51相交线教案

合集下载

人教版《5.1相交线》七年级数学教案

人教版《5.1相交线》七年级数学教案

人教版《5.1相交线》七年级数学教案为了更好的将教与学有机结合,提高课堂教学效率,数学网小编与大家分享人教版《5.1相交线》初一数学教案,希望大家在学习中得到提高。

[教学目标]1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题[教学重点与难点]重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索[教学设计]一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,二.认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达有公共的顶点O,而且的两边分别是两边的反向延长线2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念和对顶角的性质三.初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2) 邻补角是互补的两个角,互补的两个角是邻补角(3) 对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩固运用例题:如图,直线a,b相交,求的度数。

人教版七年级数学下册5.1.1《相交线》教案

人教版七年级数学下册5.1.1《相交线》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。

人教版数学七年级下册5-1-1 相交线 教案

人教版数学七年级下册5-1-1  相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。

人教版七年级下-5.1.1相交线教案

人教版七年级下-5.1.1相交线教案

5.1.1 相交线教案【教学目标】知识与技能理解并掌握邻补角及对顶角的概念。

过程与方法1、通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力。

2、在具体情境中了解邻补角,对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题。

情感、态度、价值观引导学生观察图形,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的信心。

【重点难点】重点对顶角的性质。

难点探索并理解对顶角的性质。

【教学设计】一、创设情境,导入新课教师出示一块布和一把剪刀,表演剪布过程。

问题:剪刀两个把手之间的角发生了什么变化?剪刀张开的口又怎么变化?教师展示剪布的过程。

学生认真观察。

教师应先提出问题,以免在剪布过程中分散学生的注意力,使学生没有注意观察应该观察的内容。

学生观察以后,回答提出的问题。

教师引导:如果将剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题。

设计意图:通过动手操作,激发学生兴趣,同时使学生感受生活中的数学现象。

通过教师的引导,使学生将剪刀抽象成两条直线,将实际问题转化为数学间题。

二、探究邻补角与对顶角的概念如图,教师提出问题:(1)两条直线相交,形成了几个角?(2)将这些角两两配对,共能组成几对角,各对角存在怎惩样的位置关系?根据这种位置关系将它们分类。

教师画两条租交的直线,提出问题。

学生分组讨论在具体图形中得出的两条相交线构成的四个角,根据图形进行分类,然后描述邻补角和对项角的特征。

在这一活动中教师应该关注:(1)学生能否从位置上对这些角进行分类。

(2)学生能否正确区分邻补角、对项角。

(3)学生能否主动参与、勇于探究和发言。

师生共回归纳得出邻补角与对项角的概念。

设计意图:通过对图形中角与角的位置关系的探究,经历从图形到文字到符号的转化过程,使学生加深对相交概念的理解,积累一些研究图形的经验和方法。

人教版七年级数学下册教案 5-1-1 相交线

人教版七年级数学下册教案 5-1-1 相交线

5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。

人教版数学七年级下册5.1.1《相交线》教学设计

人教版数学七年级下册5.1.1《相交线》教学设计

人教版数学七年级下册5.1.1《相交线》教学设计一. 教材分析人教版数学七年级下册5.1.1《相交线》是学生在学习了直线、射线、线段的基础上,进一步研究两条直线的关系。

本节课的主要内容是让学生掌握相交线的定义、性质和特点,并能够运用相交线的知识解决一些实际问题。

教材通过丰富的图形和实例,引导学生探究、发现相交线的特征,培养学生的观察能力、操作能力和抽象思维能力。

二. 学情分析学生在之前的学习中已经掌握了直线、射线、线段的基本知识,对于图形的认识和观察能力也有一定的基础。

但是,对于相交线的概念和性质,学生可能还比较陌生,需要通过实际操作和探究来理解和掌握。

此外,学生可能对于两条直线相交的多种情况分辨不清,需要在教学中进行针对性的指导。

三. 教学目标1.知识与技能:让学生掌握相交线的定义、性质和特点,能够识别和画出相交线。

2.过程与方法:通过观察、操作、探究等活动,培养学生的观察能力、操作能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:相交线的定义、性质和特点。

2.难点:对于两条直线相交的多种情况的理解和判断。

五. 教学方法1.引导探究法:通过提出问题,引导学生观察、操作、思考,从而发现相交线的特征。

2.合作交流法:让学生在小组内进行讨论、分享,培养学生的团队合作意识。

3.实例分析法:通过具体的实例,让学生理解和应用相交线的知识。

六. 教学准备1.教具:多媒体教学设备、黑板、粉笔、直线、射线、线段教具。

2.学具:学生作业本、直线、射线、线段教具。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示直线、射线、线段的教具,让学生观察并指出哪些是相交线。

学生尝试给出相交线的定义。

3.操练(10分钟)教师给出几个实例,让学生判断哪些是相交线,并说明理由。

人教版数学七年级下册5.1相交线第1课时教学设计

人教版数学七年级下册5.1相交线第1课时教学设计
2.通过提问方式激发学生的兴趣:“你们在生活中还见过哪些相交线的例子?这些相交线有什么特点?”
3.学生分享自己的观察和发现,教师适时总结,引出本节课的学习内容:相交线的性质。
(二)讲授新知,500字
1.教师利用多媒体展示两条直线相交的图形,引导学生观察相交线形成的四个角,并介绍对顶角、邻补角的概念。
4.鼓励学生在生活中发现相交线的例子,将所学知识应用于实际,提高数学素养。
五、作业布置
为了巩固本节课关于相交线的知识,确保学生对所学内容的深刻理解和灵活运用,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,通过这些题目,使学生进一步熟悉相交线的性质,加强对顶角、邻补角的认识。
2.应用提高题:选取生活中的实际问题,如校园内的相交道路、建筑物的角度设计等,让学生运用所学知识解决问题,提高学生的实际应用能力。
4.应用拓展:将相交线的知识应用于解决实际问题,提高学生的应用能力。
设想:设计一些与生活密切相关的实际问题,如房屋建筑、园林设计等,让学生运用相交线的知识解决这些问题。
5.课堂小结:通过师生互动,总结本节课所学内容,巩固重点知识。
设想:教师引导学生回顾本节课所学内容,让学生分享自己的学习收获,教师进行总结评价。
(二)过程与方法
1.观察力:引导学生观察生活中的相交线现象,激发学生对数学知识的好奇心和求知欲。
2.思维能力:在探究相交线性质的过程中,培养学生逻辑推理、抽象概括的能力。
3.解决问题能力:通过解决实际问题,使学生学会运用所学知识,提高解决问题的能力。
4.合作交流能力:组织学生进行小组讨论,培养学生的团队协作能力和表达能力。
1.针对学生已有的知识基础,设计富有启发性的问题,引导学生主动探究相交线的性质。

人教版七年级数学下册5.1.1《相交线》教学设计

人教版七年级数学下册5.1.1《相交线》教学设计

人教版七年级数学下册5.1.1《相交线》教学设计一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍相交线的概念、性质和应用。

通过学习相交线,学生能够理解直线、射线和线段的特征,掌握相交线的定义和性质,并能够运用相交线解决一些实际问题。

本节课的内容是学生进一步学习几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了直线、射线和线段的基本概念,对于一些基本的几何图形有一定的了解。

但是,对于相交线的概念和性质可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生可能对于相交线在实际问题中的应用还不够熟悉,需要通过一些具体的案例来引导和启发。

三. 教学目标1.知识与技能:学生能够理解相交线的概念,掌握相交线的性质,并能够运用相交线解决一些实际问题。

2.过程与方法:学生通过观察、操作和思考,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,自主学习,培养对数学的兴趣和自信心。

四. 教学重难点1.重点:相交线的概念和性质。

2.难点:相交线在实际问题中的应用。

五. 教学方法1.情境教学法:通过实物和图形,引导学生观察和操作,激发学生的学习兴趣和积极性。

2.问题驱动法:通过提出问题,引导学生思考和探究,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论和合作,促进学生之间的交流和互助。

六. 教学准备1.教具准备:直尺、圆规、三角板、白板等。

2.教学素材:相交线的图片、实例和练习题。

3.教学环境:教室布置成有利于学生思考和交流的环境。

七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形,如交叉的道路、铁路等,引导学生观察和思考这些图形的特征。

提问:这些图形有什么共同的特点?学生通过观察和思考,能够发现这些图形的共同特点是它们由两条直线相交而成。

教师引导学生总结出相交线的概念。

人教版七年级下册5.1.1相交线课程设计

人教版七年级下册5.1.1相交线课程设计

人教版七年级下册5.1.1相交线课程设计一、课程目标通过本节课的学习,学生将能够:1.理解相交线的概念;2.掌握相交线的特性;3.运用相交线的特性解决实际问题;4.在实际应用中发扬团队合作精神,培养解决问题的能力。

二、教学重点1.理解相交线的概念;2.掌握相交线的特性。

三、教学难点运用相交线的特性解决实际问题。

四、教学方法课堂讲授、小组讨论、提问互动。

五、教学过程1. 导入(5分钟)•导入相交线的概念:请学生用自己的话解释相交线的含义,并且画出正方形中的相交线。

老师可以听取学生答案后提出疑问和引导;•引导学生思考:相交线是否有特殊的性质,如何表述?2. 学习相交线的特性(20分钟)•学生自主学习教材内容,理解相交线的特性;•老师提问,并带领班级探究相交线的性质,例如:在平面内,两条互不平行的直线必定相交于一点;如果两条直线在平面内相交,那么相交线的两边所夹角度数之和为180度等;•学生通过实例分组讨论并回答问题,巩固相关概念和知识点。

3. 运用相交线特性解决实际问题(30分钟)•给学生出示相交线及角的知识点相关问题,让学生完成问题思考,并将答案写在小黑板上;•学生将自己的小黑板拿到老师和其他同学面前,进行讲解和交流,最终形成答案;•老师提供提示和引导,逐渐提高难度,让学生深入思考和探究。

4. 组内竞赛(15分钟)将学生分为若干个小组,给小组们出示问题,让他们在规定时间内尽快回答,然后评选出获胜组。

5. 课堂总结(10分钟)•让获胜组分享获胜的经验和策略;•老师总结今天的内容,强调重点和难点;•提醒学生复习并预习下一节课的内容。

六、课堂评价通过了解小组学生的回答、口头答问、小黑板写作情况对学生的综合能力进行综合评价。

七、作业1.完成课本练习册第X页的练习;2.自己编一道有关相交线的题目,并在下一次课上与同学分享。

八、教学反思在本节课的教学过程中,还可以增加一些趣味性的教学方式,例如相交线迷宫、猜图形等。

人教版七年级下册数学 《5.1.1 相交线》教学设计 教案

人教版七年级下册数学 《5.1.1 相交线》教学设计 教案

《5.1.1 相交线》教学设计第一课时教材分析本节课研究的相交线是平面内两条直线的两种位置关系中的一种情形,这部分内容学生在前两个学段已有所接触,并且学生在上一学期已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。

在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论.在本节课中,除了让学生重点掌握以上的基础知识外,还应通过大量的识图,来培养学生的图形感,同时,还应在解决问题的过程中注意学生推理能力的培养,这也是教学的难点。

由于本节课的内容较易理解,因此在教学过程中,可尝试利用探究式教学,引导学生自己观察,分析特征,猜想结论,然后推理论证。

教学目标1.知识与技能:(1)理解对顶角、邻补角的概念,能从图形中辨别邻补角和对顶角;(2)掌握对顶角相等的性质;(3)会用对顶角相等的性质进行有关简单的推理和计算。

2.过程与方法:经历质疑、猜想、归纳等活动,培养学生观察、转化、说理能力和数学语言规范表达能力.3.情感态度价值观:通过小组讨论,培养合作精神;让学生在探索问题的过程中,体验解决问题的方法和乐趣;在解题中感受生活中数学的存在,体验数学中充满了探索和创造。

教学重、难点重点:邻补角、对顶角的概念,对顶角相等的性质.难点:写出规范的推理过程和理解对顶角相等的性质的探索教学方法通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。

教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。

教学过程一、创设情境引入新课(设计说明:在现实生活中发现并提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性。

从而自然引入新课。

)问题:在我们生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线,你能再找出一些身边的相交线、平行线的实例吗?比如:教室种黑板面相邻的两条边、相对的两条边,操场上的双缸,方格纸上的横线和竖线等等,都相交线、平行线的形象。

人教版七年级数学下册 教案5.1.1 第1课时《相交线》

人教版七年级数学下册 教案5.1.1 第1课时《相交线》

人教版七年级数学下册教案5.1.1 第1课时《相交线》一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍了相交线的定义、性质和应用。

本节课的内容是学生学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经具备了一定的观察和动手能力,对于基本的几何概念和性质有一定的了解。

但是,对于相交线的定义和性质可能还比较模糊,需要通过实例和操作来进一步理解和掌握。

三. 教学目标1.了解相交线的定义和性质。

2.能够识别和判断相交线。

3.能够运用相交线的性质解决简单的问题。

四. 教学重难点1.相交线的定义和性质。

2.运用相交线的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作来发现相交线的性质。

2.使用多媒体辅助教学,通过动画和图片来形象地展示相交线的性质。

3.采用小组合作的学习方式,让学生在讨论和交流中加深对相交线性质的理解。

六. 教学准备1.多媒体教学设备。

2.相交线的图片和实例。

3.练习题和作业。

七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如铁路交叉、道路交汇等,引导学生观察和思考这些实例中的共同特点。

学生可能会发现这些实例都有两条线段或直线相交的情况。

教师进而提问:“什么是相交线?相交线有哪些性质?”从而引出本节课的主题。

呈现(10分钟)教师通过多媒体展示相交线的定义和性质,引导学生观察和理解相交线的概念。

同时,教师可以给出一些实例,让学生判断哪些是相交线,并解释原因。

操练(10分钟)教师给出一些练习题,让学生独立完成。

这些练习题可以包括判断相交线、找出相交线的性质等。

教师可以在学生完成后进行讲解和解析。

巩固(10分钟)教师可以通过一些实际问题来巩固学生对相交线的理解和掌握。

例如,给出一个几何图形,让学生找出其中的相交线,并解释其性质。

拓展(10分钟)教师可以引导学生进一步思考相交线的应用,例如在建筑设计、交通规划等领域中的应用。

51相交线教案表格式.docx

51相交线教案表格式.docx

课题 5.1.1相交线教学目标知识与技能表述对顶角、邻补角的概念、性质,并能利用它进行简单的推理和计算;通过对顶角性质的推理过程,提高推理和逻辑思维能力;通过变式图形的识图训练,提高识图能力。

过程与方法经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角。

情感态度价值观从图形变化过程中,树立正确的辩证唯物主义观点;认识几何图形的位置美。

教学重点难点重点是对顶角的概念和性质;难点是对顶角的概念,关键是掌握对顶角的特征,以及对顶角与邻补角的区别与联系。

教具三角板、自制复合胶片、木条制成的相交直线的模型教7过程:教师活动学生活动设计意图(一)创设情境,引入课题观察图5. 1-1,注意剪刀剪开布片过程中有关角的变化师导入:相交线在口常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备。

我们先研究直线相交的问题,从而引入本节课题。

学生自注4把剪刀,通过实践、观察得出结论。

学生举出现实空间里相交线的一些实以剪刀为实例引出本章内容,冃的是① 通过实例,让学生了解相交线、是我们日常生活中经常见到的;②通过画面,培养学生的空间想象能力;③通过画面,启发学生广泛地联想,让学生知道,相(二)探索新知,讲授新课1任意画两条相交的直线,在形成的四个角(图5. 1—2)屮,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类。

例。

交线的概念是从实物中抽象出来的;小组讨论,交流2分别量一下各个角的度数,各类角的度数有什么关系?为什么?在图5.1—1转动剪刀把手的过程中,这个关系还保持吗?3引出对顶角、邻补角概念通过对图形中角与角位置关系的研究分析,学生描述邻补角、对顶角概念,从角的位置关系上来研究这些角的相互关系,让学生经历从图形到文字到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些对图形研究的经验和方法。

4反馈练习:下列各图中,Z1和Z 2是对顶角吗?为什么?(射线0A是活动的)迭匕y5.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?问题引导:(1)如图8-1,两条直线相交于点0,当一条直线绕点0转动时,Z1和Z3同时增大或同独立做练习学生以小组为单位展开讨论,选代表本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,捉高学生的识图能力对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的上动性,在活跃课堂气氛的同时,培养学生创造性思维能力。

人教版七年级下数学5.1.1相交线教案

人教版七年级下数学5.1.1相交线教案

二、合作探究探究点1:邻补角与对顶角的概念【找一找】(1)∠1的邻补角是什么?一个角的邻补角一般有几个?(2)∠3的对顶角是什么?图中有几组对顶角?分别把它们找出来.例1.下列各图中,∠1与∠2是对顶角的是()归纳:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.探究点2:邻补角与对顶角的性质问题1:互为邻补角的两个角和是多少度?问题2:你能否利用问题1中的结论推导出互为对顶角的两个角之间具有相等关系?已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3,∠2=∠4.解:例2.(教材P3例1变式)如图,直线a,b相交于点O.(1)若∠1+∠3= 60º,则∠1,∠2,∠3,∠4各个角的度数分别为__________________;(2)若∠2是∠1的 3倍,则∠1,∠2,∠3,∠4各个角的度数分别为________________________;(3)若1:2 = 2: 7 ,则∠1,∠2,∠3,∠4各个角的度数分别为__________________.归纳:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.方法总结:关键是找出图中隐含的角之间的关系,然后利用方程思想解决.在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.例3..如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数..方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.找一找1.如图,直线AB、CD、EF相交,若∠1 +∠5=180°,找出图中与∠1 相等的角.2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.三、课堂练习1.下列各图中,∠1 ,∠2是对顶角吗?2.找出图中∠AOE的邻补角及对顶角,若没有请画出.3.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC, ∠BOE的邻补角;(2)写出∠DOA, ∠EOC的对顶角;(3)如果∠AOC =50°,求∠BOD ,∠COB的度数.4.(应用题)在下图中,花坛转角按图纸要求这个角(红色标注的角)为135°;施工结束后,要求你检测它是否合格?请你设计检测的方法.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化. 5.如图,直线AB,CD 相交于点O , ∠EOC=70°,OA 平分∠EOC ,求∠BOD 的度数.6.【拓展题】观察下列各图,寻找对顶角(不含平角)A BCD Oa b c A A B B CCD DO OEFG H⑴ 如图a ,图中共有 对对顶角; ⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有10条直线相交于一点,则可形成 对对顶角.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有(4-2)×44=2对对顶角;如图②,三条直线交于一点,图中共有(6-2)×64=6对对顶角;如图③,四条直线交于一点,图中共有(8-2)×84=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).利用(1)中规律得出答案即可.由(1)得n(n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n(n -1). 方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征. 四、课堂小结两直线相交归类位置关系名称 数量关系 ∠1和∠2、∠2和∠3、∠3和∠4、 1.有公共顶点 2.有一条公共边3.另一边互为反向延长线邻补角邻补角互 补。

人教版数学七年级下册《5-1-1相交线 》教案

人教版数学七年级下册《5-1-1相交线 》教案

人教版数学七年级下册《5-1-1相交线》教案一. 教材分析《5-1-1相交线》是人教版数学七年级下册的教学内容,本节课主要让学生了解相交线的概念,掌握相交线的性质及运用。

教材通过生活实例引入相交线的概念,让学生在观察、操作、思考的过程中,体会相交线的特征,培养学生的空间观念和逻辑思维能力。

二. 学情分析七年级的学生已经掌握了直线、射线的基本概念,具备了一定的观察和操作能力。

但学生在空间观念方面仍有待提高,因此,在教学过程中,教师要注重引导学生观察、操作,激发学生的思维,让学生在活动中体验和理解相交线的特征。

三. 教学目标1.知识与技能:让学生掌握相交线的概念,了解相交线的性质,并能运用相交线的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作、探究的精神。

四. 教学重难点1.重点:相交线的概念及其性质。

2.难点:相交线在实际问题中的运用。

五. 教学方法1.情境教学法:通过生活实例引入相交线概念,激发学生兴趣。

2.观察操作法:引导学生观察、操作,培养学生的空间观念。

3.讨论法:分组讨论,让学生在交流中掌握相交线的性质。

4.练习法:设计适量练习,巩固所学知识。

六. 教学准备1.教具:直尺、圆规、三角板等。

2.学具:每人一套直尺、圆规、三角板。

3.教学课件:相交线的相关图片、动画、练习题等。

七. 教学过程1. 导入(5分钟)教师通过展示生活中常见的相交线现象,如交叉的道路、铁路等,引导学生关注相交线。

提问:“你们在哪里见过这样的线?它们有什么特点?”让学生发表自己的看法。

2. 呈现(10分钟)教师简要介绍相交线的概念,引导学生观察相交线的特征。

同时,利用课件展示相交线的性质,让学生初步认识相交线。

3. 操练(10分钟)教师引导学生用直尺、圆规、三角板等工具,自己画出相交线,并观察、分析相交线的特征。

人教版七年级下册(新)第五章《5.1.1相交线》教案

人教版七年级下册(新)第五章《5.1.1相交线》教案
三、教学难点与重点
1.教学重点
-重点一:理解相交线的定义,掌握两条直线相交形成的四个角及其名称。
-举例:通过观察图形,让学生识别出两条直线相交形成的四个角,即相邻角、对顶角、补角等,并理解这些角的性质。
-重点二:掌握垂直与平行的性质,并能运用这些性质解决实际问题。
-举例:讲解垂直与平行的定义,引导学生通过观察生活中的实例,如墙面与地面的关系,理解这些性质的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-重点三:学会通过画图和推理来分析几何问题,培养几何直观和逻辑思维能力。
-举例:在解决几何问题时,要求学生先画出相应的图形,再运用几何性质进行分析,从而培养他们解决问题的方法。
2.教学难点
-难点一:对顶角和相邻角的区分。
-举例:在讲解对顶角和相邻角时,通过对比记忆,让学生理解这两种角的不同之处,并运用到实际问题中。
人教版七年级下册(新)第五章《5.1.1相交线》教案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1相交线
[教学目标]
1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力
和有条理表达能力
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对
顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念.对顶角性质与应用
难点:理解对顶角相等的性质的探
[教学设计]
一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二.认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用
几何语言准确表达
AOC∠
∠;
AOD
有一条公共边
它们的另一边互为反向
与OA,
延长线
∠与有公共的顶点O,而且AOC
BOD
AOC∠
∠两边的反向延长线
∠的两边分别是BOD
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质
三.初步应用
练习:
下列说法对不对
(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2) 邻补角是互补的两个角,互补的两个角是邻补角
(3) 对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四.巩固运用例题:如图,直线a,b 相交, 401=∠,求4,3,2∠∠∠的度数。

[巩固练习](教科书5页练习)已知,如图, 80,35=∠=∠COF AOC ,求:DOF AOD ∠∠和的度数
[小结]
邻补角、对顶角.
[作业]课本P9-1,2P10-7,8
[备选题]
一判断题:
如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( ) 两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )
二填空题
1如图,直线AB 、CD 、EF 相交于点O ,AOE ∠的对顶角是 ,
COF ∠的邻补角是
若AOC ∠:AOE ∠=2:3,
130=∠EOD ,则BOC ∠=
2如图,直线AB 、CD 相交于点O 30,90=∠=∠=∠AOC FOB COE 则=∠EOF。

相关文档
最新文档