哈工大大学物理课件(马文蔚教材)-第9章电学
电路(第九章)ppt
电阻电路与正弦电流电路的分析比较:
电阻电路 : KCL : i 0 KVL : u 0 元件约束关系: u Ri 或 i Gu
可见,二者依据的电路定律是相似的。只要作出正弦 电流电路的相量模型,便可将电阻电路的分析方法推广应 用于正弦稳态的相量分析中。
IL IR 1 j L jω C
.
.
.
IC
. . . . . . 1 . U j C U 由KCL: I I R I L I C G U j L . . . 1 (G j jC ) U [G j( B B ) U (G jB ) U L C L
注
UL=8.42>U=5,分电压大于总电压。
相量图
I
3. 导纳
正弦激励下
+ U -
I
无源 线性
I
+ U Y
定义导纳 Y
I Y U
I
| Y | φ
U
导纳模 导纳角 单位:S
i u
对同一二端网络:
1 1 Z ,Y Y Z
I
+ U C
当无源网络内为单个元件时有:
I
+ U R
1 I Y G U R
I Y U j C jBC
I
+ U L
I Y 1 / j L jB L U
Y可以是实数,也可以是虚数
4. RLC并联电路
i + u R
.
I
iL
L
iL
C
iC
+
U R .
R XC
哈工大大学物理课件(马文蔚教材)-第19章-1量子物理
量子物理的前沿研究与未来发展
目前,量子物理领域的研究重点 包括量子纠缠、量子相干性、量
子计算复杂度等。
未来,随着实验技术的不断进步 和理论研究的深入,量子物理有 望在多个领域取得突破性进展。
例如,利用量子力学原理开发新 型传感器、探测器、加速器等设 备,以及探索宇宙中的量子现象
量子物理
目录
• 量子物理概述 • 光的量子性 • 量子力学的诞生 • 原子结构与量子力学 • 量子力学的数学基础 • 量子力学的应用与展望
01 量子物理概述
量子物理的发展历程
1900年
普朗克提出能量子假说,认为 能量是离散的,而不是连续的。
1925年
海森堡和薛定谔分别提出量子 力学的矩阵力学和波动力学两 种数学描述方式。
测量误差
由于不确定性原理的存在,我们无法同时精确测 量一个量子粒子பைடு நூலகம்位置和动量,测量结果会存在 误差。
互补性
互补性是量子力学中的另一个重要概念,它表明 某些物理量在测量时具有相互排斥的特性,无法 同时精确测量。
06 量子力学的应用与展望
量子计算与量子计算机
量子计算机利用量子比特(qubit)作为信息的 基本单位,相比传统计算机的经典比特(bit), 量子比特具有叠加和纠缠的特性,能够在理论 上大幅度提升计算速度。
薛定谔方程是描述量子粒子运动的偏微分方程, 它决定了波函数的演化。
时间演化
薛定谔方程描述了量子态随时间演化的过程,时 间演化由系统的哈密顿量决定。
空间演化
薛定谔方程的空间部分描述了波函数在空间中的 传播,与粒子的动量和位置有关。
海森堡不确定性原理
物理学教程下册马文蔚公开课一等奖优质课大赛微课获奖课件
2.物体带电. 3. 电荷分正负,同性相斥,异性相吸.
4. 电荷量子化:q ne (n 1, 2, 3 ) 元电荷 e 1.602 1019 C
5.电荷相对论不变性:在相对运动两惯性系中同一电荷电量相等
二 电荷守恒定律 在孤立系统中,电量代数和保持不变.
通量。
7.掌握反应电场性质基本定理:高斯定理、静电场环路定理,并
能应用高斯定理求电荷简朴对称分布情况下电场强度。
第2页
第九章 静电场 电磁学研究电磁规律学科 电磁现象:摩擦生电、大自然雷电、天然磁石指向 电磁现象系统研究(十六世纪) 1865年英国物理学家麦克斯韦建立了宏观电磁场理论
9-1 电荷量子化 电荷守恒定律
解: (1) 建立坐标系,如图
dq dx Q dx
dE
1
4 0
Ldq x2
1
4 0
Qdx Lx2
Q dq r
dE
x
L
dx
P x
注意:各电荷元在P
EP
dE
rL 2
rL 2
1
4 0
Qdx Lx2
Q( 1 1 )
40L r L / 2 r L / 2
点场强方向均相同。
1Q
0
4r 2
F
第4页
矢量式
F
q1 er r
q1 er
r
F
第九章 静电场
q2
F 同号
q2
异号
F
F
1
4π 0
q1q2 r2
er
F
或
er
r r
,F
哈工大大学物理课件(马文蔚教材)-第8章电学
由于上述结论与球面半径r无关,说明对以点电荷 q为 中心的任意 球面而言,通过它们的电通量都一样。 对两个无限接近的球面,通过它们的电通量都相同, 说明
电场线在无电荷处连续
以q为球心在任意S闭合曲面内外 取同心球面S’和S”
通过S”和S’的电场线数量相同为
所以通过S的电场线数量
q
0
S ’’ S q
FB
E 的单位是 N C E 是矢量坐标的一个矢量函数
场源电荷
q1 , q2 , qn
n
总场 E
n
检验电荷q0
由
Fi F 则 E i 1 q0 q0
n i 1
F Fi
i 1
n
Fi i 1 q0
Fi 每个点电荷单 Ei 独存在的场强 q0
E Ei E1 E2 En
一组点电荷在某点激发的场强,等于每个点电荷单独存在时所产生 的电场在该点场强的矢量和,称为场强的叠加原理 点电荷q0在电场 E 中受力 F qE
静止点电荷的场强及其叠加
q q0 由 F er 2 4 0 r 1
点电荷q的场强为:
F 1 q E e 2 r q 4 r
z E+
EQ
E-
Q
1 q EQ 2 cos 2 2 40 r l 4 1 q l2 2 40 r 2 l 2 4 r 2 l 2 4 1 2 1 ql 1 pe 40 r 2 l 2 4 3 2 EQ 40 r 3
r
0
第八章
8-1
1. 两种电荷
物理学中册 静 电 场
电荷守恒定律
物理学教程第二版马文蔚(下册)课后答案解析(完整版)
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).9-2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).9-3下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r r e r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为的点电荷在该点单独激发的场强度.解 根据上述分析 2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r LQ r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为()i E 2/3220d π41d r x q x +=ε由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有 ()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R R R r x q x E 积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1xθe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ= R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e r R E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变 000π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么)外力所作的功为()dεQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 9-18 一个球形雨滴半径为 mm ,带有电量 pC ,它表面的电势有多大 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大 分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1= mm ,带有电量q 1= pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b)所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R = ×10-2 m.圆盘均匀带电,电荷面密度σ=×10-5C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x = cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 %和%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =×10-2 m ,R 2 = m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷(2) r = m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r = 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离 (2)平均热运动动能达到此值时,温度有多高 (质子的半径约为 ×10-15 m)分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109V,被迁移的电荷约为30 C.(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰 (冰的融化热L = ×105 J· kg)(2) 假设每一个家庭一年消耗的能量为3 000kW ·h ,则可为多少个家庭提供一年的能量消耗 解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量 kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =×10-30 C · m.这个水分子在电场强度E = ×105 V · m -1的电场中所受力矩的最大值是多少分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能 eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题 9-27 图第十章 静电场中的导体与电介质10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地题 10-2 图分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )Rεq V d εq E 020π4,π4==题 10-3 图分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O点的电势等于点电荷q在该处激发的电势.因而正确答案为(A).10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关(E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E). 10-5对于各向同性的均匀电介质,下列概念正确的是()(A)电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B)电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C)在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍。
哈工大大学物理课件马文蔚教材第10章电学
总结
本章节讲解了电学的定义、基础电路、交流电路、电磁感应和电学应用等基 础知识,是理解现代科技的关键。
电导,电压是电流的驱动力, 电阻是抵抗电流流动的能力。
欧姆定律表示电压与电流之间的关系,基尔霍夫定 律表示电压和电流在电路中的保持与违背。
电路中的元件
电路中的元件包括电源、电阻、电容、电感等,共 同构成完整的电路。
电路分析
1
串联和并联电路
串联电路中的元件依次排列,电流不分支;并联电路中,电流会分支到各个元件。
2
电阻、电容和电感器的组合
电路中,元件往往会组合起来使用,串联和并联的不同组合关系能带来不同的电 路特性。
交流电路
1 交流电流和交流电压
2 交流电路的特点
交流电路中电流和电压都是随着时间变化的, 往往表现为正弦曲线。
交流电路中能够发生电感和电容的物理现象, 如电磁感应、电功率等。
电磁感应
法拉第电磁感应定律
法拉第电磁感应定律描述了电磁感应的物理过程, 为电机、变压器等现代电气设备提供了理论基础。
电感和变压器
电感是指线圈中储存磁场的能力,变压器则是利用 电磁感应调节电压的装置。
电学应用
电源和电路设计
在电学的基础上,可以设计各种各样的电源和电路, 以满足不同的需求。
电学在现代科技中的应用
电学贯穿于现代科技的发展,并助力于各种各样的 新兴技术如人工智能、物联网等。
哈工大大学物理课件马文 蔚教材第10章电学
本课程分为电学简介、基础电路、电路分析、交流电路、电磁感应、电学应 用等6个部分,逐一讲解各部分的内容。
电学简介
电学的定义
电学是研究电荷、电场、电路等电现象的科学。
电学的重要性
高等教育:哈工大大学物理课件(马文蔚教材)-第18章相对论
x x v t x x vt
由
y y
z
z
y y z z
t t
t t
t t'
t t'
x' x2' x1' (x2 vt2 ) (x1 vt1) x2 x1 x
o
x
ux
u
' x
v
1
v c2
u x'
0.9c 0.9c 1 0.9c 0.9c c2
0.994c
.
*18-4 狭义相对论的时空观
一. 同时性的相对性
S系 A(x1,t1) B(x2 ,t2 ) t2 t1
不同地点同时发生两事件A、B.
x2 x1
S’系
A(x1' , t1' )
1 2
,
l0 l ' x2' x1'
x2 vt
1 2
x1 vt
1 2
x2 x1
l
1 2
1 2
l l0 1 2 l0 .
l l0 1 2
从S系测运动的尺在运动的方向上缩短(收缩)
长度收缩 效应 符合相对性原理:
(x', y', z',t')
即 x' ut ' 0
r ct'
设 x k'(x' vt') 根据相对性原理 k k '
(2)
o
R
v
t
大学物理教案(第五版)下册马文蔚改编09--2振动合成精品名师资料
三)在垂直方向上的两个谐振动的合成
x A1 cos(1t 1 ) y A2 cos( 2t 2 )
对 1
2
质点运动的运动方程,消去t 即可得质点运动的轨迹方程。
2的情况:
2
x y xy 2 2 cos( ) sin ( 2 1 ) 2 1 2 2 A1 A2 A1 A2
A
A A 2 A1 A2 cos( 2 1 )
2 1 2 2
A 1 sin 1 A2 sin 2 arctg A 1 cos 1 A2 cos 2
x x1 x2 A1 cos(t 1 ) A2 cos(t 2 )
令
则
x A cos cos t A sin sin t A cos(t )
2 1 2 2
1)两振动同相
A A1 A2
2)两振动反相
2 1 2k
合振幅最大
2 1 (2k 1)
A A1 A2
合振幅最小
A1 A2
A0
合振幅为零,不振动
3)两振动相位差任意
A1 A2 A A1 A2
两振动的相位差对合振动起着重要的作用
a3 a2 a1 a3 a1 a1 a 2 a3
归纳:
m 2 m 当 时: ( k) A 0 N N 1) m 1.2.3....N 1 N 1, N 2, 2 N 1 2 N 1,2 N 2, 2 N 1 ……………………………... A 0
a1
a2
a3
a4
a5
A Na
m 2m k) 2)当N=2m时 或 时: ( N N A0
哈工大大学物理课件(马文蔚教材)-第1章力学
1-2
加速度为恒矢量时的质点运动
dv adt
瞬时速度矢量
r r0
v
v0
dv adt
0 t
t
v v0 at
由
v v0 at
dr (v0 at )dt
0
1 2 r r0 v0t at 2
位移
dr (t ) v dt
j
该式也叫质点的运动函数或运动方程。
r x2 y 2 z 2 x y z cos cos cos r r r
四.位移:
A Z z
y
P
o
r
n
A
x
B
k
M
i
B
X
S
r r (t t ) r (t ) r2 r1 ( x2 x1 )i ( y2 y1 ) j ( z2 z1 )k
dv x d 2 x ax 2 dt dt dv y d 2 y ay 2 dt dt dvz d 2 z az 2 dt dt
质点运动状态
质点运动学中的正反问题: 位矢 r (t )
{
dr ( t ) 瞬时速度矢量 v dt
质点运动状态变化
{
位移
dv d 2 r ( t ) 瞬时加速度矢量 a dt dt 2
d dx dy dz ( xi yj zk ) i j k dt dt dt dt
dx vx dt dy vy dt dz vz dt
质点运动学中: 质点运动状态
{
位矢
2024版大学物理学(全套课件下册)马文蔚
态的变化过程。
宇宙的基本规律和演化
03
研究宇宙的大尺度结构、天体演化、宇宙起源和演化等基本问
题。
物理学的研究方法和意义
实验方法 通过实验手段观测和测量物理现象, 验证物理规律和理论。
理论方法
通过数学和物理理论,建立物理模型 和理论框架,解释和预测物理现象。
计算方法
利用计算机进行数值模拟和计算,研 究复杂物理系统的性质和行为。
物理学的意义
物理学的研究不仅有助于人类认识自 然规律,也为其他科学和工程领域提 供了基础理论和技术支持。
大学物理学的课程内容和要求
课程内容
大学物理学通常包括力学、热学、 电磁学、光学、近代物理等基础 内容,以及一些拓展内容,如相 对论、量子力学等。
课程要求
学生需要掌握基本的物理概念、 原理和定律,具备分析和解决物 理问题的能力,同时培养实验技 能和科学思维方法。
利用几何光学原理设计的仪 器,如显微镜、望远镜、照
相机等。
利用全反射原理实现光信号 在光纤中的长距离传输,具 有传输容量大、抗干扰能力
强等优点。
利用受激辐射原理产生高强 度、高单色性、高方向性的 光束,广泛应用于工业加工、
医疗、科研等领域。
利用光学系统对信息进行变 换和处理,如全息照相、光
学计算机等。
02
03
磁感应强度
描述磁场强弱和方向的物 理量。
毕奥-萨伐尔定律
计算电流元在空间中产生 磁场的定律。
磁场对电流的作用
探讨磁场对通电导线的作 用力,即安培力。
电磁感应
1 2
法拉第电磁感应定律 描述磁场变化时会在导体中产生感应电动势的定 律。
楞次定律
判断感应电流方向的定律,即感应电流的磁场总 是阻碍引起感应电流的磁通量的变化。
马文蔚《物理学》(上、下)课件讲义
15
物理学
第五版
即
1-1 质点运动的描述
B
l
A
当
时, vB = 1.73v
第一章 质点运动学
沿 轴正向
16
物理学
第五版
四 加速度
反映速度大小和 方向随时间变化快慢
1 平均加速度
1-1 质点运动的描述
B
A
与 同方向
第一章 质点运动学
17
物理学
第五版
2 (瞬时)加速度
1-1 质点运动的描述
第一章 质点运动学
(1)求
时的速度.
(2)作出质点的运动轨迹图.
第一章 质点运动学
11
物理学
第五版
已知: 解 (1) 由题意可得
1-1 质点运动的描述
时速度为 速度 与 轴之间的夹角
第一章 质点运动学
12
物理学
第五版
(2)运动方程
1-1 质点运动的描述
消去参数 可得轨迹方程为
轨迹图
6 4 2
-6 -4 -2 0 2 4 6
第一章 质点运动学
13
物理学
第五版
1-1 质点运动的描述
例2 如图A、B
两物体由一长为 的 刚性细杆相连,A、B 两物体可在光滑轨道 上滑行.如物体 A以
B
l
A
恒定的速率 向左滑
行, 当 物
时, 体B的速率为多少?
第一章 质点运动学
14
物理学
第五版
解
1-1 质点运动的描述
B
l
A
两边求导得
第一章 质点运动学
四 理解伽利略速度变换式, 并会 用它求简单的质点相对运动问题.
大学物理(马文蔚 版)高等教育出版社 第九章
第九章振动1、 设一物体沿x 轴作谐振动的方程为)42cos(10.0ππ+=t x,式中x ,t 的单位分别为m ,s .试求:(1)振幅,周期,频率和初相;(2)s t 5.0=时,物体的位移、速度和加速度. 解:(1)谐振动的标准方程为)cos(ϕω+=t A x ,比较题中所给方程和标准方程,知振幅m A 10.0=,角频率πω2=s rad /,初相4πϕ=.由此,周期为12==ωπTs 频率为12==πωνHz (2)0.5s 时,物体位移m m x 21007.7)45.02cos(10.0)42cos(10.0-⨯-=+⨯=+=ππππ速度s m s m t dt dx v/44.0/)45.02sin(2.0)42sin(2.0=+⨯-=+-==ππππππ 加速度2222/28/)45.02cos(4)42sin(4s m s m t dt dv a =+⨯-=+-==ππππππ 2、一质点做简谐振动,周期为2=Ts,起始时刻质点对平衡位置的位移为06.00=X m ,速度π306.00-=v m.s 1-。
求:(1)此谐振动表达式。
(2)4Tt =时质点的位置、速度、加速度。
解:(1)由题意知ππ2==Tωs 1- 12.0π3π06.006.022222220=⋅⋅+=+=ωov x A m306.0ππ306.0tan 000=⋅⋅⋅=-=x v ωϕ 因为0v -为正, 0x ω亦为正,故0ϕ在I 象限,所以 3π=ϕ, 谐振动方程式为: )3ππcos(12.0+=t x m(2)424==T ts 时,位置、速度、加速度分别为 )cos(0ϕω+=t A x 104.0)3π21πcos(12.0-=+⨯=)sin(0ϕωω+-=t A v 18.0)3π21πsin(12.0π-=+⨯⨯-= m.s 1-)cos(02ϕωω+-=t A a 1-2 m.s 03.1)3π21πcos(12.0π=+⨯⨯-=3、若简谐振动方程为)π5.0π10cos(10.0+=t x m ,求:(1)振幅、频率、角频率、周期和初相;(2)2=t s 时的位移、速度和加速度。
《物理学》第六版-马文蔚ppt 第09章 振动 9-3单摆和复摆
3
物理学
9-3 单摆和复摆
第六版
d2 2
dt 2
转动正向
mgl
J
T 2π 2π J
mgl
T 2π J mgl
O
l
*C
P
(C点为质心)
m cos(t ) 角谐振动
第九章 振动
4
物理学 第六版
例 一半径为 r 的均 质球,可沿半径为 R 的固 定大球壳的内表面作纯 滚动(如图示).试求圆球 绕平衡位置作微小运动 的动力学方程及其周期.
9-3 单摆和复摆
o
R பைடு நூலகம்
FN r
c
F
mg
第九章 振动
5
物理学
9-3 单摆和复摆
第六版
解:
(mg sin F) ma(t 1)
Fr 2 mr2
5
at
(
R
r
)
d 2
dt 2
at r
(2) (3) (4)
o
R
FN r
c
F
mg
联立(1)、(2)、(3)、(4)
式,得运动方程
7 5
R
r
d 2
11
dt 2
g sin
第九章 振动
6
物理学
9-3 单摆和复摆
第六版
7 5
R
r
d2
dt 2
g sin
令
2
5g
7R
r
sin
o
R
FN r
c
F
mg
d2 2
dt 2
T 2 π 7(R r) 5g
第九章 振动
7
马文蔚《物理学》(第6版)(下册)课后习题-第九章至第十一章【圣才出品】
第二部分课后习题第9章振动一、问题9-1有人说谐振子是指作简谐运动的物体;也有人说谐振子是指一个振动系统。
你的看法如何?试表述之。
答:作简谐运动的振动系统,称为谐振子。
弹簧振子、单摆、复摆等都是谐振子。
谐振动是指振动物体在平衡位置附近往复运动,在这个振动形式下,物体受力的大小总是和它偏离平衡位置的距离(或角位移)成正比,并且受力方向始终指向平衡位置。
9-2符合什么规律的运动是简谐运动?说明下列运动是不是简谐运动:(1)完全弹性球在硬地面上的跳动;(2)活塞的往复运动;(3)如问题9-2图所示,一小球沿半径很大的光滑凹球面滚动(设小球所经过的弧线很短);(4)竖直悬挂的弹簧上挂一重物,把重物从静止位置拉下一段距离(在弹性限度内),然后放手任其运动。
问题9-2图答:符合关系式F=-kx或的运动都是简谐运动。
(1)不是简谐运动。
虽然完全弹性碰撞过程中能量守恒,但球在运动过程中受到的力不符合关系式F=-kx。
(2)不是简谐运动。
有摩擦力做功,不符合关系式F=-kx。
(3)是简谐运动。
运动过程类似单摆。
(4)是简谐运动。
重物所受的力符合关系式F=-kx。
9-3弹簧的劲度系数k是材料常数吗?若把一个弹簧均分为二段,则每段弹簧的劲度系数还是k吗?将一质量为m的物体分别挂在分割前、后的弹簧下面,问分割前、后两个弹簧振子的振动频率是否一样,其关系如何?答:弹簧的劲度系数k不是材料常数。
若把一个弹簧均分为二段,则每段弹簧的劲度系数变为2k。
根据弹簧振子频率的公式,将一质量为m的物体分别挂在分割前、后两个弹簧的下面,分割前、后两个弹簧振子的振动频率之比为。
9-4一质量未知的物体挂在一劲度系数未知的弹簧上,只要测得此物体所引起的弹簧的静平衡伸长量,就可以知道此弹性系统的振动周期,为什么?答:当物体挂在一个劲度系数未知的弹簧上,平衡时,,其中是此物体所引起的弹簧的静平衡伸长量。
而弹性系统的振动周期,所以T=,即只要测得此物体所引起的弹簧的静平衡伸长量,就可以知道此弹性系统的振动周期。
大学物理马文蔚第五版下册第九章到第十一章课后答案
第九章 振动9-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ).9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).题9-5 图9-6 有一个弹簧振子,振幅m 10022-⨯=.A ,周期s 01.=T ,初相4/π3=.试写出它的运动方程,并作出t x -图、t -v 图和t a -图.题9-6 图分析 弹簧振子的振动是简谐运动.振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量.求运动方程就要设法确定这三个物理量.题中除A 、ϕ已知外,ω可通过关系式T ω/π2=确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因T ω/π2=,则运动方程()⎪⎭⎫ ⎝⎛+=+=t π2cos cos T A t ωA x 根据题中给出的数据得 ()()m 75.0π2cos 100.22πt x +⨯=-振子的速度和加速度分别为()()-12s m π75.0π2sin 10π4d /d ⋅+⨯-==-t y x v ()()-1222s m π75.0π2cos 10π8d /d ⋅+⨯-==-t y x a t x -、t -v 及t a -图如图所示.9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为 gSρm πωT /2/π2==9-9 设地球是一个半径为R 的均匀球体,密度33m kg 1055-⋅⨯=.ρ.现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1) 证明此质点的运动是简谐运动;(2) 计算其周期.题9-9 图分析 证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证 (1) 取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为2x m m G F x -= 式中G 为引力常量,x m 是以x 为半径的球体质量,即3/π43x ρm x =.令3/π4Gm ρk =,则质点受力kx Gmx ρF -==3/π4因此,质点作简谐运动.(2) 质点振动的周期为s 1007.5/π3/π23⨯===ρG k m T9-10 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.题9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ (1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为 ()()111222sin sin x x k mg x x k mg F '+-='+-=θθ(2)将式(1)代入式(2)得1122x k x k F '-='-=(3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到 ()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1) 由本题的求证可知,斜面倾角θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9 -11 在如图(a )所示装置中,一劲度系数为k 的轻弹簧,一端固定在墙上,另一端连接一质量为1m 的物体A ,置于光滑水平桌面上.现通过一质量m 、半径为R 的定滑轮B (可视为匀质圆盘)用细绳连接另一质量为2m 的物体C .设细绳不可伸长,且与滑轮间无相对滑动,求系统的振动角频率.题9-11 图分析 这是一个由弹簧、物体A 、C 和滑轮B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体A 相连的弹簧一端所在位置为坐标原点O ,此时弹簧已伸长0x ,且g m kx 20=.当弹簧沿x O 轴正向从原点O 伸长x 时,分析物体A 、C 及滑轮B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方程,然后求得系统作简谐运动的微分方程.解1 在图(b )的状态下,各物体受力如图(c )所示.其中()i F 0x x k +-=.考虑到绳子不可伸长,对物体A 、B 、C 分别列方程,有()22101d d tx m x x k F T =+-=(1) 22222d d tx m F g m T =-(2)()2212d d 21tx mR J R F F T T ==-α(3) gm kx 20= (4)方程(3)中用到了22T T F F '=、11T T F F '=、22/mR J =及R a /=α.联立式(1) ~式(4)可得02d d 2122=+++x m m m k t x /(5)则系统振动的角频率为 ()221//m m m k ++=ω解2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离x (此时速度为v 、加速度为a )为末状态,则由机械能守恒定律,有()20222212021212121x x k ωJ m m gx m E +++++-=v v 在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得()tx x x k t ωωJ t m t m g m d d d d d d d d 00212+++++-=v v v vv 将22/mR J =,v =R ω,22d /d d /d t x t =v 和02kx g m = 代入上式,可得 02d d 2122=+++x m m m k t x /(6)式(6)与式(5)相同,表明两种解法结果一致. 9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m tπcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m /3π4t π4cos 100.22+⨯=-x 9-13 有一弹簧, 当其下端挂一质量为m 的物体时, 伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当t =0 时,物体在平衡位置上方8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当t =0 时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.分析 求运动方程,也就是要确定振动的三个特征物理量A 、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即k m ω=/k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相φ需要根据初始条件确定.题9-13 图解 物体受力平衡时,弹性力F 与重力P 的大小相等,即F =mg .而此时弹簧的伸长量Δl =9.8 ×10-2m .则弹簧的劲度系数k =F /Δl =mg /Δl .系统作简谐运动的角频率为1s 10-=∆==l g m k //ω(1) 设系统平衡时,物体所在处为坐标原点,向下为x 轴正向.由初始条件t =0 时,x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x (2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=[图(b )].则运动方程为()()m π5.010t cos 100.622+⨯=-x 9-14 某振动质点的x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点P 对应的相位;(3) 到达点P 相应位置所需的时间. 分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1) 质点振动振幅A =0.10 m.而由振动曲线可画出t 0 =0 和t 1 =4 s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=(或3/π50=),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题9-14 图(2) 图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=,则点P 相应的相位应表示为()π200=-+=p p t ω. (3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .9-15 作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几? (1) 由平衡位置到最大位移处;(2) 由平衡位置到x =A /2 处; (3) 由x =A /2处到最大位移处.解 采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O .(1) 平衡位置x 1 到最大位移x 3 处,图中的旋转矢量从位置1 转到位置3,故2/πΔ1=,则所需时间411//T t =∆=∆ωϕ(2) 从平衡位置x 1 到x 2 =A /2 处,图中旋转矢量从位置1转到位置2,故有6/πΔ2=,则所需时间1222//T t =∆=∆ωϕ(3) 从x 2 =A /2 运动到最大位移x 3 处,图中旋转矢量从位置2 转到位置3,有3/πΔ3=,则所需时间633//T t =∆=∆ωϕ题9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为0.50s,振幅为2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力P 和板支持力F N 作用,F N 是一个变力.按牛顿定律,有22d d ty m F mg F N =-= (1) 由于物体是随板一起作简谐运动,因而有()ϕωω+-==t A ty a cos d d 222,则式(1)可改写为()ϕωω++=t mA mg F N cos 2 (2)(1) 根据板运动的位置,确定此刻振动的相位ϕω+t ,由式(2)可求板与物体之间的作用力.(2) 由式(2)可知支持力N F 的值与振幅A 、角频率ω和相位(ϕω+t )有关.在振动过程中,当π=+t ω时N F 最小.而重物恰好跳离平板的条件为N F =0,因此由式(2)可分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ϕω+t =0,物体受板的支持力为()N 9612222./=+=+=t mA mg mA mg F N πω重物对木块的作用力NF ' 与N F 大小相等,方向相反. (2) 当频率不变时,设振幅变为A ′.根据分析中所述,将N F =0及π=+t ω代入分析中式(2),可得m 102.6π4//2222-⨯==='gT ωm mg A(3) 当振幅不变时,设频率变为v '.同样将N F =0及π=+t ω代入分析中式(2),可得Hz 52.3/π21π22==='mA mg ωv9-17 两质点作同频率、同振幅的简谐运动.第一个质点的运动方程为()ϕω+=t A x cos 1,当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题9-17 图解 图示为两质点在时刻t 的旋转矢量图,可见第一个质点M 的相位比第二个质点N 的相位超前2/π,即它们的相位差Δφ=π/2.故第二个质点的运动方程应为()2cos 2/πϕω-+=t A x9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2 .在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0 =-Aωsinφ就可求出φ.解 (1) 由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3) 从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为 ()()cm 6/π55.1cos 2-=t x题9-18 图9-19 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1) 求摆的角频率和周期;(2) 设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为3°时的角速度和摆球的线速度各为多少?题9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分.解 (1) 单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2) 由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3) 摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为 ()()1max 2max max s 2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为1s 2180/d d --==.t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为2.00s),拿到月球上去,如测得周期为4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度2E s m 809-⋅=.g )解 由单摆的周期公式g l T /π2=可知21T g /∝,故有2M 2E E M T T g g //=,则月球的重力加速度为 ()2E 2M E M s m 631-⋅==./g T T g9-21 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/mgrT J =.则由平行轴定理得 222220m kg 8324⋅=-=-=./mr mgrT mr J J π9-22 如图(a )所示,质量为1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1 +m 2 和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0 和初位移x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0 为()12110s m 01-⋅=+=.m m v m v又因初始位移x 0 =0,则振动系统的振幅为 ()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x9-23 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1 的空盘.现有一质量为m 2 的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?题9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1 变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0 和初始位移x 0 是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2) 如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g km g k m m k g m l l x 2211210-=+-=-= 式中l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为 ()212202021/m m kh k g m ωx A ++='+=v本题也可用机械能守恒定律求振幅A .9-24 如图所示,劲度系数为k 的轻弹簧,系一质量为m 1 的物体,在水平面上作振幅为A 的简谐运动.有一质量为m 2 的粘土,从高度h 自由下落,正好在(a )物体通过平衡位置时,(b )物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化? (2)振幅有何变化?题9-24图分析 谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式()2020/ωx A v +=)求得两种情况下的振幅.解 (1) 由分析可知,在(a )、(b )两种情况中,粘土落下前后的周期均为 k m ωT /π2/π21== ()k m m ωT /π2/π221+='='物体粘上粘土后的周期T ′比原周期T 大.(2) (a ) 设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A 、v 和A ′、v ′.由动量守恒定律和机械能守恒定律可列出如下各式2/2/212v m A k ='(1) ()2/2/2212v '+='m m A k(2) ()v v '+=211m m m(3)联立解上述三式,可得 ()A m m m A 211+='/即A ′<A ,表明增加粘土后,物体的振幅变小了.(b ) 物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v ′=m 1v /(m 1 +m 2 ) =0,因而振幅不变,即A ′=A9-25 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max 22k -⨯====.mAa mA E E ω(3) 设振子在位移x 0 处动能与势能相等,则有42220//kA kx =得 m 100772230-⨯±=±=./A x(4) 物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫ ⎝⎛==则动能为 43P K /E E E E =-= 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量m =1.68 ×10-27 Kg ,振动频率υ=1.0 ×1014 Hz ,振幅A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相XXX 的能量.解 (1) 简谐运动系统中振子运动的速度v =-A ωsin (ωt +φ),故氢原子振动的最大速度为12max s m 1028.62-⋅⨯===A πA ωv v(2) 氢原子的振动能量J 1031.32/202max -⨯==v m E9-27 质量m =10g 的小球与轻弹簧组成一振动系统, 按()()cm 3/ππ85.0+=t x 的规律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将()()cm 3/ππ85.0+=t x 与()ϕω+=t A x cos 比较后可得:角频率1s π8-=ω,振幅A =0.5cm ,初相φ=π/3,则周期T =2π/ω=0.25 s(2) 简谐运动的能量 J 1090721522-⨯==.ωmA E (3) 简谐运动的动能和势能分别为 ()ϕωω+=t mA E K 222sin 21()ϕωω+=t mA E P 222cos 21 则在一个周期中,动能与势能对时间的平均值分别为()J 109534d sin 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T K ()J 109534d cos 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T P 9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/ 解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad 1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A /(2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得 (),...2,1,0,π25.1π2π1223±±=+=++=k k k9-29 手电筒和屏幕质量均为m ,且均被劲度系数为k 的轻弹簧悬挂于同一水平面上,如图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为()11cos ϕω+=t A x 和()22cos ϕω+=t A x .试求在下述两种情况下,初相位φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有屏对地光对屏光对地x x x +=依题意()()2211ϕωϕω+==+==t A x x t A x x cos cos 屏对地光对地所以 ()()212121cos cos ϕπωϕω++++='+=-=t A t A x x x x x 光对屏 可见光点对屏的运动就是两个同方向、同频率简谐运动()11cos ϕω+=t A x 和()22cos ϕπω++='t A x 的合成.用与上题相同的方法即可求解本题.其中合运动振幅()12222πcos 2-+++='A A A A . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即0=光对屏x ,就是当()π12π12+=-+k 时,即π212k +=时(,...,,210±±=k ),A ′=0.当光点相对于屏作振幅为2A 的运动时,要求π2π12k =-+,即()π1212-+=k .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步,即同相位,为此,把它们往下拉A 位移后,同时释放即可;同理,要使光点对屏作振幅为2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点0 上方的-A 处,而屏则位于+A 处同时释放,即可实现.9-30 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1 和x 2;(2) 在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3) 若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1) 由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1 .曲线1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E dl q2
2)三个点电荷组成系统
1 1 1 E p123 E p12 E p13 E p 23 q1V1 q2V2 q3V3 2 2 2 n 1 3)n个点电荷系统 E p互 qiVi 2 i 1
2.电荷连续分布静电能
线带电
1 E pe Vdq 2
2 2 2
表面均匀带电的橡皮气球
1 1 Q Q E pe Vdq dq dq 2 4 0 R 8 0 R 2
求: 两导体板的电荷分布
Q
+ + 1 + S+ + + + + +2 + + + -3 - P + + + 4 +S + +
解:设静电平衡后两导体板的电荷分布为
1 2 3 4
Q 1 2 由电荷守恒定律 S 1 由高斯定律 0 ( 2 S 3S ) 0
面带电 体带电
1 dq dl E pe dl V 2 1 dq ds E pe ds V 2 1 dq dV体 E pe dV体 V 2
二.电场能量
1. 电容器储能
能量密度
A B
以平板电容器为例
q dW dF d dqE d dqU AB dq C Q Q q 1 2 1 W dW dq Q CU 2 We 0 0 C 2C 2
唯一性定理
(x, y, z ) 的分布就唯一的确定了. 证明 (x, y, z ) 的分布不唯一 设 ' x, y, z ) 也满足同样的边界条件 边界 有另一分布 (
则在边界处 在其它处
边界 确定
边界
(x, y, z )
( xyz) ( xyz) '( xyz) 边界 边界 0 * * * ( xyz) 0 或 ( xyz) 0 或 ( xyz) 0
y
>
-x
U
Q2
Q1 Q2 x x y Q2 2 x Q1 Q2 C U 2U
x y Q1
x
y
C ?
9-3
静电场中的电介质
一.电介质的极化
1.无极分子的位移极化
E 0 0 时, 电矩 p 0 E0 0 时, 电矩 p 0
2.有极分子的转向极化
E d S E S E S 0 a b E dl Ea l Ec l 0
Ea Eb Ea Ec
环路定理:
*
唯一性定理
真空中有若干带电导体: 给定边界条件(导体与真空的分界面处的电荷或电势分布)后, 空间各处静电场的分布就唯一的确定了. 反证法: 如果
E0 0 时 p 0
(正负电荷中心不重合)
i i
pi 0
E 0时p 0
不规则排列, 不显电性
pi 0
也有位移极化,但转向极化占主要地位.
二.极化强度 P 和极化电荷 单位体积内分子电偶 pi 极矩的矢量和. 1. P V 2
单位: 库仑/米
由叠加原理和静电平衡条件
3 4 0 3 4 2 3 0 2 3
1 2 3 4 1 2 3 4 0 E总 0 2 0 2 0 2 0 2 0 1 4 Q 1 2 4 3
极化电荷
q q
i
0
q'
自由电荷
1 E ds
0 E ds q0 q q0 P ds 0 E P ds q0
0
q q
0
0 E P ds q0 引入 电位移矢量 D 0 E P --- 介质中高斯定理 D d s q 0 微分表达式: D 0
*
前两种情况不可能出现 否则违反高斯定理
反证法: 如果
(x, y, z ) 的分布就唯一的确定了. 证明 (x, y, z ) 的分布不唯一 设 ' x, y, z ) 也满足同样的边界条件 边界 有另一分布 (
则在边界处 在其它处
边界 确定
边界
(x, y, z )
* ( xyz) ( xyz) '( xyz) 边界 边界 0 * ( xyz) 0 或 * ( xyz) 0 或 * ( xyz) 0
*
前两种情况不可能出现 否则违反高斯定理 前两种情况会出现 而该点无电荷 所以在其它处
( xyz ) 的极值点,该点会发出或会聚电场线
违反高斯定律
* ( xyz) 0 ( xyz) '( xyz) ( xyz ) '( xyz ) 即 ( x, y, z ) 的分布唯一
4 0 r ' 2qh E2 E2 n 4 0 (a 2 h 2 )3 2 qh 0 E2 2 (a 2 h 2 )3 2
3 3
E1
q 4 0 r
r
q
r'
r'
E2
-q
q ' ds 2 ada 0 0 hada q q 2 2 3 2 0 (a h )
静电场的分布也唯一
无限大接地导体板 h 已知: +q 求:导体板外电场分布和 导体板表面的感应电荷分布 +q在导体板表面的电势分布 解: +q 与无导体板时+q和其静面电荷-q 在该处产生的电势相同 由唯一性定理 导体板外电场分布与无导体板时 +q和-q产生的电场相同
镜像法
r
E1
P1
h P2
无限大接地导体板a
用另外一种方法求导体板表面的感应电荷分布
由叠加原理和静电平衡条件
在P2点的导体处: 感应电荷 +q
与+q产生的场
h
沿垂直导体板表面的分量之和应该为0
a E q 0 2 0 无限大接地导体板 E q E q q h 0 2 2 4 0 (a h ) a 2 h 2 2 0
E
9-5
静电场的能量
能量密度
r12
q1 q2
一.带电体系的静电能
1.点电荷之间相互作用能
1)两点电荷(q1 q2)相互作用能
q1 q1q2 W2 q2 dr E p12 2 r12 r12 4 r 40 r12 0 q1q2 1 q2 1 q1 E p12 q1 q2 40 r12 2 40 r12 2 40 r12 1 1 q1V12 q2V21 2 2
dq感应电荷 q V球心处 0 4 0 R 4 0a 1 q dq感应电荷 0 4 0 R 4 0a qx q 0 4 0 R 4 0a R qx q a
dq感应电荷
例
S
a
b
S
E
c
l
证明:平行电场线的电场一定是匀强场。 高斯定律:
1 0 1 r
(铁磁体) (永磁体)
其它电介质:
1) 2) 3) 4) 线性各向异性电介质 铁电体 永电体或驻极体 压电体
--- 压电效应
电致伸缩效应
9-4 电位移 有介质时的高斯定理
1 真空: E ds qi
0
介质: E E0 E
P e 0 E
定义:
D 0 1 e E
r 1 e
D 0 r E E
0 r
D
如何计算介质中的总场强?
D 0 r E E
D ds q0
qh 2 2 32 2 (a h )
与前面镜像法结果相同
P2
9-2 电容 电容器
一.孤立导体的电容
1)平板电容器电容
q q 二.电容器及其电容 C VA VB U AB q 设 q E U AB C C U AB
q C V
q V q CV
静电平衡的导体的内部处处净电荷为零dV 0
e
e内 =0
2. 导体表面处的场强处处与表面垂直,
其大小
E
E e / 0
e E dS E dS E dS E dS
-q
q
qx ?
0
1 E dS 0 (q q x )
S
q x q
四 有导体存在时静电场的分析与计算
电场
相互影响
导体上的电荷重新分布
利用: 静电场的基本规律 (高斯定理和环路定理) 静电场的叠加原理 电荷守恒定律 导体的静电平衡条件 进行分析与计算
例:
Q S 已知:一大导体板 另一同样大导体板,不带电 两板平形放置
9-1 静电场中的导体
第九章
静电场中的导体与电介质
一.静电感应 静电平衡条件
无电荷定向 --- 均匀导体内场强处处为零 移动 导体表面场强垂直表面 推论: 静电平衡时,导体是个等势体, 导体表面 是个等势 面.
S
U VA VB
1.
AB
E dl 0
VA VB
二.静电平衡时导体上电荷的分布
B
A
C
0s
d
q e 设 q V V Ed d d A B 0 s 0