2013年浙江师范大学数学分析(601)考试大纲
2013年研究生入学考试数学(一)考试大纲
2013考研数学(一)考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 约56%线性代数 约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
2013年暨南大学601高等数学考研真题【圣才出品】
2013年暨南大学601高等数学考研真题2013年招收攻读硕士学位研究生入学考试试题学科、专业名称:理论物理、凝聚态物理、光学、生物医学工程(理学) 研究方向:考试科目名称:601高等数学(副卷)考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
本试卷满分为150分,考试时间为3小时。
一、填空题(本题共6小题,每小题4分,共24分.把答案填在题中横线上)1.22201cos lim ___________sin x x x x →⎛⎫-= ⎪⎝⎭. 2.arcsin d ________________xxe x e =⎰. 3.函数2ln(1)x y u e y +=++的全微分是d _________________.u =4.曲面2222321x y z ++=在点(1,2,2)P -处的法线方程是 . 5.微分方程3dy x y x dx +=的通解为 . 6.设2{(,)0,2}D x y x y x =≥≤-,则3d ___________Dy σ=⎰⎰.二、选择题(本题共6小题,每小题4分,共24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)1.设()f x 有任意阶导数,且2()[()]f x f x '=,(0)2f =,2n ≥,则()(0)n f =( )A .2n nB .0,C .1!2n n +,D .22.考虑二元函数下面性质①(,)f x y 在点00(,)x y 处连续;②(,)f x y 在点00(,)x y 处可微;③(,)f x y 在点00(,)x y 处的两个偏导数都存在;④(,)f x y 在点00(,)x y 处的两个偏导数连续;则下面结论正确的是( )A .①⇒②⇒③B .④⇒②⇒①C .②⇒①⇒③D .①⇒③⇒④3.行列式A 不等于零的充分条件是( )A .A 的所有元素非零;B .A 至少有n 个元素非零C .A 的任意两行元素之间不成比例D .以A 为系数行列式的线性方程组有唯一解4.已知两直线21221x y z +-==-和13142x y z n ---==相平行,则数n =( ) A .4-B .4C .2-D .25.方程d d y x=(0)y ≤≤∞,过点(0,0)有( ) A .一个解B .两个解C .无数个解D .三个解6.函数z u xy e =+在(1,1,0)处沿{1,1,1}l =-的方向导数以及u 在该点的梯度分别是( )Ai j k ++, B .i j k -+ C .2,i j k -+, D .2,i j k ++三、计算题(本题共5小题,每小题10分,共50分)1.过(1,0)P作抛物线y =求该切线与抛物线及x 轴围成图形绕x 轴旋转体的体积.2.已知lim )0x ax b →+∞-=,求常数,.a b 3.设A 是n 阶矩阵,有特征值1,2,,n ,求82E A +.4.求通过点(3,0,0)和点(0,0,1)且与xOy 平面成3π角的平面方程. 5.求级数1(1)21nn n x n x ∞=-⎛⎫ ⎪+⎝⎭∑ 的收敛域.四、计算题(本题共3小题,每小题12分,共36分)1.求坐标原点到曲线2221:21x y z C x y z ⎧+-=⎨--=⎩的最短距离,并问:原点到C 有没有最大距离?为什么?2.已知二次型22212312312(,,)(1)(1)22(1)f x x x a x a x x a x x =-+-+++的秩为2,(1)求a 的值;(2)求正交变换x Qy =,把123(,,)f x x x 化成标准型.3.求微分方程''2'3x y y y e --+=的通解.五、证明题(本题共2小题,每小题8分,共16分)1.设()f x 在[0,1]上连续且严格单调减少,试证明:当01λ<<时100()d ()d f x x f x x λλ>⎰⎰.2.设实对称矩阵A的所有特征值都等于1,证明:A为正交矩阵.。
601-数学分析 大纲
601-数学分析一.考试形式&试卷结构1.试卷满分&考试时间试卷满分为150分,考试时间180分钟2.答题方式闭卷,笔试,不得使用带有公式和文本存储功能的计算器3.试卷内容与题型结构一元函数微积分占60%,多元函数微积分占25%,无穷级数占20%题型有三种:填空或选择(20%),计算题(30%),综合题(50%)二.考察内容1.极限和函数的连续性(1)熟练掌握数列极限的概念,理解无穷小量,无穷大量的概念及基本性质(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限(3)熟练掌握:区间套定理,单调有界原理,聚点定理,有界覆盖定理,Cauchy收敛准则;并理解其相互关系(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练运用函数连续的四则运算与符合运算的性质(5)熟练掌握闭区间上连续函数的基本性质:有界定理,最值定理,介值定理,一致连续性(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题2.一元函数微分学(1)理解导数和微积分的概念及其相互关系,理解倒数的几何意义,理解函数可到性与连续性之间的关系(2)熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则,复合函数求导法则,会求分段函数的导数(3)熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理及Tsylor展式(4)能够用导数研究函数的单调性,极值,最值和凹凸性(5)掌握用洛必达法则求不定式极限的方法3.一元函数微分学(1)理解不定积分的概念,掌握不定积分的基本公式,换元积分法和分部积分法,初等函数的积分(2)掌握定积分的概念与性质及可积条件与可积函数类(3)熟练掌握积分基本定理,定积分的换元积分法和分部积分法以及积分中值定理(4)能用定积分计算:平面图形的面积,平面曲线的弧长,旋转体的体积与侧面积,平行截面面积已知的立体体积计在物理上的应用(5)理解反常积分的概念。
2013考研数学考试大纲
2013考研数学考试大纲2013硕士研究生入学考试考试大纲考试科目:数学分析考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构一元微积分学约50%多元微积分学约20%无穷级数约30%四、试卷题型结构试卷题型结构为:叙述和证明题5个题,每题15分计算题4个题,每题15分讨论题1个题,每题15分一、函数、极限、连续考试内容实数域及性质几种主要不等式及应用邻域上确界下确界确界原理函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)数列极限的定义收敛数列的若干性质(惟一性、保序性等)数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)“ε-δ”语言叙述各类型函数极限函数极限的若干性质函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)应用两个特殊极限求函数的极限无穷小(大)的定义、性质、阶的比较在一点连续的定义及其等价定义间断点定以及分类区间上连续的定义,用左右极限的方法求极限在一点连续性质及在区间上连续性质初等函数的连续性。
考试要求1.了解实数域及性质。
2.掌握几种主要不等式及应用。
3.熟练掌握领域,上确界,下确界,确界原理。
4.牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
5.熟练掌握数列极限的定义。
6.掌握收敛数列的若干性质(惟一性、保序性等)。
7.掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
8.熟练掌握使用“ε-δ”语言,叙述各类型函数极限。
9.掌握函数极限的若干性质。
10.掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
11.熟练应用两个特殊极限求函数的极限。
12.牢固掌握无穷小(大)的定义、性质、阶的比较。
13.熟练掌握在一点连续的定义及其等价定义。
14.掌握间断点定以及分类。
15.了解在区间上连续的定义,能使用左右极限的方法求极限。
2013年数学考研大纲数一
2013年硕士研究生入学统一考试数学考试大纲--数学一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
2013数学考研大纲
2013考研数学(一)考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 约56%线性代数 约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
浙江师范大学数学分析考研真题试题2008—2012年
< 1;
2 {xn } 67!TvcA,
22
浙江师范大学 2010 年硕士研究生入学考试初试试题
科目代码: 681 科目名称: 数学分析
适用专业: 基础数学、计算数学、应用数学、运筹学与控制论、系统理论。
提示: 1、请将所有答案写于答题纸上,写在试题上的不给分; 2、请填写准考证号后 6 位:____________。
−1
3
−1≤ x≤1
w 12 "xyzW y = 1 − x2下 y = x2 − 1 `a=1d D,{T|}~ D K
? DD,
12 "N a ≥ 1下
下
下
下
下
下
下
下
x1
=
a,
x2
=
a
a +
, a
x3
=
a
a +a
a+a
,K ,{g
1 ∀n ≥ 2, 下
1 2
≤
xn
1 3 (2n 1)
6、求极限 lim
。
n 2 4 2n
7、求级数 (2n 1)x2n2 的收敛域。
n1
2n
8、计算曲线积分 (ex sin y 2 y)dx (ex cos y 2)dy ,其中 L 为上半圆周: L
(x a)2 y2 a2 , y 0 ,沿逆时针方向。
ln(1 t3)
1、求
lim
t0
t2 sin t
.
2、求
lim
x
x( x 1
x).
1
3、求 t ln tdt .
0
4、求 lim (x2 y2 )xy . (x, y)(0,0)
2013考研数学二考试大纲
研究生入学考试高等数学考试大纲考试科目:高等数学601考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 100%四、试卷题型结构单项选择题 10小题,每小题4分,共40分填空题 10小题,每小题4分,共40分解答题(包括证明题) 7小题,共70分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(),a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''== 和 (,)y f y y '''=.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.。
601《数学分析》考试大纲
601《数学阐发》测验大纲一、大纲综述数学阐发是大学数学系本科学生的最根本课程之一,也是大都理工科专业学生的必修根底课。
为帮忙考生明确测验范围和有关要求,特制订《数学阐发》测验大纲。
《数学阐发》测验大纲按照北京林业大学数学与应用数学本科《数学阐发》教学大纲编制而成,适用于报考北京林业大学数学学科各专业〔根底数学、概率论与数理统计、计算数学、应用数学〕硕士学位研究生的考生。
参考书目以华东师范大学数学系编写的教材为主,其他两个参考书目为辅。
二、测验内容1.实数集与函数〔1〕确界概念,确界道理〔2〕函数概念与运算,初等函数2.数列极限〔1〕数列极限的ε一N定义〔2〕收敛数列的性质〔3〕数列的单调有界法那么,柯西收敛准那么,重要极限3.函数极限(1) 函数极限的ε一M定义和ε一δ定义,单侧极限(2) 函数极限的性质(3) 海涅定理〔归结原那么〕,柯西收敛准那么,两个重要极限(4) 无穷小量与无穷大量的定义、性质,无穷小〔大〕量阶的比拟4.函数的持续性(1) 函数在一点持续,单侧持续和在区间上持续的定义,间断点的类型(2) 持续函数的局部性质。
复合函数的持续性,反函数的持续性。
闭区间上持续函数的性质。
(3) 一致持续的定义,初等函数的持续性5.导数与微分(1) 导数的定义,导数的几何意义(2) 导数四那么运算、反函数导数、复合函数导数,求导法那么与求导公式(3) 参数方程所确定的函数的导数,高阶导数(4) 微分概念、微分根本公式,微分法那么,一阶微分形式的不变性。
微分在近似计算中的应用,高阶微分6.微分中值定理及其应用(1) 费马定理,罗尔定理,拉格朗日定理(2) 柯西中值定理,罗比达法那么,不定式极限(3) 泰勒公式(4) 函数的单调性、凸性与拐点、极值与最值(5)渐近线,函数作图。
7.实数的完备性〔1〕区间套定理,柯西收敛准那么,聚点定理,有限覆盖定理,致密性定理〔2〕闭区间上持续函数的性质及证明8.不定积分〔1〕原函数与不定积分的概念,根本积分表,线性运算法那么〔2〕换元积分法,分部积分法〔3〕有理函数的积分法。
2013考研数学(一)考试大纲
2016研究生《综合英语》考研大纲考试形式和试卷结构一、试卷满分及考试时间试卷满分为100分,考试时间为120分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构词汇与结构约15%阅读理解约25%完形填空约10%改错约5%句子复述约 5%英汉互译约20%写作约20%四、试卷题型结构试卷题型结构为:客观性试题约40%主观性试题约60%(一)、词汇与结构考试内容测试考生运用词汇、短语、语法结构的能力。
本部分为多项选择题,由20题组成,每题有四个选择项。
题目中约80%考点为词汇、词组和短语的用法,约20%为语法结构。
考试要求熟练掌握英语专业教学大纲词汇表对一级至八级规定的10000词汇及其搭配。
(二)、阅读理解考试内容测试考生通过阅读获取有关信息的能力,考核考生掌握相关阅读策略和技巧的程度。
既要求准确性,也要求一定的速度。
阅读速度为每分钟150个单词。
选材原则:1、题材广泛,包括社会、科技、文化、经济、日常知识、人物传记等。
2、体裁多样,包括记叙文、描写文、说明文、议论文、广告、说明书、图表等。
3、关键词汇基本上不超出英语专业教学大纲词汇表对一级至八级规定的范围。
考试要求1、能读懂一般英美报刊杂志上的社论和书评。
2、能读懂有一定难度的历史传记和文学作品。
3、能理解所读材料的主旨大意,分辨出其中的事实和细节;能理解字面意义和隐含意义;能根据所读材料进行判断和推理;能分析所读材料的思想观点、语篇结构、语言特点和修辞手法。
4、能在阅读中根据需要自觉调整阅读速度和阅读技巧。
(三)、完形填空考试内容本题为主观题。
在一篇250词左右、题材常见、难度中等的短文中留有20个空白。
每个空白为一题,根据上下文填写所缺的词语,填空的词包括结构词和实义词。
考试要求测试考生语言综合运用能力。
要求考生在全面理解所给短文内容的基础上填写一个最佳答案使短文的意思和结构恢复完整。
(四)、改错考试内容本部分由一篇约250个单词的短文组成,短文中有10行标有题号。
2013考研数学(一)考试大纲-4
2013考研数学(一)考试大纲-42013考研数学(一)考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1x x e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
2013年北京师范大学601专业基础(数学分析85分,高等代数65分)考研真题(回忆版)【圣才出品】
2013年北京师范大学601专业基础(数学分析85分,高等代数65分)考研真题(回忆版)2013年北京师范大学数学科学学院硕士生入学考试真题(回忆版)601专业基础(数学分析85分,高等代数65分)1.叙述并证明克拉默法则.2.证明1))(),((=x g x f 时,1)()(),()((=++x dg x cf x bg x af ,其中0≠-bc ad .3.n 阶矩阵A ,证明A 可以分解为BC A =的形式,其中B 为可逆矩阵,C 有2CC =成立.4.21,V V 为欧式空间V 的子空间,证明:)dim()dim()dim()dim(212121V V V V V V ⋂++=+5.求二元函数的极值点.6.求三元函数的积分.7.求)arctan(x 的泰勒级数,并且求出∑∞=+-112)1(k kk (貌似是这个级数).8.已知)(),(x g x f 是[]b a ,上的函数(忘了是否连续了),)(x f 的导函数在[]b a ,上黎曼可积,b x x x a T n m n =<<<=)(10: 是[]b a ,的一个分割∞→→-=-=n x x T j j n m j n ,0)(1)(1max 求证:)(')())()()((lim )(11x f x g x f x f x g ba n m j j j j ⎰∑=-=-.9.)(x f 在R 上连续,且A x f x =∞→)(lim ,求证:(1))(x f 在R 上一致连续;(2)η为()π,0上一固定数,⎰=πηnxdx x f x F n sin )()(,证明)(x F n 等度连续;(3))(x F n 一致收敛.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,共5页浙江师范大学浙江师范大学硕士研究生入学硕士研究生入学硕士研究生入学考试考试考试初试初试初试科目科目科目考 试 大 纲科目代码科目代码、、名称名称:: 601数学分析适用专业适用专业:: 070100数学数学((一级学科一级学科))、071101系统理论系统理论、、071400统计学统计学((一级学科一级学科))一、考试形式与试卷结构(一)试卷试卷满分满分 及 考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。
(三)试卷题型结构试卷题型结构全卷一般由九个大题组成,具体分布为是非判断题:3小题,每小题6分,共18分简答题:2~3小题,每小题6分,共12~18分计算题:5~6小题,每题8分,约40~48分分析论述题(包括证明、讨论、综合计算):6大题,每题10~15分,约70~80分二、考查目标考查目标((复习要求复习要求))要求考生掌握数学分析课程的基本概念、基本定理和基本方法,能够运用数学分析的理论分析、解决相关问题。
三、考查范围考查范围或或考试内容概要本课程考核内容包括实数理论和连续函数、一元微积分学、级数、多元微积分学等等。
第一章第一章 实数集与函数1.了解邻域,上确界、下确界的概念和确界原理。
2.掌握函数复合、基本初等函数、初等函数及常用特性。
(单调性、周期性、奇偶性、有界性等)3.掌握基本初等不等式及应用。
第二章第二章 数列极限1.熟练掌握数列极限的ε-N 定义。
2.掌握收敛数列的常用性质。
3.熟练掌握数列收敛的判别条件(单调有界原理、迫敛性定理、Cauchy 准则、压缩映射原理、Stolz 变换等)。
第2页,共5页4.能够熟练求解各类数列的极限。
第三第三章章 函数极限1.深刻领会函数极限的“ε-δ”定义及其它变式。
2.熟练掌握函数极限存在的条件及判别。
(归结原则,柯西准则,左、右极限、单调有界等)。
3.熟练应用两个重要极限求解较复杂的函数极限。
4.理解无穷小量、无穷大量的概念;会应用等价无穷小求极限;熟悉等价无穷小、同阶无穷小、高阶无穷小及其性质。
第四第四章章 函数连续性1.掌握函数在某点及在区间上连续的几种等价定义,尤其是ε-δ定义。
2.熟悉函数间断点及类型。
3.熟练掌握闭区间上连续函数的三大性质及其应用。
4.熟练掌握区间上一致连续函数的定义、判断和应用。
5.知道初等函数的连续性。
第五第五章章 导数和微分1.掌握导数的定义、几何意义,领悟其思想内涵;熟悉单边导数概念及应用。
2.掌握求导四则运算法则、熟记基本初等函数的导数。
3.熟练掌握复合函数求导的链式法则。
4.掌握参量函数、隐函数的求导法、对数求导法。
5.熟练掌握乘积函数求导的Leibniz 公式。
6.掌握微分的概念,领悟其思想内涵;并会用微分进行近似计算。
7.熟练掌握复合函数微分及一阶微分形式不变性。
8.理解连续、可导、可微之间的关系。
9.熟练掌握高阶导数的各种求解方法。
第六第六章章 微分中值定理及其应用1.熟练掌握微分中值定理及其应用,会证明中值点ξ的存在性问题。
2.熟练运用洛必达法则求极限。
3.熟练掌握单调区间、极值、最值的求法。
4.熟练掌握Taylor 公式思想、方法及应用。
5.掌握曲线的凹凸性及拐点的求法,并掌握凸函数及性质。
6.熟练应用函数单调性、凹凸性等等工具证明函数不等式。
第3页,共5页第七第七章章 实数完备性1.了解区间套、覆盖、有限覆盖、聚点等等的含义。
2.掌握实数完备性各定理的具体内容,领悟其证明的思想内涵。
实数完备性构成数学分析的理论核心,其重要性不言而喻。
3.掌握闭区间上连续函数有界性、最值性、介值性、一致连续性定理的证明。
4.理解上极限、下极限的概念和等价叙述。
第八第八章章 不定积分1.知道原函数与不定积分的概念。
2.熟练掌握换元法、分部积分法。
3.会计算有理函数的积分。
4.会计算三角函数有理式、某些简单无理式的积分。
第九第九章章 定积分1.深刻领会定积分的定义和性质。
2.深刻理解微积分基本定理,并会熟练应用。
3.熟练掌握换元法、分部积分法计算定积分。
4.知道可积条件和可积类。
第十章第十章 定积分的应用1.熟练掌握平面图形面积的计算。
2.熟练掌握旋转体或已知截面面积的体积。
3.会利用定积分求孤长、旋转体的侧面积。
第十一第十一章章 反常积分1.了解反常积分收敛性定义。
2.熟练掌握反常积分敛散性判别法(Cauchy、Abel、Dirichlet 三大判别法),重点在无穷积分。
第十二章二章 数项级数1.知道级数收敛和发散的定义、性质。
2.熟练掌握正项级数收敛的各种判别法。
(比较判别法、比式判别法、根式判别法、拉贝判别法、积分判别法等)3.熟练掌握条件收敛、绝对收敛及Leibniz、Abel、Dirichlet 三大判别法。
4.理解条件收敛、绝对收敛级数的特殊性质。
第十三第十三章章 函数列与函数项级数第4页,共5页1.深刻理解函数列、函数项级数一致收敛的ε-N 定义。
2.熟练掌握函数列、函数项级数一致收敛的判别法。
3.熟练掌握一致收敛函数列和一致收敛函数项级数的性质。
第十四第十四章章 幂级数1.掌握幂级数收敛域、收敛半径以及和函数的求法,知道幂级数的若干性质。
2.熟练掌握函数的幂级数展开的方法。
3.会求幂级数的和函数及某些数项级数的和。
第十五第十五章章 傅里叶级数1.熟记以π2周期的付里叶系数公式,会求函数的傅里叶展式。
2.掌握余弦级数,正弦级数的求法。
3.理解收敛性定理,掌握Bessel 不等式、Lebesgue 引理等几个重要定理。
4.知道Parseval 等式并运用其求某些数项级数的和。
第十六第十六章章 多元函数的极限与连续1.了解平面点集的若干概念、平面点集的完备性定理。
2.掌握二元函数之二重极限、二次极限的定义和计算。
3.掌握二元函数连续性及其性质。
第十七第十七章章 多元函数微分学1.掌握全微分和偏导数的概念、了解其几何性质。
2.会计算偏导数和全微分,会计算高阶偏导数(尤其是二阶偏导数)。
3.熟练掌握多元复合函数求导的链式法则、理解一阶全微分形式不变性。
4.掌握二元函数连续、偏导数连续、可微、可偏导之间的多角关系。
5.知道二元函数中值定理与Taylor 公式。
6.熟练掌握多元函数极值、最值的求解方法,并会运用于解决实际问题。
7.了解方向导数与梯度及其几何、物理意义。
第十八第十八章章 隐函数定理及其应用1.理解隐函数(组)定理。
2.会求隐函数(组)的微分。
3.会求空间曲线的切线与法平面,会求空间曲面的切平面与法线。
4.熟练掌握条件极值的Lagrange 乘数法。
第十九第十九章章 含参量积分1.掌握含参量正常积分的定义及性质。
2.熟练掌握含参量反常积分一致收敛定义、判别法。
第5页,共5页 3.熟练掌握一致收敛含参量反常积分的性质(连续性、可导性、可积性)。
4.掌握Euler 积分并用于计算某些反常积分;掌握用积分号下求导数等方法计算某些积分和反常积分。
第二十第二十章章 曲线积分1.理解第一、二型曲线积分的概念及物理意义。
2.熟练掌握两型曲线积分的基本参数计算公式。
3.熟练掌握格林公式。
4.掌握第二型曲线积分与路径无关的条件,会求全微分式的原函数。
第二十一第二十一章章 重积分1.知道二重积分、三重积分定义与性质,理解分割、求和、取极限三部曲内涵。
2.熟练掌握二重积分、三重积分的直角坐标计算---化为累次积分。
3.熟练掌握二重积分、三重积分的变量替换。
重点是极坐标变换、柱坐标变换球坐标变换及广义球坐标变换。
4.知道重积分几何应用,会求曲面面积、重心坐标等。
第二十二第二十二章章 曲面积分1.理解第一、二型曲面积分的概念及物理意义;了解两种曲面积分的转换关系。
2.掌握两型曲面积分的直角坐标计算公式。
3.熟练掌握Gauss 公式和Stokes 公式。
注:以上内容凡要求深刻理解以上内容凡要求深刻理解、、深刻领会深刻领会、、熟练掌握者皆是考试熟练掌握者皆是考试和和复习复习之之重点内容重点内容。
要求理解要求理解、、领会领会、、掌握者重要性相对次之掌握者重要性相对次之。
参考教材或主要参考书参考教材或主要参考书:1.数学分析(上、下册),华东师大编,(2001年后的任意版本),高等教育出版社. 2. 数学分析解题数学与方法,杨传林,浙江大学出版社,2008版。
3. 数学分析中的典型问题与方法,裴礼文,高等教育出版社。
四、样卷见往年试卷。