利用空间向量求二面角的平面角

合集下载

利用空间向量知识求空间中的二面角

利用空间向量知识求空间中的二面角
ຫໍສະໝຸດ 故所求两平面所成角的余弦值为
所以 cos〈n1,n2〉=
所以n1=(1,1,1).同理可求得平面BMN的一个法向量n2=(1,-1,-1).
令x=1,解得y=1,z=1,
方法二:设平面AMN的法向量n1=(x,y,z).
故所求两平面所成角的余弦值为
练习:如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC,PD,BC的中点.
易知 =(0,0,1), =(1,0,0), =(-2,1,-1),
01
设平面DFG的法向量m=(x1,y1,z1),
02
则 解得 令x1=1,得m=(1,2,0)是平面DFG的一个法向量.
03
01
设平面EFG的法向量n=(x2,y2,z2),
05
所以cos θ=
03
因为cos〈m,n〉=
01
知识点:二面角
01
用向量方法求二面角 平面α与β相交于直线l,平面α的法向量为n1,平面β的法向量为n2,<n1,n2>=θ,则二面角α-l-β为θ或π-θ.设二面角大小为φ,则|cosφ|=__________=__________.
|cosθ|
01
02
利用向量法求二面角的两种方法
例题讲解:正方体ABEF-DCE′F′中, M,N分别为AC,BF的中点(如图),求平面MNA与平面MNB所成角的余弦值.
【解析】方法一:设正方体棱长为1.以B为坐标原点,BA,BE,BC所在直线分别为x轴,y轴,z轴建立空间直角坐标系B-xyz,则A(1,0,0),B(0,0,0).取MN的中点G,连接BG,AG,则 因为△AMN,△BMN为等腰三角形, 所以AG⊥MN,BG⊥MN.所以∠AGB为 二面角的平面角或其补角. 因为 所以

【高考】数学求二面角方法

【高考】数学求二面角方法
利用空间向量:(设二面角平面角为A)
1)先建立直角坐标系,求出个点坐标;
2)设面S1的法向量为N(X1,Y1,Z1),面S2法向量为M(X2,Y2,Z2);
3)在S1内找两条线L1,L2,让N×L1=0,N×L2=0求出N的坐标,M也是如此求出;
4)然后利用cosA=N×M/|N|×|M|即可求出A的值(注:由图观察二面角是锐角还是钝角,而且看求出的cosA是正值还是负值。若二面角是锐角,则cosA的值应为正,反之则然。)
一、定义法:
从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
二、三垂线法
三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。
本定理亦提供了另一种添辅助线的一般规律.
三.补棱法
本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决
四、射影面积法( )
凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos )求出二面角的大小。
求二面角大小的基本步骤
(1)作出二面角的平面角:
A:利用等腰(含等边)三角形底边的中点作平面角;
B:利用面的垂线(三垂线定理或其逆定理)作平面角;
C:利用与棱垂直的直线,通过作棱的垂面作平面角;

用法向量求二面角的大小及其角度关系的确定

用法向量求二面角的大小及其角度关系的确定

用法向量求二面角的大小及其角度关系的确定我们都知道,向量知识在数学学科里有其非常广泛的应用,尤其是在立体几何求角和距离时,若利用向量知识求解会得到事半功倍的效果,也正体现了向量知识的工具性和灵活性。

而在应用向量知识求解二面角的大小时,不是所有的二面角的两个半平面的法向量的夹角都和二面角相等,有时是互补,那么,什么时候相等,什么时候互补,如何确定其“角度之间的大小关系”一直以来是困扰很多教师和学生的一个难题。

向量有其自身的独特性质—自由性,当一个向量在空间的某一位置时,可以自由移动,只要满足其方向不变,其无论移动到任何位置,向量都是相等的。

根据这一性质,当我们把二面角的某个半平面的法向量求出后,把它的起点放到坐标原点,然后确定其向量的方向的指向,从而确定其法向量的夹角和二面角的大小的关系,在确定了法向量的夹角与二面角的关系后,再利用向量的数量积求出二面角的大小,下面就来具体阐述一下这一做法。

一.规定法向量的指向方向1.当法向量的方向指向二面角的内部时称之为向里指,如:图1中的向量。

1n 2.当法向量的方向指向二面角的外部时称之为向外指,如:图1中的向量。

2n 二.法向量的夹角和二面角大小的关系1.设 分别为平面的法向量,二面角的大小为,向量21,n n βα,βα--l θ的夹角为,当两个法向量的方向都向里或都向外指时,则有21,n n ϕ(图2);πϕθ=+2.当两个法向量的方向一个向里指一个向外指时(图3)ϕθ=图2图3三、在坐标系中做出法向量,从而确定法向量的方向指向1.已知二面角,若平面的法向量,由向量的相等条βα--l α)3,4,4(=n 件知,坐标是(4,4,3)的向量有无数多个,根据向量的自由性,我们只需n 做出由原点出发的一个向量便可,如图4所示,从而,我们很容易的判断出平面法向量的方向的指向,是指向二面角的里面。

α2.若平面法向量,同理可做出从原点出发的法向量,如图5α)1,3,4(--=n 所示,显然,方向是指向二面角的外面。

空间向量应用-二面角

空间向量应用-二面角

04
二面角的应用
在几何学中的应用
向量投影
在求解向量的投影时,可以利用二面 角的概念,通过计算向量在某一平面 上的投影长度,来得到该向量与该平 面的夹角。
向量夹角
二面角的概念可以用于计算两个向量 的夹角,通过比较两个向量的夹角与 二面角的夹角,可以判断两个向量的 方向关系。
在物理学中的应用
力的合成与分解
建筑设计
在建筑设计中,利用二面角的概念可以确定建筑物的位置、方向和高度等信息, 以保证建筑物的安全和稳定性。
05
空间向量与二面角的关系
向量与二面角的关联
向量是既有大小又有方向的量,其大 小和方向可以用来表示二面角的大小 和方向。
二面角的大小和方向可以通过两个向 量的夹角来描述,这个夹角就是二面 角的平面角。
二面角的向量定义
总结词
二面角的向量定义是通过向量的投影 和叉积来定义的,它是一个标量值, 其大小等于两个向量的叉积的绝对值 再除以两向量的模的乘积。
详细描述
二面角的向量定义是通过向量的投影和叉积来 描述的。设两非零向量a和b分别属于两个半平 面,那么二面角θ的大小可以用公式 ∣a×b∣/∣a∣∣b∣表示,其中a×b表示向量a和b 的叉积,∣a∣和∣b∣分别表示向量a和b的模。这 个标量值的大小就等于二面角θ的大小。
二面角的性质
总结词
二面角具有一些重要的性质,如二面角的取值范围是[0,π],二面角的大小与观察方向有关,以及二面角的补角等 于其平面角的补角等。
详细描述
首先,二面角的取值范围是[0,π],这是由其几何定义直接得出的。其次,二面角的大小与观察方向有关,即观察 方向的不同可能导致二面角的大小发生变化。最后,二面角的补角等于其平面角的补角,这是由向量的性质得出 的。

3.2向量法求二面角

3.2向量法求二面角

3.2向量法求二面角(16-1)编制人:闵小梅 审核人:王志刚【使用说明及学法指导】 1.完成预习案中的相关问题;2.尝试完成探究案中合作探究部分,注意书写规范;3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。

【学习目标】会用法向量求二面角的大小 【教学重点】向量法求二面角的大小【教学难点】建立适当的坐标系,准确写出点的空间坐标 一、复习引入 【复习】知识点1.向量法求两条异面直线所成的角(范围:]2,0(πθ∈)|||||,cos |cos n m=><=θ知识点2.向量法求直线与平面所成角(范围:[θ∈sin |cos ,|n AB θ=<>=r uu u r类比以上求法,思考如何用向量法求二面角? 回顾二面角的有关概念: (1) 二面角的定义平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角。

(2)二面角的平面角①过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角,[0,]AOB π∠∈。

②一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角,[0,]AOB π∠∈。

abαθO12)【引入】知识点3.向量法求二面角(范围:[0,]θπ∈)①方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。

如图,设二面角βα--l 的大小为θ,其中βα⊂⊥⊂⊥CD l CD AB l AB ,,,.结论:②法向量法如图1、2所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即 ;如图3、4所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即结论:cos θ= 或 cos θ=二面角l αβ--为锐二面角时,cos θ=二面角l αβ--为钝二面角时,cos θ= 【尝试练习】1.已知两平面的法向量分别为1n r =(0,1,0),2n r=(0,1,3),则两平面所成的二面角余弦值为____ 2.(课本P107练习2改编)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB 。

向量法求二面角

向量法求二面角
a, a, b), BC1 = (0, − a , b), 2 2 uuuu uuuu 1 2 2 r r 由于AB1 ⊥ BC1 ,所以A 1 ⋅ B 1 =− a +b =0 所以 B C
2 2 B 1 ( 0 , a , b ), D ( 3 a , 1 a , 0) 4r uuuu r 3 1 4 uuuu
10
立体几何中的向量方法三
异面直线所成的角
rr 设异面直线a、b的方向向量为a、 b,所成的角为θ, 则有
r r a ⋅b rr cos θ =cos a, = r r b a b
斜线与平面所成的角
r r 设平面α的一个法向量为n,斜线AB的一个方向向量为a, AB与α 所成的角为θ,则有
r r n ⋅a rr sin θ = cos a, = r r n n a
例2、在正方体 1中,E是BB1中点,求 、在正方体AC 是 中点, 的大小; (1)二面角 )二面角A-DE-B的大小; 的大小
(2 ) 面 A D E 与 面 B 1C 1 E 所 成 二 面 角 的 余 ( 3) 求面ADE与面A1DE所成二面角的大小; Z D1 C1
弦 ;
A1 D A X
二面角及其平面角
B
α
l
o
A
β
例1:(1)已知二面角α -l-β的大小为1200,AC ⊂ α, BD ⊂ β , AC ⊥ l,BD ⊥ l , B、A为垂足, AC = 1, AB = 1, BD = 1, 求CD的长;
D1 A1 B1C1D Fra bibliotek BC
(2)已知二面角α -l-β中,AC ⊂ α,BD ⊂ β , AC ⊥ l, BD ⊥ l , B、A为垂足, AC = 1, BA = 1, BD = 1, CD =2; 求二面角α -l-β的大小;

二面角的平面角及求法-精品

二面角的平面角及求法-精品

二面角的平面角及求法1、二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱为AB、面分别为a、0的二面角记作二面角a-45-0.有时为了方便,也可在a、P内(棱以外的半平面部分)分别取点尸、0,将这个二面角记作夕-AB-Q.如果棱记作/,那么这个二面角记作二面角a-/-0或尸2、二面角的平面角在二面角a-/-0的棱/上任取一点0,以点0为垂足,在半平面a和0内分别作垂直于棱/的射线。

4和08,则射线04和06构成的N4O6叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.二面角的平面角NZ06的大小与点。

的位置无关,也就是说,我们可以根据需要来选择棱/上的点0.3、二面角的平面角求法:(1)定义;(2)三垂线定理及其逆定理;①定理内容:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直.②三垂线定理(逆定理)法:由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角.(3)找(作)公垂面法:由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.;(4)平移或延长(展)线(面)法;(5)射影公式;(6)化归为分别垂直于二面角的两个面的两条直线所成的角;(7)向量法:用空间向量求平面间夹角的方法:设平面a和0的法向量分别为:和若两个平面的夹角为仇则(1)当O〈Vu,v>^—,e=Vu,v>,此时cose=cosVu,v>=-7-^—.2 lullvl―♦―♦—♦1]■V (2)当——<<u,V>W TT时,0=cos(n-Vu,v>)=-cos<u,v>=-=———2 lullvl。

二面角的求法和利用空间向量解决立体几何问题

二面角的求法和利用空间向量解决立体几何问题

二面角的定义:
1、定义
从一条直线出发的两个半平面所组成
的图形叫做二面角, 这条直线叫做二面角
l
的棱, 这两个半平面叫做二面角的面.
2、二面角的表示方法
二面角-AB-
A
C
B
二面角- l-
D
l
B
A
二面角C-AB- D
F
E
A
B
D
C
二面角C-AB- E
二面角的平面角:
以二面角的棱上任意一点为端
点, 在两个面内分别作垂直于棱的 两条射线, 这两条射线所成的角叫 做二面角的平面角。
面面平行
∥ n1 ∥ n2 n1 kn2
二、垂直关系:
设直线 l, m 的方向向量分别为 AB,CD ,
平面 , 的法向量分别为 n1 , n2 , 线线垂直:
l ⊥ m AB ⊥ CD AB • CD 0 ;
Bl
A
平面 内的两个相交向量垂直
(4)解方程组,令其中一个量的值求另外两个, 即得法向量。
一、平行关系:
设直线 l, m 的方向向量分别为 AB,CD ,
lm
BD
平面 , 的法向量分别为
线线平行:
n1
, n2

l ∥ m AB ∥ CD AB kCD

x1 y1
=
A
x2 y2
=
C
x3 y3
线面平行
AB
l ∥ AB n1 AB n1 0 ;
分别作垂直于a 的两条射线OA,OB,则∠AOB就 是此二面角的平面角。
2、垂线法: 在一个平面 内选一点A向另一平面 作 垂线AB,
垂足为B,再过点B向棱a作垂线BO,垂足 为O, 连结AO,则∠AOB就是二面角的平面角。

求二面角平面角的方法

求二面角平面角的方法

寻找二面角的平面角的方法二面角是高中立体几何中的一个重要内容,也是一个难点.对于二面角方面的问题,学生往往无从下手,他们并不是不会构造三角形或解三角形,而是没有掌握寻找二面角的平面角的方法.我们试将寻找二面角的平面角的方法归纳为以下六种类型. 1.1 二面角的相关概念新教材]1[在二面角中给出的定义如下:从一条直线出发的两个半平面所组成的图形叫做二面角.定义只给出二面角的定性描述,关于二面角的定量刻画还必须放到二面角的平面角中去研究.教材如下给出了二面角的平面角的概念:二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.2. 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角 二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角 由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍.2.1 定位二面角的平面角,求解二面角二面角常见题型中根据所求两面是否有公共棱可分为两类:有棱二面角、无棱二面角.对于前者的二面角的定位通常采用找点、连线或平移等手段来定位出二面角的平面角;而对于无棱二面角我们还必须通过构造图形如延展平面或找公垂面等方法使其有“无棱”而“现棱”再进一步定位二面角的平面角.一、根据平面角的定义找出二面角的平面角 例1 在60的二面角βα--a 的两个面内,分别有A 和B 两点.已知A 和B 到棱的距离分别为2和4,且线段10=AB ,试求:(1)直线AB 与棱a 所构成的角的正弦值; (2)直线AB 与平面α所构成的角的正弦值.分析:求解这道题,首先得找出二面角的平面角,也就是找出60角在哪儿.如果解决了这个问题,这道题也就解决了一半.根据题意,在平面β内作a AD ⊥;在平面α内作α⊥BE ,EBCD //,连结BC 、AC .可以证明a CD ⊥,则由二面角的平面角的定义,可知ADC ∠为二面角βα--a α图1的平面角.以下求解略.例1 正方体ABCD-A1B1C1D1中,求二面角A-BD-C1的大小为 . 例2(2006年江苏试题)如图2(1),在正三角形ABC中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A1EF 的位置,使二面角A1-EF-B 成直二面角,连 接A1B 、A1P.(Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A1P-F 的余弦值 tan ∠COC 1=2分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o ,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=552,在△QMF 中,由余弦定理得cos ∠QMF=87-。

3.2利用空间向量求二面角

3.2利用空间向量求二面角
AD (1,
SD. 得n (2, 1,1)
0, 0)是平面SAB的法向量,
cos AD, n AD n 6 | AD || n | 3
4.求两法向量夹角
所求二面角的余弦值为: 6 3
5.定值
巩固练习1: 正方体ABCD—A1B1C1D1的棱长为2,点Q 是BC的中点,求二面角A—DQ—A1的余弦 值.
3.2利用空间向量求二面角
温故知新
已学习:二面角及二面角的平面角的概念
会:建立空间直角坐标系 进行向量坐标运算 求平面的法向量
已掌握:用向量求解线线角、线面角的方法
温故知新 1.二面角的定义
从一条直线出发的两个半平面所组成的图形叫做二面角。
2.二面角的范围: [0, ]
O
探究方法
问题1:
求直线和平面所成的角可转化成直线的方向向量与 平面的法向量的夹角,那么二面角的大小与两个半 平面的法向量有着怎样的关系呢?
高考链接
(2019.18)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4, AB=2,∠BAD=60°,E,M,N 分别是BC,BB1,A1D 的中点.
(1)证明:MN∥平面C1DE; (2)求二面角A-MA1-N的正弦值.
z
【点睛】
本题考查线面平行关系的证明、空
间向量法求解二面角的问题.求解二
面角的关键是能够利用垂直关系建
立空间直角坐标系,从而通过求解
O
法向量夹角的弦值来得到二面角
的正弦值,属于常规题型.
x
y
n
a
n1 n2
l
探究方法
问题2:二面角的大小与两个平面法向量夹角的关系?
n1,n2
n1,n2

高考数学复习点拨 利用空间向量求二面角的两种策略

高考数学复习点拨 利用空间向量求二面角的两种策略

利用空间向量求二面角的两种策略策略一:先作出二面角的的平面角,再利用向量的内积公式求解:设∠AOB 是一二面角α-l -β的一个平面角,则向量OA →与OB →所成的角就是所求的二面角的大小.例1 在正方体ABCD-A 1B 1C 1D 1中,求平面A 1BD 与平面C 1BD 所成二面角.解法一:如图1,设AC 与BD 交于O ,连结A 1O ,C 1O ,因为A 1D=A 1B ,所以A 1O ⊥BD ,同理C 1D ⊥BD.∴∠A 1OC 1就是平面A 1BD 与平面C 1BD 所成二面角的平面角.设正方体棱长为1,则|AO →|=22,A 1O →=A 1A →+AO →,∴|A 1O →|2=(A 1A →+AO →)·(A 1A →+AO →)=|A 1A →|2+2A 1A →·AO →+|AO →|2=1+12+2×22×cos90︒=32,∴|A 1O →|=62,同理|C 1O →|=62,又OA 1→·OC 1→=(OA →+AA 1→)·(OC →+CC 1→)=OA →·OC →+OA →·CC 1→+AA 1→·OC →+AA 1→·CC 1→=﹣12+0+0+1=12,∴cos<OA 1→,OC 1→>=OA 1→·OC1→|A 1O →|·|C 1O →|=1262×62=13.故平面A 1BD 与平面C 1BD 所成二面角大小为arccos 13.解法二:设AC 与BD 交于E ,连结A 1E ,C 1E ,因为A 1D=A 1B ,所以A 1E ⊥BD , 同理C 1E ⊥BD.∴∠A 1EC 1就是平面A 1BD 与平面C 1BD 所成二面角的平面角. 建立如图2所示的空间直角坐标系D-xyz ,设正方体的棱长为2,则A 1(2,0,2),C 1(0,2,2),E(1,1,0),∴EA 1→=(1,-1,2),EC 1→=(-1,1,2), ∴EA 1→·EC 1→=1×(-1)+(-1)×1+2×2=2,|EA 1→|=|EC 1→|=6,∴cos<EA 1→,EC 1→>=EA 1→·EC 1→|EA 1→|·|EC 1→|=26×6=13.故平面A 1BD 与平面C 1BD 所成二面角大小为arccos 13.策略二:利用平面的法向量求解:设n 1→是平面α的法向量,n 2→是平面β的法向量.①若两个平面的二面角如图3所示的示意图,则n 1→与n 2→之间的夹角就是欲求的二面角;②若两个平面的二面角如图4所示的示意图,设n 1→与n 2→之间的夹角为θ.则两个平面的二面角为π﹣θ.图3图4图1图2例2如图5,四边形ABCD 是直角梯形,∠ABC=90︒,SA ⊥平面ABCD ,SA=AB=BC=1,AD=12,求平面SCD 与平面SAB 所成二面角的大小.解法一:平面SAB 的法向量是→A D ,平面SCD 的法向量可设为n →=λ→AD +μ→AB +→AS . ∵SA ⊥平面ABCD ,∴→AS ·→AB =0,→AS ·→DA =0,→AS ·→B C=0, 又AB ⊥AD ,AB ⊥BC ,∴→AB ·→AD =0,→AB ·→B C=0 由n →·→DC =(λ→AD +μ→AB +→AS )·(→DA +→AB +→B C)=λ→AD ·→DA +λ→AD ·→B C+μ→AB ·→AB =﹣14λ+12λ+μ=14λ+μ=0,又n →·→DS =(λ→AD +μ→AB +→AS )·(→AS ﹣→AD )=→AS ·→AS ﹣λ→AD ·→AD =1﹣14λ=0,∴λ=4,μ=﹣1,∴n →=4→AD ﹣→AB +→AS ,∴→AD ·n →=→AD ·(4→AD -→AB +→AS )=4|→AD |2=1 ∴|n →|2=(4→AD ﹣→AB +→AS )2=16|→AD |2+|→AB |2+|→AS |2=6,∴|n →|= 6.设θ表示平面SCD 与平面SAB 所成二面角,则cos θ=→AD ·n→|→AD |·|n →|=112·6=63.∴θ=arccos63. 故平面SCD 与平面SAB 所成二面角的大小为arccos63. 解法二:建立如图6所示的空间直角坐标系A ﹣xyz ,则A(0,0,0),D(12,0,0),C(1,1,0),S(0,0,1),由条件易知,AD →是面SAB 的法向量,且AD →=(12,0,0),设面SCD 的法向量为n →=(x ,y ,z),∵SD →=(12,0,﹣1),DC →=(12,1,0),又n →·SD →=0,n →·DC →=0,∴12x ﹣z=0。

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1、如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12,MP⊥AP.(1)求PO的长;(2)求二面角A-PM-C的正弦值.2、如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F 分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.3、如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.4、如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.5、如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值6、如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.7、如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.8、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.答案:1、解:(1)如图,连接AC,BD,因为ABCD为菱形,则AC∩BD=O,且AC⊥BD.以O为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知, BM→=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0, 从而OM→=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0, 即M ⎝ ⎛⎭⎪⎫-34,34,0.设P (0,0,a ),a >0,则AP→=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去), 即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0, 得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0, 得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, sin 〈n 1,n 2〉=1-⎝⎛⎭⎪⎫-1552=105, 故所求二面角A -PM -C 的正弦值为105.2、(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC→=0. 从而EF →⊥BC →,所以EF ⊥BC .(2)平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32,由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角, 则cos θ=|cos 〈n 1,n 2〉| =⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15. 因此sin θ=25=255,即所求二面角的正弦值为255.3、.解:以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a ,0,0),B (2a ,2a ,0),C (0,2a ,0),D 1(0,0,a ),F (a ,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)因为AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ), 所以|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB 1→||DD 1→|=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:因为BB 1→=(-a ,-a ,a ),BC →=(-2a ,0,0),FB 1→=(0,a ,a ), 所以⎩⎪⎨⎪⎧FB 1→·BB 1→=0,FB 1→·BC →=0,所以FB 1⊥BB 1,FB 1⊥BC . 因为BB 1∩BC =B , 所以FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, 因为CC 1→=(0,-a ,a ),FC →=(-a ,2a ,0), 所以⎩⎪⎨⎪⎧n ·CC 1→=0,n ·FC →=0,即⎩⎨⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),所以||cos 〈FB 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪FB 1→·n |FB 1→||n |=33,因为二面角F -CC 1-B 为锐角, 所以二面角F -CC 1-B 的余弦值为33.4、解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)如图,过D 作DG ⊥EF ,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz . 由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°, 则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF , 所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC→=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0. 所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量, 则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.5、解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD→=(2,0,0),AF →=(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎨⎧2x =0,x -y +2z =0.不妨设z =1,可得n 1=(0,2,1).又EG →=(0,1,-2),所以EG →·n 1=0, 又因为直线EG ⊄平面ADF , 所以EG ∥平面ADF .(2)易证,OA→=(-1,1,0)为平面OEF 的一个法向量. 依题意,EF→=(1,1,0),CF →=(-1,1,2).设n 2=(x ,y ,z )为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎨⎧x +y =0,-x +y +2z =0.不妨设x =1,可得n 2=(1,-1,1).因此cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以,二面角O -EF -C 的正弦值为33.(3)由AH =23HF ,得AH =25AF .因为AF→=(1,-1,2),所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45,因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以,直线BH 和平面CEF 所成角的正弦值为721.6、解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面PAB ,所以AD→是平面PAB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →= (-λ,-1,2λ),又DP→=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时, |cos 〈CQ→,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.7、解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂平面A 1DE ,B 1C ⊄平面A 1DE ,于是B 1C ∥平面A 1DE . 又B 1C ⊂平面B 1CD 1,平面A 1DE ∩平面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量为n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎨⎧0.5r 1+0.5s 1=0,s 1-t 1=0,因为(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量为n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1),所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63. 8、解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,所以DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.如图,以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知,DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED→, 即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36, 故二面角A -PD -C 的余弦值为36.。

利用向量知识求线线角,线面角,二面角的大小

利用向量知识求线线角,线面角,二面角的大小

直线和平面所成的角、二面角都是教学大纲和高考考纲要求掌握的,是立体几何的重点内容,也是高考的必考内容.要熟练掌握它们,需要从以下四个方面入手。

一、1个公式公式12cos cos cos q q q =中涉及三个角,q 是指平面的斜线l 与平面内过斜足且不同于射影的直线m 所在所成的角,1q 是指l 与其射影'l 所成的角,2q 是指'l 与m 所成的角.其中210cos 1,.q q q <<<由此可得最小角定理.二、2个定义1.线面角:一个平面的斜线和它在这个平面内的射影所成的角,叫做斜线和这个平面所成的角(斜线和平面的夹角).如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或直线在平面内,那么说直线和平面所成的角是零度的角.直线和平面所成的角的取值范围为[0,90]鞍,斜线和平面所成角的取值范围为(0,90)鞍.2.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,其中直线、半平面分别叫做二面角的棱和面.一个平面垂直于二面角l a b --的棱l ,且与两个半平面的交线分别是射线OA OB 、,O 为垂足,则AOB Ð叫做二面角l a b --的平面角.它决定着二面角的大小.其中平面角是直角的二面角叫做直二面有,相交成直二面角的两个平面叫做互相垂直的平面.二面角的取值范围为[0,180]鞍.三、3个定理1.最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中最小的角.2.平面与平面垂直的判定定理:如果一个平面过另一个平面的一条垂线,那么这两个平面互相垂直.3.平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面.四、4类求法1.几何法求直线和平面的夹角:根据直线和平面所成角的定义,先找出或作出直线在平面内的射影,然后把直线、射影对应的线段放在三角形中进行求解,其中能够寻找到垂直关系用直角三角形求解更佳.2.向量法求直线和平面的夹角:主要适用于图形比较规则,容易建立空间直角坐标系或容易选择空间向量的基底(要求作为基底的三个向量的模及夹角已知)的题目.(1)平面向量法:在斜线上取向量a 和其射影上取向量'a (注意方向,夹角为锐角),则|'|c o s ,'|||'|a a a a a a ×<>=×,这里a 、'a 形式上在同一个平面内;(2)法向量法:在斜线上取向量a ,并求出平面的法向量n ,所求夹角记为q ,则||sin |cos ,|||||a n a n a n q ×=<>=×,所以||arcsin ||||a n a n q ×=×.需要注意的是,当法向量与坐标平面平行或垂直时,可以直接给出法向量,当法向量与坐标平面不平行也不垂直时,由于法向量不唯一,不妨设横坐标、纵坐标、竖坐标中的某一个坐标为1,而且尽量让1以外的坐标在点乘中与0相乘,这样计算量较小.3.几何法求二面角的大小:(1)定义法(垂面法):过二面角内的一点作棱的垂面,垂面与二个半平面的交线形成所求平面角. (2)等价定义法:在二面角的棱上取一点(中点等特殊点) ,分别在两个半平面内作棱的垂线,得出平面角.(3)三垂线法:先作(或找)出二面角的一个面内一点到另一个面的垂线,用三垂线定理或逆定理作出平面角.(4)射影面积法:利用面积射影公式cos S S q =射投其中 为平面角的大小,特点在于不需要画出平面角,也不需要找出棱,尤其适用于没有画出棱的二面角问题.4.向量法求二面角的大小:图形比较规则,又不容易直接作出平面角的具体顶点时,可采用此法.(1)平面向量法:在棱上取一平面角的顶点,利用向量垂直时点乘等于零,求出平面角顶点的坐标,进而转化为向量夹角问题,此时两个向量形式上在同一个平面内.(2)空间向量法:方法基本同(1),此时两个向量形式上不在同一个平面内,思维量、运算都小一些,试题更具有一般性.(3)法向量法:建立空间直角坐标系后,分别求出两个平面的法向量,,利用公式||||,cos n m ⋅>=<.另外:证明两个平面垂直的关键是面面垂直转化为线面垂直;两个平面垂直的性质应用关键是在一个平面内找出两个平面交线的垂线.利用向量知识求线线角,线面角,二面角的大小。

空间向量处理二面角

空间向量处理二面角

二面角二面角的求解方法(范围: )一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、在四棱锥P -ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B -PC -D 的大小。

变式:如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P -ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,⊥ABC=30°,求二面角P -BC -A 的大小。

p ABCDL HjA BC DPH ABCD A 1 B 1C 1D 1EOPOBA变式1、如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.变式2、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC —B 的大小为45°。

求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小变式3、如图,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.PlCBAB 1AA 1BLE FCDPMBA四、射影法(无棱二面角)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

用空间向量求二面角时角大小的确定

用空间向量求二面角时角大小的确定
参 考 文献 : [ ] 建 跃. 学基 础 知 识 及 其 教 学 的再 认 识 . 1章 数 中学 数 学 教
概 念 的 本 质 去 解 决 以“ 式 ” 现 的 具 体 问题 。 如 “ 算 ( 5 变 出 例 计 一— 2 )一 a5 ” 由于 学 生 只看 到平 方 差 公 式 为 一 字 母 或 一 具 体 a (2 + ) , 数 字 而 不 能 从 本 质 上 去 理 解 公 式 , 缩 小 了公 式 的外 延 , 能 故 不 解出此题。 概 念 的 僵 化 反 映 了思 维 的刻 板 . 即所 谓 “ 识 学 得 太 死 ” 知 。 为 克 服 概 念 的 僵 化 。有 必 要 从 初 一 到 高 三 的 教 学 中有 意 识 地 引 导启 发 学 生 注 意 表 示 概 念 的式 或 图 .又要 引 导 他 们 从 概 念 的 本 质 属 性 去认 识 . 察 各 种 “ 观 变式 ” 的情 形 。 别 注 意 到字 母 特 既 可 表 示 数 又 可 表 示 式 。 选 择 一 些 灵 活 应 用 概 念 的 练 习题 , 要 使学生 能正确 、 面地理解和应用概念 。 全
用 空 间 向 量 求 二 面 角 时 角 大 小 的 确 定
李 玉玲
( 苏省 新 海 高 级 中学 , 苏 连 云 港 江 江 在 立 体 几 何 中 。 们 经 常 利 用 空 间 向量 的 方 法 来 求 两 个 我 平 面所成的二面角的大小 。 即在 二 面 角 0 l1 。 平 面仅的法 【一 中 设 一 3 向 量 , 面 1 法 向量 n( ) 0 则 二 面 角 仪 l B 平 3 的 .m, = , 一 一— 的平 面 角
ny 密 1, …. - D ,
令X l则 l I l , n (,11 l , y -,=  ̄q 1 , = = Z 1O = - )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用空间向量求二面角的平面角
1.二面角的概念:
二面角的定义.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为
l αβ--.
2.二面角的平面角:
过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线
,OA OB ,则AOB ∠叫做二面角l αβ--的平面角
3、二面角的大小
(1)二面角的平面角范围是[0,180];
(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直
4、用法向量求二面角
5、面面角的求法
(1)法向量法:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角
(2)方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。

D C
β
α
B
A O m 2
m 1
n 2
n 1
D
C
β
α
l
如图所示,分别在二面角α-l -β的面α,β内,并且沿α,β延伸的方向,作向量1n ⊥l ,2n ⊥l ,则我们可以用向量1n 与2n 的夹角来度量这个二面角。

如图,设1m ⊥α,2m ⊥β,则角<12,m m >与该二面角相等或互补。

cos cos ,AB CD AB CD AB CD
θ⋅==

小结:
1.异面直线所成角:
2.直线与平面所成角:
3.二面角:
二.求二面角的平面角:
例1:在正方体AC1中,求二面角D1—AC —D 的大小?
例2:如图,三棱锥P-ABC 中,面PBC ⊥面ABC ,⊿PBC 是边长为a 的正三角形,∠ACB= 90°, ∠BAC=30°,BM=MC 。

(1)求证: PB ⊥AC (2)二面角C-PA-M 的大小 。

cos cos ,AB CD
AB CD AB CD θ⋅==⋅
1
A
例1:在棱长为1的正方体1AC 中,求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角正弦值大小.
解:过1C 作1C O BD ⊥于点O , ∵正方体1AC ,∴1CC ⊥平面ABCD ,
∴1COC ∠为平面1C BD 与平面ABCD 所成二面角
1C BD C --的平面角,
可以求得:3
6
sin 1=
∠COC ,所以,平面1C BD 与底面ABCD 所成 二面角1C BD C --的平面角的正弦值大小为
3
6 例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值
分析:要求二面角的正弦值,首先要找到二面角的平面角 解:过D 作BC DF ⊥于F ,过D 作AC DE ⊥于E ,连结EF ,则AC 垂直于平面DEF , FED ∠为二面角B AC D --的平面角, 又AB ⊥平面BCD ,
∴AB DF ⊥,AB CD ⊥,
∴DF ⊥平面ABC , ∴DF EF ⊥
又∵AB CD ⊥,BD CD ⊥,
∴CD ⊥平面ABD ,∴CD AD ⊥,
设BD a =,则2AB BC a ==,
在Rt
BCD ∆中,
1
1
22
BCD S BC DF BD CD ∆=
⋅=⋅
,∴DF =
同理,
Rt ACD ∆
中,DE =,
∴sin 5DF FED DE ∠===, 所以,二面角B AC D --.
A
B C D
E
F
通过观察探究利用法向量解决: 例1:解:建立空间直角坐标系得:
)1,1,0(1=DC ,)0,1,1(=DB ,)0,1,0(=DC
设平面1C BD 的法向量),,(1111z y x n =,平面CBD 的法向量),,(2222z y x n =,可得
)1,1,1(1-=n ,)1,0,0(2=n ,33cos 21=
n n ,即二面角的平面角3
6sin =θ 例2:解:建立空间直角坐标系得: )2,2
1
,23(
),2,0,0(),2,2,0(-==-=AD BA AC 设平面BAC 的法向量),,(1111z y x n =,平面DAC 的法向量),,(2222z y x n =得:
)1,0,0(1=n ,)33,33,
1(2=n ,5
15cos 21=n n 所以,二面角B AC D --10
.。

相关文档
最新文档