钛合金焊接通用知识教学教材
钛合金焊接工艺
⑴工业纯钛 按其纯度可分为 TA1、TA2、TA3 等牌号,其中 TA1 的杂质最少,少量杂质将使强度增 高、塑性降低,故 TA1 的强度最低(σb 为 300~500MPa)、塑性最好(δ 为 30%)。
⑵热物理性能特殊 钛和钛合金和其它金属比较,具有熔点高、热容量较小、热导率小的特点,因此焊 接接头易产生过热组织,晶粒变得粗大,特别是 β 钛合金,易引起塑性降低,所以在选择焊接参数时, 既要保证不过热,又要防止淬硬现象。由于淬硬现象可通过热处理改善,而晶粒粗大却很难细化,因此 为防止晶粒粗大,应选择硬参数。
表 65 钛和钛合金自动熔化极氩弧焊焊接工艺参数
焊件厚度 焊丝直径
(mm)
(mm)
送丝速度 (mm/min)
电弧电压 焊接电流
(V)
(A)
焊接速度 喷嘴内径 氩气流量 (mm/min) (mm) (L/min)
3.0
1.6
550~650
20
250~260
380
20~25 40~45
6.0
1.6
750~800
熔化极氩弧焊有较大的热功率,适用于 3~20mm 中厚板的焊接。这种方法具有焊接速度高、成本低、 气孔倾向也比钨极氩弧焊少的优点。但主要缺点是飞溅较大,影响焊缝成形和区域保护。短路过渡适于 较薄件焊接,喷射过渡适于较厚件焊接。由于熔化极焊接时填丝较多,故焊件的坡口角度较大,厚 15~ 25mm 一般选用 90°、Y 形坡口。焊接工艺参数,见表 65。
⑸变形大 钛的弹性模量约比钢小一半,所以焊接残余变形较大,并且焊后变形的矫正较为困难。
焊工培训课件焊接基础知识学习教案
焊工培训课件焊接基础知识学习教案教案:焊接基础知识学习教学内容:本节课主要学习焊接基础知识,包括焊接的定义、分类和基本过程。
教材章节为《焊工培训课件》的第一章。
教学目标:1. 了解焊接的定义和分类;2. 掌握焊接的基本过程;3. 能够运用焊接知识解释实际焊接现象。
教学难点与重点:重点:焊接的定义、分类和基本过程;难点:焊接基本过程的细节和实际应用。
教具与学具准备:1. 教材《焊工培训课件》第一章;2. 投影仪;3. 焊接实物或图片;4. 练习题。
教学过程:一、实践情景引入(5分钟)通过展示一些焊接实物或图片,让学生观察并思考:这些物体是如何焊接而成的?焊接过程中有哪些步骤?二、教材讲解(15分钟)1. 焊接的定义:介绍焊接的定义,强调焊接是一种连接金属或其他材料的加工方法。
2. 焊接的分类:介绍常见的焊接方法,如气体保护焊、电弧焊、激光焊等,并简要说明各种焊接方法的特点。
3. 焊接的基本过程:详细讲解焊接的基本过程,包括预处理、焊接、后处理等步骤,并强调每个步骤的重要性。
三、例题讲解(15分钟)给出一个实际的焊接问题,如焊接某种材料的工艺参数选择,通过讲解和解题过程,让学生理解焊接知识的实际应用。
四、随堂练习(10分钟)给出一些与焊接相关的问题,让学生运用所学的知识进行解答,巩固所学内容。
五、板书设计(5分钟)六、作业设计(5分钟)1. 作业题目:请解释焊接的定义,并描述焊接的基本过程。
2. 答案:焊接是一种连接金属或其他材料的加工方法。
焊接的基本过程包括预处理、焊接、后处理等步骤。
七、课后反思及拓展延伸(5分钟)让学生思考:本节课所学的焊接知识在日常生活中的应用,并鼓励学生进行拓展学习,了解更多的焊接方法和技术。
焊工培训课件焊接基础知识学习教案重点和难点解析:一、教学内容在教学内容中,需要重点关注的是对焊接定义、分类和基本过程的详细解释。
这是整个教案的核心部分,也是学生需要理解和掌握的基础知识。
(2024年)焊工培训教材课件
保护气体种类
常用的保护气体有氩气、 二氧化碳、氩二氧化碳混 合气体等。
保护气体选用
选用保护气体时,需考虑 焊接方法、母材成分、焊 缝质量要求等因素。
15
焊接材料的选用与保管
选用原则
选用焊接材料时,应遵循等强度原则、等成分原则或特殊性能要求原则。
保管要求
焊接材料应存放在干燥、通风良好的库房内,避免潮湿、污染和阳光直射。同 时,应按类别、规格分别存放,并标识清晰。
根据焊接过程中金属所处的状态 及工艺特点,焊接可分为熔化焊 、压力焊和钎焊三大类。
4
焊接接头与焊缝形式
焊接接头形式
对接接头、角接接头、T形接头和搭 接接头等。
焊缝形式
对接焊缝、角焊缝、端接焊缝和塞焊 缝等。
5
焊接应力与变形
1 2
焊接应力的产生
焊接过程中,由于局部加热和冷却的不均匀性, 导致焊件产生不均匀的收缩,从而产生焊接应力 。
气割原理及设备
利用氧气与可燃气体混合燃烧产生的高温预热金属,并在预热处吹入高速氧气流,使金属 迅速氧化并吹掉氧化物以达到切割金属的目的。设备包括氧气瓶、可燃气体瓶(如丙烷瓶 )、减压器、割炬等。
安全操作规程
在进行气焊和气割时,必须严格遵守安全操作规程,如检查设备是否完好、正确使用减压 器和回火防止器等,以确保操作过程中的安全。
21
05 焊接安全与防护
22
焊接安全操作规程
01
02
03
04
焊接前准备
检查焊接设备、工具及材料是 否完好,确保工作区域整洁、
无易燃易爆物品。
穿戴防护用品
按规定穿戴好防护服、防护鞋 、手套、面罩等个人防护用品
。
安全操作
钛合金焊接通用知识
钛合金焊接通用知识钛及钛合金1 物理化学性能良好的耐腐蚀性能(常温表面形成致密氧化膜),优于不锈钢10倍,在还原性介质中稍差,经氮化处理后增强;比强度大。
工业用量最大的是TC4,其次是工业纯钛和TA7。
纯钛抗拉强度350-700Mpa ,伸长率20-30%,冷弯角80-130,具有良好的低温性能,线膨胀系数和热导率小,利于焊接。
钛合金中合金元素分类 相α稳定元素 β 中性元素置换式 置换式 Sn Zr HfAl(<6%或10%) V Cr Co Cu Fe Mn Ni WMo Pa Ta 间隙式间隙式 O(<0.2%)N(<0.05)C(<0.1) H(<0.015%)工业纯钛在化学工业得到广泛应用,w(Pd)0.2%的钛-0.2Pd合金抗间隙腐蚀能力比工业纯钛好。
TA7(美国称ELI级)具有良好的超低温性能,ONH 等间隙元素含量很低,可用于液氢、液氦贮箱和其他超低温构件。
钛合金分为α、β、α+β相,牌号分别为TA、TB、TC。
α型钛合金不能热处理强化,可进行退火消除残余应力;α+β型钛合金可热处理强化,代表合金TC4,淬火-时效处理比退火状态抗拉强度提高180Mpa,综合性能良好,广泛应用于航空航天工业,缺点是淬透性较差,不超过25mm,为此发展了高淬透性和强度略高的TC10。
TB2钛合金是近年研制的高强钛合金,属于亚稳β合金,强度高、冷成形性好、焊接性尚可。
Ti-33Mo属于稳定β合金,耐腐蚀非常好。
常用钛及钛合金室温力学性能见表13-32 钛及钛合金的焊接性2.1 间隙元素玷污引起脆化钛是一种活性金属,常温下与氧生成致密的氧化膜而保持高的稳定性和耐腐蚀性。
540℃以上生成的氧化膜不致密,300℃以上快速吸氢,600℃以上快速吸氧,700℃以上快速吸氮,在空气中容易进行。
必须对其焊缝及热影响区进行保护,焊接过程中,要求对其400以上区域进行保护。
O和N间隙固溶于钛,变形抗力增加,强度和硬度增加,塑性和韧性下降。
【精品】钛及钛合金焊接(压力容器焊工培训)
钛及钛合金的焊接--—-压力容器焊工培训教材第一节钛及钛合金的焊接第二节钛及钛合金一、概述钛是一种银白色的有色金属,其主要物理性能到于表1。
钛及钛合金的特点是具有较高的比重的强度,良好的塑性,韧性和较高的耐蚀性,尤其是对碱介质,氯化物,硫化物,硝酸化合物,强腐蚀性气体(氯气、亚硫酸气、硫酸氢)等,具有很高耐蚀性(年腐蚀率在0.13mm 以下),因此广泛应用于研究航天工业,化学工业,也用于制造船舶与海洋工程及火电,核电设备中的海水淡化装置及热交换器等.表1钛与奥氏体不锈钢的物理性能二、钛及钛合金分类钛材分为工业纯钛和含有稳定化元素的钛合金二大类。
工业纯钛根据其杂质(主要是氧和铁)含量,以及由此而引起的强度差别分为T A0、T A1、T A2、T A3 等牌号。
它具有良好的耐蚀性、塑性、韧性、和焊接性,主要用作化学工业的耐蚀结构材料。
钛合金按所含稳定化元素形成不同的固熔相,又可分为α型钛合金α+β型钛合金和β型钛合金。
α型钛合金主要通过加入铝(Al),有的再加入中性元素锰(Sn)等进行固溶强化而形成,例如牌号为T A7(Ti—5Al—2。
5Sn)钛合金.α型钛合金的强度比工业纯钛高,具有良好的耐蚀性和焊接性能。
α+β型钛合金的组织,是以α型钛为与β型钛为基的两相固溶体组织结构.它的特点是可通过热处理强化而得到高强度,因此,其力学性能可以在较宽的范围内变化,以适应不同的用途。
但是,随着其中的β相比例的提高,使焊接性能变差.β型钛合金含有较高的β相稳定化元素,在一般的工艺条件下,其组织几乎全为β相,通过时效热处理,β型钛合金强度增高。
单一β相的β型钛合金,具有良好的加工硬化特性,常用作弹簧,销钉等物件,其缺点是低温脆性大,焊接性能差.三、压力容器用钛及钛合金材料1、钛制焊接压力容器对钛材的要求钛制焊接压力容器,由于其使用制造和检验要求,因此,对用于钛制焊接压力容器的钛及钛合金材料,有它特殊的要求,主要有下列三方面:⑴制造容器用钛及钛合金材料应当具有良好的耐蚀性能、力学性能、焊接性能、成形性能及其他工艺性能。
α+β型钛合金教学资料
α+β型钛合金α-β型钛合金TC1钛合金一、概述TC1钛合金是低合金化的Ti-Al-Mn系近α型钛合金,含有2%的α稳定元素Al,对α相起固溶强化的作用。
还含有1.5%的共析型β稳定元素Mn,起到强化β相并改善工艺塑性的功能。
TC1钛合金名义成分的铝当量为3.0,钼当量为2.5,其主要性能特点是比工业纯钛略高的使用强度和很好的工艺塑性。
该合金还具有良好的焊接性能和热稳定性,长时间工作温度350℃。
TC1钛合金最适合于制造形状复杂的板材冲压并焊接的零部件,在航空航天工业和民用行业中获得了广泛应用。
该合金只在退火状态下使用,不能采用固溶时效处理进行强化,其主要半成品是板材、棒材、管材、锻件、型材和丝材等。
在飞机和航空发动机结构中,TC1合金主要用于制造形状较复杂、强度要求不高的板材冲压成形并焊接的零部件。
350℃下的工作寿命为2000h,300℃下的工作寿命可达30000h。
某型号战斗机上TC1合金板材的单机用量达到230Kg,主要用于制造后机身的机尾整流罩、蒙皮和外侧壁板等。
航空发动机中,TC1合金主要用于制造各种壳体和隔热罩。
TC1钛合金在民用行业中也获得广泛应用,例如汽车工业中的消音器、车架和吊挂件等。
二、化学成分GB/T 3620.1-2007《钛及钛合金牌号和化学成分》所规定的化学成分见表7-4-1。
三、合金性能密度4.55g/cm3,室温弹性模量127GPa,相变点920±20℃,硬度HBS210-250。
技术标准规定的性能见表7-4-2TC4钛合金一、概述TC4(Ti-6Al-4V)钛合金是世界上开发最早、应用最广的钛合金。
它的产量约占全世界各种钛合金半成品总产量的一半以上,在航空航天工业中超过80%。
Al通过固溶强化α相提高合金的室温强度和热强性能,而V既提高强度又改善塑性。
V还能抑制α2超结构相的形成,避免在长时间使用过程中出现合金脆化。
TC4钛合金的主要特点是优异的综合性能和良好的工艺特性。
钛及钛合金的焊接
钛及钛合金手工TIG焊的工艺参数
板 坡 钨极 焊丝 焊接 焊接 氩气流量/(L/min)
厚 口 直径 直径 层数 电流
/m 形 /mm /mm
/A 主喷嘴 拖罩
背面
m式
喷嘴 孔径
/mm
0. I形 1. 1.0 1
5
5
30~5 8~10 14~16 6~8 10 0
③焊前工件及焊丝应仔细清理。
④根据不同的母材及性能要求,正确选择焊丝规范及焊后 热处理。
⑤施焊时应加强保护:T > 400℃时熔池采用Ar2保护,焊 正面时,背面也要Ar气保护。
1.氩气流量 2.气体保护 3.工艺参数
工业纯钛焊缝表面颜色与接头冷弯角的关系
焊缝表面颜 温度
色
/℃
保护效 果
银白色 金黄色
2.焊前准备 一.焊前清洗
• 1.机械清理
• 可用细砂布或不锈钢丝刷擦拭,或用硬质合金刮刀刮削待焊边缘,刮削 0.025mm即可去除氧化膜。然后用丙酮、四氯化碳或甲醇等溶剂去除坡 口两侧的手印、有机物质及焊丝表面的油污等
• 2.化学清理
• 如果钛板热轧后已经酸洗,存放中又生成新的氧化膜时,可在质量分数 为2%-4%的HF+质量分数为30%-40%的HN03 + H20 溶液中浸泡 15-20min,然后用清水冲洗干净并烘干。
钛及钛合金的焊接工艺
10材控1
李萧
5.3.3钛及钛合金焊接工艺
(1)焊接方法及焊接材料
钛及钛合金的性质活泼,溶解氮、氢、氧的能 力很强,常规的焊条电弧焊、气焊、CO2气体保 护焊不适用于钛及钛合金的焊接。用于钛及钛合 金的主要焊接方法及其特点见表5-37。应用最多 的是钨极氩弧焊和熔化极氩弧焊,等离子弧焊、 电子束焊、钎焊和扩散焊等也有应用。
焊接基础知识培训教材(1)
6)硫(S)硫是一种有害杂质,随着硫含量的增加,将增大焊 缝的热裂纹倾向,因此焊芯中硫的含量不得大于0. 04%。在焊接 重要结构时,硫含量不得大于0. 03%。
7)磷 (P) 磷是一种有害杂质,随着含量的增加,将增大焊缝 的冷裂纹倾向。
焊接基础知识培训教材(1)
Ⅳ.仰焊:手工仰焊,由于焊条摆动方式与平、立、横均不 相同,其影像无平、立、横的运条波纹,如同许多个圆饼 形纹组成的焊缝影像,黑度不均匀,若其背面为平焊缝, 则还可见不太明显的平焊波纹。
焊接基础知识培训教材(1)
手工电弧焊是利用焊条与工件之间的电弧热,将焊条和
部分工件熔化而形成焊缝的焊接方法
焊接基础知识培训教材 (1)
2020/11/21
焊接基础知识培训教材(1)
1. 焊接概念 2. 焊接分类 3. 焊接接头 4. 焊接缺陷 5. 焊接考试
焊接基础知识培训教材(1)
一、焊接概念
焊接在现代工业生产中具有十分重要地作用,在制造大型结构 或复杂地机器部件时,更显优越,因为它可以用化大为小,化 复杂为简单地方法准备坯料,然后用逐次装配焊接地方法拼小 成大,这是其他工艺方法难以做到的。 利用加热或加压或二者并用的方法,将两种或两种以上的同种 或异种材料,通过原子或分子之间的结合和扩散连接成一体的 工艺过程。
焊接基础知识培训教材(1)
正接和反接时,焊接电弧的形状不一样。显然,只有采用直流焊接 电源时,才有正接和反接两种接线法,交流焊接电源由于正、负极 在不断地交替,所以不存在极性问题。 焊件极性的选择原则:
1、焊条电弧焊使用碱性低氢焊条时,一律采用反接。若采用正接, 则电弧燃烧不稳定电弧声音很暴燥,发出强烈的嘶嘶声飞溅很大, 并且极容易产生气孔。使用酸性焊条时,极性对电弧的稳定燃烧影 响不大。
钢与钛合金焊接ppt课件
钢与钛及其合金的焊接
2、钛及钛合金焊接特点
钛及钛合金密度小,强度高,良好的塑性和韧性,足够的抗腐蚀性和 高温强度,最为突出的特点是比强度高。 因而,在石油、化工、航空航天以及原子能工业生产中得到了广泛 应用,尤其是钢+铁的双金属焊接结构应用更为广泛。
因此,对钢与钛焊接的研究更为迫切。
钢与钛及其合金的焊接
2、钢与钛及其合金的焊接特性
图12所示为铁-钛合金状态图。铁在钛中的溶解度极低,焊接时焊缝 金属中容易形成金属间化合物FeTi、Fe2Ti,使接头金属塑性严重下 降,脆性增加。与不锈钢焊接时,钛还会与Fe、Cr、Ni形成更加复 杂的金属间化合物,使焊缝严重脆化,甚至产生裂纹、气孔。因此, 最好避免采用熔焊方法,尽量采用压焊或钎等方法。
钢与钛及其合金的焊接
2、钢与钛及其合金的焊接特性
铁的比重与线膨胀系数分别为钛的1. 7 倍与1. 6倍,而导热系数更为钛的5. 5 倍
钢与钛及其合金的焊接
2、钢与钛及其合金的焊接特性
TiFe 相是硬脆的金属间化合物, 在Ti 与Fe 组成的合金中, 它剧烈地 提高合金的强度, 但显著地降低塑性。含有0. 14 %Fe 的钛,它的 硬度为Hv199 ,而当含Fe量为2. 2 %时,硬度则提高到Hv450 ,δ则相 应地从18. 5 %降低到2. 5 %。
(1) 用一种与钛、铁两元素能形成连续的或宽范围固溶体的金属来直接 进行焊接;
(2) 用一种或两种与钛、铁两元素有好的可焊性的金属作为中间填料, 使钛与钢间接地焊接起来;
(3) 采用低于钛、铁熔点的焊接方法。
钢与钛及其合金的焊接
2、钛及钛合金焊接特点
111
钢与钛及其合金的焊接
2、钛及钛合金焊接特点
《焊接完整教材》word版
焊接第一部分:基础知识一、连接方法:铆接、螺栓连接、焊接。
1.特点及应用:2.焊接:就是通过加热或加压,或两者并用,并且使用或不用填充材料,使工件达到结合的方法。
焊接过程中会产生有毒气体、有害粉尘、弧光辐射、高频电磁场、噪声和射线等危害因素。
这些因素可导致爆炸、火灾、烫伤、急性中毒、血液疾病、电光性眼炎和皮肤病等职业病。
焊接安全技术研究的主要内容是防火、防爆、防触电以及在尘毒、磁场、辐射等条件下如何保障工人的身心健康,实现安全操作。
3.焊接方法分类:按照焊接过程中金属的状态及工艺特点,分为三种。
熔化焊:是利用局部加热的方法将连接处的金属加热至熔化状态而完成的焊接方法。
压力焊:是焊接时施加一定的压力而完成焊接的方法。
加热至塑性状态后加压(锻焊、接触焊、摩擦焊)。
不加热而直接压至塑性变形(冷压焊、爆炸焊)。
钎焊:把比被焊金属熔点低的钎料金属加热熔化至液态,然后使其渗透到被焊金属接缝的间隙中而达到结合的方法。
烙铁钎焊,火焰钎焊等。
4.切割的分类:根据加热方法的不同分三种。
火焰切割:分为氧--乙炔气切割、液化石油气切割、氢氧源切割、氧溶剂切割。
电弧切割:等离子弧切割、碳弧气割。
冷切割:激光切割、水射流切割。
200—400MPa的高压水。
二、物质分两类:1.金属2.非金属3.晶体4.非晶体晶格:金属的原子按照一定方式有规则的排列成一定空间几何形状的结晶格子。
2.钢中常见的组织:1.铁素体(F)2.渗碳体(Fe3C)3.珠光体(P)4.奥氏体(A)5.马氏体(M)E点是碳在奥氏体中的最大溶解度点,也是区分钢与铸铁的分界点,其温度为1147℃,含碳量为2.11%。
3.钢的热处理:将金属加热到一定温度,并保持一定时间,然后以一定冷却速度冷却到室温,这个过程称为热处理。
分四种:1)淬火2)回火3)正火4)退火5.金属材料的性能:物理性能、化学性能、力学性能、工艺性能。
屈服强度:当拉应力达到某一数值不再增加时而变形继续增加,这个拉应力称屈服强度。
焊接完整教材-13页word资料
焊接第一部分:基础知识一、连接方法:铆接、螺栓连接、焊接。
1.特点及应用:2.焊接:就是通过加热或加压,或两者并用,并且使用或不用填充材料,使工件达到结合的方法。
焊接过程中会产生有毒气体、有害粉尘、弧光辐射、高频电磁场、噪声和射线等危害因素。
这些因素可导致爆炸、火灾、烫伤、急性中毒、血液疾病、电光性眼炎和皮肤病等职业病。
焊接安全技术研究的主要内容是防火、防爆、防触电以及在尘毒、磁场、辐射等条件下如何保障工人的身心健康,实现安全操作。
3.焊接方法分类:按照焊接过程中金属的状态及工艺特点,分为三种。
熔化焊:是利用局部加热的方法将连接处的金属加热至熔化状态而完成的焊接方法。
压力焊:是焊接时施加一定的压力而完成焊接的方法。
加热至塑性状态后加压(锻焊、接触焊、摩擦焊)。
不加热而直接压至塑性变形(冷压焊、爆炸焊)。
钎焊:把比被焊金属熔点低的钎料金属加热熔化至液态,然后使其渗透到被焊金属接缝的间隙中而达到结合的方法。
烙铁钎焊,火焰钎焊等。
4.切割的分类:根据加热方法的不同分三种。
火焰切割:分为氧--乙炔气切割、液化石油气切割、氢氧源切割、氧溶剂切割。
电弧切割:等离子弧切割、碳弧气割。
冷切割:激光切割、水射流切割。
200—400MPa 的高压水。
二、物质分两类:1.金属2.非金属3.晶体4.非晶体晶格:金属的原子按照一定方式有规则的排列成一定空间几何形状的结晶格子。
2.钢中常见的组织:1.铁素体(F)2.渗碳体(Fe3C)3.珠光体(P)4.奥氏体(A)5.马氏体(M)E点是碳在奥氏体中的最大溶解度点,也是区分钢与铸铁的分界点,其温度为1147℃,含碳量为2.11%。
3.钢的热处理:将金属加热到一定温度,并保持一定时间,然后以一定冷却速度冷却到室温,这个过程称为热处理。
分四种:1)淬火2)回火3)正火4)退火5.金属材料的性能:物理性能、化学性能、力学性能、工艺性能。
屈服强度:当拉应力达到某一数值不再增加时而变形继续增加,这个拉应力称屈服强度。
钛焊接作业指导书
钛/钢(TA2/Q235B)复合板焊接作业指导书目录1 主题内容及适用范围1.1 主题内容1.2 适用范围2 书引用文件3 材料3.1 钛/钢(TA2/Q235B)复合板3.2 钛(TA2)盖条3.3 焊接材料4 焊工5 焊接方法与设备6 焊接工艺评定7 焊前准备7.1 下料7.2 坡口制备7.3 焊前清理、准备8 焊接8.1 焊接工艺参数8.2 技术要求9 质量检验9.1 检验人员9.2 检验项目10 焊接缺陷返修11 焊接环境12 安全防护1主题内容及适用范围1.1 主题内容本焊接施工指导书规定了电厂用TA2/Q235B复合板焊接时,对材料、焊工、焊前准备、焊接工艺、焊接质量检验以及焊接过程中焊接缺陷返修等的技术条件,作为钛/钢(TA2/Q235B)复合板现场施工作业指导书。
1.2 适用范围适用于电厂烟囱用钛/钢(TA2/Q235B)复合板,即以钛(TA2)为复层,以低碳结构钢(Q235B)为基层的钛/钢(TA2/Q235B)复合板的焊接。
凡本指导书涉及的内容,如与设计图纸、技术协议不相符合处,均应首先满足设计要求;凡本书未涉及的内容,则以相应的国家标准、设计图纸和技术说明为准。
2 书引用文件《钢结构工程施工质量验收规范》 GB50205-2001《钢焊缝手工超声波探伤方法和探伤结果分级》 GB11345-1989《涂装前钢材表面锈蚀等级和除锈等级》GB8923-88《钢结构焊接技术规程》JGJ81-2002《电力建设施工质量验收及评定规程》(土建工程)DL/T5210.1-2005《钛及钛合金复合钢板焊接技术要求》GB/T13149-91《钛制焊接容器》JB/T4745-2002《钛-钢复合板》GB8547-20063 材料本指导书中所有材料应符合设计施工图、技术要求的规定,且都必须有合法有效的材料质量证明书。
3.1 钛-钢(TA2/Q235B)复合板钛-钢(TA2/Q235B)复合板应符合GB/T8547-2006《钛-钢复合板》的规定及订货合同中技术协议的要求,其尺寸规格、坡口形式及刨边尺寸以设计图纸、技术要求和订货合同为准。
钛合金焊接
DOCS SMART CREATE
钛合金焊接技术研究与应用
DOCS
01
钛合金的基本特性及焊接
需求
钛合金的化学成分与力学性能
钛合金的化学成分特点
• 含有较高的钛元素,含量一般在**50%**以上
• 含有其他元素,如铝、钒、铁等,以提高力学性能
• 不同种类的钛合金含有不同的元素比例,以满足不同的性能需求
• 需要考虑焊接材料的成本、可获得性等因素进行匹配
焊接材料的优化
• 可以通过成分优化和工艺优化提高焊接材料的性能
• 可以通过新材料开发和材料复合提高焊接材料的性能
• 可以通过计算机模拟和实验验证优化焊接材料的性能
04
钛合金焊接工艺与参数优
化
焊接工艺对钛合金焊接质量的影响
焊接工艺对焊接质量的影响
• 焊接工艺的稳定性影响焊接接头的性能和寿命
焊接缺陷的修复方法
• 可以采用无损检测方法,如X射线检测、超声波检测等
• 可以采用焊补方法,如填丝焊、堆焊等
• 可以采用破坏性检测方法,如切片检查、拉伸试验等
• 可以采用材料更换方法,如更换受损部件等
• 可以采用结构优化方法,如改变焊接结构等
06
钛合金焊接结构设计与强
度分析
钛合金焊接结构的设计原则与方法
• 焊接工艺的精度影响焊接结构的尺寸和形状
• 焊接工艺的效率影响生产过程的成本和周期
钛合金焊接工艺的特殊性
• 需要控制热输入以防止过热和产生缺陷
• 需要控制焊接速度以保证焊接质量
• 需要考虑应力与变形问题以保证焊接结构的稳定性
焊接参数的选择与调整
焊接参数的选择
• 需要根据焊接对象的材质、结构和性能要求选择焊接参数
焊接技师培训教材(焊接通用工艺)
焊趾
焊趾
焊缝宽度
焊趾
36
(4)焊缝余高
超出母材表面连线上面的那部分焊缝金属的高度叫余高。 焊缝余高使焊缝的截面积增加,强度提高,但也使焊趾处产生应力集中。
余高既不能低于母材,也不能太高。一般为0~3毫米。
37
(5)熔深
焊缝截面上,母材或前道焊缝熔化的深度叫熔深。 当填充材料一定时,熔深的大小决定了焊缝的化学成分。
基本符号是用来表示焊缝横剖面的基本形状或特征, 它采用近似于焊缝横剖面形状的符号来表示。
5
(2)基本符号
6
7
8
9
10
(3)基本符号的组合
11
( 4) 焊 缝 标 致 示 例
12
(5)补充符号(1)
补充符号用来说明有关焊缝或接头的某些特征(如 表面形状、衬垫、焊缝分布、施工地点等)而采用的符 号。原来的“辅助符号”和“补充符号”合并为“补充
焊接技师培训教材
(焊接通用工艺)
张明录
1
目 录
一.焊缝符号和焊接方法代号 二.焊缝形状和尺寸 三.焊接应力与变形 四.焊接缺陷 五.焊接质量检验
2
一.焊缝符号和焊接方法代号
GB/T324—2008《焊缝符号表示方法》
GB/T5185—2005《金属焊接及钎焊方法在图样上的表示
代号》组成。 通过焊缝符号和焊接方法代号配套使用就能简单明了 的在图样上表示焊接方法,焊缝形式、焊缝尺寸、焊缝 表面状态、焊缝位置等。
焊接残余变形
47
(1)收缩变形
焊件焊后沿焊缝方向的收缩(纵向收缩)和在垂直焊缝 方向的收缩(横向收缩)。
钛合金1-钛基础知识教材
钛的基础知识一、钛元素Ti与人类应用数千年的金银铜铁相比,人类认识钛元素的时间并不长。
1789年,人们发现了一种未知的新元素,其原子序数为22,原子核由22个质子和20-32个中子组成。
6年后的1795年,一位德国化学家Martin Heinric h Klaproth在研究来自匈牙利的矿物——“金红石”(请您记住这个词)时,发现了含有这种新元素的白色氧化物。
最终,他将这种元素命名为,钛,元素字母Ti, 全称Titanium,源自希腊神话中大地之子的拉丁语:Titans。
这个偶然的拉丁语命名,确实很有预见性,因为它的意思是——力大无比的巨人。
重量轻:钛的密度只有4.51克/立方厘米,是钢的57%,铜的50%。
耐高温:比如航空器在2.2马赫时,表面温度会达到220℃以上,这时铝合金机械性能开始下降。
达到3马赫时,表面温度会达到230℃以上,这时不锈钢机械性能也开始下降。
而高温钛合金,500℃仍可以保持很好的强度性能。
耐低温:钛合金在-196℃的低温条件下也能保持良好的塑性,不像钢那样容易变脆,因此是航空航天的液氢贮箱的好材料。
耐腐蚀:纯钛在空气中非常容易形成一层致密、附着力强、惰性极大的氧化膜,在315℃以下耐腐蚀性都极强,而且氧化膜即使被机械磨损,也会很快自愈再生。
因此,钛与碳氢化合物几乎不反应,这一性质使得钛阀门和管道接头在石油化学工业广泛应用。
同样因为耐腐蚀,钛可以在海水中长期浸泡无恙(见表1)。
表1:各金属在不同海水中腐蚀83天的情况低磁性:钛基本上没有磁性,用钛建造的军舰、潜艇可以避免磁性水雷的攻击。
苏联的一艘台风级核潜艇采用9 000吨钛合金做外壳,也是利用了钛的耐腐蚀和低磁性的性质。
此外,还有三项功能,主要表现在钛合金,而不是纯钛上。
能记忆:钛合金在低温下施加外力塑性变形,除去外力后加温到一定程度,能恢复到原来形状。
比如中国研制的钛镍Ti-50Ni50合金, 就有2个温度-形状记忆点:0-37℃,和100-130℃。
钛及钛合金焊接
α固溶体,从而提高结晶温度。含铝 5%的钛合金,其在结晶温度从纯钛的 600°C 提高到 800°C;从而提高耐热性能和力学性能也有所提高。。铝还能够扩大氢在 钛中的溶解度,减少形成氢脆的敏感性,但铝的加入量不宜过多,否则容易出现 Ti3Al 相而引起脆性,通常铝含量不超过 7%。α钛合金具有高温强度好,韧性 好,抗氧化能力强,焊接性能优良,组织稳定等特点,强度比工业纯钛高,但加 工性能比β和α+β合金差。α合金不能进行热处理强化,但可以通过 600~ 700°C 的退火处理消除加工硬化;或通过不完全退火(550~650°C)消除焊接时 的应力。
(1)α钛合金 α钛合金主要通过加入α稳定性元素 Al 和中性元素 Sn、Zr 等进行固溶强化 而形成的。α钛合金有时也加入β稳定元素,因此α钛合金又分为完全有α相单 相组成的α合金、β稳定元素含量小于 20%的类α合金和能够时效强化的α合 金(Cu<2.5%的 Ti-Cu 合金)。α钛合金主要合金元素是铝,铝溶入钛中形成
2. 钛及钛合金的焊接特点................................................................. 5 2.1 钛的化学活性大..................................................................... 5 2.2 钛的熔点高、热容量大、电阻系数大、导热性差............. 6 2.3 焊接变形大,而且校正较困难.............................................. 6 2.4 焊缝有形成气孔的倾向......................................................... 7 2.5 接头区的脆化......................................................................... 8 2.6 焊接裂纹.................................................................................. 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钛合金焊接通用知识
钛及钛合金
1 物理化学性能
良好的耐腐蚀性能(常温表面形成致密氧化膜),优于不锈钢10倍,在还原性介质中稍差,经氮化处理后增强;比强度大。
工业用量最大的是TC4,其次是工业纯钛和TA7。
纯钛抗拉强度350-700Mpa,伸长率20-30%,冷弯角80-130,具有良好的低温性能,线膨胀系数和热导率小,利于焊接。
钛合金中合金元素分类
工业纯钛在化学工业得到广泛应用,w(Pd)0.2%的钛-0.2Pd合金抗间隙腐蚀能力比工业纯钛好。
TA7(美国称ELI级)具有良好的超低温性能,ONH等间隙元素含量很低,可用于液氢、液氦贮箱和其他超低温构件。
钛合金分为α、β、α+β相,牌号分别为TA、TB、TC。
α型钛合金不能热处理强化,可进行退火消除残余应力;
α+β型钛合金可热处理强化,代表合金TC4,淬火-时效处理比退火状态抗拉强度提高180Mpa,综合性能良好,广泛应用于航空航天工业,缺点是淬透性较差,不超过25mm,为此发展了高淬透性和强度略高的TC10。
TB2钛合金是近年研制的高强钛合金,属于亚稳β合金,强度高、冷成形性好、焊接性尚可。
Ti-33Mo属于稳定β合金,耐腐蚀非常好。
常用钛及钛合金室温力学性能见表13-3
2 钛及钛合金的焊接性
2.1 间隙元素玷污引起脆化
钛是一种活性金属,常温下与氧生成致密的氧化膜而保持高的稳定性和耐腐蚀性。
540℃以上生成的氧化膜不致密,300℃以上快速吸氢,600℃以上快速吸氧,700℃以上快速吸氮,在空气中容易进行。
必须对其焊缝及热影响区进行保护,焊接过程中,要求对其400以上区域进行保护。
O和N间隙固溶于钛,变形抗力增加,强度和硬度增加,塑性和韧性下降。
H含量增加,焊缝金属冲击韧度急剧降低,而塑性下降较少,氢化物引起脆性。
C间隙固溶于α型钛合金中,强度提高,塑性下降,超过溶解度时生成硬而脆的TiC,呈网状分布,易于引起裂纹,焊前应注意清理工件及焊丝上的油污。
2.2 焊接相变引起的性能变化
由于钛熔点高,比热及热到系数小,冷却速度慢,焊接热影响区在高温下停留时间长,使高温β晶粒极易过热粗化,接头塑性降低。
2.2.1 α型钛合金
工业纯钛,TA7和耐蚀合金Ti-0.2Pd。
合金焊缝和热影响区是锯齿状α和针状α组织。
焊接性能良好,接头强度系数接近100%,塑性稍差,原因为:焊缝为铸造组织,比轧制状态塑性低;粗晶;焊接时若加快冷却,易产生针状α组织,对接头塑性不利,冷速以10-200℃/s较好,太慢过热,太快易产生针状α组织。
2.2.2 α+β型钛合金
TC1、TC4、TC10三种,室温平衡组织为α+β。
TC1合金退火状态下β相少,焊接性能良好,冷却速度以12-150℃/s较好;
TC4合金以α相为主,加热到β转变温度996±14℃以上快冷时β-α’,α’为钛过饱和针状马氏体,晶粒粗大的原始β相晶界清晰可见。
焊接接头塑性,特别是断面收缩率较低,但断裂韧性较高,可提高20%。
TC4合金可淬火状态下焊接,焊后时效。
退火状态下焊接时接头强度系数可达100%,塑性约为母材的一半,焊接时合适的冷却速度2-40℃/s,可以采用较大的热输入,不宜采用太小的热输入。
TC10合金元素含量较高,焊接性较差,12mm合金焊接时会出现热影响区裂纹。
预热250℃可预防裂纹并能提高接头塑性。
2.2.3 β型钛合金
分为亚稳和稳定两种,亚稳是β相(TB2)加入极少量α相,焊后热处理析出α相,容易引起脆性。
TB2合金抗拉强度可达1320Mpa,焊后进行520-580℃、8h时效处理,接头强
度可达1180Mpa,伸长率可达7%,而经500℃、8h×620℃、0.5h时效处理,接头强度可达1080Mpa,伸长率可达13%
Ti-33Mo合金组织为稳定β相,耐腐蚀钛合金,焊接时无相变,焊接性良好。
2.3 裂纹
S、P、C等杂质很少,低熔点共晶很难在晶界出现,有效结晶温度区间窄,加之焊缝凝固时收缩量小,因此很少出现焊接热裂纹。
但当焊丝有裂纹、夹层等缺陷,含有大量有害杂质时可能出现热裂纹。
保护不良或α+β型钛合金中含β稳定元素较多时会出现热应力裂纹和冷裂纹。
加强焊接保护,防止有害杂质玷污和焊前预热,焊后缓冷可以减少甚至消除热应力裂纹和冷裂纹。
钛合金焊接时,热影响区可能出现延迟裂纹,这是由于焊接时熔池和低温区母材中的氢向热影响区扩散,引起热影响区氢含量增加,生成氢化钛,加上不利的应力状态引起的。
应降低焊接接头氢含量,选用氢含量低的材料(包括焊丝、母材、氩气),注意焊前清理,焊后进行真空去氢处理,及时消除残余应力。
薄壁α+β型钛合金用工业纯钛做填充材料时不会出现氢化钛,厚板α+β型钛合金多层焊时,若用工业纯钛做填充材料可能出现氢化钛并引起氢脆。
2.4 气孔
焊接热输入量大时,气孔位于熔合线附近,热输入量小时,气孔位于焊缝中部。
气孔能使疲劳强度降低一半甚至3/4。
一般情况下,氢不是气孔主要来源,焊丝和坡口表面清洁度是影响气孔最主要因素,如拉丝时表面润滑剂、磨粒、增塑剂、粗糙端面等。
去掉毛刺和减少表面粗糙度可以大大减少气孔。
熔池停留时间增加使气泡浮出,周围气体扩散促使气泡长大。
3 焊接材料和工艺
3.1 焊接材料
一般填充金属与母材标称成分相同,为改善接头韧性、塑性,有时采用强度低于母材的填充材料,如用TA1TA2焊接TA7和厚度不大的TC4,用TC3焊TC4。
填充金属的间隙元素含量要低于母材一半,如w(O)<0.12%,w(N)<0.03%,w(H)<0.006%, w(C)<0.04%,填充丝直径1-3。
保护气,以及纯氩99.99%,露点低于-60℃。
用环氧基或乙烯基塑料软管输送保护气。
增加熔深可用氦气。
3.2 焊前清理
除油:3%氢氟酸-35%硝酸水溶液,低于40℃防止增氢。
或机械磨光、刮削待焊表面用无水乙醇清洗;
除氧化皮:不锈钢丝、锉刀,喷丸、蒸汽喷沙;磨削,用碳化硅砂轮。
3.3 钨极氩弧焊
喷嘴直径16-18
厚度大于1mm的焊件用托罩,宽25-60mm,长40-100mm,分布管靠近进气一侧钻有直径0.8-1mm小孔,孔距10mm,经不锈钢网或多孔板(厚0.8-1mm,孔径1mm,距离8-10mm)进入保护区。
自动焊托罩长60-200mm。
距焊件距离10-20mm。
自动焊时加冷却水。
注意保护焊缝背面。
钛及合金密度小,熔池表面张力大,焊漏可能性比钢小,只要保护良好,容易获得良好的背面成形。
为加强冷却,自动焊背面垫板采用纯铜板,凹槽深2mm,宽3-8mm,槽下有通气孔,孔径1.0mm,孔距10mm,通氩气。
真空充氩舱,刚性采用不锈钢制造,柔性采用薄橡胶、透明塑料制造。
抽真空1.3-
13Pa,充氩气或氩-氦混合气焊接。
自动氩弧焊焊接钛合金参数
手工氩弧焊焊焊接钛合金参数
3.4 熔化极氩弧焊
热功率较大,用于中厚度产品焊接,可减少焊接层数、提高焊接速度和生产率、降低成本,气孔比钨极氩弧焊也少,飞溅较多,影响成形和保护,短路过渡用于薄板,喷射过渡适用于厚件,焊接破口角度较大,厚15-25mm一般选用90度单面v形坡口或不开坡口,留1-2mm间隙两面各焊一道。
托罩须加强。
3.5 等离子弧焊接
能量集中,单面焊双面成形、弧长变化对熔透程度影响小,无钨夹杂、气孔少和接头性能好等优点,适于钛合金焊接。
小孔型一次焊透2.5-15mm钛材,熔透型3mmm以上需开坡口。
背面沟槽尺寸宽深各20-30mm,背面保护气流量也要增加。
15mm以上钛材开V形或U 形坡口、钝边取6-8mm,用小孔型等离子弧封底,然后再用其他方法填满坡口。
TC4(TC3焊丝)接头塑性可达70%。
等离子弧焊接典型工艺参数
3.6 真空电子束焊
优点:冶金质量好,焊缝窄,深宽比大,焊缝角变形小,焊缝及热影响区晶粒细,接头性能好,焊缝和热影响区保护好,焊厚件时效率高。
缺点:焊缝向母材过渡不平滑,容易出现气孔,结构尺寸受真空室限制。
焊前认真清理,多用酸洗和机械加工,采用2道焊改善表面成形,第一道高功率密度深熔焊,第二道低功率密度修饰焊,可提高接头疲劳性能。
电子束摆动可改善焊缝成形、细化晶粒和减少气孔,接头性能也随之提高。
有时加背面垫板,预防未焊透或成型不良。
3.7 激光焊
3.8 闪光焊
3.9 高频焊
3.10 摩擦焊
3.11 扩散焊
3.12 扩散钎焊
3.13电阻点缝焊
4 焊缝缺陷及补焊工艺。