y =的定义域为[0,)+∞,值域也是[0,)+∞,故B 正确. C ,tan y x =的值域为(,)-∞+∞,故C 错 D ,cos y x =的值域为[1-,1]+,故D 错. 故选:B .2.(2023•上海)已知函数1,0,()2,0xx f x x ⎧=⎨>⎩…,则函数()f x 的值域为 . 【详细解析】当0x …时,()1f x =, 当0x >时,()21x f x =>, 所以函数()f x 的值域为[1,)+∞. 故答案为:[1,)+∞.3.(2022•上海)设函数()f x 满足1()(1f x f x=+对任意[0x ∈,)+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有{|()y y f x =,0}f x a A =剟,则a 的取值范围为 . 【详细解析】法一:令11x x =+,解得12x -=(负值舍去),当1x ∈时,2111x x =∈+,当11(,)2x -∈+∞时,211112x x -=∈+,且当11(,)2x -∈+∞时,总存在2111x x =∈+,使得12()()f x f x =,故1|(),02f y y f x x A ⎧⎫-⎪⎪==⎨⎬⎪⎪⎩⎭剟,若12a <,易得{}1()|(),02f y y f x x a -∉=剟,所以a即实数a 的取值范围为1[,)2-+∞; 法二:原命题等价于任意10,()()1a f x a f x a>+=++,所以11(1)1a x a x a a⇒-+++剠恒成立,即1(1)0a a-+…恒成立,又0a >,所以a a 的取值范围为)+∞.故答案为:)+∞.考点二 函数的图象与图象的变换4.(2021•浙江)已知函数21()4f x x =+,()sin g x x =,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【详细解析】由图可知,图象关于原点对称,则所求函数为奇函数, 因为21()4f x x =+为偶函数,()sin g x x =为奇函数, 函数21()()sin 4y f x g x x x =+-=+为非奇非偶函数,故选项A 错误; 函数21()()sin 4y f x g x x x =--=-为非奇非偶函数,故选项B 错误;函数21()()()sin 4y f x g x x x ==+,则212sin ()cos 04y x x x x '=++>对(0,)4x π∈恒成立,则函数()()y f x g x =在(0,4π上单调递增,故选项C 错误.故选:D .5.(2020•浙江)函数cos sin y x x x =+在区间[π-,]π上的图象可能是( )A .B .C .D .【详细解析】()cos sin y f x x x x ==+, 则()cos sin ()f x x x x f x -=--=-,()f x ∴为奇函数,函数图象关于原点对称,故排除C ,D , 当x π=时,()cos sin 0y f πππππ==+=-<,故排除B , 故选:A .6.(2019•浙江)在同一直角坐标系中,函数1xy a=,1log (02a y x a =+>且1)a ≠的图象可能是( ) A . B .C .D .【详细解析】由函数1xy a =,1log ()2ay x =+,当1a >时,可得1xy a =是递减函数,图象恒过(0,1)点, 函数1log ()2a y x =+,是递增函数,图象恒过1(2,0);当10a >>时,可得1x y a =是递增函数,图象恒过(0,1)点,函数1log ()2a y x =+,是递减函数,图象恒过1(2,0);∴满足要求的图象为:D故选:D .考点三.复合函数的单调性7.(2023•新高考Ⅰ)设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A .(-∞,2]-B .[2-,0)C .(0,2]D .[2,)+∞【详细解析】设2()t x x a x ax =-=-,对称轴为2ax =,抛物线开口向上, 2t y = 是t 的增函数,∴要使()f x 在区间(0,1)单调递减,则2t x ax =-在区间(0,1)单调递减, 即12a…,即2a …, 故实数a 的取值范围是[2,)+∞. 故选:D .8.(2020•海南)已知函数2()(45)f x lg x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞【详细解析】由2450x x -->,得1x <-或5x >. 令245t x x =--,外层函数y lgt =是其定义域内的增函数,∴要使函数2()(45)f x lg x x =--在(,)a +∞上单调递增,则需内层函数245t x x =--在(,)a +∞上单调递增且恒大于0,则(a ,)(5+∞⊆,)+∞,即5a …. a ∴的取值范围是[5,)+∞.故选:D .考点四 函数的最值及其几何意义9.(2021•新高考Ⅰ)函数()|21|2f x x lnx =--的最小值为 . 【详细解析】法一、函数()|21|2f x x lnx =--的定义域为(0,)+∞. 当102x <…时,()|21|2212f x x lnx x lnx =--=-+-, 此时函数()f x 在(0,12上为减函数,当12x >时,()|21|2212f x x lnx x lnx =--=--, 则22(1)()2x f x x x-'=-=, 当1(2x ∈,1)时,()0f x '<,()f x 单调递减,当(1,)x ∈+∞时,()0f x '>,()f x 单调递增, ()f x 在(0,)+∞上是连续函数,∴当(0,1)x ∈时,()f x 单调递减,当(1,)x ∈+∞时,()f x 单调递增. ∴当1x =时()f x 取得最小值为f (1)211211ln =⨯--=.故答案为:1.法二、令()|21|g x x =-,()2h x lnx =, 分别作出两函数的图象如图:由图可知,()f x f …(1)1=, 则数()|21|2f x x lnx =--的最小值为1. 故答案为:1.10.(2019•浙江)已知a R ∈,函数3()f x ax x =-.若存在t R ∈,使得2|(2)()|3f t f t +-…,则实数a 的最大值是 .【详细解析】存在t R ∈,使得2|(2)()|3f t f t +-…,即有332|(2)(2)|3a t t at t +-+-+…, 化为22|2(364)2|3a t t ++-…, 可得2222(364)233a t t -++-剟, 即224(364)33a t t ++剟, 由223643(1)11t t t ++=++…, 可得403a <…,可得a 的最大值为43. 故答案为:43.考点五 函数奇偶性的性质与判断11.(2023•新高考Ⅱ)若21()()21x f x x a ln x -=++为偶函数,则(a = ) A .1-B .0C .12D .1【详细解析】由21021x x ->+,得12x >或12x <-,由()f x 是偶函数, ()()f x f x ∴-=,得2121()()2121x x x a ln x a lnx x ----+=+-++, 即121212121()()()()()21212121x x x x x a lnx a ln x a ln x a lnx x x x -+----+=-+=-=+-+++, x a x a ∴-=+,得a a -=,得0a =. 故选:B .12.(2021•上海)以下哪个函数既是奇函数,又是减函数( ) A .3y x =-B .3y x =C .3log y x =D .3x y =【详细解析】3y x =-在R 上单调递减且为奇函数,A 符合题意; 因为3y x =在R 上是增函数,B 不符合题意; 3log y x =,3x y =为非奇非偶函数,C 不符合题意;故选:A .13.(2019•上海)已知R ω∈,函数2()(6)sin()f x x x ω=-⋅,存在常数a R ∈,使()f x a +为偶函数,则ω的值可能为( ) A .2πB .3πC .4πD .5π【详细解析】由于函数2()(6)sin()f x x x ω=-⋅,存在常数a R ∈, ()f x a +为偶函数,则:2()(6)sin[()]f x a x a x a ω+=+-⋅+, 由于函数为偶函数, 故:6a =, 所以:62k πωπ=+,当1k =时.4πω=故选:C .14.(2021•新高考Ⅱ)写出一个同时具有下列性质①②③的函数():f x . ①1212()()()f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【详细解析】2()f x x =时,22212121212()()()()f x x x x x x f x f x ===;当(0,)x ∈+∞时,()20f x x '=>;()2f x x '=是奇函数.故答案为:2()f x x =.另解:幂函数()(0)a f x x a =>即可满足条件①和②;偶函数即可满足条件③, 综上所述,取2()f x x =即可.15.(2021•新高考Ⅰ)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a = .【详细解析】函数3()(22)x x f x x a -=⋅-是偶函数,3y x =为R 上的奇函数,故22x x y a -=⋅-也为R 上的奇函数, 所以000|2210x y a a ==⋅-=-=, 所以1a =.法二:因为函数3()(22)x x f x x a -=⋅-是偶函数, 所以()()f x f x -=,即33(22)(22)x x x x x a x a ---⋅-=⋅-, 即33(22)(22)0x x x x x a x a --⋅-+⋅-=,即3(1)(22)0x x a x --+=, 所以1a =. 故答案为:1.16.(2023•上海)已知a ,c R ∈,函数2(31)()x a x cf x x a+++=+.(1)若0a =,求函数的定义域,并判断是否存在c 使得()f x 是奇函数,说明理由;(2)若函数过点(1,3),且函数()f x 与x 轴负半轴有两个不同交点,求此时c 的值和a 的取值范围.【详细解析】(1)若0a =,则2()1x x c cf x x x x ++==++, 要使函数有意义,则0x ≠,即()f x 的定义域为{|0}x x ≠, cy x x=+是奇函数,1y =是偶函数, ∴函数()1cf x x x=++为非奇非偶函数,不可能是奇函数,故不存在实数c ,使得()f x 是奇函数. (2)若函数过点(1,3),则f (1)13132311a c a ca a+++++===++,得3233a c a ++=+,得321c =-=,此时2(31)1()x a x f x x a+++=+,若数()f x 与x 轴负半轴有两个不同交点,即2(31)1()0x a x f x x a +++==+,得2(31)10x a x +++=,当0x <时,有两个不同的交点, 设2()(31)1g x x a x =+++,则21212(31)4010(31)03102a x x x x a a ⎧=+->⎪=>⎪⎪⎨+=-+<⎪+⎪-<⎪⎩ ,得312312310a a a +>+<-⎧⎨+>⎩或,得11313a a a ⎧><-⎪⎪⎨⎪>-⎪⎩或,即13a >,若0x a +=即x a =-是方程2(31)10x a x +++=的根, 则2(31)10a a a -++=,即2210a a +-=,得12a =或1a =-, 则实数a 的取值范围是13a >且12a ≠且1a ≠-, 即1(3,11(22⋃,)+∞.考点六 奇偶性与单调性的综合17.(2021•新高考Ⅱ)已知函数()f x 的定义域为(()R f x 不恒为0),(2)f x +为偶函数,(21)f x +为奇函数,则( ) A .1(02f -=B .(1)0f -=C .f (2)0=D .f (4)0=【详细解析】 函数(2)f x +为偶函数, (2)(2)f x f x ∴+=-, (21)f x + 为奇函数, (12)(21)f x f x ∴-=-+,用x 替换上式中21x +,得(2)()f x f x -=-,(2)()f x f x ∴+=-,(4)(2)()f x f x f x +=-+=,即()(4)f x f x =+, 故函数()f x 是以4为周期的周期函数, (21)f x + 为奇函数,(12)(21)f x f x ∴-=-+,即(21)(21)0f x f x ++-+=, 用x 替换上式中21x +,可得,()(2)0f x f x +-=, ()f x ∴关于(1,0)对称, 又f (1)0=,(1)(21)f f f ∴-=-+=-(1)0=. 故选:B .18.(2020•海南)若定义在R 的奇函数()f x 在(,0)-∞单调递减,且f (2)0=,则满足(1)0xf x -…的x 的取值范围是( )A .[1-,1][3 ,)+∞B .[3-,1][0- ,1]C .[1-,0][1 ,)+∞D .[1-,0][1 ,3]【详细解析】 定义在R 的奇函数()f x 在(,0)-∞单调递减,且f (2)0=,()f x 的大致图象如图:()f x ∴在(0,)+∞上单调递减,且(2)0f -=; 故(1)0f -<;当0x =时,不等式(1)0xf x -…成立,当1x =时,不等式(1)0xf x -…成立,当12x -=或12x -=-时,即3x =或1x =-时,不等式(1)0xf x -…成立, 当0x >时,不等式(1)0xf x -…等价为(1)0f x -…, 此时0012x x >⎧⎨<-⎩…,此时13x <…,当0x <时,不等式(1)0xf x -…等价为(1)0f x -…, 即0210x x <⎧⎨--<⎩…,得10x -<…,综上10x -剟或13x 剟, 即实数x 的取值范围是[1-,0][1 ,3], 故选:D .考点七 分段函数的应用19.(2022•上海)若函数210()000a x x f x x ax x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,求参数a 的值为 . 【详细解析】 函数210()000a x x f x x ax x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,()()f x f x ∴-=-, (1)f f ∴-=-(1),21(1)a a ∴--=-+,即(1)0a a -=,求得0a =或1a =. 当0a =时,1,0()0,0,0x f x x x x -<⎧⎪==⎨⎪>⎩,不是奇函数,故0a ≠;当1a =时,1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,是奇函数,故满足条件,综上,1a =, 故答案为:1.20.(2022•浙江)已知函数22,1,()11,1,x x f x x x x ⎧-+⎪=⎨+->⎪⎩…则1((2f f = 3728 ;若当[x a ∈,]b 时,1()3f x 剟,则b a -的最大值是 .【详细解析】 函数22,1()11,1x x f x x x x ⎧-+⎪=⎨+->⎪⎩…,117()2244f ∴=-+=, 177437(())()1244728f f f ∴==+-=; 作出函数()f x 的图象如图:由图可知,若当[x a ∈,]b 时,1()3f x 剟,则b a -的最大值是2(1)3+--= 故答案为:3728;3.考点八 抽象函数及其应用21.(2022•新高考Ⅱ)已知函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,f (1)1=,则221()(k f k ==∑) A .3-B .2-C .0D .1【详细解析】令1y =,则(1)(1)()f x f x f x ++-=,即(1)()(1)f x f x f x +=--, (2)(1)()f x f x f x ∴+=+-,(3)(2)(1)f x f x f x +=+-+, (3)()f x f x ∴+=-,则(6)(3)()f x f x f x +=-+=, ()f x ∴的周期为6,令1x =,0y =得f (1)f +(1)f =(1)(0)f ⨯,解得(0)2f =, 又(1)()(1)f x f x f x +=--, f ∴(2)f =(1)(0)1f -=-, f (3)f =(2)f -(1)2=-, f (4)f =(3)f -(2)1=-, f (5)f =(4)f -(3)1=,f (6)f =(5)f -(4)2=, ∴61()1121120k f k ==---++=∑,∴221()30(19)(20)(21)(22)k f k f f f f f ==⨯++++=∑(1)f +(2)f +(3)f +(4)3=-.故选:A .22.【多选】(2023•新高考Ⅰ)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A .(0)0f = B .f (1)0=C .()f x 是偶函数D .0x =为()f x 的极小值点【详细解析】由22()()()f xy y f x x f y =+, 取0x y ==,可得(0)0f =,故A 正确;取1x y ==,可得f (1)2f =(1),即f (1)0=,故B 正确; 取1x y ==-,得f (1)2(1)f =-,即1(1)2f f -=(1)0=, 取1y =-,得()()f x f x -=,可得()f x 是偶函数,故C 正确; 由上可知,(1)(0)f f f -==(1)0=,而函数详细解析式不确定, 不妨取()0f x =,满足22()()()f xy y f x x f y =+, 常数函数()0f x =无极值,故D 错误. 故选:ABC .23.(2020•上海)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +…恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[x a ∈,)+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2A =-,}m ,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值.【详细解析】(1)()f x x =- 为减函数, ()(1)f x f x ∴<-, ()f x x ∴=-具有A 性质; ()2g x x = 为增函数, ()(1)g x g x ∴>-,()2g x x ∴=不具有A 性质;(2)依题意,对任意(0,1)t ∈,()()f x f x t +…恒成立,∴1()()f x x x a x=+…为增函数(不可能为常值函数), 由双勾函数的图象及性质可得1a …, 当1a …时,函数单调递增,满足对任意(0,1)t ∈,()()f x f x t +…恒成立, 综上,实数a 的取值范围为[1,)+∞.(3)D 为整数集,具有A 性质的函数均为常值函数,当0m …时,取单调递减函数()f x x =-,两个不等式恒成立,但()f x 不为常值函数; 当m 为正偶数时,取()0,1,n f x n ⎧=⎨⎩为偶数为奇数,两个不等式恒成立,但()f x 不为常值函数;当m 为正奇数时,根据对任意t A ∈且x D ∈,不等式()()f x f x t +…恒成立, 可得()()()(1)(1)()f x m f x f x m f x f x f x m -++--剟剟?, 则()(1)f x f x =+,所以()f x 为常值函数, 综上,m 为正奇数.考点九 函数的周期性24.(2019•上海)已知函数()f x 周期为1,且当01x <…时,2()log f x x =,则3()2f = .【详细解析】因为函数()f x 周期为1,所以31()()22f f =,因为当01x <…时,2()log f x x =,所以1()12f =-,故答案为:1-.考点十 函数恒成立问题25.(2021•上海)已知1x ,2x R ∈,若对任意的21x x S -∈,21()()f x f x S -∈,则有定义:()f x 是在S 关联的.(1)判断和证明()21f x x =-是否在[0,)+∞关联?是否有[0,1]关联?(2)若()f x 是在{3}关联的,()f x 在[0x ∈,3)时,2()2f x x x =-,求解不等式:2()3f x 剟. (3)证明:()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”. 【详细解析】(1)()f x 在[0,)+∞关联,在[0,1]不关联,任取12[0x x -∈,)+∞,则1212()()2()[0f x f x x x -=-∈,)+∞,()f x ∴在[0,)+∞关联;取11x =,20x =,则121[0x x -=∈,1],1212()()2()2[0f x f x x x -=-=∉ ,1],()f x ∴在[0,1]不关联;(2)()f x 在{3}关联,∴对于任意123x x -=,都有12()()3f x f x -=, ∴对任意x ,都有(3)()3f x f x +-=,由[0x ∈,3)时,2()2f x x x =-,得()f x 在[0x ∈,3)的值域为[1-,3), ()f x ∴在[3x ∈,6)的值域为[2,6),2()3f x ∴剟仅在[0x ∈,3)或[3x ∈,6)上有解,[0x ∈,3)时,2()2f x x x =-,令2223x x -剟13x +<…,[3x ∈,6)时,2()(3)3818f x f x x x =-+=-+,令228183x x -+剟,解得35x 剟,∴不等式2()3f x 剟的解为1,5],(3)证明:①先证明:()f x 是在{1}关联的,且是在[0,)+∞关联的()f x ⇒在[1,2]是关联的, 由已知条件可得,(1)()1f x f x +=+, ()()f x n f x n ∴+=+,n Z ∈,又()f x 是在[0,)+∞关联的, ∴任意21x x >,21()()f x f x >成立,若2112x x -剟, 12112x x x ∴++剟,121(1)()(2)f x f x f x ∴++剟,即121()1()()2f x f x f x ++剟, 211()()2f x f x ∴-剟,()f x ∴是[1,2]关联,②再证明:()f x 在[1,2]是关联的()f x ⇒是在{1}关联的,且是在[0,)+∞关联的,()f x 在[1,2]是关联的,∴任取12[1x x -∈,2],都有12()()[1f x f x -∈,2]成立,即满足1212x x -剟,都有121()()2f x f x -剟, 下面用反证法证明(1)()1f x f x +-=,若(1)()1f x f x +->,则(2)()(2)(1)(1)()2f x f x f x f x f x f x +-=+-+++->,与()f x 在[1,2]是关联的矛盾,若(1)()1f x f x +-<,而()f x 在[1,2]是关联的,则(1)()1f x f x +-…,矛盾, (1)()1f x f x ∴+-=成立,即()f x 是在{1}关联的,再证明()f x 是在[0,)+∞关联的,任取12[x x n -∈,)()n N +∞∈,则存在n N ∈,使得任取12[x x n -∈,1]()n n N +∈, 121(1)2x n x --- 剟,1212[(1)]()()(1)()[1f x n f x f x n f x ∴---=---∈,2], 12()()[f x f x n ∴-⊆,1][0n +⊆,)+∞,()f x ∴是在[0,)+∞关联的;综上所述,()f x 是{1}关联的,且是在[0,)+∞关联的,当且仅当“()f x 在[1,2]是关联的”, 故得证.考点十一 对数的运算性质26.(2022•浙江)已知25a =,8log 3b =,则34(a b -= ) A .25B .5C .259D .53【详细解析】由25a =,8log 3b =, 可得3823b b ==, 则22333224(2)52544(2)39a a a bb b -====, 故选:C .考点十二 对数值大小的比较27.(2022•新高考Ⅰ)设0.10.1a e =,19b =,0.9c ln =-,则( ) A .a b c <<B .c b a <<C .c a b <<D .a c b <<【详细解析】构造函数1()f x lnx x=+,0x >, 则211()f x x x '=-,0x >, 当()0f x '=时,1x =,01x <<时,()0f x '<,()f x 单调递减; 1x >时,()0f x '>,()f x 单调递增,()f x ∴在1x =处取最小值f (1)1=, ∴11lnx x>-,(0x >且1)x ≠, 110.910.99ln ∴>-=-,10.99ln ∴-<,c b ∴<; 10910.9191010ln ln-=>-=,∴0.1109e >, 0.110.19e ∴<,a b ∴<;设()(1)(01)x g x xe ln x x =+-<<,则21(1)1()(1)11x xx e g x x e x x -+'=++=--, 令2()(1)1x h x e x =-+,2()(21)x h x e x x '=+-,当01x <<时,()0h x '<,函数()h x 单调递减,11x -<<时,()0h x '>,函数()h x 单调递增,(0)0h = ,∴当01x <<时,()0h x <,当01x <<时,()0g x '>,()(1)x g x xe ln x =+-单调递增, (0.1)(0)0g g ∴>=,0.10.10.9e ln ∴>-,a c ∴>, c a b ∴<<.故选:C .28.(2021•新高考Ⅱ)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<【详细解析】 12551252log log <=,12881382log log >=,a cb ∴<<.故选:C .考点十三 反函数29.(2021•上海)已知3()2f x x=+,则1f -(1)= . 【详细解析】因为3()2f x x=+, 令()1f x =,即321x+=,解得3x =-, 故1f -(1)3=-. 故答案为:3-.30.(2020•上海)已知函数3()f x x =,1()f x -是()f x 的反函数,则1()f x -= .【详细解析】由3()y f x x ==,得x =,把x 与y 互换,可得3()f x x =的反函数为1()f x -..考点十四 函数与方程的综合运用31.(2019•浙江)设a ,b R ∈,函数32,0,()11(1),032x x f x x a x ax x <⎧⎪=⎨-++⋅⎪⎩…若函数()y f x ax b =--恰有3个零点,则( ) A .1a <-,0b <B .1a <-,0b >C .1a >-,0b <D .1a >-,0b >【详细解析】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a >-时,令0y '>得(1,)x a ∈++∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+.31(1)06a b ∴-+<<,11a -<<故选:C .32.(2019•上海)已知2()||(1,0)1f x a x ax=->>-,()f x与x轴交点为A,若对于()f x图象上任意一点P,在其图象上总存在另一点(Q P、Q异于)A,满足AP AQ⊥,且||||AP AQ=,则a=.【详细解析】由题意,可知:令2()||01f x ax=-=-,解得:21xa=+,∴点A的坐标为:2(1a+,0).则2,11()2,1AAa x xxf xa x xx⎧-<⎪⎪-=⎨⎪-+>⎪-⎩….()f x∴大致图象如下:由题意,很明显P、Q两点分别在两个分段曲线上,不妨设点P在左边曲线上,点Q在右边曲线上.设直线AP的斜率为k,则2:(1) APl y k xa=--.联立方程:2(1)21y k x ay a x ⎧=--⎪⎪⎨⎪=-⎪-⎩,整理,得:222[(2)](1)20kx a k x k a a a+-+++--=.2(2)22P A a k a a x x k a k -+∴+=-=+-.21A x a=+ , 221P A a a x x a k k∴=+--=-. 再将1P ax k=-代入第一个方程,可得: 2P k y a a=--. ∴点P 的坐标为:(1ak-,2k a a --.||AP ∴===. AP AQ ⊥ , ∴直线AQ 的斜率为1k-,则12:(1)AQ l y x k a =---.同理类似求点P 的坐标的过程,可得: 点Q 的坐标为:2(1,ak a ak-+.||AQ ∴=== ||||AP AQ = ,及k 的任意性,可知: 224a a=,解得:a =..33.(2019•上海)已知1()1f x ax x =++,a R ∈. (1)当1a =时,求不等式()1(1)f x f x +<+的解集; (2)若()f x 在[1x ∈,2]时有零点,求a 的取值范围. 【详细解析】(1)1()()1f x ax a R x =+∈+. 当1a =时,1()1f x x x =++. 所以:()1(1)f x f x +<+转换为:111112x x x x ++<++++, 即:1112x x <++, 解得:21x -<<-. 故:{|21}x x -<<-. (2)函数1()1f x ax x =++在[1x ∈,2]时,()f x 有零点, 即函数在该区间上有解, 即:1(1)a x x =-+,即求函数()g x 在[1x ∈,2]上的值域, 由于:(1)x x +在[1x ∈,2]上单调递减, 故:(1)[2x x +∈,6], 所以:111[,(1)26x x -∈--+,故:11[,26a ∈--考点十五 根据实际问题选择函数类型34.(2020•山东)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为( )(20.69)ln ≈A .1.2天B .1.8天C .2.5天D .3.5天【详细解析】把0 3.28R =,6T =代入01R rT =+,可得0.38r =,0.38()t I t e ∴=, 当0t =时,(0)1I =,则0.382t e =, 两边取对数得0.382t ln =,解得21.80.38ln t =≈. 故选:B .35.【多选】(2023•新高考Ⅰ)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020p pL lgp =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车 10 60~90 混合动力汽车 1050~60电动汽车10 40已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A .12p p …B .2310p p >C .30100p p =D .12100p p …【详细解析】由题意得,10602090p lg p 剟,92010100010p p p 剟, 2502060p lg p 剟,52020101000p p p 剟, 32040p lgp =,30100p p =, 可得12p p …,A 正确; 230101000p p p =…,B 错误; 30100p p =,C 正确;952210021010010100p p p p =⨯剟,12100p p …,D 正确.故选:ACD .36.(2023•上海)为了节能环保、节约材料,定义建筑物的“体形系数” 0F S V =,其中0F 为建筑物暴露在空气中的面积(单位:平方米),0V 为建筑物的体积(单位:立方米).(1)若有一个圆柱体建筑的底面半径为R ,高度为H ,暴露在空气中的部分为上底面和侧面,试求该建筑体的“体形系数” S ;(结果用含R 、H 的代数式表示)(2)定义建筑物的“形状因子”为2L f A =,其中A 为建筑物底面面积,L 为建筑物底面周长,又定义T 为总建筑面积,即为每层建筑面积之和(每层建筑面积为每一层的底面面积).设n 为某宿舍楼的层数,层高为3米,则可以推导出该宿舍楼的“体形系数”为13S n =+.当18f =,10000T =时,试求当该宿舍楼的层数n 为多少时,“体形系数” S 最小.【详细解析】(1)由圆柱体的表面积和体积公式可得:22002F RH R V R H πππ=+⋅=, 所以020(2)2F R H R H RS V R H HRππ++===. (2)由题意可得1131003S n n==+,*n N ∈,所以322212003600n S n n -'=-=, 令0S '=,解得 6.27n =≈, 所以S 在[1,6.27]单调递减,在[6.27,)+∞单调递增, 所以S 的最小值在6n =或7取得, 当6n =时,10.3110036S =+≈⨯, 当7n =时,10.1610037S =+≈⨯, 所以在6n =时,该建筑体S 最小.37.(2021•上海)已知一企业今年第一季度的营业额为1.1亿元,往后每个季度增加0.05亿元,第一季度的利润为0.16亿元,往后每一季度比前一季度增长4%. (1)求今年起的前20个季度的总营业额;(2)请问哪一季度的利润首次超过该季度营业额的18%?【详细解析】(1)由题意可知,可将每个季度的营业额看作等差数列, 则首项1 1.1a =,公差0.05d =, 20120(201)2020 1.110190.0531.52S a d -∴=+=⨯+⨯⨯=, 即营业额前20季度的和为31.5亿元.(2)解法一:假设今年第一季度往后的第*()n n N ∈季度的利润首次超过该季度营业额的18%, 则0.16(14%)(1.10.05)18%n n ⨯+>+⋅,令()0.16(14%)(1.10.05)18%n f n n =⨯+-+⋅,*()n N ∈,即要解()0f n >,则当2n …时,1()(1)0.0064(14%)0.009n f n f n ---=⋅+-, 令()(1)0f n f n -->,解得:10n …, 即当19n 剟时,()f n 递减;当10n …时,()f n 递增, 由于f (1)0<,因此()0f n >的解只能在10n …时取得, 经检验,(24)0f <,(25)0f >,所以今年第一季度往后的第25个季度的利润首次超过该季度营业额的18%. 解法二:设今年第一季度往后的第*()n n N ∈季度的利润与该季度营业额的比为n a , 则1 1.04(1.050.05) 1.04261.0410.04(1)1.10.052222n na n a n n n ++==-=+-+++,∴数列{}n a 满足1234567a a a a a a a >>>=<<<⋯⋯,注意到,250.178a =⋯,260.181a =⋯,∴今年第一季度往后的第25个季度利润首次超过该季度营业额的18%.38.(2020•上海)在研究某市交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qv x=,x 为道路密度,q 为车辆密度,交通流量801100135(,040()3(40)85,4080xx v f x k x x ⎧⎪-⋅<<==⎨⎪--+⎩剟. (1)若交通流量95v >,求道路密度x 的取值范围;(2)已知道路密度80x =时,测得交通流量50v =,求车辆密度q 的最大值. 【详细解析】(1)按实际情况而言,交通流量v 随着道路密度x 的增大而减小, 故()v f x =是单调递减函数, 所以0k >,当4080x 剟时,v 最大为85, 于是只需令801100135()953x -⋅>,解得803x <,故道路密度x 的取值范围为80(0,)3. (2)把80x =,50v =代入()(40)85v f x k x ==--+中, 得504085k =-⋅+,解得78k =.801100135(),04037(40)85,40808x x x x q vx x x x x ⎧-⋅⋅<<⎪⎪∴==⎨⎪--+⎪⎩剟, ①当040x <<时,801100135()1003x v =-⋅<, 100404000q vx =<⨯=. ②当4080x 剟时,q 是关于x 的二次函数,271208q x x =-+, 对称轴为4807x =,此时q 有最大值,为2748048028800()12040008777-⨯+⨯=>. 综上所述,车辆密度q 的最大值为288007.。
2024年高考真题汇总三角函数(学生版)
专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.83(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1B.23-1C.32D.1-35(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.46(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.327(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x8(新课标全国Ⅱ卷)对于函数f (x )=sin2x 和g (x )=sin 2x -π4,下列说法正确的有()A.f (x )与g (x )有相同的零点B.f (x )与g (x )有相同的最大值C.f (x )与g (x )有相同的最小正周期D.f (x )与g (x )的图像有相同的对称轴9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan α+tan β=4,tan αtan β=2+1,则sin (α+β)=.10(全国甲卷数学(文))函数f x =sin x -3cos x 在0,π 上的最大值是.2024年高考真题汇总一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.22(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.783(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.4(2024·山东济宁·三模)已知函数f (x )=(3sin x +cos x )cos x -12,若f (x )在区间-π4,m 上的值域为-32,1,则实数m 的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π125(2024·江西景德镇·三模)函数f x =cos ωx x ∈R 在0,π 内恰有两个对称中心,f π =1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若f α +g α =35,则cos 4α+π3=()A.725B.1625C.-925D.-19256(2024·安徽马鞍山·三模)已知函数f (x )=sin2ωx +cos2ωx (ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54 B.74C.94D.1147(2024·山东临沂·二模)已知函数f x =sin 2x +φ ϕ <π2图象的一个对称中心为π6,0 ,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π29(2024·四川雅安·三模)已知函数f x =sinωx+3cosωx(ω>0),则下列说法中正确的个数是()①当ω=2时,函数y=f x -2logπx有且只有一个零点;②当ω=2时,函数y=f x+φ为奇函数,则正数φ的最小值为π3;③若函数y=f x 在0,π3上单调递增,则ω的最小值为12;④若函数y=f x 在0,π上恰有两个极值点,则ω的取值范围为136,256 .A.1B.2C.3D.410(2024·河北保定·二模)已知tanα=3cosαsinα+11,则cos2α=()A.-78B.78C.79D.-7911(2024·河北衡水·三模)已知sin(3α-β)=m sin(α-β),tan(2α-β)=n tanα,则m,n的关系为()A.m=2nB.n=m+1m C.n=mm-1D.n=m+1m-112(2024·辽宁沈阳·三模)已知tan α2=2,则sin2α2+sinα的值是()A.25B.45C.65D.8513(2024·贵州黔东南·二模)已知0<α<β<π,且sinα+β=2cosα+β,sinαsinβ-3cosαcosβ=0,则tanα-β=()A.-1B.-32C.-12D.12二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-30815(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-1219(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数D.h x 在区间0,2π 上的图象过3个定点21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为1222(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.25(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.。
新课标全国卷近五年高考题 三角函数
)
A.3α-β=π2 B.3α+β=π2
C.2α-β=π2 D.2α+β=π2
8.C
[解析] tan α=1+cossinββ=ccooss2ββ22 -+ssiinnβ22β2=
ββ
β
cos 2 +sin 2 cosβ2 -sinβ2
42 的取值范围是( )
( A) [1 , 5] 24
【解析】选 A
(B) [1 , 3] 24
(C) (0, 1 ] 2
(D) (0, 2]
2 (x ) [5 , 9 ] 不合题意 排除 (D) 4 44
1 (x ) [3 , 5 ] 合题意 排除 (B)(C) 4 44
另:( ) 2 , (x ) [ , ] [ , 3 ]
小正周期为 ,且 f (x) f (x) ,则
(A)
f
(x)
在
0,
2
单调递减
(B)
f
(x)
在
4
,
3 4
单调递减
(C)
f
(x)
在
0,
2
单调递增
(D)
f
(x)
在
4
,
3 4
单调递增
解 析 : f (x) 2 sin(x ) , 所 以 2 , 又 f(x) 为 偶 函 数 , 4
解析:由题知 tan
2 , cos 2
cos2 cos2
sin2 sin2
1 1
tan2 tan2
3选B 5
(A) 4 5
(B) 3 5
(C) 3 5
近五年高考函数的极值和最值真题版(理科复习)
题型全归纳18——函数的极值和最值一 极值问题1求函数的极值1(2017新课标Ⅱ)若2x =-是函数21()(1)x f x x ax e-=+-的极值点,则21()(1)x f x x ax e -=+-的极小值为A .1-B .32e --C .35e - D .1 .A 【解析】∵21()[(2)1]x f x x a x a e-'=+++-,∵(2)0f '-=,∴1a =-,所以21()(1)x f x x x e-=--,21()(2)x f x x x e -'=+-,令()0f x '=,解得2x =-或1x =,所以当(,2)x ∈-∞-,()0f x '>,()f x 单调递增;当(2,1)x ∈-时,()0f x '<,()f x 单调递减;当(1,)x ∈+∞,()0f x '>,()f x 单调递增,所以()f x 的极小值为11(1)(111)1f e -=--=-,选A .2 极值点的个数问题。
1 (2015山东理21(1)) 设函数()()()2ln 1f x x a x x =++-,其中a ∈R . 讨论函数()f x 极值点的个数,并说明理由.解析 由题意知,函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+'=+-=++.令()221g x ax ax a =+-+,()1,x ∈-+∞.当0a =时,()1g x =,此时()0f x '>,函数()f x 在()1,-+∞上单调递增,无极值点; 当0a >时,()()28198a a a a a ∆=--=-.① 当809a <„时,0∆„,()0g x …,()0f x '…, ② 函数()f x 在()1,-+∞上单调递增,无极值点; ③ 当89a >时,0∆>,设方程2210ax ax a +-+=的两根为1x ,2x ()12x x <.因为1212x x +=-,所以114x <-,214x >-.由()110g -=>,可得1114x -<<-.所以当()11,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()12,x x x ∈时,()0g x <,()0f x '<,函数()f x 单调递减;当()2,x x ∈+∞时()0g x >,()0f x '>,函数()f x 单调递增.因此函数有两个极值点.当0a <时,0∆>.由()110g -=>,可得11x <-.当()21,x x ∈-时,()0g x >,()0f x '>,函数()f x 单调递增;当()2,x x ∈+∞时,()0g x <,()0f x '<,函数()f x 单调递减,所以函数有一个极值点. 综上所述,当0a <时,函数有()f x 一个极值点; 当809a剟时,函数()f x 无极值点;当89a >时,函数()f x 有两个极值点. 3 极值点的存在问题1(2014新课标Ⅱ)设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是A .()(),66,-∞-⋃+∞B .()(),44,-∞-⋃+∞C .()(),22,-∞-⋃+∞D .()(),11,-∞-⋃+∞C 【解析】由正弦型函数的图象可知:()f x 的极值点0x 满足0()f x =,则22x k m πππ=+()k Z ∈,从而得01()()2x k m k Z =+∈.所以不等式()22200[]x f x m +<,即为2221()32k m m ++<,变形得21[1()]32m k -+>,其中k Z ∈.由题意,存在整数k 使得不等式21[1()]32m k -+>成立.当1k ≠-且0k ≠时,必有21()12k +>,此时不等式显然不能成立,故1k =-或0k =,此时,不等式即为2334m >,解得2m <-或2m >.2 设函数,其中为常数.若函数的有极值点,求的取值范围及的极值点;思路:()()2'2221b x x bf x x x x -+=-+=,定义域为()0,+∞,若函数的有极值点,则()'0f x =有正根且无重根,进而转化为二次方程根分布问题,通过韦达定理刻画根的符号,进而确定b 的范围解:(1)()()2'2221b x x bf x x x x -+=-+=,令()'0f x =即2220x x b -+=()f x Q 有极值点∴2220x x b -+=有正的实数根,设方程的根为12,x x ① 有两个极值点,即12,0x x >,1212480110202b x x b bx x ⎧⎪∆=->⎪∴+=⇒<<⎨⎪⎪=>⎩② 有一个极值点,即12=002bx x b ≤⇒≤∴综上所述:1,2b ⎛⎫∈-∞ ⎪⎝⎭ (2)思路:利用第(1)问的结论根据极值点的个数进行分类讨论方程2220x x b -+=的两根为:1x ==±① 当102b <<时,1211x x ==()f x ∴的单调区间为:∴()f x 的极大值点为1x =-1x =+x b x x f ln )1()(2+-=b ()f x b ()f x ()f x② 当0b ≤时,1210,1x x =<=+()f x ∴的单调区间为:∴()f x 的极小值点为1x =+综上所述:当102b <<时,()f x 的极大值点为1x =-1x =+当0b ≤时,()f x 的极小值点为1x =+3 (2019.2.21)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点; (1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x'<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.4 已知函数f (x )=x (lnx ﹣ax ),(a ∈R ).(2)若函数f (x )既有极大值又有极小值,求实数a 的取值范围. ②当a >0时,令h'(x )=0,可得,列表:xh'(x )+0 ﹣h(x)↗极大值↘若,即,,即f'(x)≤0,故函数f(x)在(0,+∞)上单调递减,函数f(x)在(0,+∞)上不存在极值,与题意不符,若,即时,由于,且=,故存在,使得h(x)=0,即f'(x)=0,且当x∈(0,x1)时,f'(x)<0,函数f(x)在(0,x1)上单调递减;当时,f'(x)>0,函数f(x)在(0,x1)上单调递增,函数f (x)在x=x1处取极小值.由于,且=(事实上,令,=,故μ(a)在(0,1)上单调递增,所以μ(a)<μ(1)=﹣1<0).故存在,使得h(x)=0,即f'(x)=0,且当时,f'(x)>0,函数f(x)在上单调递增;当x∈(x2,+∞)时,f'(x)<0,函数f(x)在(x2,+∞)上单调递减,函数f(x)在x=x2处取极大值.综上所述,当时,函数f(x)在(0,+∞)上既有极大值又有极小值.5 已知函数f(x)=e x﹣m﹣xlnx﹣(m﹣1)x,m∈R,f′(x)为函数f(x)的导函数.(1)若m=1,求证:对任意x∈(0,+∞),f′(x)≥0;(2)若f(x)有两个极值点,求实数m的取值范围.【解答】(2)f(x)有两个极值点,即f′(x)=e x﹣m﹣lnx﹣m有两个变号零点.①当m≤1时,f′(x)=e x﹣m﹣lnx﹣m≥e x﹣1﹣lnx﹣1,由(1)知f′(x)≥0,则f(x)在(0,+∞)上是增函数,无极值点;(6分)②当m >1时,令g (x )=f′(x ),则,∵g′(1)=e 1﹣m ﹣1<0>0,且g′(x )在(0,+∞)上单增,∴∃x 0∈(1,m ),使g′(x 0)=0.当x ∈(0,x 0)时,g′(x )<0;当x ∈(x 0,+∞)时,g′(x )>0. 所以,g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增. 则g (x )在x=x 0处取得极小值,也即最小值g (x 0)=.(8分)由g′(x 0)=0得m=x 0+lnx 0,则g (x 0)=(9分)令h (x )=(1<x <m )则,h (x )在(1,m )上单调递减,所以h (x )<h (1)=0.即g (x 0)<0,(10分)又x→0时,g (x )→+∞,x→+∞时,g (x )→+∞,故g (x )在(0,+∞)上有两个变号零点,从而f (x )有两个极值点.所以,m >1满足题意.(11分) 综上所述,f (x )有两个极值点时,m 的取值范围是(1,+∞).(12分)(其他解法酌情给分)【点评】题主要考查导数的综合应用,利用函数单调性极值和导数之间的关系是解决本题的关键.,对于参数要进行分类讨论,综合性较强,难度较大.4 极值和零点。
全国卷历年高考函数与导数解答题真题归类分析(含答案)
全国卷历年高考函数与导数解答题真题归类分析(含答案)全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数$f(x)=2x^3-ax^2+b$.1)讨论$f(x)$的单调性;2)是否存在$a,b$,使得$f(x)$在区间$[0,1]$的最小值为$-1$且最大值为$1$?若存在,求出$a,b$的所有值;若不存在,说明理由.解析】1)对$f(x)=2x^3-ax^2+b$求导得$f'(x)=6x^2-2ax=2x(3x-a)$。
所以有:当$a<0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减;当$a=0$时,$(-\infty,+\infty)$区间上单调递增;当$a>0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减.2)若$f(x)$在区间$[0,1]$有最大值$1$和最小值$-1$,所以,若$a<0$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$[0,1]$上单调递增,所以$f(0)=-1$,$f(1)=1$代入解得$b=-1$,$a=\frac{1}{3}$,与$a<0$矛盾,所以$a<0$不成立.若$a=0$,$(-\infty,+\infty)$区间上单调递增;在区间$[0,1]$,所以$f(0)=-1$,$f(1)=1$代入解得$\begin{cases}a=0\\b=-1\end{cases}$.若$0<a\leq2$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(1)$而$f(0)=b$,$f(1)=2-a+b\geq f(0)$,故所以区间$[0,1]$上最大值为$f(1)$.若$2<a\leq3$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(0)$而$f(0)=b$,$f(1)=2-a+b\leq f(0)$,故所以区间$[0,1]$上最大值为$f(0)$.已知函数$f(x)=x^3+ax+\frac{1}{4},g(x)=-\ln x$。
全国卷近五年高考函数真题
全国卷近五年高考函数真题1.已知函数f(x)的定义域为(-1.),求函数f(2x+1)的定义域。
答案:(-1/2.)2.若函数f(x)=x^2+ax+b是增函数,则a的取值范围是?答案:[0.3]3.若函数f(x)=(1-x^2)(x^2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为多少?答案:9/44.已知函数f(x)=x^3+ax^2+bx+c,下列结论中错误的是?答案:若x是f(x)的极小值点,则f(x)在区间(-∞。
x)单调递减。
5.曲线y=xex^-1在点(1,1)处切线的斜率等于多少?答案:26.设函数f(x)和g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是?答案:|f(x)•g(x)|是奇函数。
7.已知函数f(x)=ax^3-3x^2+1,若f(x)存在唯一的零点x,且x>0,则实数a的取值范围是?答案:(1.+∞)8.设曲线y=ax^-ln(x+1)在点(1,2)处的切线方程为y=2x,则a=多少?答案:19.已知偶函数f(x)在[0.+∞)单调递减,f(2)=0,若f(x-1)>0,则x的取值范围是多少?答案:(1.2]10.设函数f(x)=e^x(2x-1)-ax+a,其中a<1,若存在唯一的整数x使得f(x)<0,则a的取值范围是?答案:(ln2-1.ln2)11.若函数f(x)=xln(x+1)为偶函数,则a=多少?答案:1/212.设函数f(x)=3^x,则f(-2)+f(log2 12)等于多少?答案:913.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)0成立的x的取值范围是?答案:(-1.0)已知函数 $f(x)=ax^2-ax-x\ln{x}$,且 $f(x)\geq0$。
首先,我们需要找到 $f(x)$ 的零点。
历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)
历年(2020‐2023)全国高考数学真题分类(函数)汇编【2023年真题】1.(2023·新课标I 卷 第4题) 设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A. (,2]-∞-B. [2,0)-C. (0,2]D. [2,)+∞2.(2023·新课标II 卷 第4题)若21()()ln 21x f x x a x -=++为偶函数,则a =( ) A. 1-B. 0C.12D. 13.(2023·新课标I 卷 第10题)(多选) 噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A. 12p p …B. 2310p p >C. 30100p p =D. 12100p p …4. (2023·新课标I 卷 第11题)(多选)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点【2022年真题】5.(2022·新高考I 卷 第12题)(多选)已知函数()f x 及其导函数()f x '的定义域为R ,记()().g x f x ='若3(2)2f x -,(2)g x +均为偶函数,则( )A. (0)0f =B. 1()02g -=C. (1)(4)f f -=D. (1)(2)g g -=6.(2022·新高考II 卷 第8题)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【2021年真题】7.(2021·新高考I 卷 第13题)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a =__________. 8.(2021·新高考II 卷 第7题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A. c b a << B. b a c << C. a c b << D. a b c <<9.(2021·新高考II 卷 第8题)设函数()f x 的定义域为R ,且(2)f x +为偶函数,(21)f x +为奇函数,则 ( )A. 102f ⎛⎫-= ⎪⎝⎭B. (1)0f -=C. (2)0f =D. (4)0f =10.(2021·新高考II 卷 第14题)写出一个同时具有下列性质①②③的函数()f x :_________. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【2020年真题】11.(2020·新高考I 卷 第6题)基本再生数0R 与世代间隔T 是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间(t 单位:天)的变化规律,指数增长率 r 与0R ,T 近似满足01.R rT =+有学者基于已有数据估计出0 3.28R =, 6.T =据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)≈( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天12.(2020·新高考I 卷、II 卷 第8题)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -…的x 的取值范围是( ) A. [1,1][3,)-⋃+∞ B. [3,1][0,1]--⋃ C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃13.(2020·新高考II 卷 第7题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A. (2,)+∞ B. [2,)+∞ C. (5,)+∞ D. [5,)+∞14.(2020·新高考I 卷 第12题)(多选)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2, ,n ,且()0(1,2,,)i P X i p i n ==>= ,11ni i p ==∑,定义X 的信息熵21()logni i i H X p p ==-∑( )A. 若1n =,则()0H x =B. 若2n =,则()H x 随着1p 的增大而增大C. 若i p =1n(1,2,i =,)n ,则()H x 随着n 的增大而增大 D. 若2n m =,随机变量Y 的所有可能取值为1,2, ,m ,且()P Y j ==j p +21j m p +-(1,2,j = ,)m ,则()H X ()H Y参考答案1.(2023·新课标I 卷 第4题)解:结合复合函数单调性的性质,易得12a …,所以a 的取值范围是[2,);+∞故选.D 2.(2023·新课标II 卷 第4题)解:()f x 为偶函数,(1)(1)f f =-,1(1)ln(1)ln 33a a ∴+=-+,0a ∴=,故选.B 3.(2023·新课标I 卷 第10题)(多选) 解:1211200220lg20lg 20lg 0p p p L L p p p -=⨯-⨯=⨯> ,121pp ∴>,12p p ∴>,所以A 正确; 223320lg 10p L L p -=⨯ …,231lg 2p p ∴…,1223p e p ∴…,所以B 错误;33020lg40p L p =⨯= ,30100pp ∴=,所以C 正确; 112220lg 905040p L L p -=⨯-= …,12lg 2p p ∴…,12100pp ∴…,所以D 正确. 故选ACD4. (2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确;选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+,而常函数没有极值点,故D 错误. 故选:.ABC5.(2022·新高考I 卷 第12题)(多选)解:由3(2)2f x -为偶函数可知()f x 关于直线32x =对称,由(2)g x +为偶函数可知()g x 关于直线2x =对称,结合()()g x f x =',根据()g x 关于直线2x =对称可知()f x 关于点(2,)t 对称, 根据()f x 关于直线32x =对称可知:()g x 关于点3(,0)2对称,综上,函数()f x 与()g x 均是周期为2的周期函数,所以有(0)(2)f f t ==,所以A 不正确;(1)(1)f f -=,(4)(2)f f =,(1)(2)f f =,故(1)(4)f f -=,所以C 正确.13()()022g g -==,(1)(1)g g -=,所以B 正确;又(1)(2)0g g +=,所以(1)(2)0g g -+=,所以D 不正确. 6.(2022·新高考II 卷 第8题)解:令1y =得(1)(1)()(1)()(1)()(1)f x f x f x f f x f x f x f x ++-=⋅=⇒+=-- 故(2)(1)()f x f x f x +=+-,(3)(2)(1)f x f x f x +=+-+, 消去(2)f x +和(1)f x +得到(3)()f x f x +=-,故()f x 周期为6; 令1x =,0y =得(1)(1)(1)(0)(0)2f f f f f +=⋅⇒=,(2)(1)(0)121f f f =-=-=-, (3)(2)(1)112f f f =-=--=-, (4)(3)(2)2(1)1f f f =-=---=-, (5)(4)(3)1(2)1f f f =-=---=, (6)(5)(4)1(1)2f f f =-=--=,故221()3[(1)(2)(6)](19)(20)(21)(22)k f k f f f f f f f ==+++++++∑(1)(2)(3)(4)1(1)(2)(1)3f f f f =+++=+-+-+-=-即7.(2021·新高考I 卷 第13题)解: 函数3()(22)x x f x x a -=⋅-是偶函数;33()(22)=()()(22)x x x x f x x a f x x a --∴=⋅--=-⋅-, 化简可得3(2222)0x x x x x a a --⋅-+⋅-=, 解得1a =,故答案为1.8.(2021·新高考II 卷 第7题)解:5881log 2log log log 32a b =<==<=, 即.a c b << 故选.C9.(2021·新高考II 卷 第8题)解:因为函数为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数为奇函数,则()()1221f x f x -=-+,所以()()11f x f x -=-+, 所以,(3)(1)f x f x +=-+,即(4)(2)()f x f x f x +=-+=, 故函数是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选.B10.(2021·新高考II 卷 第14题)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②, ()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③.故答案为:2()(f x x =答案不唯一,()()2*nf x x n N =∈均满足)11.(2020·新高考I 卷 第6题)解:将0 3.28R =,6T =代入01R rT =+, 得01 3.2810.386R r T--===,(2)f x +(21)f x +()f x ()0f x '>由()0.38tI t e=得()()ln 0.38I t t =,当增加1倍时,,所需时间为故选.B12.(2020·新高考I 卷、II 卷 第8题)解:根据题意,不等式(1)0xf x -…可化为()010x f x ≥⎧⎨-≥⎩ 或()010x f x ≤⎧⎨-≤⎩, 由奇函数性质得(2)-(2)0f f -==,()f x 在(0,)+∞上单调递减,所以或,解得13x 剟或10.x -剟 满足(1)0xf x -…的x 的取值范围是[1,0][1,3].x ∈-⋃ 故选.D13.(2020·新高考II 卷 第7题) 解:由2450x x -->,得1x <-或 5.x > 令245t x x =--,外层函数lg y t =是其定义域内的增函数,∴要使函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则需内层函数245t x x =--在(,)a +∞上单调递增且恒大于0,则(,)(5,)a +∞⊆+∞,即 5.a …a ∴的取值范围是[5,).+∞故选:.D14.(2020·新高考I 卷 第12题)(多选)解:A 选项中,由题意知11p =,此时2()1log 10H X =-⨯=,故A 正确; B 选项中,由题意知121p p +=,且1(0,1)p ∈,121222121121()log log log (1)log (1)H X p p p p p p p p =--=----,设22()log (1)log (1)f x x x x x =----,(0,1)x ∈ ,则222111()log log (1)log (1)ln 2ln 2f x x x x '=--+-+=-,当1(,1)2x ∈时,()0f x '<,当1(0,)2x ∈时,()0f x '>,故当11(0,2p ∈ 时,()H X 随着1p 的增大而增大,当11(,1)2p ∈ 时,()H X 随着1p 的增大而减小,故B 错误;C 选项中,由题意知2211()(log H X n log n n n=⨯-=,故()H X 随着n 的增大而增大,故C 正确;D 选项中,由题意知j21j2j 21j j 1()()log ()mm m H Y p pp p +-+-==-++∑,2j 2j j 2j 21j 221j j 1j 1()log (log log )mmm m H X p p p p p p +-+-===-=-+∑∑,j 21jj 21j2j 21j 2j 221jj 1j 1()()log ()(log log )m m mmp p pp m m H X H Y p p p p +-+-++-+-==-=+-+∑∑j 21j j 21jj 21jj 21jj 21j j 21j j 21j 22j 1j 1j 21j j 21j()()()=log log m m m m p p pp mmm m m pp pp m m p p p p p p p p p p +-+-+-+-++-+-+-==+-+-+++=∑∑j 21j21j j 2j 1j21j=log (1)(1)0,m mpp m m p p p p +-+-=+-++>∑故D 错误. 故答案为: .AC。
全国卷高考数学题
全国卷高考数学题一、若函数f(x)满足f(x+2)=f(x),且当0≤x<2时,f(x)=x2,则f(9)的值为A. 1B. 4C. 9D. 16(答案)A解析:由于函数f(x)满足f(x+2)=f(x),所以函数f(x)是周期为2的周期函数。
因此,f(9)可以转化为f(1),因为在0≤x<2的区间内,f(x)=x2,所以f(1)=12=1。
二、设等差数列{an}的前n项和为Sn,若a1=1,S3=7,则a5的值为A. 5B. 7C. 9D. 11(答案)C解析:等差数列的前n项和公式为Sn=n/2*(2a1+(n-1)d),其中a1是首项,d是公差。
根据题目条件,a1=1,S3=7,代入公式得到3/2*(2*1+(3-1)d)=7,解得d=2。
因此,等差数列的通项公式为an=a1+(n-1)d=1+(n-1)2=2n-1。
所以,a5=25-1=9。
三、若复数z满足(1+i)z=2i,则z的值为A. 1+iB. 1-iC. -1+iD. -1-i(答案)B解析:由(1+i)z=2i,得z=2i/(1+i)。
为了消去分母中的虚数部分,我们可以同时乘以(1-i)/(1-i),得到z=2i*(1-i)/((1+i)(1-i))=2i(1-i)/(1-i2)=2i*(1-i)/(1+1)=2i*(1-i)/2=i*(1-i)=i-i2=i+1=1+i的共轭复数,即1-i。
四、已知向量a=(1,2),向量b=(3,4),则向量a与向量b的夹角的余弦值为A. √5/5B. 2√5/5C. 3√5/5D. 4√5/5(答案)B解析:向量a与向量b的夹角的余弦值可以通过公式cosθ=(a·b)/(|a||b|)计算,其中a·b是向量a和向量b的点积,|a|和|b|分别是向量a和向量b的模。
根据题目条件,a·b=13+24=11,|a|=√(12+22)=√5,|b|=√(32+42)=5。
新课标全国卷近五年函数高考题
[2014·新课标全国卷Ⅰ]3. 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数3.C [解析] 由于偶函数的绝对值还是偶函数,一个奇函数与一个偶函数之积为奇函数,故正确选项为C.[2014·新课标全国卷Ⅰ] 6.如图1-1,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图像大致为( )A BC D6.C [解析] 根据三角函数的定义,点M (cos x ,0),△OPM 的面积为12|sin x cos x |,在直角三角形OPM 中,根据等积关系得点M 到直线OP 的距离,即f (x )=|sin x cos x |=12|sin 2x |,且当x =π2时上述关系也成立, 故函数f (x )的图像为选项C 中的图像.[2014·新课标全国卷Ⅰ]11. 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)11.C [解析] 当a =0时,f (x )=-3x 2+1,存在两个零点,不符合题意,故a ≠0.由f ′(x )=3ax 2-6x =0,得x =0或x =2a.若a <0,则函数f (x )的极大值点为x =0,且f (x )极大值=f (0)=1,极小值点为x =2a ,且f (x )极小值=f ⎝⎛⎭⎫2a =a 2-4a 2,此时只需a 2-4a 2>0,即可解得a <-2; 若a >0,则f (x )极大值=f (0)=1>0,此时函数f (x )一定存在小于零的零点,不符合题意.21.、[2014·新课标全国卷Ⅰ] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.21.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x , 则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e.因为g min (x )=g ⎝⎛⎭⎫1e =h (1)=h max (x ),所以当x >0时,g (x )>h (x ),即f (x )>1 [2014·新课标全国卷2]8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 3 【答案】 D 【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+= [2014·新课标全国卷2]12.设函数()3s i n x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 【答案】 C 【解析】.2.||,34∴34)]([,2||||,3)]([3πsin3)(2222020020C m m m m x f x m x x f m x x f 故选解得,,即的极值为><++≥+∴≤=±= [2014·新课标全国卷2]15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.【答案】 ),(),∞3∪1-∞-(+【解析】)3,1-(2|1-|0)1-(∴.2||0)(∴0)2(),0[)(∈<><>=+∞=x x x f x x f f x f y ,解得的解集为的解集为上单调递减,且在偶函数[2014·新课标全国卷2]21. (本小题满分12分) 已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计ln2的近似值(精确到0.001)【答案】 (1) 上单增在R x f )( (2) 2【解析】 (1).)(.02-12≥2-12-)(∴∈2--)(--上单增在所以,,R x f e e e e e e x f R x x e e x f xxx x x x x x =•+=+=′=(2)2≥22≥0-0≥)-(-))((0≥)-(2-2-2.0≥)(0,t t),(0,∈∃x ∴)-(2-2-2)(.0)0(,0m m),(0,∈x )2-(2-2-)(.0≥)2-(2-2-0≥)2-(4-4-22.0≥)(0,m m),(0,∈∃x ∴)2-(4-4-22)(.0)0(,0),2--(4-4--)(.0,0)2--(4-4--)(4-)2()(--------2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2的最大值为,所以,即即,且,即即使,则,同理,令即即使,则令b b e e e e b e e e e e e b e e e e e e b e e x m e e b e e x m m e e b e e x m e e b e e e e b e e x h e e b e e x h h x x e e b x e e x h x x e e b x e e x bf x f x g x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =•>++>+>=′=>++=++++′>++=′=>=>>==(3).222ln 41-232.41-2322ln 23-242ln 6),2ln 2-21-282ln 2-21-2)2(ln 8)2(ln )2(ln 8)2ln 2(,02ln ),(8)2()2(.222ln .02ln -222ln 2-21-2)2(ln ,0)2(ln ,02ln <<>>>>>>=><>==>>=所以,即解得(,即即,则令知,由解得即则设f f f f x x f x f f f x[2013·新课标全国卷1]11.已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-11.【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax≤⎧⎨-≥⎩且0ln(1)x x ax>⎧⎨+≥⎩, 由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A,B, 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D.[2013·新课标全国卷1]16.若函数()f x =22(1)()x x ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.16.【解析】由()f x 图像关于直线x =-2对称,则0=(1)(3)f f -=-=22[1(3)][(3)3]a b ----+,0=(1)(5)f f =-=22[1(5)][(5)5]a b ----+,解得a =8,b =15,∴()f x =22(1)(815)xx x -++,∴()f x '=222(815)(1)(28)x x x x x -+++-+=324(672)x x x -++-=4(2)(25)(25)x x x -++++-当x ∈(-∞,25--)∪(-2, 25-+)时,()f x '>0,当x ∈(25--,-2)∪(25-+,+∞)时,()f x '<0,∴()f x 在(-∞,25--)单调递增,在(25--,-2)单调递减,在(-2,25-+)单调递增,在(25-+,+∞)单调递减,故当x =25--和x =25-+时取极大值,(25)f --=(25)f -+=16.[2013·新课标全国卷1]21.(本小题满分共12分)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。
【2022高考必备】2012-2021十年全国高考数学真题分类汇编 函数(原卷版)
2012-2021十年全国卷高考真题分类精编 函数(原卷版)一,选择题1.(2021年高考全国乙卷理科)设2ln1.01a =,ln1.02b =,1c =-.则( )A .a b c <<B .b c a<<C .b a c<<D .c a b<<2.(2021年高考全国乙卷理科)设函数1()1xf x x-=+,则下面函数中为奇函数地是( )A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++3.(2021年高考全国甲卷理科)设函数()f x 地定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .524.(2021年高考全国甲卷理科)青少年视力是社会普遍关注地问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法地数据L 和小数记录表地数据V 地满足5lg L V =+.已知某同学视力地五分记录法地数据为4.9,则其视力地小数记录法地数据为( )( 1.259≈)A .1.5B .1.2C .0.8D .0.65.(2020年高考数学课标Ⅰ卷理科)若242log 42log aba b +=+,则( )A .2a b>B .2a b<C .2a b >D .2a b <6.(2020年高考数学课标Ⅰ卷理科)某校一个课外学习小组为研究某作物种子地发芽率y 和温度x (单位:°C )地关系,在20个不同地温度款件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面地散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 地回归方程类型地是( )A y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x=+7.(2020年高考数学课标Ⅱ卷理科)若2233x y x y ---<-,则( )A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<8.(2020年高考数学课标Ⅱ卷理科)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减9.(2020年高考数学课标Ⅱ卷理科)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单地配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天地新订单超过1600份地概率为0.05,志愿者每人每天能完成50份订单地配货,为使第二天完成积压订单及当日订单地配货地概率不小于0.95,则至少需要志愿者( )A .10名B .18名C .24名D .32名10.(2020年高考数学课标Ⅲ卷理科)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A a <b <cB .b <a <cC .b <c <aD .c <a <b11.(2020年高考数学课标Ⅲ卷理科)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者依据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 地单位:天)地Logistic 模型:0.23(53)()=1et I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3)A .60B .63C .66D .6912.(2019年高考数学课标Ⅲ卷理科)设()f x 是定义域为R 地偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13.(2019年高考数学课标Ⅲ卷理科)函数3222x xx y -=+在[]6,6-地图像大约为( )..A .B .C .D .14.(2019年高考数学课标全国Ⅱ卷理科)设函数()f x 地定义域为R ,满足(1)2()f x f x +=,且当(]0,1x ∈时,()(1)f x x x =-.若对任意(],x m ∈-∞,都有8()9f x -≥,则m 地取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦15.(2019年高考数学课标全国Ⅱ卷理科)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业得到又一重大成就.实现月球背面软着陆需要解决地一个关键技术问题是地面与探测器地通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点地轨道运行.2L 点是平衡点,位于地月连线地延长线上.设地球质量为1M ,月球质量为2M ,地月距离为R ,2L 点到月球地距离为r ,依据牛顿运动定律和万有引力定律,r 满足方程:()()121223M M M R r r R R r +=++.设r R α=.由于α地值很小,因此在近似计算中()345323331ααααα++≈+,则r 地近似值为( )ABCD16.(2019年高考数学课标全国Ⅰ卷理科)函数2sin ()cos x xf x x x +=+在[,]ππ-地图象大约为( )17.(2018年高考数学课标Ⅲ卷(理))函数422y x x =-++地图象大约为( )18.(2018年高考数学课标Ⅱ卷(理))已知()f x 是定义域为(,)-∞+∞地奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .5019.(2018年高考数学课标Ⅱ卷(理))函数()2x xe ef x x --=地图象大约为( )20.(2018年高考数学课标卷Ⅰ(理))已知函数()(),0()ln ,0x e x f x x x ⎧≤⎪=⎨>⎪⎩,()()+g x f x x a =+.若()g x 存在2个零点,则a 地取值范围是( )A .[)1,0-B .[)0,+∞C .[)1,-+∞D .[)1,+∞21.(2017年高考数学新课标Ⅰ卷理科)设为正数,且,则( )A .B .C .D .22.(2017年高考数学新课标Ⅰ卷理科)函数在单调递减,且为奇函数.若,则满足地地取值范围是( )A .B .C .D .23.(2017年高考数学课标Ⅲ卷理科)已知函数有唯一零点,则( )A .B .C .D .24.(2017年高考数学课标Ⅲ卷理科)某城市为了解游客人数地变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)地数据,绘制了下面地折线图.依据该折线图,下面结论错误地是( )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年地月接待游客量高峰期大约在7,8月D .各年1月至6月地月接待游客量相对7月至12月,波动性更小,变化比较平稳25.(2016高考数学课标Ⅲ卷理科)已知432a =,254b =,1325c =,则( )A .b a c <<B .a b c<<C .b c a<<D .c a b<<26.(2016高考数学课标Ⅲ卷理科)某旅游城市为向游客介绍本地地气温情况,绘制了一年中月平均最高气温和平均最低气温地雷达图.图中A 点表示十月地平均最高气温约为15︒C .B 点表示四月地平均最低气温约为5︒C .下面叙述错误地是( )A .各月地平均最低气温都在0︒C 以上B .七月地平均温差比一月地平均温差大C .三月和十一月地平均最高气温基本相同D .平均最高气温高于20︒C 地月份有5个,,x y z 235x y z ==235x y z<<523z x y <<352y z x <<325y x z<<()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]211()2()x x f x x x a ee --+=-++a =12-1312127.(2016高考数学课标Ⅱ卷理科)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像地交点为1122(,),(,),,(,)m m x y x y x y ⋅⋅⋅,则1()mi i i x y =+=∑( )A .0B .mC .2mD .4m28.(2016高考数学课标Ⅰ卷理科)若101a b c >><<,,则( )(A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c<29.(2016高考数学课标Ⅰ卷理科)函数22xy x e =-在[–2,2]地图像大约为( )30.(2015高考数学新课标2理科)如图,长方形ABCD 地边2AB =,1BC =,O 是AB 地中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A ,B 两点距离之和表示为x 地函数()f x ,则()y f x =地图像大约为( )( )31.(2015高考数学新课标2理科)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .1232.(2014高考数学课标1理科)如图,圆O 地半径为1,A 是圆上地定点,P 是圆上地动点,角地始边为射线,终边为射线,过点作直线地垂线,垂足为,将点到直线地距离表示为地函数,则=在[0,]上地图像大约为( )AB( )CD33.(2014高考数学课标1理科)设函数,地定义域都为R ,且是奇函数,是偶函数,则下面结论正确地是( )A .是偶函数B .||是奇函数C .||是奇函数D .||是奇函数34.(2013高考数学新课标2理科)设357l og 6,l og 10,l og 14,a b c ===则( )x OA OP P OA M M OP x ()f x y ()f x πx0PM A()f x ()g x ()f x ()g x ()f x ()g x ()f x ()g x ()f x ()g x ()f x ()g xA .c b a >>B .b c a >>C .a c b >>D .a b c>>35.(2012高考数学新课标理科)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )A .1ln 2-Bln 2)-C .1ln 2+Dln 2)+36.(2012高考数学新课标理科)已知函数1()ln(1)f x x x=+-,则()y f x =地图象大约为( )二,填空题37.(2019年高考数学课标全国Ⅱ卷理科)已知()f x 是奇函数,且当0x <时,()axf x e =-.若(ln 2)8f =,则a = .38.(2017年高考数学课标Ⅲ卷理科)设函数,则满足地地取值范围是 .39.(2015高考数学新课标1理科)若函数()ln(f x x x =+,则a =40.(2014高考数学课标2理科)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f (x 1)0->,则x地取值范围是__________.41.(2013高考数学新课标1理科)若函数()f x =22(1)()x x ax b -++地图像有关直线x =-2对称,则()f x 地最大值是______.10()2 0xx x f x x +≤⎧=⎨>⎩,,1()12f x f x ⎛⎫+-> ⎪⎝⎭x。
全国卷近五年高考函数真题
全国卷近五年高考函数真题1.5分已知函数fx的定义域为﹣1;0;则函数f2x+1的定义域为A.﹣1;1 B.C.﹣1;0 D.2.5分若函数fx=x2+ax+是增函数;则a的取值范围是A.﹣1;0 B.﹣1;+∞ C.0;3 D.3;+∞35分若函数fx=1﹣x2x2+ax+b的图象关于直线x=﹣2对称;则fx的最大值为.4.5分已知函数fx=x3+ax2+bx+c;下列结论中错误的是A. x0∈R;fx=0B.函数y=fx的图象是中心对称图形C.若x0是fx的极小值点;则fx在区间﹣∞;x单调递减D.若x0是fx的极值点;则f′x=05.5分曲线y=xe x﹣1在点1;1处切线的斜率等于A.2e B.e C.2 D.16.5分设函数fx;gx的定义域都为R;且fx是奇函数;gx是偶函数;则下列结论正确的是A.fx gx是偶函数 B.|fx| gx是奇函数C.fx |gx|是奇函数 D.|fx gx|是奇函数7.5分已知函数fx=ax3﹣3x2+1;若fx存在唯一的零点x0;且x>0;则实数a的取值范围是A.1;+∞ B.2;+∞C.﹣∞;﹣1 D.﹣∞;﹣28.5分设曲线y=ax﹣lnx+1在点0;0处的切线方程为y=2x;则a=A.0 B.1 C.2 D.39.5分已知偶函数fx在0;+∞单调递减;f2=0;若fx﹣1>0;则x的取值范围是.10.5分设函数fx=e x2x﹣1﹣ax+a;其中a<1;若存在唯一的整数x使得fx<0;则a的取值范围是A.B. C. D.11.5分若函数fx=xlnx+为偶函数;则a= .12.5分设函数fx=;则f﹣2+flog212=A.3 B.6 C.9 D.1213.5分设函数f′x是奇函数fxx∈R的导函数;f﹣1=0;当x>0时;xf′x ﹣fx<0;则使得fx>0成立的x的取值范围是A.﹣∞;﹣1∪0;1 B.﹣1;0∪1;+∞C.﹣∞;﹣1∪﹣1;0 D.0;1∪1;+∞14.5分已知函数fx=;且fα=﹣3;则f6﹣α=A.﹣ B.﹣C.﹣ D.﹣15.5分设函数y=fx的图象与y=2x+a的图象关于y=﹣x对称;且f﹣2+f﹣4=1;则a=A.﹣1 B.1 C.2 D.416.5分已知函数fxx∈R满足f﹣x=2﹣fx;若函数y=与y=fx图象的交点为x1;y1;x2;y2;…;xm;ym;则xi+yi=A.0 B.m C.2m D.4m17.5分已知fx为偶函数;当x<0时;fx=ln﹣x+3x;则曲线y=fx在点1;﹣3处的切线方程是.18.5分设x、y、z为正数;且2x=3y=5z;则A.2x<3y<5z B.5z<2x<3yC.3y<5z<2x D.3y<2x<5z19.5分若x=﹣2是函数fx=x2+ax﹣1e x﹣1的极值点;则fx的极小值为A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.120.5分已知函数fx=x2﹣2x+ae x﹣1+e﹣x+1有唯一零点;则a=A.﹣ B. C.D.121.12分已知函数fx=x﹣1﹣alnx.1若fx≥0;求a的值;2设m为整数;且对于任意正整数n;1+1+…1+<m;求m的最小值.22.12分已知函数.I若x≥0时;fx≤0;求λ的最小值;23.12分已知函数fx=x2+ax+b;gx=e x cx+d;若曲线y=fx和曲线y=gx都过点P0;2;且在点P处有相同的切线y=4x+2.Ⅰ求a;b;c;d的值;Ⅱ若x≥﹣2时;fx≤kgx;求k的取值范围.24.12分已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点;求m;并讨论fx的单调性;Ⅱ当m≤2时;证明fx>0.25.12分函数fx=lnx+1﹣a>1.Ⅰ讨论fx 的单调性; Ⅱ设a 1=1;a n+1=lna n +1;证明:<a n ≤n ∈N .26.12分设函数fx=ae xlnx+;曲线y=fx 在点1;f1处得切线方程为y=ex ﹣1+2. Ⅰ求a 、b ; Ⅱ证明:fx >1.27.12分已知函数fx=e x ﹣e ﹣x ﹣2x . Ⅰ讨论fx 的单调性;Ⅱ设gx=f2x ﹣4bfx;当x >0时;gx >0;求b 的最大值; Ⅲ已知1.4142<<1.4143;估计ln2的近似值精确到0.001.28.12分已知函数fx=x 3+ax+;gx=﹣lnx i 当 a 为何值时;x 轴为曲线y=fx 的切线;ii 用min {m;n }表示m;n 中的最小值;设函数hx=min { fx;gx}x >0;讨论hx 零点的个数.29.12分设函数fx=e mx +x 2﹣mx .1证明:fx 在﹣∞;0单调递减;在0;+∞单调递增;2若对于任意x 1;x 2∈﹣1;1;都有|fx 1﹣fx 2|≤e﹣1;求m 的取值范围. 30.12分设函数fx=e 2x ﹣alnx . Ⅰ讨论fx 的导函数f′x 零点的个数; Ⅱ证明:当a >0时;fx≥2a+aln .31.12分已知函数fx=x ﹣2e x +ax ﹣12有两个零点. Ⅰ求a 的取值范围;Ⅱ设x 1;x 2是fx 的两个零点;证明:x 1+x 2<2. 32.12分Ⅰ讨论函数fx=e x的单调性;并证明当x >0时;x ﹣2e x+x+2>0;Ⅱ证明:当a ∈0;1时;函数gx=x >0有最小值.设gx 的最小值为ha;求函数ha 的值域.33.12分设函数fx=acos2x+a ﹣1cosx+1;其中a >0;记|fx|的最大值为A . Ⅰ求f′x; Ⅱ求A ;Ⅲ证明:|f′x|≤2A.34.12分已知函数fx=ae 2x +a ﹣2e x ﹣x . 1讨论fx 的单调性;2若fx 有两个零点;求a 的取值范围 35.12分已知函数fx=ax 2﹣ax ﹣xlnx;且fx≥0. 1求a ;2证明:fx 存在唯一的极大值点x 0;且e ﹣2<fx 0<2﹣2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国卷近五年高考函数真题
1.(5分)已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为()
A.(﹣1,1)B.C.(﹣1,0)D.
2.(5分)若函数f(x)=x2+ax+是增函数,则a的取值范围是()
A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)
3(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.
4.(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0
B.函数y=f(x)的图象是中心对称图形
C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减
D.若x0是f(x)的极值点,则f′(x0)=0
5.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2D.1
6.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()
A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数
C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数
7.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()
A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()
A.0B.1C.2D.3
9.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f (x﹣1)>0,则x的取值范围是.
10.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()
A.[)B.[)C.[)D.[)11.(5分)若函数f(x)=xln(x+)为偶函数,则a=.12.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()
A.3B.6C.9D.12
13.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()
A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)
14.(5分)已知函数f(x)=,且f(α)=﹣3,则f(6﹣α)=()
A.﹣B.﹣C.﹣D.﹣
15.(5分)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()
A.﹣1B.1C.2D.4
16.(5分)已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()
A.0B.m C.2m D.4m
17.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.18.(5分)设x、y、z为正数,且2x=3y=5z,则()
A.2x<3y<5z B.5z<2x<3y
C.3y<5z<2x D.3y<2x<5z
19.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()
A.﹣1B.﹣2e﹣3 C.5e﹣3D.1
20.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()
A.﹣B.C.D.1
(1)若f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.
22.(12分)已知函数.
(I)若x≥0时,f(x)≤0,求λ的最小值;
23.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.
(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.
25.(12分)函数f(x)=ln(x+1)﹣(a>1).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).
26.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f (1))处得切线方程为y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)证明:f(x)>1.
27.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).
28.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx
(i)当a为何值时,x轴为曲线y=f(x)的切线;
(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f (x),g(x)}(x>0),讨论h(x)零点的个数.
29.(12分)设函数f(x)=e mx+x2﹣mx.
(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.
30.(12分)设函数f(x)=e2x﹣alnx.
(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;
(Ⅱ)证明:当a>0时,f(x)≥2a+aln.
31.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;
(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.
32.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.
33.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.
(Ⅰ)求f′(x);
(Ⅱ)求A;
(Ⅲ)证明:|f′(x)|≤2A.
34.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围
35.(12分)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(1)求a;
(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.。