整数规划的数学模型分枝定界法割平面法型整数规PPT课件
合集下载
数据、模型与决策 第四章 整数规划ppt课件
性规划,也称为全整数线性规划。 • 混合整数线性规划 • 决策变量中的一部分必需取整数值,
而其他的可以不取整数值的整数线性规 划。 • 0-1型整数线性规划 • 决策变量只能取0或1的整数线性规
4.1.3 建立整数规划模型
• 实例分析: • 一家电子厂消费两种产品A1和A2,
需经过三道工序加工:B1,B2,B 3。单件加工利润以及各工时每周限额 如表所示。应该如何安排消费才干获得 最大利润?
• 最后求得最优解为 A=4,B=1, 目的函数为14。
问题二上 界14.5下界
13
松弛问
题上界 14.75下 界13
问题三上界 13.5下界13
问题四 A=3B=2Z=13
问题五 A=4B=1Z=14
• 利用分枝定界法求解整数规划问题的步 骤:
• 第一步:求解相应的线性规划问题,并 确定目的函数值的上下界。
4.4.2 0-1规划的解题过程
• 实例分析: • AK公司预备开发几种新产品,该公司的四个
工程小组分别都提出了各自的方案,但是由于 公司的投资金额有限,不能对一切工程进展投 资,必需在其中作出选择。表4-5列出了各 个工程对于资金、任务人员以及将会产生的净 现值的情况。总的投资额为1100万元,可 以调用的任务人员一共有22人。关于投资的 工程,还有一个附加条件,即工程1和工程4 由于某些缘由不得同时投资。应该如何挑选投 资工程?
工程
产品
A
〔件〕
1
A 产品 〔件〕 2
工时限额 〔小时/周〕
工序B1 0.4 0.5 200
工序B2 0.4 0.3 180
工序B3 0.3 0.2 120
利润〔元/件〕 30 28 --
解题过程:
而其他的可以不取整数值的整数线性规 划。 • 0-1型整数线性规划 • 决策变量只能取0或1的整数线性规
4.1.3 建立整数规划模型
• 实例分析: • 一家电子厂消费两种产品A1和A2,
需经过三道工序加工:B1,B2,B 3。单件加工利润以及各工时每周限额 如表所示。应该如何安排消费才干获得 最大利润?
• 最后求得最优解为 A=4,B=1, 目的函数为14。
问题二上 界14.5下界
13
松弛问
题上界 14.75下 界13
问题三上界 13.5下界13
问题四 A=3B=2Z=13
问题五 A=4B=1Z=14
• 利用分枝定界法求解整数规划问题的步 骤:
• 第一步:求解相应的线性规划问题,并 确定目的函数值的上下界。
4.4.2 0-1规划的解题过程
• 实例分析: • AK公司预备开发几种新产品,该公司的四个
工程小组分别都提出了各自的方案,但是由于 公司的投资金额有限,不能对一切工程进展投 资,必需在其中作出选择。表4-5列出了各 个工程对于资金、任务人员以及将会产生的净 现值的情况。总的投资额为1100万元,可 以调用的任务人员一共有22人。关于投资的 工程,还有一个附加条件,即工程1和工程4 由于某些缘由不得同时投资。应该如何挑选投 资工程?
工程
产品
A
〔件〕
1
A 产品 〔件〕 2
工时限额 〔小时/周〕
工序B1 0.4 0.5 200
工序B2 0.4 0.3 180
工序B3 0.3 0.2 120
利润〔元/件〕 30 28 --
解题过程:
运筹学第五章 整数规划ppt课件
,求解过程停止。 3.B有最优解,但不符合A的整数条件,记其目标函数值为z1。
第二步:确定A的最优目标函数值z*的上下界,其上界即为 z ,再用观察法
找到A的一个整数可行解,求其目标函数值作为z*的下界,记为z。
第三步:判断 z 是否等于z 。若相等,则整数规划最优解即为其目标函
数值等于z的A的那个整数可行解;否则进行第四步。
2020/3/2
11
•割平面法,即通过添加约束条件,逐步切割可行区域的 边角余料,让其整数解逐步的露到边界或顶点上来,只要 整数解能曝露到顶点上来,则就可以利用单纯形法求出来。
•关键是通过添加什么样的约束条件,既能让整数解往边 界露,同时又不要切去整数解,这个条件就是Gomory约束 条件。 •Gomory约束只是割去线性规划可行域的一部分,保留了 全部整数解。
2020/3/2
7
7
第二节 割平面法
2x1 2x2 11
13/4,5/2
松弛问题 x1+x2≤5 第二次切割
2020/3/2
第一次切割 4,1
8
设纯整数规划
n
m a x Z c j x j j 1
s
.t
.
n j 1
aij x j
bi
x
j
0且
为
整
数
,
j
1,L
引入约束 xi ≤ M yi ,i =1,2,3,M充分大,以保证yi=0 xi=0 这样我们可建立如下的数学模型:
Max z = 4x1 + 5x2 + 6x3 - 100y1 - 150y2 - 200y3 s.t. 2x1 + 4x2 + 8x3 ≤ 500
第二步:确定A的最优目标函数值z*的上下界,其上界即为 z ,再用观察法
找到A的一个整数可行解,求其目标函数值作为z*的下界,记为z。
第三步:判断 z 是否等于z 。若相等,则整数规划最优解即为其目标函
数值等于z的A的那个整数可行解;否则进行第四步。
2020/3/2
11
•割平面法,即通过添加约束条件,逐步切割可行区域的 边角余料,让其整数解逐步的露到边界或顶点上来,只要 整数解能曝露到顶点上来,则就可以利用单纯形法求出来。
•关键是通过添加什么样的约束条件,既能让整数解往边 界露,同时又不要切去整数解,这个条件就是Gomory约束 条件。 •Gomory约束只是割去线性规划可行域的一部分,保留了 全部整数解。
2020/3/2
7
7
第二节 割平面法
2x1 2x2 11
13/4,5/2
松弛问题 x1+x2≤5 第二次切割
2020/3/2
第一次切割 4,1
8
设纯整数规划
n
m a x Z c j x j j 1
s
.t
.
n j 1
aij x j
bi
x
j
0且
为
整
数
,
j
1,L
引入约束 xi ≤ M yi ,i =1,2,3,M充分大,以保证yi=0 xi=0 这样我们可建立如下的数学模型:
Max z = 4x1 + 5x2 + 6x3 - 100y1 - 150y2 - 200y3 s.t. 2x1 + 4x2 + 8x3 ≤ 500
整数规划的数学模型分枝定界法割平面法型整数规
将 L0 分解为 L1 和 L2,其中: L1={L0, x2 7} L2={L0, x2 8}
2018/9/17
求解练习题
L1 求解单纯形表 cj 2 5 4 0 0 CB XB x1 x2 x3 x4 x7 4 x3 1/2 0 1 1 -1/2 5 x2 1/2 1 0 0 1/2 0 x6 3/2 0 0 -5 5/2 0 x7 0 1 0 0 0 σ 基变量系数向量单位化 cj 2 5 4 0 0 CB XB x1 x2 x3 x4 x7 4 x3 1/2 0 1 1 -1/2 5 x2 1/2 1 0 0 1/2 0 x6 3/2 0 0 -5 5/2 0 x7 -1/2 0 0 0 -1/2 -5/2 0 0 -4 -1/2 σ
……...
am1 x1+ am2 x2 +…+ amn xn (=,) bm x1~n 0 且取整数 纯整数规划: 所有变量都有取整约束 混合整数规划: 只有部分变量有取整约束
2018/9/17
分枝定界法
1.分枝定界法的基本思路 2.第65页例5-1
3.练习题
2018/9/17
分枝定界法的基本思路
2018/9/17
用割平面法解例
x2 +3/4 x3 +1/4 x4 =7/4 现将各系数分成整数和非负真分数两部分,从而可得: (1+0)x2+(0+3/4) x3+(0+1/4) x4 =(1+3/4) 将整数部分的变量移至等式右端有: 3/4 x3 +1/4 x4 =3/4+(1- x2 ) 非负整数解(1- x2)为整数,左端非负故有: 3/4 x3 +1/4 x4 =3/4+非负整数 从而: 3/4 x3 +1/4 x4 3/4 或 x2 1 以 x2 1为割平面可使可行域减少一个包括A点在内的三角形。 2018/9/17
运筹学 第五章 整数规划PPT课件
x 32
x 42
400
x 13
x 23
x 33
x 43
300
x 14 x 24 x 34 x 44 1 5 0
s
.t
x 11 x 21
x 12 x 22
x 13 x 23
x 14 x 24
400 600
x
31
x 32
x 33
x 34
200 y3
x 41 x 42 x 43 x 44 2 0 0 y 4
max Z 85x11 92x12 73x13 90x14 95x21 87 x22 78x23 95x24 82x31 83x32 79x33 90x34 86x41 90x42 80x43 88x44
要求每人做一项工作,约束条件为:
x11 x12 x13 x14 1
例5.3 设整数规划问题如下
max Z x1 x2
14 x1 9 x2 51
6 x1
3x2
1
x
1
,
x2
0且 为 整 数
首先不考虑整数约束,得到线性规划问题(一般称为松弛问题)
max Z x 1 x 2
14
x1 6x
1
9x2 3x
2
51 1
ቤተ መጻሕፍቲ ባይዱ
x
1
,
x2
0
用图解法求出最优解为:x1=3/2, x2 = 10/3,且有Z = 29/6
在很多场合,我们建立最优化模型时,实际问题要求决 策变量只能取整数值而非连续取值。此时,这类最优化 模型就称为整数规划(离散最优化)模型。
整数规划的求解往往比线性规划求解困难得多,而且, 一般来说不能简单地将相应的线性规划的解取整来获得。
整数规划解法-优质课件
1 2 0 0
0 2 0 3
1 2 4 0 2 0 3 0
1 2 0 0 0 2 0 3 0 2 4 0 2 2 3 1
19
若矩阵A的元素可分成“0”与非“0”两 部分,则覆盖“0”元素的最少直线数等 于位于不同行、不同列的“0”元素的最 大个数。
交甲、乙、丙、丁四个人去完成。因各人专长不同,他们 完成翻译不同文字所需的时间(h)如表所示。问:如何分 配任务使效率最高(所需总时间最短)?
从人的 角度看
工作
人甲
乙
丙丁
译成英文
2
10
9
7
从任务 角度看
译成日文
15
4
14 8
译成德文
13
14
16 11
译成俄文
4
15 13 9
12Βιβλιοθήκη 指派问题的一般模型 假设: [aij]表示指派问题的效率矩阵 xij表示决策变量,决策变量的取值:
选X1分枝
问题(2) (1) X1 4
问题(3) (1) X1 5
将[4,5]之间的非整数部分舍去
7
问题2 解为 X1 =4 Z=349.0
X2 =2.1
问题3
解为 X1 =5
Z=341.39
X2 =1.571
选(2)继续分枝
问题(4)
(2)
X2 2
问题(5)
(2)
X2 3
8
(1) 4.809 355.890 1.817
i+1
Xji*
X*
(B) (C)
Xj i+1
(B) (D)
Xj i
5
例: max Z=40X1 + 90X2 9X1+7X2 56 7X1+20X2 70
《管理运筹学》03- 整数规划
ppt课件整数规划整数规划
3
3.1 整数规划问题及其建模
例3-1背包问题
max z= 17x1 +72x +35x
s.t.
10x1 2 +42x 3 +20x ≤50
x1, 2 x2,
3 x3
≥0
x1,
x2,
x3为整数
线性规划最优解为: x1=0,x2=0,x3=2.5
而整数规划的最优解是 x1=1,x2=0,x3=2
T
5
ppt课件整数规划整数规划
22
-2x2+3x1+5x3≥5 ◎
点
条件
◎
①
②
③
④
满足条件? 是(T)否(F)
Z
(0 1 0) 3
F
(0 1 1) 8
0
2
1
5
T
8
-2x2+3x1+5x3≥8 ◎
点
条件
◎
①
②
③
④
满足条件? 是(T)否(F)
Z
(1 0 0) -2
F
(1 0 1) 3
F
(1 1 0) 1
工件
A
B
C
D
工人
效
甲
14
9
4
15
率
乙
11
7
9
10
矩
丙
13
2
10
5
阵
丁
17
9
15
13
ppt课件整数规划整数规划
24
设xij=1表示第 i人送j货,否则xij=0
上述问题的模型为:
44
第5章整数规划第1,2节 运筹学ppt
X(0) (b1,b2 , ,br, ,bm,0, ,0)T
目标函数Z 最 (0.其 ) 优b 中 i(值 i1,为 2, ,m)不全为
2、定界:
记( IP )的目标函数最优值为Z* ,以Z(0) 作为Z* 的上界,
记为 =ZZ(0) 。再用观察法找出一个整数可行解 X′,
并以其相应的目标函数值 Z′作为Z* 的下界,记为Z= Z′,
无 B6可: 行解
z5 308
2
1
B5
01234567
分支定界的全过程:
x1 4
B : x1 4 .81 x 2 1 .82
z0,z 356
z 0 356
x1 5
B1 : x1 4.00 x2 2.10 z1 349
B2 : x1 5.00 x2 1.57 z 2 341
z 0 z 349
——混合整数规划(Mixed Interger Programming,MIP) 全部决策变量取0或1的规划问题:
——0-1规划(Binary Interger Programming,BIP) 整数规划中不考虑整数条件所对应的规划问题:
——该整数规划的松弛问题
整数线性规划一般形式:
n
max(min) z c j x j j 1
14
x1 6x
9x2 1 3x
2
51 1
x1 , x 2 0
max Z x1 x 2
14
x1 6x
9x2 1 3x
2
51 1
(1) (2)
x1 , x 2 0
用图解法求出最优解 x1=3/2, x2 = 10/3 且有Z = 29/6
x2
⑴
3 2
整数规划ppt课件
可行解的凸组合不一定满足整数要求,因而不一定
仍为可行解)。
2021精选ppt
第13页
产生问题:利用对松弛问题的最优解中不符合整
数要求的分量简单地取整,是否能得出整数规划
问题的最优解呢?
2021精选ppt
第14页
3. 对松弛问题的最优解中不符合整数要求的分量简 单地取整,所得到的问题解:
不一定是整数线性规划问题的最优解。
θi
CB XB
b
x1 x2
x3
x4
x5
x6
6 x2 88/23 0 1 4/23 -3/23 0 0
5 x1 72/23 1 0 -3/23 8/23 0 0
-M x6 4 1 0 0 0 -1 1
c j– z j
2021精选ppt
第43页
将 x1 的系数列向量变为单位向量,并计算检验数
cj
5
CB XB
第8页
整数线性规划
松弛问题
n
max( 或 min) z c j x j j1
n
a ij x j ( 或 , )b i , i 1 ,..., m
j1 x j 0 , j 1 ,..., n
x
1
,...,
x n中部分或全部取整数
n
max( 或 min) z c j x j j1
甚至也不一定是整数线性规划问题的可行解。
2021精选ppt
第15页
例:
mz a 2 xx 0 1 1x 0 2
5 x 1 4 x 2 24
2 x
x
1
1
,
x2
5x
2
0
13
x 1 , x 2 整 数
4.3-分枝定界法和割平面法
剪枝 x 3 再分枝: 2
不是问题A解 而z (12 ) z
B1 : x1 4.00 x2 2.10 z (1) 349 z
z (12 ) 327
4
x2 2
B11 : x1 4.00 x2 2.00 z (11) 340
定界: z 340 z 341
z 340 z 341
分支定界的全过程: B2 : x1 5.00 B1 : x1 4.0 0
x 2 2 .1 0
x2 1.57
x2 2
z
(1)
B11 : x1 4.00 x2 2.00 z
(11)
xx 34 2 最优解: 1
3 49
z ( 2 ) 341
(3)求解
点
求解过程如表4-6所示。
过滤条件 约束 ④ × √ √ √ 4x1+3x2+2x3≥5 × √ × √ √ √ √ × √ √ 5 √ 2 ① ② ③ z值
4x1+3x2+2x3≥2
(0,0,0)T (0,0,1)T (0,1,0)T (0,1,1)T (1,0,0)T (1,0,1)T
§4 分枝定界法
第二步:定界
记A的目标函数最优值为z*,以z(0)作为z* 的上界,记为 z =z(0).再用观察法找的一个整数可 行解X′,并以其相应的目标函数值z′作为z*的下 界,记为z=z′,也可以令z=-∞,则有: *
zz z
§3 分枝定界法
第三步:分枝
在以上界 z 所对应的解 X (b1,, br ,, bm ,0,,0)T 中,任选一个不符合整数条件的变量,例如 br(不 为整数),以 [br ]表示不超过 br 的最大整数.构造 两个约束条件
整数规划 PPT课件
设xj为列车上装载pj的数量,则xj必为非负整数,根据该n货a船jx j最大b 可承载b吨货
物可知所有集装箱的重量之和必须b,故有约束条件:
j1 n
f
cjxj
j1
由对每个j种货物收费为cj,可知载货的总收入为:
n
该例的目标即使得目标函数f最m大ax化。f 综合i 1上cj述x j 分析可得如下整数规划问题:
第11页/共82页
求解整数规划的理论基础
• 利用分解技术求解整数规划中的几个概念
• 分解
对于整数规划问题P,令F (P)表示P的m 可行域。对问题 P的子问题 P1, …, Pm,若满足下述条件: i 1 F(Pi ) F(P)
F(Pi ) F(Pj )
(1 i m,1 j m, i j)
则称P问题被分解成为子问题P1, …, Pm之和,最常用的方法就是两分法,例如若xj是P的0-1变量, 则问题P可以按照条件xj=0和xj=1分解成两个问题之和。
• 求解思路 • 由上述分析可知,舍入法一般是不可取的,当然如果对应线性规划的最优解恰好满足整数要求,则该 解也是整数规划的最优解,那么何时才能满足此要求呢?我们直接给出一个结论: 假设由整数规划问题除去整数要求之后得到的线性规划标准型中,等式约束个数等于决策变量个 数(m=n),则此时的等式约束构成一个线性方程组Ax=b,如果det(A) = 1或-1,则解x一定是整数 向量,当然这种情况在解决实际问题的过程中一般还是比较少见的。 • 对于整数规划问题的解法,一般有利用分解技术的算法和不利用分解技术的算法 • 利用分解技术的算法有分枝定界法和针对0-1规划的隐枚举法 • 不利用分解技术的算法为割平面法和群论方法 • 针对特定的问题还有特定的简化方法,例如求解分派问题的匈牙利方法,等等。
整数规划-割平面法-分枝定界法18页PPT
在求解实际问题中,割平面法经常会遇到收敛很慢的情
况,但若和其它方法,如分枝定界法,联合使用,一般能收 到比较好的效果。
§3 分枝定界法
分枝定界法是求解整数规划的常用算法,既可用来解全部变量 取值都要求为整数的纯整数规划,又可用以求解混合整数规划。
该算法的基本思路是:先不考虑整数限制,求出相应的线性规 划的最优解,若此解不符合整数要求,则去掉不包含整数解的部分 可行域,将可行域D分成D1、D2两部分(分枝) ,然后分别求解这 两部分可行域对应的线性规划,如果它们的解仍不是整数解,则继 续去掉不包含整数解的部分可行域,将可行域D1或D2分成D3与D4两 部分,再求解D3与D4对应的线性规划,……,在计算中若已得到一 个整数可行解X0,则以该解的目标函数值Z0作为分枝的界限,如果 某一线性规划的目标值Z≤ Z0 ,就没有必要继续分枝,因为分枝( 增加约束)的结果所得的最优解只能比Z0 更差。反之若Z> Z0 ,则 该线性规划分枝后,有可能产生比Z0 更好的整数解,一旦真的产生 了一个更好的整数解,则以这个更好的整数解目标值作为新的界限 ,继续进行分枝,直至产生不出更好的整数解为止。
所以有
x1-x3=3/4-3/4x3-1/4x4
因而有切割方程: 3/4x3+1/4x4 ≥ 3/4
即
3x3+x4 ≥3
引入松弛变量x5,得方程 -3x3-x4+x5=-3
将新约束方程加到原最优表下面(切割),求得新的最优解如下 :
由于x1,x2的值已是整数,所以该题经一次切割已得最优解: x1=1,x2=1,最优值:Z※=2
46
10
x1
x1=4.81,x2=1.82,Z0=356(见图) 该解不是整数解。选择其中一个
整数规划教学课件PPT_OK
X (0) (b1,b2 ,,br,,bm ,0,,0)T 目标函数最优值为Z(0).其中bi(i 1,2,, m)不全为整数
19
2、定界:
记( IP )的目标函数最优值为Z* ,以Z(0) 作为Z* 的上
界,记为 Z = Z(0) 。再用观察法找一个整数可行解 X′,
并以其相应的目标函数值 Z′作为Z* 的下界,记为Z= Z′,
可能得到以下情况之一:
⑴.若( LP )没有可行解,则( IP )也没有可行解,停止
计算。
⑵.若( LP )有最优解,并符合( IP )的整数条件,则 ( LP )的最优解即为( IP )的最优解,停止计算。
⑶.若( LP )有最优解,但不符合( IP )的整数条件,转 入下一步。为讨论方便,设( LP )的最优解为:
x1=3/2, x2 = 10/3
x2
⑴
且有Z = 29/6
3
现求整数解(最优解):
如用“舍入取整法”可得
到4个点即(1,3) (2,
3)(1,4)(2,4)。显然,它
们都不可能是整数规划的
最优解。
⑵
(3/2,10/3)
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题 的可行域内且为整数点。故整数规划问题的可行解集 是一个有限集,如图所示。
也可以令Z=-∞,则有: Z ≤ Z* ≤
Z
3、分枝:
在( LP )的最优解 X(0)中,任选一个不符合整数条件
的变量,例如xr=br( 不为整数),以 b表r 示不超过
b的r 最大整数。构造两个约束条件
xr≤
和brxr≥ +1br
20
将这两个约束条件分别加入问题( IP ) ,形成两个子 问题( IP1)和( IP2 ) ,再解这两个问题的松弛问题( LP1) 和( LP2) 。
19
2、定界:
记( IP )的目标函数最优值为Z* ,以Z(0) 作为Z* 的上
界,记为 Z = Z(0) 。再用观察法找一个整数可行解 X′,
并以其相应的目标函数值 Z′作为Z* 的下界,记为Z= Z′,
可能得到以下情况之一:
⑴.若( LP )没有可行解,则( IP )也没有可行解,停止
计算。
⑵.若( LP )有最优解,并符合( IP )的整数条件,则 ( LP )的最优解即为( IP )的最优解,停止计算。
⑶.若( LP )有最优解,但不符合( IP )的整数条件,转 入下一步。为讨论方便,设( LP )的最优解为:
x1=3/2, x2 = 10/3
x2
⑴
且有Z = 29/6
3
现求整数解(最优解):
如用“舍入取整法”可得
到4个点即(1,3) (2,
3)(1,4)(2,4)。显然,它
们都不可能是整数规划的
最优解。
⑵
(3/2,10/3)
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题 的可行域内且为整数点。故整数规划问题的可行解集 是一个有限集,如图所示。
也可以令Z=-∞,则有: Z ≤ Z* ≤
Z
3、分枝:
在( LP )的最优解 X(0)中,任选一个不符合整数条件
的变量,例如xr=br( 不为整数),以 b表r 示不超过
b的r 最大整数。构造两个约束条件
xr≤
和brxr≥ +1br
20
将这两个约束条件分别加入问题( IP ) ,形成两个子 问题( IP1)和( IP2 ) ,再解这两个问题的松弛问题( LP1) 和( LP2) 。
运筹学课件 第5章:整数规划
依照决策变量取整要求的不同,整数规划可分为纯 整数规划/全整数规划、混合整数规划、0-1整数规划
整数规划解的性质
求解整数规划问题
max Z 3 x1 2 x2 2 x1 x2 9 ( IP)2 x1 3 x2 14 x1 , x2 0且为整数
分析:考虑对应的线性规划问题(LP)
b
x1
2
2 3
x2
1
3 2
x3
1
0 0
x4
0
1 0
b
x1
1
0 0
x2
0
1 0
x3
3/4
-1/2
x4
-1/4 1/2
0
0
x3 9 x4 14
9/2
14/2
3
2
x1 13/4 x2 5/2
-5/4
-1/4
初始表
最终表
可见,最优解为x1=3.25 x2=2.5 z(0) =59/4=14.75
选 x2 进行分枝,即增加两个约束x2≤2 和x2 ≥3 ,则
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP1) 1 x2 2 x1 , x2 0且为整数
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP2) 1 x2 3 x1 , x2 0且为整数
b
7/2 2 1 3 -29/2 7/2 2 1 -1/2 -29/2
x1
1 0 0 1 0 1 0 0 0 0
x2
0 1 0 0 0 0 1 0 0 0
x3
1/2 0 -1 0 -3/2 1/2 0 -1 -1/2 -3/2
第05章 整数规划 《运筹学》PPT课件
︰︰ ︰
︰
xm+1 λ1 a1m+1 ︰
… … …[j0aim1xλa,1m2mjfm],++i+jjmj njf
…
im j
…1 …m
xn λn a1n
︰
︰
解
zb-1zb00i0 fi0
︰0 fi0 1
xi 0 … 1 … 0 aim+1
… aim+j
… ain
bi0
︰︰ ︰
︰︰
︰
︰
︰
非基
符号[*]表示不超过“*”的最大整数,f(*)表 示“*”的非负真分数。
对整数规划问题 IP:max z CX
s.t
AX b X 0
x j为整数
其松弛问题 L0 max z CX
s.t
AX X
b 0
设L0的最优解
X
不是整数解
0
不妨设
X 0 b10 ,bi0 ,bm0 ,0,0 其中bi0是分数
即x1,xi ,xm是基变量,xm1,, xn是非基变量
设L0的最优解 X 0 b10 ,bi0 ,bm0 ,0,0 ,bi0是分数
L0的最优单纯形表:
x1 … xi … xm xm+1 … xm+j … xn
解
检 0 … 0 … 0 λ1
… λm+j … λn
z-z0
x1 1 … 0 … 0 a1m+1 … a1m+j … a1n
个旅行包里。
物 品
1
2
3
4
5
6
7
8
9 10
体 积 200 350 500 430 320 120 700 420 250 100
整数规划教学课件
PuLP和Pyomo都支持多种线 性规划求解器,如GLPK、CBC 等,能够方便地求解大规模的 整数规划问题。
Part
05
整数规划案例分析
生产计划问题
总结词
生产计划问题是一个经典的整数规划 问题,旨在确定在满足市场需求的同 时,如何优化生产过程,降低生产成 本。
详细描述
生产计划问题需要考虑多个因素,如 市场需求、生产成本、生产能力等。 整数规划可以用来确定最佳的生产计 划,使得总成本最低,同时满足市场 需求。
投资组合优化问题
总结词
投资组合优化问题是一个重要的整数规划问 题,旨在确定在风险和收益之间取得平衡的 最佳投资组合。
详细描述
投资组合优化问题需要考虑多个资产的风险 和收益,以及投资者对风险和收益的需求。 整数规划可以用来确定最佳的投资组合,使 得在满足投资者需求的同时,风险最小。
路径规划问题
总结词
详细描述
遗传算法的基本思想是通过模拟生物进化过程中的基因遗传和变异过程来寻找最优解。 在算法执行过程中,会随机生成一组初始解,然后通过选择、交叉和变异等操作不断优 化解的质量。遗传算法具有较强的鲁棒性和全局搜索能力,能够处理复杂的整数规划问
题。
模拟退火算法
总结词
模拟退火算法是一种启发式搜索算法, 通过模拟物理退火过程来寻找最优解。
一种迭代算法,通过添加割平面来排 除不可行解,并缩小可行解的范围。 适用于大规模问题。
分支定界法
一种迭代算法,通过不断分割可行解 空间并排除不可能的解来逼近最优解 。适用于中等规模到大规模问题。
Part
02
整数规划的数学模型
线性整数规划
总结词
线性整数规划是整数规划的一种,其目标函数和约束条件均为线性函数,决策变量为整 数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
会有比其自身还大(目标函数求极大值)的最优目标值。当所有子问题的解均为非整数
可行解时,应首先选择具有最大最优目标值的子问题来分枝;当得到第一个整数可行解
时,它的相应目标值可作为该整数规划最优值的下界,舍掉所有最优值不大于该下界的
子问题。按最优值的大小顺序对保留下来的子问题进行分枝,如果出现具有更大目标值
x1
5
x1,x2 0
L1 :X* = (4, 2.10), Z* = 349
L2 :X* = (5, 1.57), Z* = 341
2020/8/11
10
用分枝定界法解例5-1
3.分解L1形成L3、L4,其中:
L3 = {L1, x22}
L4 = {L1, x23}
L3 : X* = (4, 2), Z* = 340
混合整数规划: 只有部分变量有取整约束
2020/8/11
3
分枝定界法
1.分枝定界法的基本思路
2.第65页例5-1
3.练习题
2020/8/11
4
分枝定界法的基本思路
利用连续的(线性规划)模型来求解非连续的(整数规划)问题。假设 x r
是一个有取整约束的变量而它的最优连续值
x
r
是非整数,那么下列区间
max(min)(c1 x1+ c2 x2 +…+ cn xn )
a11 x1+ a12 x2 +…+ a1n xn (=,) b1
a21 x1+ a22 x2 +…+ a2n xn (=,) b2
……...
am1 x1+ am2 x2 +…+ amn xn (=,) bm x1~n 0 且取整数 纯整数规划: 所有变量都有取整约束
1.整数规划的数学模型
2.分枝定界法
3.割平面法
4.0-1型整数规划
5.指派问题
2020/8/11
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
2
整数规划的数学模型
1 1 -1/2 0 9/2 0 0 1/2 0 15/2 0 -5 5/2 1 7/2
σ
-5/2 0 0 -4 -1/2 0
2020/8/11
16
求解练习题
将 L0 分解为 L1 和 L2,其中: L1={L0, x2 7} L2={L0, x2 8}
2020/8/11
17
求解练习题
L1 求解单纯形表
0 1 1 -1/2 1 0 0 1/2 0 0 -5 5/2 0 0 0 -1/2 0 0 -4 -1/2
2020/8/11
0 x5
0 0
1 0
0 x5
0 0
1 0 0
0 x6
0 0 0 1
b
9/2 15/2
7/2 7
0 x6
0 0 0 1 0
b
9/2 15/2
7/2 -1/2
18
L6 : 无可行解
(1)舍弃L5、L6;
(2)得最优解X* = (4, 2), Z* = 340。
2020/8/11
12
例5-1求解过程示意图
L0 (4.81,1.82)
356
L1 (4,2.1)
349
L3 (4,2)
340
2020/8/11
L4 (1.42,3)
327
L2 (5,1.57)
341
[xr ]
xr
[xr ]
1 不可能包含任何整数解,这里[ x r
]表示
x
r
的取整值。因此,
xr 的可行整数值必然满足此二条件之一:xr [xr]或 xr [xr] 1。
2020/8/11
5
分枝定界法的基本思路
把这两个约束条件分别加到原来的解空间上,便产生了两个互斥的子问题。这便是
分枝的含义。由于分枝过程是通过增加约束条件来实现的,因此每一问题的子问题都不
7x1+20x2=70 9 10 x1
9
用分枝定界法解例5-1
2.将L0分解为L1和L2
L1 :max z = 40x1 + 90x2
9x1 + 7x2 56
7x1 +20x2 70
x1
4
x1,x2 0
L2 :max z = 40x1 +
90x2
9x1 + 7x2 56
7x1 +20x2 70
L5 (5.44,1)
308
L6 无可行解
13
练习题
max z = 2x1 + 5x2 + 4x3
x1 + x2 + x3 12
x1 + 2x2
15
4x1
+ 5x3 26
x1~3 0且取整
2020/8/11
14
求解练习题
首先求解线性规划L0 :
max z = 2x1 + 5x2 + 4x3
cj
25400
CB XB
4
x3
5
x2
0
x6
0ห้องสมุดไป่ตู้
x7
σ
x1
x2
x3
x4
x7
1/2 0 1 1 -1/2
1/2 1 0 0 1/2
3/2 0 0 -5 5/2
01000
基变量系数向量单位化
cj CB XB
4
x3
5
x2
0
x6
0
x7
σ
2
x1 x7 1/2 1/2 3/2 -1/2 -5/2
5400
x2
x3
x4
的整数可行解,将下界更新为此整数可行解的目标值并进一步剪枝。从复这一过程,最
终保留下来的整数可行解即为整数规划的最优解。
2020/8/11
6
第65页例5-1
max z = 40x1 + 90x2
9x1 + 7x2 56
7x1 +20x2 70 x1,x2 0且取整
2020/8/11
7
用分枝定界法解例5-1
L4 : X* = (1.42, 3), Z* = 327 (1)取下界min=340(L3); (2)舍弃L4
2020/8/11
11
用分枝定界法解例5-1
4.分解L2形成L5、L6,其中:
L5 = {L2, x21}
L6 = {L2, x22}
L5 : X* = (5.44, 1), Z* = 308
x1 + x2 + x3 + x 4 = 12
x1 + 2x2
+ x5 = 15
4x1
+5x3 + x6 = 26
x1~6 0
2020/8/11
15
求解练习题
线性规划 L0 的最终单纯形表
cj CB XB
2540
x1
x2 x3
x4
00
x5
x6 b
4 x3 1/2 0 5 x2 1/2 1 0 x6 3/2 0
1.求解相应的线性规划L0 max z = 40x1 + 90x2 9x1 + 7x2 56 7x1 +20x2 70 x1,x2 0
2020/8/11
8
用分枝定界法解例5-1
x2
5
9x1+7x2=56
4
3
2
1
0 12345678
L0 : x* = (4.81, 1.82), Z* =356 2020/8/11